当前位置:文档之家› 炉渣的主要成分

炉渣的主要成分

炉渣的主要成分
炉渣的主要成分

炉渣(slag)

矿中的脉石、炉料中的熔剂和其他造渣组分在火法冶金过程中形成的金属硅酸盐、亚铁酸盐和铝酸盐等混合物。此外,炉渣还含有少量的金属硫化物、金属和气体。从广义说,有色金属的吹炼渣、黄渣、蒸馏罐渣、精炼渣等都属有色金属冶金炉渣。

炉渣富集了炉料中的脉石成分和不希望进入主金属的杂质,是一个成分复杂的多元体系。炉渣的主要成分为氧化物。可将构成炉渣的氧化物分为酸性氧化物(如SiO2、Fe2O。等)、碱性氧化物(如FeO、CaO、MgO等)和两性氧化物(如Al2O3、ZnO等)。它们之间的区别在于各氧化物对氧离子的亲疏关系,容易放出氧离子的为碱性氧化物,反之为酸性氧化物。这些氧化物相互结合成各种化合物、固溶体及共晶混合物。

炉渣组成的来源有色金属冶金炉渣中的组分主要来源于五个方面:(1)矿石或精矿中的脉石,如SiO2、CaO、Al2O3、MgO等;(2)炉料在熔炼过程中生成的氧化物,如FeO、Fe3O4等;(3)为满足熔炼需要而加入的熔剂,如SiO2、CaO、FeO、Fe3O4等;(4)熔蚀或冲刷下来的炉衬材料,如MgO、SiO2、Al2O3等;(5)燃料燃烧的灰分,如Al2O3、SiO2等。

有色金属冶金炉渣属FeO–CaO–SiO2系,主要是由FeO、CaO、SiO2组成的硅酸盐,三者之和约占渣量75%~85%,有时甚至达90%。因此,渣的性质在很大程度上由这三个组分所决定。在冶炼过程中的作用炉渣是火法冶金的必然产物,其量又相当大。例如反射炉炼铜产出的炉渣约为熔锍质量的200%~500%。炉渣在冶炼过程中主要起八方面的作用。(1)熔融炉渣富集了炉料中几乎全部的脉石和大部分的杂质,并在造渣过程中完成了金属的某些熔炼和精炼过程。例如铜、镍硫化矿造锍熔炼时,铜、镍等硫化物与硫化亚铁富集为熔锍,而铁的氧化物与脉石、熔剂和燃料灰分等形成熔渣。(2)熔炼生成的金属或锍熔体液滴分散在熔渣中,它们的汇合长大和澄清分离都是在熔渣介质中进行的。因此,熔渣对熔炼生成的金属或熔锍与造渣成分分离的程度起着重要的作用。(3)覆盖在金属或熔锍表面的熔渣层起保护金属和熔锍的作用。(4)熔渣在冶炼过程中除富集炉料中的脉石等成分外,有时还起富集有价组分的作用,如钛精矿还原熔炼所得的高钛渣,以及吹炼含钒和含铌的生铁所得的钒渣和铌渣等都是提取钛、钒和铌等的原料。(5)熔渣在一些冶炼过程中还起着特殊作用,在烧结焙烧过程中造渣成分起到粘合结块的作用;在鼓风炉熔炼过程中,炉渣的组成基本上决定了炉内的温度,低熔点渣型的强化熔炼只能提高炉子生产能力而不能提高炉内温度,要提高炉内温度必须选择熔点高的渣型;在电炉熔炼时,炉渣起电阻发热体作用。(6)炉渣的性质决定着熔炼过程的

燃料消耗量,热焓量大的和熔点高的炉渣,熔炼的燃料消耗量也增加。(7)炉渣的性质和熔炼产出的渣量是影响金属回收率的一个重要因素,因为渣含金属的损失是冶金过程中金属损失的主要途径。(8)炉渣对炉衬的化学侵蚀和机械冲刷,会影响炉子的使用寿命。由此可见,炉渣是直接影响冶炼产品质量、生产率、金属回收率、冶炼过程能否顺行等的重要因素。

性质炉渣的主要性质有熔点、粘度、密度、热焓、界(表)面张力、电导率、密度等。炉渣的粘度影响到冶炼能否顺利进行,也影响到金属或锍能否充分地通过渣层沉降分离。向炉渣添加定量的CaO或FeO等碱性氧化物会降低其粘度,但却增加渣量。炉渣粘度一般以小而适当的为好。炉渣的导电率对电炉操作影响极大。钠离子对炉渣导电率的增加非常有效,而SiO2却会引起炉渣导电率的下降。当炉渣中氧化铁含量增加时,除离子导电外,还出现电子导电。炉渣的表面张力以及与金属或锍之间的界面张力等,与金属或锍颗粒在渣中的悬浮有关。因而,它与密度、粘度等一起是评价主金属在渣中损失的重要性质。炉渣的熔点随其高熔点物质的含量增加而升高,它和热焓一起影响着冶炼过程的能耗。

对造渣的要求由于炉渣是构成熔炼产物的基体,它的性质在很大程度上决定着熔炼的效果。而炉渣性质主要受它的组成和熔炼

温度的影响。所谓造渣,就是通过加适量的熔剂,如石英石、石灰石和铁矿石(或黄铁矿烧渣)来获得最佳组成炉渣的过程。

对造渣的要求(1) 要满足冶金过程的需要,使炉料中的无价和有害组分最大限度地集中溶解在熔渣中,而尽可能少地溶解或夹带炉料中的有价金属;(2)造渣费用最低,即选用的渣型消耗的熔剂最少,产出的渣量最少,燃料消耗最少;(3)炉渣的形成温度和流动温度要与熔炼工艺相适应;(4)所造的渣型具有小而适当的粘度和小的密度,这是为使炉内冶金反应充分完成和熔融金属与炉渣的良好分离所必须的;(5)所造渣型对炉体的腐蚀性最小。

炉渣的结构理论已提出过几种熔融炉渣结构学说,主要有分子学说和离子学说两种。

分子学说这是以固体炉渣的相分析和化学分析结果为依据于1934年最早提出的熔渣结构学说。分子学说把熔渣看成是各种氧化物分子(如SiO2、FeO、CaO等)和它们之间的化合物分子(如2FeO?SiO2、2CaO?SiO2等)组成的理想溶液,渣中酸碱氧化物相互作用形成的复杂氧化物之间处于化学动平衡,只有自由氧化物(如FeO、CaO等)才能参予金属相的相互反应,此时自由氧化物以实际浓度出现,所以金属与炉渣间的反应可以应用理想溶液的有关定律。分子学说缺乏更广泛的实验基础,设想的某些化合物又无实验验证,认为组成如此复杂的熔体是理想溶液,更是缺乏

事实依据。但这种学说也能简单地、定量或半定量地解释一些实验现象,如渣的氧化能力、脱硫能力和酸碱性等,因而直到目前仍有一定的实用价值。

离子学说 1912年苏联学者瓦纽柯夫()提出的熔渣离子化理论,认为熔渣是由简单的离子和复杂的配位离子构成,质点间相互作用为离子的相互作用,所以渣金属相间的相互作用是电化学性质的作用。熔渣中金属氧化物的金属呈正离子,如Ca2+、Fe2+、Mg2+等。而氧在碱性渣中以O2–存在,有可能形成配位离子的元素(如Si4+、Al3+、Fe3+等)存在时,则形成

配位离子,其主要的如,式中x、y、z值由O/Si比值即炉渣的酸碱度确定。当O/si=2时为SiO2结构,在熔融状态下无离子性质,硅和氧的化合价都达饱和。渣中碱性氧化物增加,

离子断裂为更简单的离子。至O/Si=4时成为最简单的

,此时四个氧的价数都不饱和。

1945年苏联学者焦姆金(M.N.)提出熔渣完全离子溶液学说,称模型。其要点为:(1)溶液完全电离成电荷总数相等的正负离子,故溶液总体不带电;(2)每个离子仅为带有相反电荷的离子所包围,即正负离子均匀相间排列;(3)电荷符号相同的离子,不论其电荷数多少,它与邻近离子的相互作用完全等同。所以,溶液中正负离子不能互换位置,同符号离子的位置可互换而不会改变体系的能量。该模型揭露了离子熔体质点载有

正负电荷的本质,但忽略了电荷符号相同而种类不同离子(如Fe2+和Ca2+、O2–和S2–)之间的差异,故与真实离子熔体(如熔渣)存有偏差。但它提供了一种对实际炉渣比较的标准。

马松(C.R.Masson)在1965年提出并在1970年改进的马松模型,又称全链结构型。该模型假定熔体中离子活度等于其离子分

数,硅氧配位离子之间发生一系列的聚合反应并达到平衡,每个聚合反应的平衡常数都相等。并由此得出各种复杂离子浓度的理论分布曲线和导出熔体中金属氧化物的活度ɑMeO与

二氧化硅的摩尔分数之间的关系式。中国冶金学家邹元曦等根据他们对CaO–SiO2熔体实验测得更可靠的CaO活度数据检验了马松模型,发现平衡常数K11并不守常,1nK11与

成直线关系。此外,马松模型还能完全解释三元系的各种现象,把正离子和负离子视为理想溶液也与实际不尽相符。

高炉渣处理、回收利用技术的现状

高炉渣处理、回收利用技术的现状与进展 学院:矿业工程学院 班级:矿加10 姓名:范明阳 学号:120103707026

高炉渣处理、回收利用技术的现状与进展 范明阳 (辽宁科技大学矿业工程学院) 摘要:介绍了目前国内外高炉渣处理、回收利用的现状,对比分析了高炉渣各种处理工艺的优点和不足,指出目前的高炉渣处理存在新水消耗大、炉渣物理热无法回收和二氧化硫、硫化氢等污染物排放的问题,提出了解决高炉渣处理和回收利用过程中渣粒化及热量回收问题的新方法,并展望了高炉渣综合利用的发展趋势. 关键词:高炉渣;处理;回收利用;发展趋势 Abstract:The current status of the recovery and utilization of blast furnace slag both at home and abroad a.re described,andthe advantages and the disadvantages of various treatment processes compared in the present discussion.It is indieated thatthe treatment method of blast furnace slag now in use has the shortcomings of large fresh water consumption,impossibility torecover the physical heat of the slag,and emission of contaminants SO2 and H2 S. Key words:blast furnace slag;treatment;recovery and utilization;developing trend 0 .前言 钢铁工业是我国国民经济的重要基础产业.高炉渣是一种性能良好的硅酸盐材料,可作为生产水泥的原料.高炉渣的主要成分是氧化钙、氧化镁、三氧化二铝、二氧化硅,属于硅酸盐质材料,其化学组成与天然矿石、硅酸盐水泥相似.在急冷处理的过程中,熔态炉渣中的绝大部分物质没能形成稳定的化合物晶体,以无定形体或玻璃体的状态将没能释放的热能转化为化学能储存起来,从而具有潜在的化学活性,是优良的水泥原料.据统计,我国冶金企业每年用于处理废弃炉渣资金高达上亿元,尤其是对于高炉渣的显热,国内还没有一家钢铁联合企业将

生活垃圾焚烧炉渣性质及处置技术

1、生活垃圾焚烧炉渣性质 (1)炉渣的物理性能 生活垃圾焚烧炉渣是生活垃圾焚烧的副产物,包括炉排上残留的焚烧残渣和从炉排间掉落的颗粒物,呈黑褐色,原炉渣有刺激性气味,经过处理后气味减弱。未经处理的焚烧炉渣主要由灰渣、碎玻璃和砖块、瓷碎片、木屑,以及少量碎布条、塑料、金属制品等物质组成。碎玻璃、瓷碎片等主要来自于工程中的建筑垃圾,但只要其粒径大小不超过5mm,就不会影响炉渣多孔砖的整体性能。金属制品主要来自于人们的生活用品,如易拉罐、钉子、铁罐等,并且其中的单质铁会氧化,产生锈蚀,影响砖的性能。布条、塑料等物质是由于生活垃圾在焚烧过程中燃烧不够充分而未能去除。 炉渣中还含有极少量的有色金属,在公路基层应用过程中可能会由于和碱反应产生H2而破坏路面,大颗粒金属可能会损坏施工设备,对施工的危害较大,应尽可能地除去;炉渣中的可燃物含量较低,5mm以上颗粒中的可燃物含量在0.06~1.34%。可燃物的存在不利于资源化利用,如影响应用时路面的长期稳定性,影响无机结合料与炉渣的结合,而降低材料强度。因此,该将这些物质尽量去除。经过预处理的炉渣只含有少量的碎玻璃、砖块和瓷碎片,布条、塑料等有机物几乎全部去除。由于炉渣主要物理组分质地坚硬,因而作为集料使用时能保证一定的强度。 (2)炉渣的含水率、热灼减率、堆积密度、吸水率 由于水淬降温排渣作用,炉渣的含水率约为12.0%~18.9%,随着堆积时间、天气等因素上下波动;炉渣热灼减率反映垃圾的焚烧效果,一般较低,为

1.57%~3.16%;炉渣堆积密度在1150kg/m3~1350kg/m3之间,吸水率为37%左右。说明炉渣是一种多孔的轻质材料,强度不高。 (3)炉渣的粒径分布 炉渣粒径分布较均匀,主要集中在2~50mm的围(占60.8%~7.68%),小于0.074mm的颗粒含量在0.06%~1.36%。基本符合道路建材中集料的级配要求。 (4)炉渣化学成分 预处理后的炉渣主要化学成分及含量为:硅35%~50%、钙7%~15%、铝3.5%~7.0%、铁3.0%~6.0%、钠2.5%~8.0%、钾1.3%~3.0%、磷0.7%~3.0%,不同地点、不同批次的炉渣主要化学组成接近,由此可认为预处理后的炉渣的化学成分相对比较稳定。 (5)炉渣矿物组成 对预处理后的炉渣取样进行X衍射,X衍射结果显示,炉渣的主要矿物为石英(Quartz)、钙长石(Anorthite)、斜方沸石(Gismondine),其他的矿物峰比较弱,含量很少。各矿物衍射峰均比较尖锐,说明结晶程度较高,且石英、钙长石、斜方沸石的水化活性都不高,据此初步判断炉渣的活性不高。炉渣表面很粗糙,呈不规则角状,孔隙率较高,孔隙直径也比较大。炉渣部分位置晶体生长良好,要为棒状、针状和粒状晶体,但是发育不是很均匀,可能是因为焚烧过程中温度和空气分布不均,停留时间不同以及炉渣组分复杂的缘故。 (6)炉渣的轻漂物含量

造铜锍过程中锍与渣的分离(通用版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 造铜锍过程中锍与渣的分离(通 用版)

造铜锍过程中锍与渣的分离(通用版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 炉渣和铜锍相的分离 1)在造锍熔炼中,炉渣的主要成分是FeO和SiO2,铜锍相Cu2S 和FeS。所以当炉渣和铜锍共存时,最重要的关系是FeS―FeO―SiO2和Cu2S―FeS―FeO。根据研究,无SiO2存在时,FeO和FeS完全互溶,但当加入SiO2时,均相溶液出现分层;SiO2足量时,两相几乎完全分离。 另外,当渣中存在CaO或Al2O3时,将对FeS―FeO―SiO2系的互溶性质产生很大影响,它们的存在均降低FeS在渣中的溶解度。所以,高CaO和高Al2O3炉渣,炉渣和锍相的分离特性将进一步加强。 2)这就解释了在铜冶炼厂熔炼炉出现的排放过程中冰铜、炉渣明显分离,冰铜和炉渣流动性级差大的情况。针对这一情况,为保证炉渣的正常排放,一是降低操作熔池面;二是在铜溜槽可承受范围内尽可能提高炉渣温度;三是通过配比计算和精良的操作,将炉渣组分严格控制在低熔点区域,提高炉渣流动性。另外,适当增加搅动,也将

国内矿渣综合利用现状

xx大学xx (250022) 一、国内矿渣综合利用现状 矿渣是黑色冶金工业的主要固体废弃物,2005年我国产钢3.49亿吨,冶炼废渣产生14619万吨,(其中钢渣约为5000万吨,高炉矿渣约9000万吨),综合利用12848万吨,加上历年累积,总贮存量为2亿吨,占地3万亩,这些露天储存的冶炼废渣堆存侵占土地,污染毒化土壤、水体和大气,严重影响生态环境,造成明显或潜在的经济损失和资源浪费。据估算以每吨冶炼废渣堆存的经济损失14.25元计,每年造成经济损失28.5亿元。所以,冶炼废渣的无害化、资源化处理是我国乃至世界各国十分重视的焦点,也是我们推进循环经济的中心内容之一。 矿渣在水泥工业中的综合利用主要经过了三个阶段。 1.第一阶段主要是在1995年以前,粒化高炉矿渣主要是作为水泥混合材使用。以混合粉磨为主。矿渣由于难磨,在水泥中的掺量有限,一般不超过30%。 2.第二阶段是1995~2000年,学习国外技术,矿渣微粉作为高性能混凝土的高掺合料,在建筑工程中推广使用。但要求矿渣微粉比表面积要达到 600m2/kg以上,国内仅有几家粉磨站生产。主要原因是: 进口设备价格昂贵、生产线投资相当大。以年产30万吨矿渣微粉生产线为例,一次性投资至少在5000万元左右。 3.第三阶段是在2000年之后,粉磨设备节能技术和矿渣微粉应用经济技术研究的深入,使广大水泥企业认识到,矿渣微粉最经济的粉磨细度应控制在400m2/kg左右。这样的矿渣微粉,既能直接供给混凝土搅拌站作掺合料,又能与熟料、石膏粉合成高掺量矿渣水泥。随着循环经济的大力发展,矿渣微粉的产量年年翻番,目前已接近1000万吨/年,建材行业内一个新兴产业正逐步在形成。 二、什么是矿渣

煤气化灰渣资源化利用策略研究

煤气化灰渣资源化利用策略研究 摘要:煤炭是我国社会经济发展重要的产业,为国民经济发展提供物质基础。 煤化工行业作为其中重要的一个环节,为国计民生提供甲醇、合成氨、天然气、 乙二醇等化工原材料。煤炭具有成分复杂、生产工艺繁琐、原料提纯困难等特点,因此煤化工也是高能耗、高污染的行业。随着人们对环保、绿色、健康理念的重视,我国煤化工行业面临巨大的机遇与挑战,能否解决好行业发展中的环境污染 问题成为制约煤化工加速发展的重要影响因素。基于此,本文就煤气化灰渣资源 化利用策略进行简要阐述。 关键词:煤气化;资源化;利用 近年来,国家提出了科学可持续发展煤化工的理念。而煤气化灰渣占煤化工 固废很大比例,对其进行综合利用是整个煤化工实现绿色可持续发展的重要因素。对煤气化灰渣进行高效合理利用,既可以消除灰渣引带来的环境危害,又可以实 现“化害为利、变废为宝”,节约资源。因此,研究煤气化灰渣资源化途径、开发 灰渣综合利用策略,有益于提高我国自主供应水平,对我国今后合理开发利用资源、保护生态环境、建设资源节约型、环境友好型社会具有重要的意义。 1 煤气化灰渣的特性 随着现代煤化工的发展,气流床气化技术逐渐成为煤气化技术的主流,主要 包括干煤粉加压气化技术和水煤浆加压气化技术两种。气流床气化技术根据煤质 的灰熔点不同,气化操作温度高达1400℃-1600℃,高温合成气夹带着灰渣经过 水浴激冷至220℃左右。灰渣分为细灰和粗渣两种,它们随着气化炉运行条件的 不同而呈现不同的外观形态。细灰为不完全反应的细颗粒,含有20%-40%残碳成分,颜色成灰黑色,比表面积15m3/g,空隙发达。粗渣的残碳含量比较低,一般在1%以下,颜色呈现棕色、灰色、黄褐色的颗粒物质。灰渣成分与气化原料煤 灰分含量、组成以及生产工艺相关,主要取决于煤中的无机矿物质、有机物成分。灰渣成分复杂,主要成分为二氧化硅,大约占39.67%;三氧化二铝大约占 26.77%;四氧化三铁大约占12.80%;氧化钙大约占9.96%;氧化镁大约占2.43%;还要一些残余碳等大约占8.37%。灰渣的化学元素除含有大量的硅、铁、铝、钙、镁、碳外,还含有少量铜、铅、汞、砷、铬、镍、锰、钡、锶等以及微量的有害 元素。另外,煤气化灰渣中还含有少量的放射性元素,比如:铀、钍等。 2 煤气化灰渣的资源化途径 灰渣的利用可以分为多种形式,包括回填结构、填筑路基等低值化形式;制 造水泥等中值化形式和土壤改良、分选化合物等高值化形式,具体形式如下: 2.1 热利用 气化细灰中含有20%-40%残碳,热值较高。在国内有很多工厂尝试将气化细 灰掺烧到锅炉中再次燃烧,但是效果不理想,主要原因为气化细灰的空隙发达, 经过普通脱水处理后,水分仍然高达50%,很难实现气化细灰的输送。宁夏神耀 科技有限责任公司开发的气化细灰脱水干化一体化成套技术是将脱水和干化过程 有机结合,可将气化细灰脱水至20%以下,既提高了细灰的热值,又可解决气化 细灰的输送问题,为气化细灰的燃烧再利用提供技术保证。气化细灰经过再次燃 烧脱碳后,碳含量可降至1%左右,为气化细灰的进一步资源化利用打开了通道。 2.2 回收多种金属 目前,欧美等国家已经成功的采用磁选和筛分等技术从煤气化灰渣中提取出 金属。还有一些工厂采用涡电流成功的分离出有色金属。

炉渣冶金性能测试实验报告

炉渣冶金性能测试实验报告 院系: 冶金与资源学院 班级:冶105 指导老师: 组长: 组员: 实验地点: 安徽工业大学 炉渣冶金性能测试 文献综述 1目前连铸保护渣的状况 1. 1国外状况 鉴于连铸保护渣技术在现代连铸技术中的重要地位, 工业发达国家将连铸保护渣技术列入高科技范畴, 各研究所、高等院校和企

业都投入大量人力、物力进行开发研究。欧洲煤钢联在20 世纪80 年代末、90 年代初投入大量资金对保护渣原材料、基本组成及特性、在连铸过程中的行为作用和连铸保护渣工业化生产等17 个项目进行了系统研究, 取得了很好效果, 促进了连铸技术的发展;美国材料协会从1996 年开始研究和建立连铸保护渣生产和使用技术标准, 大大促进了保护渣技术的发展; 日本和韩国除了进行大量保护渣基础理论研究外, 还不断开发连铸保护渣生产的在线检测和控制技术。这些研究和开发一方面形成了连铸保护渣的产业( 如英国Foseco、德国Metal-lurgica 和Stollberg、韩国Stollburg、日本板田和品川等一批生产工艺先进、开发能力较强的连铸保护渣专业化生产厂) , 另一方面大大促进了保护渣理论的深化和提高。总之, 国外主要进行了三方面的工作: ( 1) 进行保护渣基础理论研究, 其目的是开发出适合各种连铸品种和工艺要求的保护渣; ( 2) 采用了计算机模拟技术及专家系统, 进行结晶器内保护渣熔化特性模拟及保护渣成分设计; ( 3) 建造先进的保护渣生产厂, 生产性能稳定和高质量的保护渣, 并使之商品化, 我国各钢厂进口的保护渣多数从这些厂购进。目前工业发达国家已经做到连铸保护渣系列化、商品化。 1. 2国内状况 我国连铸保护渣自1972 年开始研制, 至今已有30多年的历史, 已经具有研究开发保护渣的能力, 并建成了一批保护渣生产厂。除

冰铜主要性质都有哪些呢

冰铜主要性质都有哪些呢? 冰铜主要性质都有哪些呢? 熔点:940~1130oC,随冰铜品位变化 比重:4.0~5.2,远高于炉渣比重(3~3.7); 粘度:η=2.4×10-3Pa·s,比炉渣粘度低很多(0.5~2Pa·s) 表面张力:与铁橄榄石(2FeO·SiO2)熔体间的界面张力约为20~60N/m,其值很小,由此可判断冰铜容易悬浮在熔渣中。 冰铜的主要成分Cu2S和FeS都是贵金属的强有力的捕捉剂。 冰铜品位是生产中的一个重要问题。太低会使后续吹炼时间拉长、费用增加;太高则使炉渣中的含铜量增加,产生浪费。 铜在渣和冰铜中的平衡浓度遵循分配定律铜价 对铜熔炼,K=0.01。

最常采用的冰铜品位为30~40%。不过,为了减少熔炼能耗,冰铜品位有越来越高的趋势,但一般不宜超过70%。至于炉渣中的铜,可以回收。 生冰铜 含铜率 在20%~50%之间 含硫率 在23%~27%之间. 处理冰铜特点 不需要燃料 冰铜主要由硫化铜和硫化铁互相溶解形成的,它的含铜率在20%~50%之间,含硫率在23%~27%之间. 冰铜较重,沉于下层,可以从高炉的出料口流出来,废矿渣则从上部排出。 冰铜的形成无法避免,不过可以再利用: 处理冰铜,可采用斜吹卧式转炉,特点是不需要燃料,依靠铜水中铁和硫的氧化反应放出热量提供全部热,而水排带动风箱不停的吹入足够的空气。冰铜经过这种吹炼,能够生成含铜品位高于98%的粗铜,熔化的铜汁倒入模具,就成了黄澄澄、金灿灿的铜锭。这种新式斜吹卧式转炉热容量大、作业周期内温度变化小、生产率高;采用的新型炉衬寿命长,节约维护时间;采用独特的新型支承装置,有效降低炉身高度;炉体封头采用球形封头,

普通高炉炼铁渣的利用现状

普通高炉炼铁渣的利用现状 随着我国钢铁工业的发展,高炉矿渣排量日益增多,我国每年排放高炉渣达数千万吨,而这些炉渣都用到什么地方了呢? 首先,我们先来了解一下什么是高炉渣,高炉矿渣是冶炼生铁时从高炉中排出的一种废渣,是由脉石、灰分、助熔剂和其他不能进入生铁中的杂质所组成的易熔混合物,从其化学组成成分上来看,主要是SiO2、CaO、Al2O3等,这些成分都属于硅酸盐质,便于加工成多品种的建筑材料;除此之外,高炉矿渣还可以用来生产一些用量不大而产品价值高,又有特殊性能的高炉渣产品。 我们通过对相关资料的了解,大体上总结了一下当今普通高炉炼铁渣的利用情况。下面详细介绍一下具体的利用途径。 (一)在建筑材料方面的应用,从《高炉矿渣处理和利用》[1]一文中,我们了解了高炉炼铁渣在建筑方面的利用,例如,水淬成粒状矿渣(简称水渣)是生产水泥、矿渣砖瓦和砌块的好原料;经急冷加工成膨胀矿渣珠或膨胀矿渣,可做轻混凝土骨料;吹制成矿渣棉可制造各种隔热、保温材料;轧制成型可做微晶玻璃。 生产的矿渣水泥包括以下几种:1、矿渣硅酸盐水泥;2、石膏矿渣水泥;3、石灰矿渣水泥。它们都是将矿渣与其他生产水泥的原材料按一定比例配合磨细而成的。这种水泥对其抗拉和抗压强度没什么影响,具有较好的抗硫酸盐侵蚀和抗渗透性,生产成本较低。 矿渣砖是用水渣加入一定量的水泥等胶凝材料,经过搅拌、成型和蒸汽养护而成的,用于普通房屋建筑和地下建筑,这样就节省了普通砖的消耗量。 膨胀矿渣珠主要用作混凝土轻骨料,也用作防火隔热材料,用膨胀矿渣制成的轻质混凝土,不仅可以用于建筑物的围护结构,而且可以用于承重结构。并且具有工艺简单,不用燃料,成本低廉等优点。 矿渣棉是以矿渣为主要原料,在熔化炉中熔化后获得熔融物再加以精制而得到一种白色棉状矿物纤维。它具有保温、隔音、绝冷等性能。 微晶玻璃[2]是综合玻璃和陶瓷技术发展起来的一种新型材料, 微晶玻璃是由结晶相与玻璃相组成,其物理化学性能集中了玻璃和陶瓷的双重优点, 既具有陶瓷的强度, 又具有玻璃的致密性和耐酸、碱、盐的耐蚀性。 (二)上文提及的利用途径在当前的技术已经是十分成熟的了,所以高炉渣的利用必然向一个更高层次发展,经过近几年的研究,又开发出来了高炉渣新的利用途径,从其简单的物理

不同渣型的铜熔炼中冰铜品位对伴生元素分配行为的影响

研究简报 不同渣型的铜熔炼中冰铜品位对 伴生元素分配行为的影响 谭鹏夫 张传福 (中南工业大学有色冶金系 长沙410083) 摘 要 利用已开发的多相多成份系统平衡计算模型,对铜熔炼过程进行了模拟,研究了 冰铜品位对伴生元素Ni 、Co 、Sn 、Pb 、Zn 、As 、Sb 和Bi 在造硅酸铁炉渣和铁酸钙炉渣的铜熔 炼体系中分配行为的影响.结果表明:在生产高品位冰铜时,As 、Sb 和Bi 的脱除率较低,铁 酸钙炉渣对脱除有害杂质As 和Sb 比硅酸铁炉渣有效得多,N i 、Co 、Pb 和Zn 则大量进入这 两种渣中,得以脱除. 关键词 铜熔炼,分配率,冰铜品位,平衡计算模型 中图分类号 TF811,O242 1 前 言 铜冶炼的关键技术在于控制伴生元素的行为,因为优质铜是由伴生元素的有效控制和脱除产生的.由于节能和改善环境的需要,硫化矿熔炼已逐步采用富氧和生产高品位冰铜等强化熔炼措施,因此极大改变了硫化矿中伴生元素在熔炼和吹炼过程中的分配行为.同时,随着矿石品位的下降及其成份的复杂化,矿石中的杂质元素对环境的污染及在产品中的富集亦日趋严峻,从而导致冶炼过程操作困难和产品质量下降. Itagaki 和Yazawa [1]在热力学数据的基础上评价了第VA 族元素As 、Sb 和Bi 在造硅酸铁炉 渣的铜熔炼中的分配行为.Chaubal [2]和Seo 等[3]以传质方程为基础,开发了As 、Sb 和Bi 在铜闪 速熔炼过程中的挥发模型.但他们均未考虑Ni 、Co 、Sn 、Pb 和Zn 在铜冶炼中的分配,也未讨论伴生元素在造铁酸钙炉渣的铜冶炼中的行为.本研究利用已开发的多相多组份系统平衡计算模型,对铜熔炼过程进行了模拟,研究了冰铜品位对伴生元素Ni 、Co 、Sb 、Pb 和Zn 分配行为的影响.2 伴生元素在铜冶炼过程中分配行为的数学模型 在铜火法冶炼的提铜期,冶炼过程的物理化学性质基本是不变的.伴生元素的行为主要受金属铜相的存在所控制.而在提取冰铜时,伴生元素的行为是过程的另一重要操作参数 冰铜 国家经贸委资助项目 收稿日期: 1997-04-14,修回日期: 1997-05-15谭鹏夫:男,27岁,博士后,有色冶金专业 第19卷第2期 1998年 5月化 工 冶 金Engineering Chem istry &Metallurgy Vol 19No 2 M ay 1998

高炉渣的综合利用。

再生金属冶金学课程论文 高炉渣的综合利用 摘要 高炉渣是高炉炼铁过程中排出的固体废弃物,随着弃置量增大,产生的问题也日趋严重。通过分析我国高炉渣的现状及特点,阐述了对其综合利用的重要意义,回顾了高炉渣综合利用的研究进展。系统地介绍了高炉渣在制备混凝土材料、矿渣砖、墙体材料和新型矿棉、微晶玻璃等材料的应用情况。阐述了二次资源综合利用的社会效益、经济效益和环境效益。从资源有效利用和产业化的角度,指出了未来高炉渣的技术开发与综合利用的发展方向。 关键词: 高炉渣;利用途径;综合利用;矿棉;微晶玻璃; 前言 高炉渣是冶金行业产生数量最多的一种副产品,其处理过程中不仅消耗大量的能源,同时也排出大量的有害物质。因此,开展高炉渣回收利用方面的研究十分必要。国内外的生产企业十分注重高炉渣再利用技术的研究,近年来从能源节约和资源综合利用来看,提高炉渣的利用率和再利用价值,寻求高炉渣资源化利用新途径和利用高炉渣开发高附加值产品已成为国内外研究的热点。积极探索利用量大、附加值高的高炉渣利用新途径以促进经济社会与环境协调发展。 本文阐述了高炉矿渣的分类及主要成分,本着综合利用的原则,详细介绍了各种高炉矿渣的综合利用途径及工艺。积极探索利用量大、附加值高的高炉渣利用新途径以促进经济社会与环境协调发展。 研究背景 我国工业发展长期以来侧重于资源密集型产业,由此造成的大量工业固体废弃物处理问题也随着经济发展而不断突出。工业废物数量庞大,种类繁多,成分复杂,不仅占用大量土地,而且污染环境经过日晒、风吹雨淋,造成二次污染[1]。工业固体废弃物资源的回收再利用产业,是国内外循环经济发展的一个重要链条,发达国家已将其视为继现有三大产业之后的又一个重要产业支柱,又称“第

冶金炉渣性能研究

实验一冶金炉渣性能研究 保护渣的作用 在浇注过程中,要向结晶器钢水面上不断添加粉末状或颗粒状的渣料,称为保护渣。保护渣的作用有以下几方面: (1)绝热保温防止散热; (2)隔开空气,防止空气中的氧进入钢水发生二次氧化,影响钢的质量; (3)吸收溶解从钢水中上浮到钢渣界面的夹杂物,净化钢液; (4)在结晶器壁与凝固壳之间有一层渣膜起润滑作用,减少拉坯阻力,防止凝壳与铜板的粘结; (5)充填坯壳与结晶器之间的气隙,改善结晶器传热。 一种好的保护渣,应能全面发挥上述五个方面作用,以达到提高铸坯表面质量,保证连铸顺行的目的。 保护渣的种类 根据设计的保护渣组成,再选用合适的原料经过破碎、球磨、混合等制作工序就制成了保护渣。有四种类型。 (1)粉状保护渣:是多种粉状物料的机械混合物。在长途动输过程中,由于受到长时间的震动,使不同比重的物料偏析,渣料均匀状态受到破坏,影响使用效果的稳定性。同时,向结晶器添加渣粉时,粉尘飞扬,污染了环境。 (2)颗粒保护渣:为了克服污染环境的缺点,在粉状渣中配加适量的粘结剂,做成似小米粒的颗粒保护渣。制作工艺复杂,成本有所增加。 (3)预熔型保护渣:将各造渣料混匀后放入预熔炉熔化成一体,冷却后破碎磨细,并添加适当熔速调节剂,就得到预熔性粉状保护渣。预熔保护渣还可进一步加工成颗粒保护渣。预熔保护渣制作工艺复杂,成本较高。但优点是提高保护渣成渣的均匀性。 (4)发热型保护渣:在渣粉中加入发热剂(如铝粉),使其氧化放出热量,很快形成液渣层。但这种渣成渣速度不易控制,成本较高,故应用较少。 连铸结晶器保护渣的原来按构成材料的功能可分为,基料(包括天然的和人工合成的——烧结型、预熔型,其中有水泥熟料、硅灰石、石英、玻璃粉等)、溶剂(主要有纯碱、冰晶石、莹石及含氟化合物等),溶速控制剂——碳质材料(炭黑、石墨和焦炭等)。 连铸结晶器保护渣的品种繁多:(1)、按基料的化学成分可分为:Sio2——CaO——AL2O3、sio2——AL2O3——caF2、SIO2——AL2O3——na2o,其中sio2——cao——al2o3最为普遍。在此基础上加入少量添加剂(碱金属或碱土金属氟化物、氟化物、硼化物等)和控制溶速的炭质材料(炭黑、石墨和焦炭等)。(2)、按形状可分为:粉状连铸结晶器保护渣(机械混合成形)、颗粒连铸结晶器保护渣实心颗粒渣,圆盘造粒法成型的是球型实心颗粒连铸结晶器保护渣)、中空球形颗粒连铸结晶器保护渣(采用喷雾造粒法成型)。(3)、按使用的原材料可分为原始材料混合型、半预溶型和预溶型。预溶连铸结晶器保护渣还可进一步制造成预溶颗粒保护渣。(4)、按铸坯断面分:方坯(细分成:小方坯、大方坯、不锈钢方坯连铸结晶器保护渣);矩形坯;板坯(细分成:低碳钢板坯、中碳钢板坯、高碳钢板坯、超低碳钢板坯、09cu钢板坯、大板坯高拉速、宽版坯连铸结晶器保护渣);薄板坯;圆坯;异形(H形)坯连铸结晶器保护渣、发热型开浇渣等;(5)、按拉坯速度分:中低拉速、高拉速连铸结晶器保护渣;(6)、按钢种分:低碳钢、中碳钢、高碳钢、低合金钢、合金钢连铸结晶器保护渣。 钢种与保护渣的关系

高炉渣与转炉渣综合利用

高炉渣与转炉渣综合利用 摘要:转炉炼钢过程中的主要副产品是转炉渣,目前我国转炉渣的利用率仅为10%。为提高转炉渣的利用率,应按照分析成分、制定利用方案、综合处理、分级利用 4 个主要步骤,根据当地的实际情况,建立不同适应性的阶梯利用方式,以实现最好的社会效益、环境效益和经济效益。介绍了当前国内外高炉渣综合回收与利用现状,对比分析了高炉渣各种处理工艺的优点和不足,展望了高炉渣回收与利用的发展趋势。 关键词:普通高炉渣;含钛高炉渣;综合利用转炉渣;综合处理;利用;分析 1高炉渣处理工艺与综合利用 高炉渣是冶炼生铁过程中从高炉中排出的副产品,是我国现阶段最主要的冶炼废渣。在20世纪70年代以前,一直作为工业废弃物堆放。随着钢铁工业的发展,各种高炉渣的堆积量日益增大,高炉渣的堆积不仅对环境造成了严重污染,也是一种资源的严重浪费,随着世界范围资源的日益贫乏,对高炉渣进行综合利用,变废为宝已刻不容缓。 1.1高炉渣的化学成分 高炉渣有普通高炉渣和含钛高炉渣。普通高炉渣的化学成分与普通硅酸盐水泥类似,主要为CaO、MgO、SiO2、Al2O3和MnO。含钛高炉渣中除含有上述物质外,还含有大量的TiO2。见表1 表 1 高炉渣的化学成分 高炉渣的处理工艺可分为水淬粒化工艺、干式粒化工艺和化学粒化工艺。在我国工业生产中,主要以水淬粒化工艺作为高炉渣的处理工艺,但水渣处理工艺存在以下问题 : 新水消耗量大、熔渣余热没有回收、系统维护工作量大、冲渣产生的二氧化硫和硫化氢等气态硫化物带来空气污染。粉磨时,水渣必须烘干,要消耗大量能源。因此,利用干法将高炉渣粒化作为水泥原料,同时高效利用炉渣显热,减少对环境的污染,是高炉渣处理的发展趋势。 1.2国内外高炉渣处理工艺概况 1.2.1 水淬粒化工艺 水淬粒化工艺就是将熔融状态的高炉渣置于水中急速冷却,限制其结晶,并使其在热应力作用下发生粒化。水淬后得到沙粒状的粒化渣,绝大部分为非晶态。其主要方法有:底滤法、因巴法、图拉法、拉萨法等。水淬粒化工艺处理的高炉渣,玻璃质(非晶体)含量超过95%,可以用作硅酸盐水泥的部分替代品,生产普通酸盐水泥。但此法不可避免地释放出大

炉渣性质

1)掌握熔渣的以下化学特性 将炉渣中的氧化物分为三类: (1)酸性氧化物:2SiO 、25P O 、25V O 、23Fe O 等; (2)碱性氧化物:CaO 、MgO 、FeO 、MnO 、23V O 等; (3)两性氧化物:23Al O 、2TiO 、23Cr O 等。 碱度的三种定义 (1)过剩碱 根据分子理论,假设炉渣中有22RO SiO ?,254RO P O ?,23RO Fe O ?,233RO Al O ?等复杂化合物存在。炉渣中碱性氧化物的浓度就要降低。实际的碱性氧化物数 B n 叫超额碱或过剩碱,其中CaO CaO MgO FeO MnO n n n n n =+++ +∑ (2)碱度223%%%CaO SiO Al O +,223%%%%CaO MgO SiO Al O ++,225 %%%CaO SiO P O + (3)光学碱度 i N -氧化物i 中阳离子的当量分数。具体计算i i i i i m x N m x = ∑ ,其中 i m -氧化物i 中的氧原子数;i x -氧化物i 在熔渣中的摩尔分数。 熔渣的氧化还原能力 定义%FeO ∑表示渣的氧化性。认为渣中只有FeO 提供的氧才能进入钢液,对钢液中的元素进行氧化。渣中23Fe O 和FeO 的量是不断变化的,所以讨论渣的氧化性,有必要将23Fe O 也折算成FeO ,就有两种算法: (1)全氧法 23%% 1.35%FeO FeO Fe O =+∑ (2)全铁法 23 %%0.9%FeO FeO Fe O =+∑ 注:决定炉渣向钢液传氧的反应是 []%FeO O K a ?=或

煤气化灰渣处理方法 Microsoft Word 文档

求助水煤浆气化对煤质的要求? 1、煤质要有较高的挥发分,以便成浆 灰熔点不能太高,太高要加助熔剂 灰分要有限制,降低氧耗 2、挥发份高容易改性,成浆性好对内水有要求,灰熔点不能太高对灰分含量及组分有要求。 3、主要是灰熔点不能太高,再就是灰渣的流动性好,否则的加入大量的助溶剂,使灰水处理系统的水硬度提高,系统结垢严重,是水煤浆加压气化装置的顽疾,另外高挥发性和低的内水含量是决定煤种成浆性的主要条件,一般内水越低成浆性越好。 4、1灰融点低,有利与气化在较低的温度下进行,有利于设备寿命的延长。2较好的粘温特性,粘温特性好,有利于气化的排渣,稳定操作。3反应活性,反应活性好,则反应速度快,气化效率好。4发热量,发热量高的煤,气化效率高。5可磨性,可磨指数高易于制浆,成浆性能好,灰分,灰分含量高,则比氧耗高,且灰渣对耐火砖的冲蚀加大,同时增大合成气的水汽比和灰水处理的负荷 几种常见的煤气化方式对煤质的要求 煤的主要品质灰熔点、挥发分、含水量、热稳定性、强度及硫、磷、砷、氯的含量是煤的固有特性,不同的煤其主要品质不同。目前常用的几种煤气化方式----固定层间歇式气化、鲁奇(Lurgi)的粒煤气化、壳牌(Shell)

的干煤粉气化和德士古(Texaco)的水煤浆气化对煤质各有适应性,现论述如下。下表列出了几种常见的煤气化方式对煤质的要求: 表2-1 几种常见的煤气化方式对煤质的要求

指标间歇式固定层气化 Lurgi固体排渣 Shell Texaco含多喷嘴内水(AR;%) 3--4 越低越好越低越好﹤6% 灰分(%:MF)﹤20% 越低越好越低越好﹤12% 挥发分(%:MF)﹤8% ﹤16% 越高越好越高越好 总硫(%:MF)﹤1% 越低越好越低越好越低越好 磷(%:MF)越低越好越低越好越低越好越低越好 砷(%:MF)越低越好越低越好越低越好越低越好 氯(%:MF)越低越好越低越好越低越好越低越好 热值(MG/Kg:MF 越高越好越高越好越高越好越高越好 灰熔点(FT;℃)﹥1300 ﹥1350 ﹤1400 ﹤1300 强度越高越好高越好 热稳定性﹥85 越高越好 可磨指数越高越好

电炉教材

1.5.1火法炼铜 火法炼铜时当今生产铜的主要方法,世界上80%以上的铜是用火法从硫化铜精矿中提取的。火法炼铜最突出的特点时适应性强、能耗低、生产效率高。 硫化铜精矿的火法熔炼,一般包括三个过程。第一个过程时将铜矿石熔炼成冰铜,第二个过程是将冰铜吹炼成粗铜,最后把粗铜精炼成纯铜。精炼分为火法精炼和电解精炼。1.5.2湿法炼铜 湿法炼铜是在溶液中进行的一种提铜方法,无论贫矿、富矿、氧化矿或硫化矿,都可用湿法炼铜的方法提取铜。 湿法炼铜时用适当的溶剂浸出铜矿石,使铜以离子状态进入溶液,脉石及其它杂质不溶解。浸出后经澄清和过滤,得到含铜浸出液和由脉石组成的不溶残渣及浸出渣。浸出过程中,由于一些金属和非金属杂质与铜一起进入溶液,浸出液须净化,净化后的浸出液用置换、还原、电积等方法将铜提取出来。湿法炼铜工艺流程图如图1-2所示。 第2章冰铜熔炼 2.1概述 冰铜熔炼时在高温和氧化气氛条件下将硫化铜精矿熔化生产MeS共熔体的方法,又称造锍熔炼。冰铜熔炼将精矿中的铜富集于冰铜中,而大部分铁的氧化物与加入的熔剂造渣。冰铜与炉渣由于性质差别极大而分离。 根据炉料受热方式、热源、炉料所处的状态、气氛氧化程度,冰铜熔炼分为鼓风炉熔炼、反射炉熔炼、电炉熔炼、闪速熔炼及一步炼铜等。尽管设备不同,冶炼过程的实质是相同的,都属于氧化熔炼。 铜精矿首先熔炼获得冰铜,然后将冰铜吹炼成粗铜,再获得纯度较高的粗铜,将粗铜进行精炼,即火法精炼和电解精炼,这些过程都包含了氧化过程。 2.2冰铜熔炼的基本原理 冰铜熔炼所用炉料主要是硫化铜精矿和含铜的返料,除含有Cu、Fe、S等元素外,还含有一定量的脉石。如用一般熔炼方法如反射炉处理S/Cu比值高的精矿,得到的冰铜品位低,此时要先进行氧化焙烧,脱去部分硫后熔炼,才能获得要求较高品位的冰铜。如采用闪速熔炼或一步炼铜法则不受S/Cu的限制。硫含量大,自热能力好。 炉料中的化合物分如下几种: (1) 硫化物 熔炼生精矿以CuS、FeS、FeS2为主;焙砂以Cu2S、FeS为主,还有少量的ZnS、NiS、PbS等。 (2) 氧化物 Fe2O3、Fe3O4、CuO、Cu2O、ZnO、MeO、Al2O3。如炉料为焙烧氧化物较多,生精矿中氧化物较少。 (3)脉石 CaCO3、MgCO3、SiO2、Al2O3等。 其中硫化物和氧化物数量占80%以上。熔炼过程实际上时铁和铜的化合物及脉石在高温和氧化气氛条件下进行的一系列化学反应,并生产MeS相和MeO相,即冰铜和炉渣,二者因性质和密度不同而分离。 熔炼的炉料还包括加入的熔剂如石英石、石灰石等,与精矿中部分铁和脉石形成炉渣。 2.2.1熔炼过程的化学反应

炉渣的主要成分

矿中的脉石、炉料中的熔剂和其他造渣组分在火法冶金过程中形成的金属硅酸盐、亚铁酸盐和铝酸盐等混合物。此外,炉渣还含有少量的金属硫化物、金属和气体。从广义说,有色金属的吹炼渣、黄渣、蒸馏罐渣、精炼渣等都属有色金属冶金炉渣。 炉渣富集了炉料中的脉石成分和不希望进入主金属的杂质,是一个成分复杂的多元体系。炉渣的主要成分为氧化物。可将构成炉渣的氧化物分为酸性氧化物(如SiO2、Fe2O。等)、碱性氧化物(如FeO、CaO、MgO等)和两性氧化物(如Al2O3、ZnO等)。它们之间的区别在于各氧化物对氧离子的亲疏关系,容易放出氧离子的为碱性氧化物,反之为酸性氧化物。这些氧化物相互结合成各种化合物、固溶体及共晶混合物。 炉渣组成的来源有色金属冶金炉渣中的组分主要来源于五个方面:(1)矿石或精矿中的脉石,如SiO2、CaO、Al2O3、MgO等;(2)炉料在熔炼过程中生成的氧化物,如FeO、Fe3O4等;(3)为满足熔炼需要而加入的熔剂,如SiO2、CaO、FeO、Fe3O4等;(4)熔蚀或冲刷下来的炉衬材料,如MgO、SiO2、Al2O3等;(5)燃料燃烧的灰分,如Al2O3、SiO2等。 有色金属冶金炉渣属FeO–CaO–SiO2系,主要是由FeO、CaO、SiO2组成的硅酸盐,三者之和约占渣量75%~85%,有时甚至达90%。因此,渣的性质在很大程度上由这三个组分所决定。

在冶炼过程中的作用炉渣是火法冶金的必然产物,其量又相当大。例如反射炉炼铜产出的炉渣约为熔锍质量的200%~500%。炉渣在冶炼过程中主要起八方面的作用。 (1)熔融炉渣富集了炉料中几乎全部的脉石和大部分的杂质,并在造渣过程中完成了金属的某些熔炼和精炼过程。例如铜、镍硫化矿造锍熔炼时,铜、镍等硫化物与硫化亚铁富集为熔锍,而铁的氧化物与脉石、熔剂和燃料灰分等形成熔渣。(2)熔炼生成的金属或锍熔体液滴分散在熔渣中,它们的汇合长大和澄清分离都是在熔渣介质中进行的。因此,熔渣对熔炼生成的金属或熔锍与造渣成分分离的程度起着重要的作用。(3)覆盖在金属或熔锍表面的熔渣层起保护金属和熔锍的作用。(4)熔渣在冶炼过程中除富集炉料中的脉石等成分外,有时还起富集有价组分的作用,如钛精矿还原熔炼所得的高钛渣,以及吹炼含钒和含铌的生铁所得的钒渣和铌渣等都是提取钛、钒和铌等的原料。(5)熔渣在一些冶炼过程中还起着特殊作用,在烧结焙烧过程中造渣成分起到粘合结块的作用;在鼓风炉熔炼过程中,炉渣的组成基本上决定了炉内的温度,低熔点渣型的强化熔炼只能提高炉子生产能力而不能提高炉内温度,要提高炉内温度必须选择熔点高的渣型;在电炉熔炼时,炉渣起电阻发热体作用。(6)炉渣的性质决定着熔炼过程的燃料消耗量,热焓量大的和熔点高的炉渣,熔炼的燃料消耗量也增加。(7)炉渣的性质和熔炼产出的渣量是影响金属回收率的一个重要因素,因为渣含金属的损失是冶金过程中金属损失

冶金炉渣的研究及综合利用思路

第33卷 第1期 2011-1(下) 【111】 收稿日期:2010-11-13 作者简介:姚艳玲(1971-),山西阳高人,硕士研究生,研究方向为冶金技术。 0 引言 随着我国冶金行业的迅猛发展,累积堆存和新增的冶金产生的固体废弃物也日益增加,不仅占地多、严重污染周边环境,而且浪费了大量资源。其中各种冶炼渣是主要的废弃物,主要包括高炉渣、转炉渣、电炉渣和炉外精炼渣等。对环境的治理是实现社会持续发展的重要手段。固体废弃物的处理是环境治理的重要方面,冶金工业作为一个固体废弃物排出量较大的工业部门,其治理程度直接影响到环境治理水平,进行这方面的研究符合国家的产业政策,有广阔的发展前景。近几年冶金技术发展迅速,工艺过程中产生了越来越多的冶炼渣,这部分废弃物的有效利用值得我们去进一步研究。 1 冶金炉渣利用的必要性 随着冶金行业的快速发展,各国的矿产资源也在日益减少。同样,中国矿产资源也面临着严重的危机。如何能更好的利用有限的资源创造更多的财富是我们时刻要重视的。 钢铁工业是原材料工业,也是基础工业。它的发展是和整体经济发展规模和速度相适应的。钢铁产品又是用途广、用量大的材料,钢铁工业和各经济部门的发展密切相关,各经济部门使用钢材的和品种质量是不尽相同的,因此产业结构的变化和发展将直接影响到钢铁工业的发展速度和产品结构。在快速发展中的中国,基础设施、工业、建筑业发展较快,钢材消费量增长较快。所以冶金行业产生的炉渣也就相应的较多。如何 更好的利用这些弃渣是值得我们研究的。 企业的原料条件不同,冶炼工艺不同,炉渣的产出量和炉渣成分也不同,不同的企业可能采用不同的炉外精炼设备,其精炼渣会有所不同,特钢企业还可能在连铸之后,设有电渣炉等进一步的精炼设备,产出的还有电渣冶炼废渣,因而有必要从系统利用的角度出发,进行炼钢炉渣的综合利用研究。 2 冶金渣的综合利用状况 钢铁冶金工业遍及全国各主要城市,所产生的固体废物占固体废物总量的18%,渣中含有各种有用元素如Fe、Mn、Cr、Mo、Ni、AI 等金属元素和Ca、Mg、Si 等非金属元素,是一项可再利用的大宗二次资源。 钢铁冶金工业所产生的固体废物主要有高炉渣、钢渣、铁台金渣等,中国钢铁渣堆弃量约3亿,占地3万亩。2002年全国钢产量总计约为8389万吨,但缺乏全量和高附加值的利用技术,特别是对共生复合矿渣中共生的金属元素的分离和利用以及通过共生元素的分离全面经济地对炉渣进行综合利用缺乏系统研究,平均利用率约为60%。下面我们就冶金炉渣目前的综合利用情况作一下总结和分析。 3 高炉渣的综合利用 高炉渣是钢铁冶金工业中数量最多的一种渣。目前, 80%以上的高炉渣得到了利用,但利用的主要途径是生产水泥和筑路材料。高炉渣是冶炼生 冶金炉渣的研究及综合利用思路 Smelting slag, research and comprehensive utilization of ideas 姚艳玲1,周 俊2 YAO Y an-ling 1, ZHOU Jun 2 (1. 包头职业技术学院,包头 014030;2. 西北工业大学 航空学院,西安 710072) 摘 要: 随着冶金行业的快速发展,冶金业对资源的利用也越来越多,产生的炉渣也就相对增加。 本文针对冶金炉渣利用的必要性进行了分析,并对钢铁冶金中产生的高炉渣,钢渣的利用现状及不足进行了研究,最后对冶金炉渣的综合利用进行了设计构思,从而达到冶金炉渣的高效利用。 关键词: 冶金;炉渣;综合利用 中图分类号:TP391 文献标识码:A 文章编号:1009-0134(2011)1(下)-0111-03Doi: 10.3969/j.issn.1009-0134.2011.1(下).37

煤气化灰渣

1 煤化工固废来源及性质 1.1 固废分类及来源 1.1.1 气化炉渣 根据渣的组成和生成原因,炉渣可以分为以下四类。 (1)灰渣 灰渣为直径0.5~5.0 mm的渣粒,主要是气化炉内煤浆颗粒雾化燃烧过程产生的,微粒进行碰撞烧结后,随着气流夹带进入激冷水浴,经过激冷破碎而成。其灰渣的主要成分如表所示: 灰渣的主要成分 (2)块渣 直径在5.0 mm以上的为块渣,质地较为疏松,主要来源于沿炉壁下流的熔渣。当温度低时,炉壁积累了厚厚的渣层;当温度突然升高时,大片的熔渣被烧下来,进入激冷室,未被完全激冷破碎,其主要成分和灰渣相同。 (3)疤渣 疤渣为块渣但质地较为坚硬细密。形成原因是熔渣渗透熔解在耐火砖中,形成低熔点化合物,当熔渣的侵蚀作用加强,生成的低熔点化合物较多时,炉温一旦波动,大量的低熔点化合物进入激冷室,这种熔渣一般难以被激冷破碎,其主要组成包括Ca2SiO4、Ca2SiO5、CaAl2Fe2O7、CaO·A12O3·SiO2、CaCrO3、CaZrO4等低熔点化合物,质地较为坚硬,大都呈熔融玻璃状。 (4)砖渣 砖渣主要是一些损蚀剥落的耐火砖碎块。熔渣沿着耐火砖的气孔或裂纹侵入砖内,形成共熔物,一旦遇到开停车,压力、温度骤变时,共熔物发生热应力膨胀,沿着气孔或裂纹,将砖剥落,进入激冷室成为砖渣。主要成分与耐火砖略为不同。砖渣和耐火砖本体成分如表所示 砖渣及砖本体的主要组成

1.1.2 锅炉灰渣 大容量发电锅炉与热电锅炉由于用煤量大,结灰渣的量远大于工业锅炉。其灰渣随着燃烧时间的增加与煤种的变化(含硫量高灰熔点低)而增厚;造成结大焦自动脱落而引发灭火、停炉事故,甚至发生人身伤亡事故。结焦、积灰、结垢对锅炉生产造成极大危害。 除灰系统:烟气除尘装置收集的除尘灰; 除渣系统:从锅炉底部排出的炉渣。 锅炉灰渣容重一般按1000 kg/m3计。 1.1.3 盐泥碱渣 盐化工中,以食盐为主要原料用电解方法制取氯、氢、烧碱过程中排出的泥浆称为盐泥,其主要成分为Mg(OH)2、CaCO3、BaSO4和泥砂。采用汞法生产(用汞为电极)的盐泥含有汞的化合物,含汞盐泥排放到环境中,污染土壤和水体,而且毒性较小的无机汞在自然环境中会转化为毒性很强的甲基汞。 碱渣中的环烷酸盐是强乳化剂,如不妥善处理回收,将影响到后续处理。而更严重的是其中含有的有害物质酚、硫化物,通过渗透作用会对地下水造成危害,而游离碱则对碱渣存放设备具有很强的腐蚀作用,因此碱渣必须妥善处理。 1.1.4 脱硫石膏 据调查,我国目前采用的烟气脱硫技术,主要是湿式石灰石石膏法工艺的设备。这一技术虽然对减轻烟气中的二氧化硫污染起到了一定的作用,但是同时又产生了硫化石膏副产品。被抛弃的脱硫石膏长久散发着余毒,经太阳爆晒后,蒸发出刺鼻的酸味,挥发后的酸性物质又加重了酸雨的危害,经雨水冲刷后的脱硫石膏渗入土地、农田,污染地下和地表水,从而进入食物链,如果不采取积极有效的措施,它释放的有害物质将诱发对人体造成极大伤害的新病情。由此看,脱硫石膏可以导致对周围及地下水环境的污染,根据《一般工业固体废物贮存、处

相关主题
文本预览
相关文档 最新文档