当前位置:文档之家› 常微分方程§34 奇 解34 奇解

常微分方程§34 奇 解34 奇解

一阶常微分方程的奇解

摘要.................................................... 错误!未定义书签。 1.何谓奇解.............................................. 错误!未定义书签。 2.奇解的产生............................................ 错误!未定义书签。 3.包络跟奇解的关系...................................... 错误!未定义书签。 4.理论上证明C-判别曲线与P-判别曲线方法................. 错误!未定义书签。 克莱罗微分方程 ..................................... 错误!未定义书签。 5.奇解的基本性质........................................ 错误!未定义书签。 定理1 ............................................. 错误!未定义书签。 定理2 ............................................. 错误!未定义书签。 定理3 ............................................. 错误!未定义书签。 6.小结.................................................. 错误!未定义书签。参考文献:.............................................. 错误!未定义书签。

最新常微分

2012常微分

2012常微分 单选题、填空题和计算题 三种类型题目的基本要求:单选题:以本课程的基本概念和定义为主线,结合部分主要内容和重要公式,考察同学们对常微分方程中主要概念和内容的掌握程度。题目本身难度不高,每个小题有四个备选项,利用逻辑判断或结合简单的运算选择出一个正确的答案。 填空题:通过对某些类型的常微分方程进行某些较为简单的运算或直接构造和给出变量变换,根据题目的要求给出方程的解或解方程的过程中的某些步骤、或化简后的形式、或判断方程的初值问题解的存在唯一性或不唯一性等等。 计算题:给出若干常见的典型的一阶、二阶或三阶常微分方程,或给出二个未知函数的常微分方程方程组,要求利用所学过求解方程(组)的方法,完整地求解方程,或给出方程的通解或方程组的基解矩阵。 2012年下半年常微分方程模拟试题解答(仅供参考) 一、单项选择题(每小题2分, 共16分) 1. 下列四个微分方程中, 为四阶线性微分方程的有( B )个. (1) ?Skip Record If...?(2) ?Skip Record If...? (3) ?Skip Record If...?(4) ?Skip Record If...? A. 1 B. 2 C. 3 D. 4 解答:B. 此题中虽然每个方程都是四阶的微分方程,但是是线性方程的微分方程只有(1)和(4)两项 2. 微分方程?Skip Record If...?是( C ). A. n阶常系数非线性常微分方程; C. n阶变系数非齐线性常微分方程; B. n阶变系数非线性常微分方程; D. n阶常系数非齐线性常微分方程.

一阶常微分方程解法总结

页脚内容1 第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )()(=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、xy dx dy = 解:当0≠y 时,有xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(11212 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(1212 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有dy y N y Q dx x P x M ) ()()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(22=-+-dy x y dx y x

页脚内容2 解:当0)1)(1(22≠--y x 时,有dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如)(x y g dx dy = 解法:令x y u = ,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(222111c y b x a c y b x a f dx dy ++++= 解法:01、02211 =b a b a ,转化为)(by ax G dx dy +=,下同①; 02、0221 1 ≠b a b a ,???=++=++00222111c y b x a c y b x a 的解为),(00y x ,令???-=-=00y y v x x u

常微分方程基本概念习题附解答

§1.2 常微分方程基本概念习题及解答 1.dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2 x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=| )1(|ln 1+x c 3.dx dy =y x xy y 32 1++ 解:原方程为:dx dy =y y 21+31x x + y y 21+dy=3 1x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c

另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0 解:原方程为: dx dy =-y x y x +- 令 x y =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x ||-2)(1x y - 则令 x y =u dx dy =u+ x dx du 211 u - du=sgnx x 1dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32 +=0 解:原方程为:dx dy =y e y 2e x 3

总结一阶常微分方程奇解的求法

总结一阶微分方程奇解的求法 摘要:利用有关奇解的存在定理,总结出求一阶微分方程奇解的几种方法,并通过一些具体的例题说明这几种方法的应用 Using relevant theorems to develop several methods of finding singular solution of ordinary differential equation. In addition, illustrate the application of these methods through the concrete examples. 关键词:常微分方程 奇解 c-判别式 p-判别式 方法一:利用c-判别式求奇解 设一阶微分方程0, ,=?? ? ?? dx dy y x F ① 可求出方程①的通解为()0,,=c y x φ ② 如果()()???==0 ,,0,,' c y x c y x c φφ ③ 是微分方程①的解,且对③式满足:()()02 '2 '≠+y x φφ ④ 则③是微分方程①的奇解,且是通解②的包络。 例1:方程() 2 2 2 x x y dy dx dy dx + -= 的奇解 解:首先,本具题意求出该微分方程的通解为2 2 2 c cx y x ++= 与4 2 x y = 其中c 为任意常数 当时2 2 2 c cx y x ++= , ()y c cx x c y x -++= 2 2 2 ,,φ 其相应的c -判别式为 ? ??=+=-++02022x 2 c x y c cx 易得到: ? ??=-=2 2c y c x

代入原微分方程,可知? ??=-=2 2c y c x 不是原微分方程的解; 当4 2 x y = 时,易求出2 ,1''x y x ==φφ,则有()()02 '2 '≠+y x φφ 故4 2 x y = 为原微分方程的奇解 例2:试求微分方程() () y y dy dx 9 42 2 1= -的奇解 解:首先,根据题意求出微分方程的通解为:()()0322=---y y c x 其中c 为任意常数 再由相应的c-判别式: ()()()? ??=--=---020 322c x y y c x 易求出:? ??==0y c x 或 ???==3y c x 当???==0y c x 时,代入原微分方程成立; 所以? ??==0y c x 为原微分方程的解 且有()02'=--=c x x φ;()()93232 '-=---=y y y y φ 满足(Φ‘ x )2 +(Φ‘ y )2≠0 易验证???==3y c x 不是原微分方程的解 故x=c, y=0 是元微分方程的奇解。 方法二:利用p-判别法求奇解 在微分方程①中,设y ′=p,则此方程的p-判别式为: ()()?????==0,,0 ,,' p y x F p y x F p ⑤ 消去p 之后得到的函数y=?(x)是微分方程①身为解,

常微分方程第二版答案第三章

习题3—1 1. 判断下列方程在什么区域上保证初值解存在且唯一. 1)y x y sin ' +=; 2)3 1' - =x y ; 3)y y = ' . 解 1)因为y x y x f sin ),(+=及y y x f y cos ),('=在整个xOy 平面上连续,所以在整个xOy 平面上满足存在唯一性定理的条件,因此在整个xOy 平面上初值解存在且唯一. 2)因为3 1 ),(-=x y x f 除y 轴外,在整个xOy 平面上连续,0),('=y x f y 在在整个xOy 平面上有界, 所以除y 轴外,在整个xOy 平面上初值解存在且唯一. 3)设y y x f = ),(,则???? ?? ?<-->=??,0,21,0, 21 ),(y y y y y y x f 故在0≠y 的任何有界闭区域上,),(y x f 及 y y x f ??) ,(都连续,所以除x 轴外,在整个xOy 平面上初值解存在且唯一. 2. 求初值问题 ?????=--=, 0)1(, 22y y x dx dy R :1,11≤≤+y x . 的解的存在区间.并求第二次近似解,给出在解的存在区间的误差估计. 解 设2 2 ),(y x y x f -=,则4),(max ),(== ∈y x f M R y x ,1,1==b a ,所以 4 1 )41,1min(), min(===M b a h . 显然,方程在R 上满足解的存在唯一性定理,故过点)0,1(-的解的存在区间为:4 1 1≤ +x . 设)(x ?是方程的解,)(2x ?是第二次近似解,则 0)1()(0=-=y x ?,3 1 31)0(0)(3121-=-+=?-x dx x x x ?, 42 11 931863])3131([0)(3471232 2+-+--=--+=?-x x x x dx x x x x ?. 在区间4 1 1≤+x 上,)(2x ?与)(x ?的误差为 322)!12()()(h ML x x +≤-??. 取22) ,(max max ),(),(=-=??=∈∈y y y x f L R y x R y x ,故241)41()!12(24)()(322=+?≤ -x x ??.

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

二阶常微分方程解

二阶常微分方程解

————————————————————————————————作者: ————————————————————————————————日期:

第七节 二阶常系数线性微分方程 的解法 在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法。先讨论二阶常系数线性齐次方程的求解方法。 §7.1 二阶常系数线性齐次方程及其求解方法 设给定一常系数二阶线性齐次方程为 ?? 22 dx y d +p dx dy +qy=0 (7.1) 其中p 、q 是常数,由上节定理二知,要求方程(7.1)的通解,只要求出其任意两个线性无关的特解y 1,y2就可以了,下面讨论这样两个特解的求法。 我们先分析方程(7.1)可能具有什么形式的特解, 从方程的形式上来看,它的特点是22dx y d ,dx dy ,y 各乘以 常数因子后相加等于零,如果能找到一个函数y,其

22dx y d ,dx dy ,y之间只相差一个常数因子,这样的函数有可能是方程(7.1)的特解,在初等函数中,指数函数e rx ,符合上述要求,于是我们令 y=e r x (其中r 为待定常数)来试解 将y =e rx ,dx dy =re r x,22dx y d =r 2e r x 代入方程(7.1) 得 r 2e rx +pre rx +qerx =0 或 e r x(r 2+pr+q )=0 因为e rx ≠0,故得 ? r 2 +pr +q=0 由此可见,若r 是二次方程 ?? r 2+pr +q=0 (7.2) 的根,那么e r x就是方程(7.1)的特解,于是方程(7.1)的求解问题,就转化为求代数方程(7.2)的根问题。称(7.2)式为微分方程(7.1)的特征方程。 特征方程(7.2)是一个以r 为未知函数的一元二次代数方程。特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论。 (1)若特证方程(7.2)有两个不相等的实根r 1, r 2,此时e r 1x ,e r2x 是方程(7.1)的两个特解。

一阶常微分方程解法总结

第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )() (=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、 xy dx dy = 解:当0≠y 时,有xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(112 12 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(12 12 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有 dy y N y Q dx x P x M ) () ()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(22=-+-dy x y dx y x 解:当0)1)(1(22≠--y x 时,有 dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。 ⑵可化为变量可分离方程的方程:

①、形如 )(x y g dx dy = 解法:令x y u =,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得 到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程, 得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(2 221 11c y b x a c y b x a f dx dy ++++= 解法:0 1、 02 2 11=b a b a ,转化为 )(by ax G dx dy +=,下同①; 02、 022 1 1≠b a b a ,???=++=++00 222111 c y b x a c y b x a 的解为),(00y x ,令???-=-=0 0y y v x x u 得到,)()( )(221 12211u v g u v b a u v b a f v b u a v b u a f du dv =++=++=,下同②; 还有几类:xy u dy xy xg dx xy yf ==+,0)()( 以上都可以化为变量可分离方程。 例2.1、 2 5--+-=y x y x dx dy 解:令2--=y x u ,则du dx dy -=,代入得到u u dx du 7 1+= - ,有dx udu 7-= 所以)(72 2 为常数C C x u +-=,把u 代入得到)(72 22 为常数) (C C x y x =+--。 例2.2、 1 212+-+-=y x y x dx dy 解:由???=+-=+-012012y x y x 得到?????=-=3131y x ,令?? ???-=+=3131y v x u ,有???==du dx dv dy ,代入得到

《常微分方程》课程大纲

《常微分方程》课程大纲 一、课程简介 课程名称:常微分方程学时/学分:3/54 先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。 面向对象:本科二年级或以上学生 教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。 二、教学内容和要求 常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数) 第一章基本概念(2,0) (一)本章教学目的与要求: 要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方

向场),定解问题等基本概念。本章教学重点解释常微分方程解的几何意义。 (二)教学内容: 1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。 2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。 3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。 4.常微分方程所讨论的基本问题。 第二章初等积分法(4,2) (一)本章教学目的与要求: 要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。 本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。并通过习题课进行初步解题训练,提高解题技巧。 (二)教学内容: 1. 恰当方程(积分因子法); 2. 分离变量法 3. 一阶线性微分方程(常数变易法) 4. 初等变换法(齐次方程,伯努利方程,黎卡提方程)

(整理)常微分方程总结

(1) 概念 微分方程:一般,凡表示未知函数、未知函数的导数与自变量的之间关系的方程。 微分方程的阶:微分方程中所出现的未知函数的最高阶导数的阶数。如: 一阶: 2dy x dx = 二阶:220.4d s dt =- 三阶:3 2 2 43x y x y xy x ''''''+-= 四阶:() 4410125sin 2y y y y y x ''''''-+-+= 一般n 阶微分方程的形式:() ( ),,,,0n F x y y y '=L 。这里的()n y 是必须出现。 (2)微分方程的解 设函数()y x ?=在区间I 上有n 阶连续导数,如果在区间I 上, ()()()(),,0n F x x x x ?????'≡???? L 则()y x ?=称为微分方程()() ,,,,0n F x y y y '=L 的解。 注:一个函数有n 阶连续导数→该函数的n 阶导函数也是连续的。 函数连续→函数的图像时连在一起的,中间没有断开(即没有间断点)。 导数→导函数简称导数,导数表示原函数在该点的斜率大小。 导函数连续→原函数的斜率时连续变化的,而并没有在某点发生突变。 函数连续定义:设函数()y f x =在点0x 的某一邻域内有定义,如果()()0 0lim x x f x f x →=则 称函数()f x 在点0x 连续。 左连续:()() ()0 00lim x x f x f x f x - - →== 左极限存在且等于该点的函数值。 右连续:()() ()0 00lim x x f x f x f x + + →== 右极限存在且等于该点的函数值。 在区间上每一个点都连续的函数,叫做函数在该区间上连续。如果是闭区间,包括端点,是 指函数在右端点左连续,在左端点右连续。 函数在0x 点连续?()()()()0 0lim lim lim x x x x x x f x f x f x f x -+ →→→=== 1、()f x 在点0x 有定义 2、()0 lim x x f x →极限存在

常微分方程考研讲义 一阶微分方程解的存在定理

第三章一阶微分方程解的存在定理 [教学目标] 1.理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练 近似解的误差估计式。 2.了解解的延拓定理及延拓条件。 3.理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的 证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延 拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客 观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一 阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法 求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初 值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值 问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定 性理论,稳定性理论以及其他理论的基础。 例如方程 过点(0,0)的解就是不唯一,易知0 y=是方程过(0,0)的解,此外,容易验证,2 =或更一般地,函数 y x 都是方程过点(0,0)而且定义在区间01 <<的任一数。 c ≤≤上的解,其中c是满足01 x

(整理)常微分方程(含解答)

第八章 常微分方程 【教学要求】 一、了解微分方程的基本概念:微分方程,微分方程的阶、解、特解、通解、初始条件和初值问题,线性微分方程。 二、熟练掌握一阶可分离变量微分方程的解法。 三、熟练掌握一阶线性非齐次微分方程)()(x q y x p y =+' 的解法——常数变易法和公式法。 四、理解线性微分方程解的性质和解的结构。 五、熟练掌握二阶线性常系数齐次微分方程0=+'+''qy y p y 的解法——特征根法。 会根据特征根的三种情况,熟练地写出方程的通解,并根据定解的条件写出方程特解。 六、熟练掌握二阶线性常系数非齐次微分方程qy y p y +'+'' )(x f =,当自由项f (x )为某些特殊情况时的解法——待定系数法。 所谓f (x )为某些特殊情况是指f (x )为多项式函数,指数函数 或它们的和或乘积形式、三角函数x x x ββαsin cos ,e 。 关键是依据f (x )的形式及特征根的情况,设出特解y *,代入原方程,定出y *的系数。 【教学重点】 一阶可分离变量微分方程、一阶线性微分方程、二阶线性常系数微分方程的解法。 【典型例题】 。的阶数是微分方程例)(e )(12x y y y =-'+'' 2.1.B A 4. 3.D C 解:B 。的特解形式是微分方程例)( e 232x x y y y +=+'-'' x x x b ax B b ax A e )(.e ).(++ x x c b ax D cx b ax C e ).(e ).(++++ 解:C 是一阶线性微分方程。下列方程中例)( ,3 x x y y x B y A y x cos sin 1.e .2=+'='+ y x y D y y x y C ='=+'+''.0 . 解:B ???=='++1)1(0)1(4y y x y y 求解初值问题例 ??-=+x x y y y d )1(d 解:由变量可分离法得 c x y y ln ln 1ln +-=+∴ 代入上式得通解为由21ln ln 1)1(=?=c y x y y 211=+ 的特解。满足求解微分方程例1)0(e 252==-'y x y y x 解:由公式法得 ]d e e 2[e d 12d 1c x x y x x x +???=---?

一阶常微分方程的奇解

摘要 (2) 1.何谓奇解 (2) 2.奇解的产生 (3) 3.包络跟奇解的关系 (4) 4.理论上证明C-判别曲线与P-判别曲线方法 (5) 4.1 克莱罗微分方程 (9) 5.奇解的基本性质 (12) 5.1 定理1 (12) 5.2 定理2 (14) 5.3 定理3 (14) 6.小结 (14) 参考文献: (15)

一阶常微分方程的奇解 摘要 在常微分方程中,我们知道方程的解可以有多种,现在我们来讨论求奇解的方法。我们看到某些微分方程,会存在一些特殊的积分曲线,他并不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。从而我们引出了积分曲线族的包络,而为了求微分方程的奇解,,我们应先求出他的通解,然后求通解的包络。 关键词:奇解,包络,C-判别式,P-判别式 1.何谓奇解 设一阶隐式方程),,(,y y x F =0有一特解

)(:x y ψ=Γ,j x ∈ 如果对每一点Γ∈P ,在P 点的任何一个领域,方程),,(,y y x F =0都有一个不同于Γ的解在P 点与Γ相切,则称Γ是微分方程的),,(,y y x F =0的奇解 定义:如果一个一阶微分方程的一个特解的积分曲线上的每一点都至少和这个微分方程的不同的积分曲线相切,并且这相切的积分曲线在切点的任何邻域都不重合,则称这个特解为这个微分方程的奇解 2.奇解的产生 先看一个例子,求方程 033=-?? ? ??y dx dy (1) 或与它等价的方程 3y dx dy = 的解。 经分离变量后,可得(1)的通解 3)(27 1c x y += 容易看出,y=0也是原方程的一个解。现在来研究这个解y=0有什么特殊的地方。由图我们看到,在解y=0上的每一 点)0,(0x 处相切,这种特殊的积分曲线y=0 称为奇积分曲线,他所对应的解就是奇 解,这就是奇解的产生。 我们现在给出曲线族包络的定义 某些微分方程,存在一些特殊的积分 曲线,会存在一些特殊的积分曲线,他并 不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。在几何学里,这些特殊的积分曲线称为上述积分曲线族的包络,在微分方程里,这些特殊的积分曲线所对应的解酒称为方程的奇解。

一阶常微分方程的解法

一阶常微分方程的解法 摘要:常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中,在整个数学中占有重要的地位。本文对一阶常微分方程的解法作了简要的总结,并举例加以分析了变量可分离方程,线性微分方程,积分因子,恰当微分方程,主要归纳了一阶微分方程的初等解法,并以典型例题加以说明。 关键词:变量分离;积分因子;非齐次微分方程;常数变易法 Solution of first-order differential equation Abstract: Differential equations, important parts of calculus, are widely used in the research of practical problems, which also play important role in mathematics. The solution of a differential equation is summarized briefly, and illustrates the analysis of variable separable equation, linear differential equation, integral factor, exact differential equation, mainly summarizes the elementary solution of first order differential equations, and the typical examples to illustrate. Keywords: variable separation; integral factor; non-homogeneous differential equation; constant variation method 1. 引言 一阶常微分方程初等解法,就是把常微分方程的求解问题转化为积分问题, 能用这种方法求解的微分方程称为可积方程. 本文通过对一阶微分方程的初等解法的归纳与总结,以及对变量分离,积分因子,微分方程等各类初等解法的简要分析,同时结合例题把常微分方程的求解问题化为积分问题,进行求解. 2. 一般变量分离 2.1 变量可分离方程 形如 ()()dy f x g y dx = (1.1) 或 1122()()()()M x N y dx M x N y dy = (1.2) 的方程,称为变量可分离方程。分别称(1.1)、(1.2)为显式变量可分离方程和 微分形式变量可分离方程[1] . (1) 显式变量可分离方程的解法 在方程(1.1)中, 若()0g y ≠,(1.1)变形为 ()() dy f x dx g y =

常微分方程复习资料

常微分方程复习资料 一、 填空题 1.一阶微分方程的通解的图像是 维空间上的一族曲线. 2.方程02=+'-''y y y 的基本解组是 . 3.一个不可延展解的存在在区间一定是 区间. 4.方程 21d d y x y -=的常数解是 . 5.方程22d d y x x y +=满足解的存在唯一性定理条件的区域是 . 6.若)(x y ?=在),(∞+-∞上连续,则方程y x x y )(d d ?=的任一非零解 与x 轴相交. 7.在方程0)()(=+'+''y x q y x p y 中,如果)(x p ,)(x q 在),(∞+-∞上连续,那么它的任一非零解在xoy 平面上 与x 轴相切. 8.向量函数组)(,),(),(21x x x n Y Y Y 在其定义区间I 上线性相关的 条件是它们的朗斯基行列式0)(=x W ,I x ∈. 9.方程0d )1(1)d (22=-+-y x y x y x 所有常数解是 . 10.方程04=+''y y 的基本解组是 . 11.方程 1d d +=y x y 满足解的存在唯一性定理条件的区域是 . 12.若)(),(21x y x y ??==是二阶线性齐次微分方程的基本解组,则它们 共同零点. 二、单项选择题 1.方程y x x y +=-31 d d 满足初值问题解存在且唯一定理条件的区域是( ) . (A )上半平面 (B )xoy 平面 (C )下半平面 (D )除y 轴外的全平面 2.)(y f 连续可微是保证方程 )(d d y f x y =解存在且唯一的( )条件. (A )必要 (B )充分 (C )充分必要 (D )必要非充分 3.二阶线性非齐次微分方程的所有解( ). (A )构成一个2维线性空间(B )构成一个3维线性空间(C )不能构成一个线性空间(D )构成一个无限维线性 4.方程32 3d d y x y =过点(0, 0)有( ) . (A) 无数个解 (B) 只有一个解 (C) 只有两个解 (D) 只有三个解 5.n 阶线性齐次方程的所有解构成一个( )线性空间. (A )n 维 (B )1+n 维 (C )1-n 维 (D )2+n 维 6. 方程 2d d +-=y x x y ( )奇解. (A )有三个 (B )无 (C )有一个 (D ) 有两个 7.若)(1x y ?=,)(2x y ?=是一阶线性非齐次微分方程的两个不同特解,则该方程的通解可用这两个解表示为( ). (A ))()(21x x ??- (B ))()(21x x ??+ (C ))())()((121x x x C ???+- (D ))()(21x x C ??+

一阶常微分方程的奇解

摘要 (4) 1.何谓奇解 (5) 2.奇解的产生 (5) 3.包络跟奇解的关系 (6) 4.理论上证明C-判别曲线与P-判别曲线方法 (7) 4.1 克莱罗微分方程 (11) 5.奇解的基本性质 (14) 5.1 定理1 (14) 5.2 定理2 (16) 5.3 定理3 (16) 6.小结 (17) 参考文献: (17)

一阶常微分方程的奇解 摘要 在常微分方程中,我们知道方程的解可以有多种,现在我们来讨论求奇解的方法。我们看到某些微分方程,会存在一些特殊的积分曲线,他并不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。从而我们引出了积分曲线族的包络,而为了求微分方程的奇解,,我们应先求出他的通解,然后求通解的包络。 关键词:奇解,包络,C-判别式,P-判别式

1.何谓奇解 设一阶隐式方程) x F=0有一特解 y , , (,y

)(:x y ψ=Γ,j x ∈ 如果对每一点Γ∈P ,在P 点的任何一个领域内,方程),,(,y y x F =0都有一个不同于Γ的解在P 点与Γ相切,则称Γ是微分方程的),,(,y y x F =0的奇解 定义:如果一个一阶微分方程的一个特解的积分曲线上的每一点都至少和这个微分方程的不同的积分曲线相切,并且这相切的积分曲线在切点的任何邻域内都不重合,则称这个特解为这个微分方程的奇解 2.奇解的产生 先看一个例子,求方程 033=-?? ? ??y dx dy (1) 或与它等价的方程 3y dx dy = 的解。 经分离变量后,可得(1)的通解 3)(27 1c x y += 容易看出,y=0也是原方程的一个解。现在来研究这个解y=0有什么特殊的地方。由图我们看到,在解y=0上的每一 点)0,(0x 处相切,这种特殊的积分曲线y=0 称为奇积分曲线,他所对应的解就是奇 解,这就是奇解的产生。 我们现在给出曲线族包络的定义 某些微分方程,存在一些特殊的积分 曲线,会存在一些特殊的积分曲线,他并 不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。在几何学里,这些特殊的积分曲线称为上述积分曲线族的包络,在微分方程里,这些特殊的积分曲线所对应的解酒称为方程的奇解。

试论常微分方程的奇解

试论常微分方程的奇解 摘要: 一阶微分方程拥有含有一个任意常数的通解,另外可能还有个别不含于通解的特解,即奇解,利用P-判别法和C-判别法可以求出奇解,而这两种判别法是否适用于求每一个一阶微分方程的奇解?此文中举了几个例子来说明这个问题.并给出另外三种求奇解的方法. 关键词: 一阶微分方程,奇解,P-判别式,C-判别式,C-P消去法,拾遗法,自然法. Discussing Singular Solution about First Order Differential Equation ZHU Yong-wang (Class 1, Grade 2006, College of Mathematics and Information Science) Advisor: Professor LI Jian-min Abstract: First order differential equation has a general solution which contains an arbitrary constant, but sometimes it has special solution that is singular solution, which can be solved by the P-judgment method and C-judgment method.While whether the two judgments can be applied to get every singular solution to the first order differential equation? This paper intends to illustrate this problem with several examples. Key words: Singular solution, P-judgment, C-judgment, C-P elimination method, The supplement method, Natural method. 1.引言 一般来说一阶常微分方程拥有任意常数的通解,另外还有个别不含于通解的特解.这种特解可以理解为通解的一种蜕化现象.它在几何上往往表现为解的唯一性遭到破坏.早在1649年莱布尼兹就已经观察到解族的包络也是一个解.克莱络

相关主题
文本预览
相关文档 最新文档