当前位置:文档之家› 一阶微分方程的奇解及其逆问题

一阶微分方程的奇解及其逆问题

一阶微分方程的奇解及其逆问题
一阶微分方程的奇解及其逆问题

一阶微分方程的奇解及其逆问题

摘要介绍了导数已解出的一阶微分方程和导数未解出的一阶微分方程的奇解问题,通过相关实例进行了说明.同时.考虑了常微分方程奇解的逆问题.

关键词奇解;包络;通解;P-判别曲线;C-判别曲线;逆问题

The singular solution of first oder ordinary differential equation

and its inverse problem

Abstract In this paper, we introduce the singular solution of the first oder ordinary differential equation by giving corresponding examples. Meanwhile, we also consider the inverse problem of the singular solution of ordinary differential equation.

Keywords Singular solution; envelope; general solution; P-judging curve; inverse problem

一阶微分方程的奇解及其逆问题

1 概念

例1.1.1 求微分方程 2

-)(2

2

x

dx

dy x

dx

dy y +

= 的解.

解 令 dx

dy p =

代入方程得

2

-2

2

x

xp p y +

=. (1)

两边对x 求导 0)-2)(1-(

--2=→+=x p dx

dp x p dx

dp x dx

dp p

p .

由c x p x p +=→=0-2 代入(1)得方程的通解 2

2

2

c cx x

y ++=

. (2)

由2

0-2x p x p =

→=代入(1)得4

2

x

y =

经验证此为原方程的解. 从图1中我们可以看到,此解与方程通解(2)中的每一条积分曲线均相切.对某些微分方程,存在一条特殊的积分曲线,它并不属于这方程的积分曲线族中,但是,在这条特殊的积分曲线上的每个点处,都有积分曲线族的一条曲线和它在此点相切,在几何中,这条特殊的积分曲线称为上述积分曲线族的包络,在微分方程里,这条特殊的积分曲线所对应的解称为微分方程的奇解.

下面我们分别给出曲线族包络和微分方程奇解的定义.

定义1 设给定单参数曲线族 Φ(x,y,c )=0其中c 是参数,Φ(x,y,c )是x,y,c 的连续可微函数,曲线族Φ(x,y,c )=0 的包络是指这样的曲线,它本身并不包含在这曲线族Φ(x,y,c )=0 中但这曲线的每一点,都有曲线族Φ(x,y,c )=0 中的一条曲线和它在这点相切

.

定义2 设有微分方程的一条积分曲线,若在它上面的每一点处方程的解的唯一性都被破坏,则称这条积分曲线所对应的解是微分方程的奇解.

根据定义我们可以得出:对某些微分方程,存在一条特殊的积分曲线,它并不属于这方程的积分曲线族.但是,在这条特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和它在此点相切.在几何学中,这条特殊的积分曲线称为上述积分曲线族的包络.在微分方程里,这条特殊的积分曲线所对应的解称为方程的奇解. 2 对于导数已解出的一阶微分方程的奇解

本节给出寻找导数已解出的一阶微分方程

(3)

的奇解的方法和步骤.

按定义,奇解就是破坏了微分方程解的唯一性的解,我们知道,导数已解出的一阶微分方程的解的存在唯一性定理为.

定理 2.1 给定微分方程

,若函数满足如下条件:

1)函数在闭区域≤,

≤b(a 、b>0)上是连续的.

2)函数在R 上满足利普希茨条件,即存在常数L>0,对于所有的点

∈R 都有≤,则方程(3)存在唯一的解上,连续且满足初始条件,

这里,.

由于利普希茨条件难于检验,常用在R 上有对y 的连续偏导数来代替,因为若在R 上,存在且连续,则

y

f ??在R 上有界,设在R 上

L

y

f ≤??,则

y

y y y x f y x f y x f ?+?=

))-(,(),(-),(12221θ,

,

其中R y x y x ∈),(),,(2110<<θ, 即若),(y x f 在R 上有连续偏导数,则在R 上),(y x f 一定满足利普希茨条件,但反之不成立.

(,)dy f x y dx

=(,)dy f x y dx

=(,)f x y (,)f x y 0:R x x -a 0y y -(,)f x y 12(,),(,)x y x y 12(,)(,)f x y f x y -12L y y -y =

φ(x)

0x x h -≤00 φ()y x =m in(,

),m ax{(,)}b h a M f x y M

==(,)x y R ∈(,)f x y 1212

y y L y y --≤

通过上面的分析知,当

y

f ??的有界性被破坏时,方程(3)的解的唯一性将有可能被破

坏.因此若要寻求导数已解出的方程(3)的奇解,只能在使得y

f ??的有界性被破坏的函数

)(x y φ=中去寻找,这样我们就得到寻求方程(3)奇解的步骤:

A 求使

y

f ??为正无穷的函数)(x y φ=)),((连续y x f

B 验证函数)(x y φ=是否为方程(3)的解

C 若)(x y φ=是方程(3)的解,再验证唯一性,若)(x y φ=中的每一点的唯一性都不成立,则此)(x y φ=为方程的解.

例2.1.1 求微分方程

2

y -1=??y

f 的奇解.

解 方程右端2

-1),(y y x f =在11-≤

≤y 内连续,2

y

-1y -

=??y

f 在直线1±=y 上,

y

f ??为无穷大,显然1±=y 为方程的解,可以看出在直线1±=y 上的每一点,都有原方程

通解)sin(c x y +=中的一条曲线与它们相切,所以1±=y 为方程的奇解.

3 对于导数未解出的一阶微分方程的奇解

3.1利用c-判别曲线求奇解

我们知道,微分方程积分曲线族的包络所对应的解一定是奇解,现在我们讨论曲线族的包络应满足的条件.

设0),,(=c y x φ (4) 为一曲线族,由微分几何学可知,曲线族(4)的包络包含在由下列方程组

),,(,

0),,({'=

=c y x c y x φφ 消去C 而得到的曲线之中,此曲线称为曲线族(4)的C-判别曲线.我们注意到,在C-判别曲线中有时除去包络外,还有其它曲线.C-判别曲线中究竟哪一条是包络尚需实验检验.

例3.1.1 求曲线族 2

c cx y +=的包络,在这里C 是参数.

解 将2

c cx y +=对C 求导数,得到02=+c x . 从0

2{

2

=++=c x c

cx y 中消去C ,得到042

=+y x .

所以,曲线族2

c cx y +=的包络为042

=+y x .

例3.1.2 求曲线族01-2

2=+cx y c 的包络,在这里C 是参数.

解 将01-22=+cx y c 对C 求导,得到022

=+x cy ,从

?

??=+=+,01-,

022

22cx y c x cy 中消去C ,得到044=+y x .所以,曲线族01-2

2=+cx y c 的包络为044

=+y x .

3.2 利用p-判别曲线求奇解 首先我们引入一个定理.

定理 3.2 如果在点),,('

000y y x 的某一邻域中,

a) ),,('

y y x F 对所有变元),,('

y y x 连续,且存在连续偏导数; b) ),,('

000y y x F =0; c)

0)

,,('

'000≠??y

y y x F ,

则方程),,('

y y x F =0存在唯一解h x x x y y ≤=0-),((h 为足够小的正数)满足初值条件'

00'00)(,)(y x y y x y ==.

由上述定理知道,如果),,('

y y x F 关于'

,,y y x 连续可微,则只要

0≠??y

F 就能保证解

的唯一性,因此,奇解(如果存在的话)必须同时满足下列方程

),,('

y y x F =0,0)

,,('

'

=??y

y y x F .

于是我们有以下结论:

方程0),

,(=dx

dy y x F (5)

的奇解包含在由方程组)(0

),,(0),,({

'

dx

dy p p y x F p y x F p =

==消去P 而得到的曲线中,这里),,(p y x F 是

p y x ,,的连续可微函数.此曲线称为方程(5)的P-判别曲线.P-判别曲线是否是方程的奇

解,尚需进一步检验.

例3.2.1 求方程01-)(

2

2=+y dx

dy 的奇解.

解 从?

?

?==+020

1-22p y p 中消p 得到p-判别曲线1±=y .经验证,此两直线都是方程的

奇解.因为容易求得原方程的通解为)sin(c x y +=,而1±=y 是微分方程的解,且正好是通解的包络.

3.2.1应用p-判别曲线一般性的求解微分方程的奇解

用这个定理来求解以下两类一阶微分方程的奇解 (A ) 0)()

(-))(

(1

-=+x b dx

dy y dx dy x a n n

.

(B ))()

)(

())(

(1

-x c dx

dy x b dx

dy x a y n n

++=.

首先来讨论微分方程(A ),其中a(x),b(x)在区间I 上是连续可导的,且

.0≠)(,0≠)(x b x a 这时

0)(-)(),,(1

-=+=x b yp p x a p y x F n n 0

]1)-(-)([)1-(-)(),,(2

-2

-1-'===y n p x na p

yp n p

x na p y x F n n n

消去p 得到的函数),()(1

-_

x d x a n n y ?=

其中.0)

()()1-()(≠=

x na x b n x d n

)()

(-))((),,(1

-_'_

_'

_'

_

x b y y y x a y y x F n +=

)]()(1

-)()(-[)

)(()(1

--

))((1

-_

'

_

'x d x a n n x d x a y x d x a n n y x a n

n

n n

+

+=

))]

()

()((1

--

)()

()][()[(∑∑2

-0

-2-_

'1-0

-1-_'_'

x d y x d n n x d y x d y x a i

n i i

n i

n i i

n ===

因此,0(x)-_'

=d y 时,_

y 是微分方程(A )的解,而且又有

)]

(-[)

)(()

()

)((-)

)((),,(_

'

2

-_

'2

-_

'1

-_'_'

_

'

_

'

x d y y x na x d y x na y x na y y x F

n n n y

==

.0)(-),,(1

-_'_'

_

'

_

≠=n y y y y x F 由于)(_'

x d y =

)()

)(()

)(()()2-(-)

)(()1-(),,(3

-_

'

3

-_

'2

-_'_'

_

'

'_'

_'≠?==x d y x na y x d x a n n y x a n n y y x F

n n n y

y

由此可知,对于微分方程(A ),假设a(x),b(x)在区间I 上是连续可导的,且

.0)(,0)(≠≠x b x a 若满足.0)(-_

'

=x d y 即

.0)(-)]()(1

-[

'

=x d x d x a n n

其中.)

()()1-()(x na x b n x d n

=

则微分方程有奇解:).()(1

-_

x d x a n n y ?=

再来讨论微分方程(B ),对于微分方程(B )其中a(x),b(x),c(x)在区间I 上是连续可导的,且.0≠)(,0≠)(x b x a 这时

0-)()()(),,(1

-=++=y x c p x b p x a p y x F n n

)]()1-()([)()1-()(),,(2

-2

-1

-'

=+=+=x b n p x na p

p

x b n p

x na p y x F

n n n p

消去p 得到函数:)()()()()(1

-_

x d

x b x d x a x c y n n

+?+=,其中

.0)

()(1)-(-)(≠=x na x b n x d

))]

()

()(())()

()(()][(-[)

()(-)()(-)

)(())((-)()

)(())((),,(∑∑2

-0

-2-_'1

-0

-1-_'

_'

1

-1-_

'

_

'_

1

-_'_'_'

_

x d y x b x d y x a x d y x d

x b x d x a y x b y x a y

x c y x b y x a y y x F i

n i i

n i

n i i

n n n

n n

n n

==+=+=++=

因此,当.0)(-_'

=x d y 时,_

y 是微分方程(B )的解.

.

0))(()1-(-),,(01-),,(0

)](-[)

)((),,(2

-_'_'

_

'

'_'

_

'_

'

2

-_'_'

_

'

_'

_'_

_

'

≠=≠===n y

y y n y

y x b n y y x F

y y x F x d y y x na y y x F

从而,对于微分方程(B ),假设a(x),b(x),c(x)在I 上连续可导,且

.0)(,0)(≠≠x b x a 又满足条件.0)(-_

'

=x d y 即

0)(-)]()()()()(['

1

-=++x d x d x b x d x a x c n n

其中.0)

()(1)-(-)(≠=x na x b n x d 则(B )有奇解:

).()()()()(1

-_

x d

x b x d x a x c y n n +?+=

3 .3克莱罗方程的奇解 我们把形如

)(p f xp y += (6)

的方程,称为克莱罗方程,其中)(,p f dx

dy p =

是p 的连续可微函数.-

下面讨论克莱罗方程的奇解.将)(p f xp y +=两边对x 求导,并以dx

dy p =代入得

dx

dp p f p dx

dp x

p )

('

++= 即

0))(('

=+p f x dx

dp

1、若

=dx

dp c

p =?,所以原方程的通解为)(c f cx y +=;

2、若0)('

=+p f x 将此与原方程合起来有 ???+==+)(0

)('p f xp y p f x .

消去P 也得到方程的一个解.

分析 1)从1知克莱罗方程的通解是一族直线. 2)通解的形式就是在原方程中用C 代P 而得到的.

3)从2知,求此解的过程正好与从通解)(c f cx y +=中求包络的步骤一样(也和求(6)的P-判别曲线的过程一样),并且此解为积分曲线族)(c f cx y +=的包络

)01),,(('

≠=c y x y φ,因此克莱罗方程总有解.

4)从(3)知,对克莱罗方程而言,P-判别曲线和方程通解的C-判别曲线都是方程通解的包络,从而为方程的奇解.

例3.3.1 求方程p

xp y 1+

=(其中dx

dy p =

)的奇解

解 此方程为克莱罗方程,因此其通解为c

cx y 1+

=

从??

??

?

+

==c cx y c x 1

01-2 中消去C 得到x y 42

=.由前后讨论知x y 42=为方程的奇解.

4 微分方程奇解的逆问题

我们考虑微分方程奇解的逆问题:求一微分方程已一个已知函数)(x y φ=为奇解.下面,用上述方法和结论来解决微分方程奇解的逆问题.

4.1 求以x y sin =为奇解的常微分方程

满足以x y sin =为奇解的常微分方程非常多,下面给出三种类型的常微分方程. 4.1.1求克莱罗型方程

设克莱罗方程有奇解x y sin =, 即

?

??+==)()(sin )(-''

p f p p f p f x 因此,)(sin p f xp x +=.下面求出)(p f 的表达式.

求导得)(cos '

''p f x p x x x ++=?. 令p x =cos 则

p p p xp x xp x p f ?===arccos --1-cos -1-sin )(2

'

故以x y sin =为奇解的克莱罗常微分方程为

dx

dy dx

dy dx

dy dx

dy x

y arccos

-

)(

-12

+=

2.求)(A 型方程

为简单起见,取n=2.已知x y sin _

=,由条件0)(-'y _

=x d 得x x d cos )(=. 由)()(2,)

()()(_

2

x d x a y x a x b x d ==

得 x x a x x a x b x cos )(2sin ,)

()(cos

2

==

解之得x x x b x x a sin cos 2)(,tan 2)(==.因此,以x y sin =为奇解的)(A 型常微分方程为

0sin cos 2)(

-)(

tan 22

=+x x dx

dy y dx dy x

3.求)(B 型方程

取n=3.已知x

y sin _

=.由条件0)(-'_

=x d y 得x x d cos )(=.

)

(27)

(4)(,

)

(3)(2-)(2

3

_

x a

x b x c x a x b x d y +==

则)

(27)(4)(sin ,)

(3)(2-

cos 2

3

x a x b x c x x a x b x +

==.特别取c(x)=0,

解之得 x

x x b x

x x a 2

3

cos sin 3)(,cos sin 2-

)(=

=.

因此,以x y sin =为奇解的)(B 型常微分方程为 2

2

33)(cos sin 3)(cos sin 2-dx

dy x x dx dy x x y +=. 4.2 求以x

e y =为奇解的常微分方程 4.2.1求克莱罗型方程

设克莱罗方程有奇解x e y =,即

?

??+==)()()(-''

p f p p f e p f x x 因此)(p f xp e x

+=.求导化简得x

e p =,则p p p p

f ln -)(=.

故以x

e y =为奇解的克莱罗型常微分方程为

)ln(

)(-dx dy dx dy dx dy dx dy x

y +=

4.2.2 求)(A 型方程

取n=2.已知奇解x

e

y =_

,由条件0)(-'_

=x d y 得x

e x d =)(.

由x

e x a x a x b x d y

)(2,

)

()()(_

==

得 x

x

x

e x a e x a x b e

)(2,)

()(2==

,进而2

1)(=x a ,

x

e x b 22

1

)(=.故以x

e y =为奇解的)(A 型常微分方程为02

1)(

-)(

2122

=+

x

e

dx

dy y dx

dy .

4.2.3 求)(B 型方程

取n=2.已知

x

e y

=_

,由条件

0)(-'_

=x d y

得x e x d =)(. 由)

(4)

(-)(,

)

(2)(-

)(2

_

x a x b x c x a x b x d y ==,得)

(2)(-

,)

(4)(-

2

x a x b e x a x b e x

x

==,

解之得2)(,-)(-==x b e x a x

.因此,以

x

e

y =为奇解的)(B 型常微分方程为

)(

2)(

-2

-dx

dy dx

dy e y x

+=.

同理,可以求出其他类型函数或者复合函数作为常微分方程的奇解.因此有奇解的常微分方程是非常多的.此外,在上述求解过程中,由于n 与c(x)有许多不同的取法,因此,以同一奇解的常微分方程也是非常多的.

5 总结

本文对一阶微分方程通过分为导数已解出的、导数未解出的、克莱罗方程,以及利用P-判别曲线对一般的类似于(A )、(B )的微分方程的奇解的求法做出了讨论,应用各种方式算出它们的奇解,对解法进行了较全面的分析,并给出了相应的求解方法和求解步骤.

最后讨论了微分方程奇解的逆问题,带入一般的微分方程(A)、(B)讨论微分方程的逆问题.

参考文献

[1] 丁同仁,李承治.常微分方程教程[M].2版.北京:高等教育出版社,2004:94-110.

[2] 王五生,付美玲,侯宗毅.一阶非线性常微分方程奇解的求法[J].高等数学研究,2010(7):

65-67 .

[3] 何永葱.关于常微分方程奇解的逆问题[J].重庆教育学院学报,2008(5):5-10.

[4] 何永葱.关于常微分方程奇解判别的注记[J].内江师范高等专科学校学报,2000(2).

[5] 何永葱.两类一阶常微分方程有奇解的条件[J].重庆教育学院学报,2007(6)

[6] 王高雄,周之铭,朱思铭,王寿松.常微分方程[M].3版.北京.高等教育出版社.

[7] 李育俭.一阶微分方程的奇解[J].武汉工程专业技术学院学报,2005(9):83-87.

[8] 艾利斯哥尔兹著.微分方程[M].北京.高等教育出版社.1959年.

- 12 -

一阶常微分方程的奇解

摘要.................................................... 错误!未定义书签。 1.何谓奇解.............................................. 错误!未定义书签。 2.奇解的产生............................................ 错误!未定义书签。 3.包络跟奇解的关系...................................... 错误!未定义书签。 4.理论上证明C-判别曲线与P-判别曲线方法................. 错误!未定义书签。 克莱罗微分方程 ..................................... 错误!未定义书签。 5.奇解的基本性质........................................ 错误!未定义书签。 定理1 ............................................. 错误!未定义书签。 定理2 ............................................. 错误!未定义书签。 定理3 ............................................. 错误!未定义书签。 6.小结.................................................. 错误!未定义书签。参考文献:.............................................. 错误!未定义书签。

二次微分方程的通解

教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将 y e rx 代入方程 y py qy 0 得 (r 2 pr q )e rx 0 由此可见 只要r 满足代数方程r 2 pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2 pr q 0叫做微分方程y py qy 0的特征方程 特征方程 的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无 关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0 )()2(121111=++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的 两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关 的实数形式的解 函数y 1e ( i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e ( i )x e x (cos x i sin x ) y 1y 22e x cos x ) (2 1cos 21y y x e x +=βα y 1y 22ie x sin x ) (21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为

总结一阶常微分方程奇解的求法

总结一阶微分方程奇解的求法 摘要:利用有关奇解的存在定理,总结出求一阶微分方程奇解的几种方法,并通过一些具体的例题说明这几种方法的应用 Using relevant theorems to develop several methods of finding singular solution of ordinary differential equation. In addition, illustrate the application of these methods through the concrete examples. 关键词:常微分方程 奇解 c-判别式 p-判别式 方法一:利用c-判别式求奇解 设一阶微分方程0, ,=?? ? ?? dx dy y x F ① 可求出方程①的通解为()0,,=c y x φ ② 如果()()???==0 ,,0,,' c y x c y x c φφ ③ 是微分方程①的解,且对③式满足:()()02 '2 '≠+y x φφ ④ 则③是微分方程①的奇解,且是通解②的包络。 例1:方程() 2 2 2 x x y dy dx dy dx + -= 的奇解 解:首先,本具题意求出该微分方程的通解为2 2 2 c cx y x ++= 与4 2 x y = 其中c 为任意常数 当时2 2 2 c cx y x ++= , ()y c cx x c y x -++= 2 2 2 ,,φ 其相应的c -判别式为 ? ??=+=-++02022x 2 c x y c cx 易得到: ? ??=-=2 2c y c x

代入原微分方程,可知? ??=-=2 2c y c x 不是原微分方程的解; 当4 2 x y = 时,易求出2 ,1''x y x ==φφ,则有()()02 '2 '≠+y x φφ 故4 2 x y = 为原微分方程的奇解 例2:试求微分方程() () y y dy dx 9 42 2 1= -的奇解 解:首先,根据题意求出微分方程的通解为:()()0322=---y y c x 其中c 为任意常数 再由相应的c-判别式: ()()()? ??=--=---020 322c x y y c x 易求出:? ??==0y c x 或 ???==3y c x 当???==0y c x 时,代入原微分方程成立; 所以? ??==0y c x 为原微分方程的解 且有()02'=--=c x x φ;()()93232 '-=---=y y y y φ 满足(Φ‘ x )2 +(Φ‘ y )2≠0 易验证???==3y c x 不是原微分方程的解 故x=c, y=0 是元微分方程的奇解。 方法二:利用p-判别法求奇解 在微分方程①中,设y ′=p,则此方程的p-判别式为: ()()?????==0,,0 ,,' p y x F p y x F p ⑤ 消去p 之后得到的函数y=?(x)是微分方程①身为解,

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

一阶常微分方程解法总结

页脚内容1 第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )()(=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、xy dx dy = 解:当0≠y 时,有xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(11212 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(1212 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有dy y N y Q dx x P x M ) ()()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(22=-+-dy x y dx y x

页脚内容2 解:当0)1)(1(22≠--y x 时,有dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如)(x y g dx dy = 解法:令x y u = ,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(222111c y b x a c y b x a f dx dy ++++= 解法:01、02211 =b a b a ,转化为)(by ax G dx dy +=,下同①; 02、0221 1 ≠b a b a ,???=++=++00222111c y b x a c y b x a 的解为),(00y x ,令???-=-=00y y v x x u

二阶常微分方程解

第七节 二阶常系数线性微分方程 在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线 性微分方程及其求解方法。先讨论二阶常系数线性齐 §7.1 二阶常系数线性齐次方程及其求 22dx y d +p dx dy +qy = 0 (7.1) 其中p 、q 是常数,由上节定理二知,要求方程(7.1)的通解,只要求出其任意两个线性无关的特解y 1,y 2 我们先分析方程(7.1)可能具有什么形式的特解, 从方程的形式上来看,它的特点是22 dx y d ,dx dy ,y 各乘 以常数因子后相加等于零,如果能找到一个函数y ,

其22dx y d ,dx dy ,y 之间只相差一个常数因子,这样的函 数有可能是方程(7.1)的特解,在初等函数中,指数函数e rx y =e rx (其中r 为待定常数) 将y =e rx ,dx dy =re rx ,22dx y d =r 2e rx 代入方程 (7.1) 得 r 2e rx +pre rx +qe rx = 0 或 e rx (r 2+pr +q )= 因为e rx ≠ 0 r 2 +pr +q = 由此可见,若 r r 2+pr +q = 0 (7.2) 的根,那么e rx 就是方程(7.1)的特解,于是方程(7.1)的求解问题,就转化为求代数方程(7.2)的根问题。称(7.2)式为微分方程(7.1) 特征方程(7.2)是一个以r 为未知函数的一元二次代数方程。特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2 有三种可能的情况,下面 (1)若特证方程(7.2)有两个不相等的实根r 1,r 2,此时e r 1x ,e r2x 是方程(7.1)

一阶常微分方程解法总结

第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )() (=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、 xy dx dy = 解:当0≠y 时,有xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(112 12 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(12 12 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有 dy y N y Q dx x P x M ) () ()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(22=-+-dy x y dx y x 解:当0)1)(1(22≠--y x 时,有 dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。 ⑵可化为变量可分离方程的方程:

①、形如 )(x y g dx dy = 解法:令x y u =,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得 到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程, 得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(2 221 11c y b x a c y b x a f dx dy ++++= 解法:0 1、 02 2 11=b a b a ,转化为 )(by ax G dx dy +=,下同①; 02、 022 1 1≠b a b a ,???=++=++00 222111 c y b x a c y b x a 的解为),(00y x ,令???-=-=0 0y y v x x u 得到,)()( )(221 12211u v g u v b a u v b a f v b u a v b u a f du dv =++=++=,下同②; 还有几类:xy u dy xy xg dx xy yf ==+,0)()( 以上都可以化为变量可分离方程。 例2.1、 2 5--+-=y x y x dx dy 解:令2--=y x u ,则du dx dy -=,代入得到u u dx du 7 1+= - ,有dx udu 7-= 所以)(72 2 为常数C C x u +-=,把u 代入得到)(72 22 为常数) (C C x y x =+--。 例2.2、 1 212+-+-=y x y x dx dy 解:由???=+-=+-012012y x y x 得到?????=-=3131y x ,令?? ???-=+=3131y v x u ,有???==du dx dv dy ,代入得到

二阶常微分方程的解法及其应用.

目录 1 引言 (1) 2 二阶常系数常微分方程的几种解法 (1) 2.1 特征方程法 (1) 2.1.1 特征根是两个实根的情形 (2) 2.1.2 特征根有重根的情形 (2) 2.2 常数变异法 (4) 2.3 拉普拉斯变化法 (5) 3 常微分方程的简单应用 (6) 3.1 特征方程法 (7) 3.2 常数变异法 (9) 3.3 拉普拉斯变化法 (10) 4 总结及意义 (11) 参考文献 (12)

二阶常微分方程的解法及其应用 摘要:本文通过对特征方程法、常数变易法、拉普拉斯变换法这三种二阶常系数常微分方程解法进行介绍,特别是其中的特征方程法分为特征根是两个实根的情形和特征根有重根的情形这两种情况,分别使用特征值法、常数变异法以及拉普拉斯变换法来求动力学方程,现今对于二阶常微分方程解法的研究已经取得了不少成就,尤其在二阶常系数线性微分方程的求解问题方面卓有成效。应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。 关键词:二阶常微分方程;特征分析法;常数变异法;拉普拉斯变换

METHODS FOR TWO ORDER ORDINARY DIFFERENTIAL EQUATION AND ITS APPLICATION Abstract:This paper introduces the solution of the characteristic equation method, the method of variation of parameters, the Laplasse transform method the three kind of two order ordinary differential equations with constant coefficients, especially the characteristic equation method which is characteristic of the root is the two of two real roots and characteristics of root root, branch and don't use eigenvalue method, method of variation of constants and Laplasse transform method to obtain the dynamic equation, the current studies on solution of ordinary differential equations of order two has made many achievements, especially in the aspect of solving the problem of two order linear differential equation with constant coefficients very fruitful. Application of the theory of ordinary differential equations has made great achievements, however, the existing theory it is still far from meeting the need, needs further development, to make the discipline theory more perfect. Keywords:second ord er ordinary differential equation; Characteristic analysis; constant variation method; Laplasse transform 1 引言 数学发展的历史告诉我们,300年来数学分析是数学的首要分支,而微分方程

一阶常微分方程的奇解

摘要 (2) 1.何谓奇解 (2) 2.奇解的产生 (3) 3.包络跟奇解的关系 (4) 4.理论上证明C-判别曲线与P-判别曲线方法 (5) 4.1 克莱罗微分方程 (9) 5.奇解的基本性质 (12) 5.1 定理1 (12) 5.2 定理2 (14) 5.3 定理3 (14) 6.小结 (14) 参考文献: (15)

一阶常微分方程的奇解 摘要 在常微分方程中,我们知道方程的解可以有多种,现在我们来讨论求奇解的方法。我们看到某些微分方程,会存在一些特殊的积分曲线,他并不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。从而我们引出了积分曲线族的包络,而为了求微分方程的奇解,,我们应先求出他的通解,然后求通解的包络。 关键词:奇解,包络,C-判别式,P-判别式 1.何谓奇解 设一阶隐式方程),,(,y y x F =0有一特解

)(:x y ψ=Γ,j x ∈ 如果对每一点Γ∈P ,在P 点的任何一个领域,方程),,(,y y x F =0都有一个不同于Γ的解在P 点与Γ相切,则称Γ是微分方程的),,(,y y x F =0的奇解 定义:如果一个一阶微分方程的一个特解的积分曲线上的每一点都至少和这个微分方程的不同的积分曲线相切,并且这相切的积分曲线在切点的任何邻域都不重合,则称这个特解为这个微分方程的奇解 2.奇解的产生 先看一个例子,求方程 033=-?? ? ??y dx dy (1) 或与它等价的方程 3y dx dy = 的解。 经分离变量后,可得(1)的通解 3)(27 1c x y += 容易看出,y=0也是原方程的一个解。现在来研究这个解y=0有什么特殊的地方。由图我们看到,在解y=0上的每一 点)0,(0x 处相切,这种特殊的积分曲线y=0 称为奇积分曲线,他所对应的解就是奇 解,这就是奇解的产生。 我们现在给出曲线族包络的定义 某些微分方程,存在一些特殊的积分 曲线,会存在一些特殊的积分曲线,他并 不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。在几何学里,这些特殊的积分曲线称为上述积分曲线族的包络,在微分方程里,这些特殊的积分曲线所对应的解酒称为方程的奇解。

二阶常微分方程解

二阶常微分方程解

————————————————————————————————作者: ————————————————————————————————日期:

第七节 二阶常系数线性微分方程 的解法 在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法。先讨论二阶常系数线性齐次方程的求解方法。 §7.1 二阶常系数线性齐次方程及其求解方法 设给定一常系数二阶线性齐次方程为 ?? 22 dx y d +p dx dy +qy=0 (7.1) 其中p 、q 是常数,由上节定理二知,要求方程(7.1)的通解,只要求出其任意两个线性无关的特解y 1,y2就可以了,下面讨论这样两个特解的求法。 我们先分析方程(7.1)可能具有什么形式的特解, 从方程的形式上来看,它的特点是22dx y d ,dx dy ,y 各乘以 常数因子后相加等于零,如果能找到一个函数y,其

22dx y d ,dx dy ,y之间只相差一个常数因子,这样的函数有可能是方程(7.1)的特解,在初等函数中,指数函数e rx ,符合上述要求,于是我们令 y=e r x (其中r 为待定常数)来试解 将y =e rx ,dx dy =re r x,22dx y d =r 2e r x 代入方程(7.1) 得 r 2e rx +pre rx +qerx =0 或 e r x(r 2+pr+q )=0 因为e rx ≠0,故得 ? r 2 +pr +q=0 由此可见,若r 是二次方程 ?? r 2+pr +q=0 (7.2) 的根,那么e r x就是方程(7.1)的特解,于是方程(7.1)的求解问题,就转化为求代数方程(7.2)的根问题。称(7.2)式为微分方程(7.1)的特征方程。 特征方程(7.2)是一个以r 为未知函数的一元二次代数方程。特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论。 (1)若特证方程(7.2)有两个不相等的实根r 1, r 2,此时e r 1x ,e r2x 是方程(7.1)的两个特解。

一阶线性非齐次微分方程求解方法归类

一阶线性非齐次微分方程一、线性方程 方程 dy dx P x y Q x += ()() 1 叫做一阶线性微分方程(因为它对于未知函数及其导数均为一次的)。 如果 Q x()≡0,则方程称为齐次的; 如果 Q x()不恒等于零,则方程称为非齐次的。 a)首先,我们讨论1式所对应的齐次方程 dy dx P x y += ()0 2 的通解问题。 分离变量得dy y P x dx =-() 两边积分得ln()ln y P x dx c =-+ ? 或 y c e P x dx =?-?() 其次,我们使用所谓的常数变易法来求非齐次线性方程1的通解。 将1的通解中的常数c换成的未知函数u x(),即作变换 y u e P x dx =?-?() 两边乘以得P x y uP x e P x dx ()()() ?=-? 两边求导得dy dx u e uP x e P x dx P x dx ='- -?-? ()() () 代入方程1得

'=-?u e Q x P x dx ()() , '=?u Q x e P x dx ()() u c Q x e dx P x dx =+??()() 于是得到非齐次线性方程1的通解 [] y e c Q x e dx P x dx P x dx =?+-???()()() 将它写成两项之和 y c e e Q x e dx P x dx P x dx P x dx =?+?--????()()()() 非齐次通解 = 齐次通解 + 非齐次特解 【例1】求方程 dy dx y x x -+=+21 13 2 () 的通解。 解: ] 23 )1([1212dx e x c e y dx x dx x ??++??=+-+-- ] 23 )1([22 )1(ln )1(ln dx e x c e x x +-+??++?= =+?++- ?()[()]x c x dx 1121 2 =+?++()[()] x c x 12121 2 由此例的求解可知,若能确定一个方程为一阶线性非齐次方程,求解它只需套用公式。

二阶常系数齐次线性微分方程求解方法

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数 非齐次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将y e rx 代入方程 y py qy 0 得 (r 2pr q )e rx 0 由此可见 只要r 满足代数方程r 2pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2pr q 0叫做微分方程y py qy 0的特征方程 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111 =++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关的实数形式的解 函数y 1e (i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e (i )x e x (cos x i sin x ) y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 2 2ie x sin x )(21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为 y e x (C 1cos x C 2sin x )

一阶常微分方程的奇解

摘要 (4) 1.何谓奇解 (5) 2.奇解的产生 (5) 3.包络跟奇解的关系 (6) 4.理论上证明C-判别曲线与P-判别曲线方法 (7) 4.1 克莱罗微分方程 (11) 5.奇解的基本性质 (14) 5.1 定理1 (14) 5.2 定理2 (16) 5.3 定理3 (16) 6.小结 (17) 参考文献: (17)

一阶常微分方程的奇解 摘要 在常微分方程中,我们知道方程的解可以有多种,现在我们来讨论求奇解的方法。我们看到某些微分方程,会存在一些特殊的积分曲线,他并不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。从而我们引出了积分曲线族的包络,而为了求微分方程的奇解,,我们应先求出他的通解,然后求通解的包络。 关键词:奇解,包络,C-判别式,P-判别式

1.何谓奇解 设一阶隐式方程) x F=0有一特解 y , , (,y

)(:x y ψ=Γ,j x ∈ 如果对每一点Γ∈P ,在P 点的任何一个领域内,方程),,(,y y x F =0都有一个不同于Γ的解在P 点与Γ相切,则称Γ是微分方程的),,(,y y x F =0的奇解 定义:如果一个一阶微分方程的一个特解的积分曲线上的每一点都至少和这个微分方程的不同的积分曲线相切,并且这相切的积分曲线在切点的任何邻域内都不重合,则称这个特解为这个微分方程的奇解 2.奇解的产生 先看一个例子,求方程 033=-?? ? ??y dx dy (1) 或与它等价的方程 3y dx dy = 的解。 经分离变量后,可得(1)的通解 3)(27 1c x y += 容易看出,y=0也是原方程的一个解。现在来研究这个解y=0有什么特殊的地方。由图我们看到,在解y=0上的每一 点)0,(0x 处相切,这种特殊的积分曲线y=0 称为奇积分曲线,他所对应的解就是奇 解,这就是奇解的产生。 我们现在给出曲线族包络的定义 某些微分方程,存在一些特殊的积分 曲线,会存在一些特殊的积分曲线,他并 不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。在几何学里,这些特殊的积分曲线称为上述积分曲线族的包络,在微分方程里,这些特殊的积分曲线所对应的解酒称为方程的奇解。

二阶常微分方程解

二阶常微分方程解 Document number:BGCG-0857-BTDO-0089-2022

第七节 二阶常系数线性微分方程 的解法 在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法。先讨论二阶常系数线性齐次方程的求解方法。 § 二阶常系数线性齐次方程及其求解方法 设给定一常系数二阶线性齐次方程为 2 2dx y d +p dx dy +qy =0 其中p 、q 是常数,由上节定理二知,要求方程的通解,只要求出其任意两个线性无关的特解y 1,y 2就可以了,下面讨论这样两个特解的求法。 我们先分析方程可能具有什么形式的特解,从方程的形式上来看,它 的特点是2 2dx y d ,dx dy ,y 各乘以常数因子后相加等于零,如果能找到一个函数y ,其2 2dx y d ,dx dy ,y 之间只相差一个常数因子,这样的函数有可能是方程的特解,在初等函数中,指数函数e rx ,符合上述要求,于是我们令 y =e rx (其中r 为待定常数)来试解

将y =e rx ,dx dy =re rx ,2 2dx y d =r 2 e rx 代入方程 得 r 2e rx +pre rx +qe rx =0 或 e rx (r 2 +pr +q )=0 因为e rx ≠0,故得 r 2+pr +q =0 由此可见,若r 是二次方程 r 2+pr +q =0 的根,那么e rx 就是方程的特解,于是方程的求解问题,就转化为求代数方程的根问题。称式为微分方程的特征方程。 特征方程是一个以r 为未知函数的一元二次代数方程。特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论。 (1)若特证方程有两个不相等的实根r 1,r 2,此时e r 1x ,e r2x 是方程的两个特解。 因为 x r x r 2 1e e =e x )r r (21-≠常数 所以e r1x ,e r2x 为线性无关函数,由解的结构定理知,方程的通解为 y =C 1e r1x +C 2e r2x (2)若特征方程有两个相等的实根r 1=r 2,此时p 2-4q =0,即 有r 1 =r 2 =2 p -,这样只能得到方程的一个特解y 1 =e r 1x ,因此,我

一阶线性微分方程组

第4章 一阶线性微分方程组 一 内容提要 1. 基本概念 一阶微分方程组:形如 ??? ????? ???===) ,,,,( ),,,,(),,,,(2121222111 n n n n n y y y x f dx dy y y y x f dx dy y y y x f dx dy ΛΛΛΛΛ (3.1) 的方程组,(其中n y y y ,,,21Λ是关于x 的未知函数)叫做一阶微分方程组。 若存在一组函数)(,),(),(21x y x y x y n Λ使得在[a,b]上有恒等式 ),,2,1))((,),(),(,() (21n i x y x y x y x f dx x dy n i i ΛΛ==成立,则 )(,),(),(21x y x y x y n Λ称为一阶微分方程组(3.1)的一个解 含有n 任意常数n C C C ,,,21Λ的解 ?????? ?===) ,,,,( ),,,,(),,,,(21321222111n n n n C C C x y C C C x y C C C x y ΛΛΛΛΛ??? 称为(3.1)通解。如果通解满方程组 ???????=Φ=Φ=Φ0 ),,,,,,,,( 0),,,,,,,,(0),,,,,,,,(21212121221211n n n n n n n C C C y y y x C C C y y y x C C C y y y x ΛΛΛΛΛΛΛΛ 则称这个方程组为(3.1)的通积分。 满足初始条件,)(,,)(,)(0020021001n n y x y y x y y x y ===Λ的解,叫做初值问题的解。

试论常微分方程的奇解

试论常微分方程的奇解 摘要: 一阶微分方程拥有含有一个任意常数的通解,另外可能还有个别不含于通解的特解,即奇解,利用P-判别法和C-判别法可以求出奇解,而这两种判别法是否适用于求每一个一阶微分方程的奇解?此文中举了几个例子来说明这个问题.并给出另外三种求奇解的方法. 关键词: 一阶微分方程,奇解,P-判别式,C-判别式,C-P消去法,拾遗法,自然法. Discussing Singular Solution about First Order Differential Equation ZHU Yong-wang (Class 1, Grade 2006, College of Mathematics and Information Science) Advisor: Professor LI Jian-min Abstract: First order differential equation has a general solution which contains an arbitrary constant, but sometimes it has special solution that is singular solution, which can be solved by the P-judgment method and C-judgment method.While whether the two judgments can be applied to get every singular solution to the first order differential equation? This paper intends to illustrate this problem with several examples. Key words: Singular solution, P-judgment, C-judgment, C-P elimination method, The supplement method, Natural method. 1.引言 一般来说一阶常微分方程拥有任意常数的通解,另外还有个别不含于通解的特解.这种特解可以理解为通解的一种蜕化现象.它在几何上往往表现为解的唯一性遭到破坏.早在1649年莱布尼兹就已经观察到解族的包络也是一个解.克莱络

二阶常系数齐次线性微分方程的通解证明教学提纲

二阶常系数齐次线性微分方程的通解证明

二阶常系数齐次线性微分方程的通解证明 来源:文都教育 在考研数学中,微分方程是一个重要的章节,每年必考,其中的二阶常系数齐次线性微分方程是一个基本的组成部分,它也是求解二阶常系数非齐次线性微分方程的基础,但很多同学对其求解公式不是十分理解,做题时也感到有些困惑,为了帮助大家对其通解公式有更深的理解和更牢固的掌握,文都网校的蔡老师下面对它们进行一些分析和简捷的证明,供考研的朋友们学习参考。 一、二阶常系数齐次线性微分方程的通解分析 通解公式:设0y py qy '''++=,,p q 为常数,特征方程02=++q p λλ的特征根为 12,λλ,则 1)当12λλ≠且为实数时,通解为1212x x y C e C e λλ=+; 2)当12λλ=且为实数时,通解为1112x x y C e C xe λλ=+; 3)当12,i λλαβ=±时,通解为12(cos sin )x y e C x C x αββ=+; 证:若02=++q p λλ的特征根为12,λλ,则1212(),p q λλλλ=-+ =,将其代入方程0y py qy '''++=中得1212()y py qy y y y λλλλ''''''++=-++= 212212()()()0y y y y y y y y λλλλλλ'''''''=---=---=, 令2z y y λ'=-,则11110x dz z z z z c e dx λλλ'-=? =?=,于是121x y y c e λλ'-=,由一阶微分方程的通解公式得 221212()()()1212[][]dx dx x x x y e c e e dx C e c e dx C λλλλλλ----??=+=+?? (1)

相关主题
文本预览
相关文档 最新文档