当前位置:文档之家› 光伏发电功率预测方法研究综述

光伏发电功率预测方法研究综述

光伏发电功率预测方法研究综述
光伏发电功率预测方法研究综述

光伏发电预测

太阳能发电预测综述 在煤矿,石油开采量日益见底和生态环境急速恶化的严峻形势下,太阳能作为一种自然能源,以其储量丰富且清洁无污染性显示了其独特的优势,已被国际公认为未来最具竞争性的能源之一。 从太阳能获得电力,需通过太阳电池将光能转化为电能。它同以往其他电源发电原理完全不同。要使太阳能发电真正达到实用水平,一是要提高太阳能光电变换效率并降低其成本,二是要实现太阳能发电同的电网联网。 1.太阳能发电的分类 目前太阳能发电主要有以下两种形式: 1.太阳能光发电 太阳能光发电是指无需通过热过程直接将光能转变为电能的发电方式。它包括光 伏发电、光化学发电、光感应发电和光生物发电。光伏发电是利用太阳能级半导 体电子器件有效地吸收太阳光辐射能,并使之转变成电能的直接发电方式,是当今 太阳光发电的主流。在光化学发电中有电化学光伏电池、光电解电池和光催化电池,目前得到实际应用的是光伏电池。[1] 2.太阳能热发电 通过水或其他工质和装置将太阳辐射能转换为电能的发电方式,称为太阳能热发电。 先将太阳能转化为热能,再将热能转化成电能,它有两种转化方式:一种是将太阳 热能直接转化成电能,如半导体或金属材料的温差发电,真空器件中的热电子和热 电离子发电,碱金属热电转换,以及磁流体发电等;另一种方式是将太阳热能通过

热机(如汽轮机)带动发电机发电,与常规热力发电类似,只不过是其热能不是来 自燃料,而是来自太阳能。太阳能热发电有多种类型,主要有以下五种:塔式系统、 槽式系统、盘式系统、太阳池和太阳能塔热气流发电。前三种是聚光型太阳能热 发电系统,后两种是非聚光型。一些发达国家将太阳能热发电技术作为国家研发 重点,制造了数十台各种类型的太阳能热发电示范电站,已达到并网发电的实际应 用水平。[2] 2.太阳能光伏发电影响因素 太阳能光伏发电成为目前太阳能利用的主要方式之一。光伏发电分为离网和并网两种形式,随着光伏并网技术的成熟与发展,并网光伏发电已成为主流趋势。由于大规模集中并网光伏发电系统容量的急速增加,并网光伏发电系统输出功率固有的间歇性和不可控等缺点对电网的冲击成为制约并网光伏发电的重要元素。太阳能光伏发电系统发电量受当地太阳辐射量、温度、太阳能电池板性能等方面因素的影响。 (1)光照强度对光伏发电量的影响:光照强度是指在单位时间和单位面积内,在地球表面上接收到的垂直投射的太阳辐射能量。光伏发电系统产生电能所需的能量完全来自、于太阳的辐照,因此光照强度对光伏发电系统的发电量具有决定性的作用,二者之间呈正相关性,即光照强度越强,光伏发电量越多。 (2)季节类型对光伏发电量的影响:由于在不同的季节,太阳入射角的大小以及方向、日照时间的长短、光照强度的强弱存在明显的差异,到达地表的太阳辐照度经过吸收、散射,辐射等各种减弱作用后也会不同,光伏发电系统的发电量的多少也在变化。这种差异性即为不同的季节类型对光伏发电量的影响。 (3)天气类型对光伏发电量的影响:将天气类型的时间范围确定在24 小时之内。由于晴

风电功率预测系统功能要求规范

风电功率预测系统功能规范 (试行) 国家电网公司调度通信中心

目次 前言...................................................................... III 1范围. (1) 2术语和定义 (1) 3数据准备 (2) 4数据采集与处理 (3) 5风电功率预测 (5) 6统计分析 (6) 7界面要求 (7) 8安全防护要求 (8) 9系统输出接口 (8) 10性能要求 (9) 附录A 误差计算方法 (10)

前言 为了规范风电调度技术支持系统的研发、建设及应用,特制订风电功率预测系统功能规范。 本规范制订时参考了调度自动化系统相关国家标准、行业标准和国家电网公司企业标准。制订过程中多次召集国家电网公司科研和生产单位的专家共同讨论,广泛征求意见。 本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、信息要求、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。 本规范由国家电网公司国家电力调度通信中心提出并负责解释; 本规范主要起草单位:中国电力科学研究院、吉林省电力有限公司。 本规范主要起草人:刘纯、裴哲义、王勃、董存、石永刚、范国英、郭雷。

风电功率预测系统功能规范 1范围 1.1本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、数据准备、数据采集与处理、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。 1.2本规范用于指导电网调度机构和风电场的风电功率预测系统的研发、建设和应用管理。 本规定的适用于国家电网公司经营区域内的各级电网调度机构和风电场。 2术语和定义 2.1 风电场 Wind Farm 由一批风电机组或风电机组群组成的发电站。 2.2 数值天气预报 Numerical Weather Prediction 根据大气实际情况,在一定的初值和边值条件下,通过大型计算机作数值计算,求解描写天气演变过程的流体力学和热力学的方程组,预测未来一定时段的大气运动状态和天气现象的方法。 2.3 风电功率预测 Wind Power Forecasting 以风电场的历史功率、历史风速、地形地貌、数值天气预报、风电机组运行状态等数据建立风电场输出功率的预测模型,以风速、功率或数值天气预报数据作为模型的输入,结合风电场机组的设备状态及运行工况,得到风电场未来的输出功率;预测时间尺度包括短期预测和超短期预测。 2.4 短期风电功率预测 Short term Wind Power Forecasting 未来3天内的风电输出功率预测,时间分辨率不小于15min。 2.5 超短期风电功率预测 ultra-short term Wind Power Forecasting 0h~4h的风电输出功率预测,时间分辨率不小于15min。

风电场风速及风电功率预测方法研究综述

—————————————————— —基金项目:福建省教育厅科技项目(JA08024);福建省自然科学基金计划资助项目(2008J0018)。 第27卷第1期2011年1月 电网与清洁能源 Power System and Clean Energy Vol.27No.1 Jan.2011文章编号:1674-3814(2011)01-0060-07 中图分类号:TM614 文献标志码:A 风电场风速及风电功率预测方法研究综述 洪翠,林维明,温步瀛 (福州大学电气工程与自动化学院,福建福州350108) Overview on Prediction Methods of Wind Speed and Wind Power HONG Cui,LIN Wei-ming,WEN Bu-ying (College of Electrical Engineering and Automation ,Fuzhou University ,Fuzhou 350108,Fujian Province,China ) ABSTRACT :Due to the intermittency of wind energy and the non -linearity of power system,there exist many uncertain variables which should be considered in the wind power prediction.The current prediction methods include the physical method, statistical method, learning method and the comprehensive one combining all the other methods.Based on accurate numerical weather prediction (NWP ),the physical method is seldom used in the short term prediction,as its model is complicated and deals with large quantities of calculations.The model of the statistical method is simple and requires a small amount of data.It can be applied in those situations where data acquisition is difficult.The AI method is suitable in the random or non —linear system as it does not rely on the accurate mode of the objective.The comprehensive method maximizes favorable factors and minimizes unfavorable ones as contained in above-mentioned methods.This paper presents a brief overview on prediction methods of wind speed and wind power,and raises further issues worth further research on the basis of summarizing the previous studies.KEY WORDS:wind power prediction;statistical methods; learning methods;combinatorial prediction 摘要:由于风能的随机性以及电力系统的非线性等原因,预测风电功率时需要考虑众多的不确定因素影响。 现有预测方法主要包括物理预测方法、统计预测方法以及学习预测方法、综合预测法等。基于数字天气预报(NWP-numerical weather prediction ) 的物理预测方法模型复杂、计算量大,较少用于短期预测;统计预测方法模型简单,数据需求量少, 较适合于数据获取有一定困难的情况;人工智能预测方法不依赖于对象的精确模型,适合于随机非线性系统;综合预测方法可一定程度地扬长避短。本文主要就风电场风速及风电功率预测方法研究进行了综合阐述,并在总结前人研究的基础上提出了一些可进一步研究的问题。 关键词:风电预测;统计方法;学习方法;综合预测 随着全球石化资源储量的日渐匮乏以及低碳、 环保概念的逐步深化,风能等可再生能源的开发与利用日益受到国际社会的重视。2007年初欧盟曾提出,2020年其可再生能源消费将占到全部能源消费的20%,可再生能源发电量将占到全部发电量的30%[1]。风力发电是风能的主要利用方式之一。2009年,全球风电装机总量已达157.9GW ,较上年增加了37.5GW [2]。中国风能资源仅次于美国和俄罗斯,可利用风能资源共计约10亿kW 。近些年来风电在中国获得了飞速发展,2000年至2009年十年时间,中国风电装机容量从0.34GW 增至25.8GW [3];2020年,预计全国风电总装机容量将达到30GW [1]。除部分采用离网运行方式外[4],大容量风电机组多数采用并入电网的运行方式。随着规模越来越 大、数量越来越多的风力发电功率注入电网, 风能具有的随机性对电力系统的影响越来越不可忽视。 1风电预测的意义 准确有效地预测出风电场的输出功率不但可 帮助电力系统调度运行人员做出最有效决策, 还

计及光伏周期性的并网光伏电站功率超短期预测研究

计及光伏周期性的并网光伏电站功率超短期预测研究 由于传统化石能源的日益短缺以及大量使用化石能源对环境造成的破坏,国内外都在大力开发对清洁能源的利用,其中光伏发电的占比越来越大。大量光伏发电产生电能并入电网,对电网稳定性的冲击是巨大的,因此光伏功率预测成为重要的研究课题。 本文在光伏功率波动的研究基础之上,对光伏功率本身具有的周期特性进行了分析验证,实现了光伏异常数据的有效识别以及缺失数据的有效补齐,构建了光伏功率超短期预测模型,最后提出了光伏功率预测的质量评估方法。通过对光伏功率序列进行频谱分析,验证了光伏功率的周期特性。 利用傅里级数实现了光伏功率序列的分解与重构,将光伏功率分解为周期分量、高频剩余分量以及低频剩余分量。对各个分量进行了分析,作为后续研究的基础。 由于人为或通信故障等因素使得光伏数据在采集的过程中存在一定比例的异常数据,这会影响光伏功率的相关研究。本文对光伏功率影响因素进行了充分分析,发现光伏入射角度对辐照度-功率散点的分布有显著影响。 对不同光照特性的功率数据进行分类,利用Copula函数求解特定辐照度下光伏功率的条件概率分布,结合异常数据判别准则,在一定置信度下对光伏功率数据进行了有效识别。针对实测光伏数据中包含一定比例缺失数据的问题,本文将传统云模型的正态随机熵改为基于Copula理论的随机熵,构建了更加符合光伏功率数据特性的改进云模型。 参照光伏功率缺失片段的长短以及波动性大小建立条件插值补齐模型,实现了光伏功率缺失数据的有效补齐。将光伏功率分解为周期分量以及剩余分量,周

期分量具有严格的规律性,因此只需对剩余分量进行超短期预测。 通过皮尔逊相关系数法分析了光伏功率剩余分量与各影响因素之间的耦合关系。将天气分为三种广义天气类型,在不同天气类型下,利用局部敏感哈希算法实现了多维数据之间的临近检索。 通过检索值与周期分量结合,得到光伏功率超短期预测结果。通过算例分析验证了本文方法的有效性与实用性。 最后,分析预测误差与光伏功率规律性之间关系,验证了预测误差具有非零下限。结合超短期预测模式,对建模误差进行分析,得出预测误差标准差随预测步长增加的变化特性。 定义不同的光伏功率不可预测分量,求解建模误差标准差,确定光伏功率建模误差标准差的最小值,结果表明不同地区不同时段光伏功率的规律性不同。

风电功率预测文献综述

风电功率预测方法的研究 摘要 由于风能具有间歇性和波动性性等特点,随着风力发电的不断发展风电并网对电力系统的调度和安全稳定运行带来了巨大的挑战。进行风电功率预测并且不断提高预测精确度变得越来越重要。通过对国内外研究现状的了解,根据已有的风电功率预测方法,按照预测时间、预测模型、预测方法等对现有的风电功率预测技术进行分类,着重分析几种短期风电功率预测方法的优缺点及其使用场合。根据实际某一风电场的数据,选取合适的风电预测模型进行预测,对结果予以分析和总结。 关键词:风电功率预测;电力系统;风力发电;预测方法; 引言 随着社会不断发展人们对能源需求越来越大而传统化石能源日益枯竭不可再生,以及化石能源带来了环境污染等问题影响人类生活,人们迫切需要新的清洁能源代替传统化石能源。风能是清洁的可再生能源之一,大力发展风力发电成为各国的选择。根据相关统计,截止至2015年,全球风电产业新增装机63013MW,,同比增长22%[1]。其中,中国风电新增装机容量达30500MW,占市场份额48.4%。全球累计装机容量为432419MW,其中中国累计装机容量为145104,占全球市场份额的33.6%。 目前风力发电主要利用的是近地风能,近地风能具有波动性、间歇性、低能量密度等特点,因而风电功率也是波动的。当接入到电网的风电功率达到一定占比时,风电功率的大幅度波动将破坏电力系统平衡和影响电能质量,给电力系统的调度和安全平稳运行带来严峻挑战。根据风速波动对风力发电的影响按照时间长度可分为三类:一种是在几分钟之内的超短时波动,该时段内的波动影响风电机组的控制;另一种是几小时到几天内的短时波动,该时段内的波动影响风电并网和电网调度;最后一种是数周至数月的中长期波动,该时段内的波动影响风电场与电网的检修和维护计划。本文主要研究不同的风电功率短期预测方法的优缺点。 通过对短期风电功率预测,能够根据风电场预测的出力曲线优化常规机组出力,降低运行成本;增强电力系统的可靠性、稳定性;提升风电电力参与电力市场竞价能力。

光伏功率预测技术

光伏功率预测技术 发表时间:2019-01-15T11:06:24.547Z 来源:《信息技术时代》2018年4期作者:郝亚洲 [导读] 目前,人们逐渐意识到传统能源的储量和污染问题,在这种趋势下环保节能的光伏发电技术得到重视与发展。光伏发电技术中最重要的便是光伏功率预测技术 (陕西中地能源开发建设有限公司,陕西省咸阳市 712000) 摘要:目前,人们逐渐意识到传统能源的储量和污染问题,在这种趋势下环保节能的光伏发电技术得到重视与发展。光伏发电技术中最重要的便是光伏功率预测技术,光伏功率预测对光伏发电控制、性能提高、保障光伏电站平稳运行等方面都起着重要作用。本文主要介绍了光伏功率预测技术的基本原理和关键问题,通过研究分析光伏电站数据对提高光伏预测技术的几点重要问题进行分析。 关键词:光伏功率;预测技术;关键问题 前言: 光伏发电这一新兴可再生能源,成为各国新能源发展主要研究对象,光伏发电规模不断扩大。光伏发电规模的扩大也带来了很多的问题,由于光伏发电只能在白天进行,并且受到天气环境变化的影响具有极大的不确定性,这都会对大规模开展光伏发电产生极大的影响。因此光伏效率预测,能够精确预测光伏发电功率、提高发电性能的技术对大规模扩大光伏发电具有重要意义。 一、光伏功率预测技术研究现状 由于石油、煤炭等传统能源储量不断减少、污染程度高等问题,使得光伏发电近年来得到广泛关注,光伏发电中光伏功率预测技术的研发成为各国从事光伏发电科研人员的首要工作。近年来使用光伏发电较早的国家光伏发电预测技术较为成熟,例如日本、丹麦、意大利、西班牙等国家运用数值天气预报信息(NWP)进行光伏功率预测取得突破性的进展。国内光伏发电的研发虽起步相对较晚,但近年来在科研人员的钻研和学习下,我国光伏发电功率预测技术突飞猛进,不断缩小与国际先进水平的差距。 二、光伏功率预测技术方法分类 (1)根据预测过程分类 根据预测过程不同可分为直接预测法和间接预测法。直接预测法是采集历史光伏功率数据分析后做出预测,数据包括气象数据、辐射数据和其他数据,直接预测法的难度相对较大。间接预测法则是先对光伏接收板或者地面太阳辐射程度,再对光伏功率进行预测,这也导致间接预测法相对较复杂。 (2)根据预测时间分类 根据预测时间不同,光伏效率预测方法可以分为超短期功率预测、短期功率预测和中长期功率预测。超短期光伏功率预测时间小于四小时,主要将统计与物理相混合,根据地球同步卫星拍摄实时传输来的卫星云图来推测云层运动情况并以此推断出辐射强度对光伏功率进行预测。超短期预测可以提供瞬间功率变化信息。常用的超短期预测方法大致可分为线性预测法与非线性预测法和综合预测法。1、线性预测法:线性预算法是将采集到的天气数据与光伏电站的历史发电数据结合以预测出光伏发电功率。目前大多采用外源自回归滑动平均(ARMAX)、自回归滑动(ARMA)、自回归积分滑动平均(ARIMA)三种方法[1]。2、非线性预测法:光伏发电功率受自然天气因素影响较强,采用非线性预测算法可以提高预测精准度。非线性预测法建造外部影响因素与光伏光伏功率的非线性预测模型进行光伏功率预测。目前大多采用的算法有卡尔曼滤波算法、神经网络算法、马尔科夫链算法、支持向量机(SVM)算法。3、综合预测法是将非线性预测法与线性预测法相结合产生的预测方法,综合预测法预测精准度有所提高,但其复杂程度也要高于线性预测法和非线性预测法。 短期光伏功率预测时间小于四十八小时,以数值天气预报信息(NWP)数据为主导,创造历史光伏效率映射关系对光伏效率进行预测。短期预测主要运用于发电计划制定、跟踪电力负荷等方面;中长期光伏效率预测时间大于一周,可用于光力发电资源评估,对新电站选址也起着重要指导作用[2]。 (3)根据预测区域分类 根据预测区域的大小可以分为单场光伏功率预测和区域光伏功率预测。单场光伏功率预测是对单一的一个光伏电站的功率进行预测,单场预测多数运用在运行优化以及运行控制上。区域光伏功率预测则是对整个区域内的多个光伏电站综合起来进行预测,区域预测可以看出区域内的光伏发电电力值、对电力部门的电力调度和光伏电站与电网的对接起着重要作用。在光伏功率预测的精准度上区域光伏预测要远远高于单场光伏功率预测。 三、影响光伏发电效率的因素 1.太阳辐射强弱程度 光伏发电中最重要的便是光照强度也就是太阳辐射强度,从早到晚辐射强度有所不同这就导致光伏电厂每阶段发电量的变化。影响太阳辐射强度大致包括六个方面的因素:1.地理纬度,纬度越低的地区阳光入射角就越大,辐射强度越大。2.云层厚度,云层越厚光照就越难透过辐射强度越小。3.大气透明度,大气透明度越低辐射强度越小。4.海拔高低,海拔高的地区其辐射强度越大。5.坡向与坡度:坡向坡度不同太阳辐射强度不同。6.光线倾斜角,光线倾斜角越大,辐射强度就越大。 2.光伏电池板 光伏电池板是整个光伏电站最重要的发电部件,光伏电站要进行合理的电池板布局,让其最大程度地接受光照,这样电站发电效率才能达到最理想效果。 3.季节变化 季节不同光照强度也有所不同,光伏电站的发电量也会随着季节的变化而变化。相比冬季来说,夏季的光照强度要高于冬季光照强度,因此正常情况下夏季电站发电量要高于冬季电站发电量。 四、光伏功率预测精准度提高方法 光伏功率预测的关键问题便是提高预测的精准度,光伏数据是光伏功率预测的基础,因此光伏数据的处理成为研究的主要突破口。光

光伏理论发电功率及受阻电量计算方法

光伏理论发电功率及受阻电量计算方法(试行) 第一章总则 第一条为规光伏理论发电功率及受阻电量等指标的统计分析,依据《光伏发电站太阳能资源实时监测技术要求》(GB/T 30153-2013)、《光伏发电功率预测气象要素监测技术规》(Q/GDW 1996-2013)的有关要求,制定本方法。 第二条本方法所称的光伏电站,是指按照公共电站要求已签订《并网调度协议》、集中并入电网的光伏发电站,不包括分布式光伏发电系统。 第三条本方法适用于国家电网公司各级电力调度机构和调管围并网光伏电站开展理论发电功率及受阻电量统计计算工作。 第二章术语和定义 第四条光伏电站发电功率指标包括理论发电功率和可用发电功率。 光伏电站理论发电功率指在某时刻光资源情况下站所有逆变器及相关设备均正常运行时可发出的功率,其积分电量为某时段的光伏电站理论发电量。 光伏电站可用发电功率指扣除站设备故障、缺陷或检修等原因引起受阻后可发出的功率,其积分电量为某时段的光伏电站可用发电量。

第五条光伏电站受阻电力分为站受阻电力和站外受阻电力两部分。 站受阻电力指光伏电站理论发电功率与可用发电功率之差,其积分电量为站受阻电量。 站外受阻电力指光伏电站可用发电功率与实发功率之差,其积分电量为站外受阻电量。 第六条全网理论发电功率指所有光伏电站理论发电功率之和;全网可用发电功率指考虑断面约束的光伏电站可用发电功率之和;可参与市场交易的光伏富余电力指全网可用发电功率与实发功率之差。 第七条全受阻电力指所有光伏电站站受阻电力之和;全网断面受阻电力为因通道稳定极限、电网设备检修、电网故障等情况导致的光伏受阻;全网调峰受阻电力指全网可用发电功率与实发功率之差。 第三章数据准备 第八条计算理论发电功率和受阻电力需准备的实时数据包括光伏电站实际发电功率、逆变器运行数据和状态信息、气象监测数据、开机容量;非实时数据包括光伏电站基本参数(格式见附表)、样板逆变器型号及其数量、全站逆变器型号及其数量等。 第九条所有光伏电站应配备气象监测设备,并向调度机

风电功率预测系统功能规范

风电功率预测系统功能规范(试行) 前言 为了规范风电调度技术支持系统的研发、建设及应用,特制订风电功率预测系统功能规范。本规范制订时参考了调度自动化系统相关国家标准、行业标准和国家电网公司企业标准。制订过程中多次召集国家电网公司科研和生产单位的专家共同讨论,广泛征求意见。本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、信息要求、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。本规范由国家电网公司国家电力调度通信中心提出并负责解释;本规范主要起草单位:中国电力科学研究院、吉林省电力有限公司。本规范主要起草人:刘纯、裴哲义、王勃、董存、石永刚、范国英、郭雷。 1范围 1.1本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、数据准备、数据采集与处理、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。 1.2本规范用于指导电网调度机构和风电场的风电功率预测系统的研发、建设和应用管理。本规定的适用于国家电网公司经营区域内的各级电网调度机构和风电场。 2术语和定义 2.1风电场Wind Farm由一批风电机组或风电机组群组成的发电站。 2.2数值天气预报Numerical Weather Prediction根据大气实际情况,

在一定的初值和边值条件下,通过大型计算机作数值计算,求解描写天气演变过程的流体力学和热力学的方程组,预测未来一定时段的大气运动状态和天气现象的方法。 2.3风电功率预测Wind Power Forecasting以风电场的历史功率、历史风速、地形地貌、数值天气预报、风电机组运行状态等数据建立风电场输出功率的预测模型,以风速、功率或数值天气预报数据作为模型的输入,结合风电场机组的设备状态及运行工况,得到风电场未来的输出功率;预测时间尺度包括短期预测和超短期预测。 2.4短期风电功率预测Short term Wind Power Forecasting未来3天内的风电输出功率预测,时间分辨率不小于15min。 2.5超短期风电功率预测ultra-short term Wind Power Forecasting 0h~4h的风电输出功率预测,时间分辨率不小于15min。 3数据准备 风电功率预测系统建模使用的数据应包括风电场历史功率数据、历史测风塔数据、历史数值天气预报、风电机组信息、风电机组及风电场运行状态、地形地貌等数据。 3.1风电场历史功率数据风电场的历史功率数据应不少于1a,时间分辨率应不小于5min。 3.2历史测风塔数据a)测风塔位置应在风电场5km范围内;b)应至少包括10m、70m及以上高程的风速和风向以及气温、气压等信息;c)数据的时间分辨率应不小于10min。 3.3历史数值天气预报历史数值天气预报数据应与历史功率数据相

国电南瑞NSF3200光伏发电功率预测系统-技术规范书120904

1总体要求 (2) 2系统功能要求 (3) 2.1技术规范 (3) 2.1功能要求 (4) 3系统功能技术要求 (4) 3.1数据功能技术要求 (4) 3.1.1数据采集功能 (4) 3.1.2 数据统计功能 (4) 3.1.3 数据分析、处理功能 (4) 3.2功率预测功能 (5) 3.2.1 预测的时间 (5) 3.2.2 系统启动 (5) 3.2.3 其它 (5) 3.3 界面要求 (5) 3.3.1展示界面 (5) 3.3.2操作界面 (6) 3.3.3统计查询界面 (6) 3.3.4其他要求 (6) 3.4实时气象数据采集系统 (6) 3.4.1系统功能 (6) 3.4.2采集器单元 (6) 3.4.3测量设备 (7) 1

3.4.4供电系统 (7) 3.4.5通讯系统 (8) 3.4.6数据采集和处理 (8) 4进度要求 (8) 5报价要求 (8) 6预期目标 (8) 7系统技术参数 (9) 7.1短期功率预测功能 (9) 7.2超短期功率预测功能 (9) 7.3人机界面功能 (9) 7.4信息上报功能 (9) 8通信要求 (10) 9质保和售后服务 (10) 9.1质保期 (10) 9.2售后服务 (10) 10交货日期 (11) 1总体要求 投标人应具备招标公告所要求的资质,具体资质要求详见招标文件的商务部分。 本规范书对光伏发电功率预测系统应用功能、管理、文档资料以及验收等方面提出了技术要求。本技术规范应用范围是光伏电站的光伏发电功率预测系统。 1

本招标文件提出的是最低限度的技术要求,并未对一切技术细节做出规定,也未充分引述有关标准和规范的条文,投标人应提供符合本技术规范引用标准的最新版本标准和本招标文件技术要求的全新产品,如果所引用的标准之间不一致或本招标文件所使用的标准如与投标人所执行的标准不一致时,按要求较高的标准执行 如果投标人没有以书面形式对本招标文件技术规范的条文提出差异,则意味着投标人提供的设备完全符合本招标文件的要求。如有与本招标文件要求不一致的地方,必须逐项在“技术差异表”中列出。 投标方应熟悉网/省公司光伏发电功率预测系统的技术规范要求,并长期从事光伏发电功率预测相关方向的研究。提供的光伏发电功率预测系统在同类型企业运行1年以上业绩清单。投标人在同类型的系统工程上至少已有2年以上的从业经验,使用的产品应具有自主知识产权且有不少于5个合同业绩和1套的成功运行业绩,且经实践证明是成熟可靠的产品,经过电力行业相关部门的验收,并有验收证明,具有软件产品自主知识产权者优先。 投标方应具备自动环境监测站安装、改造及数据实时采集传输的资质和经验,以及超短期光伏发电功率预测系统运行业绩,可根据需要提供自动环境监测站改造及预测系统建设的一揽子解决方案。 光伏发电功率预测系统是预测光伏电站未来发电能力的重要手段,是推动光伏行业持续健康发展的必要条件之一。根据网/省光伏发电功率预测系统主站及直调光伏电站功率预测子站,结合我公司所属光伏电站现状,根据网/省公司的要求,光伏电站需要上报自动环境监测站实时采集的数据、光伏发电功率预测结果等内容。为此,光伏电站需要建设如下内容:(1)自动环境监测站的建设。 (2)光伏发电功率预测系统的建设:包括中心站的硬件、平台软件、短期光伏发电功率预测软件、超短期光伏发电功率预测软件等。 1

光伏发电功率预测与模型分析

光伏发电功率预测与模型分析 摘要 近年来,随着对可再生能源需求的日益提高,太阳能光伏发电技术得到了迅速的发展,大规模光伏发电系统的应用也日益广泛起来,但也随之出现了很多问题。由于太阳辐射量与季度、阴晴及昼夜等气象条件密切相关,从而造成了光伏发电系统输出功率的随机性和间歇性的固有缺点,而且考虑到储能技术上的不成熟等因素,当大量的光伏发电系统接入电网时,势必会对电力系统的安全稳定运行和电能质量等带来严峻挑战,从而限制光伏发电产业的发展,所以对光伏发电系统输出功率进行预测对于电力系统运行而言具有非常重要的意义。 本文通过对影响光伏发电功率因素进行分析对目前现有的光伏发电功率预测方法进行分类,并根据统计方法和物理方法为依据,对太阳辐照量预测进行预测和直接对光伏发电系统的输出功率预测两种方法进行阐述和细化对比。再根据各自所使用的数学模型不同将预测方法分为时间序列法、神经网络法、支持向量机方法、回归分析方法和智能预测方法[6]。最后对不同分类的预测方法及相应的数学模型进行分析阐述和对比,说明其适用范围及精确度,并对其可行性进行分析,提出在功率预测中需要解决的问题。 关键词:光伏系统;功率预测;数学模型;方法 Abstrackt

\ In recent years, with the demand for renewable energy increasing, solar photovoltaic technology has been rapid development of large-scale photovoltaic power generation system applications are increasingly widespread up, but also will be a lot of problems. Since the amount of solar radiation quarter, Teenage and other weather conditions closely related to circadian, resulting in a power output of photovoltaic power generation system and intermittent randomness inherent shortcomings, and taking into account factors such as energy storage technology immaturity, when a large number PV system connected to the grid ,it must have a safe and stable operation of power systems and power quality pose serious challenges, thus limiting the development of photovoltaic power generation industry, so the output power of the photovoltaic power generation system to predict in terms of the power system operation has a very important significance. Based on the impact of photovoltaic power factor analysis on currently available PV power prediction method for classification, and physical methods based on statistical methods and is based on the amount of solar radiation forecasts and projections directly to the output power of photovoltaic systems forecast describes two methods and refined contrast. And then according to their mathematical models used to forecast method is divided into different time series, neural networks, support vector machine, regression analysis and intelligent prediction method. Finally, the prediction of different classification methods and the corresponding mathematical model to analyze and compare elaborated, indicating its scope and accuracy, and its feasibility analysis, forecasting in power need to be resolved. Keywords: PV systerm;Power Prediction;Mathematical model;Method 1前言

风电功率预测问题

第一页 答卷编号:论文题目: 指导教师: 参赛学校: 报名序号: 证书邮寄地址: (学校统一组织的请填写负责人) 第二页 答卷编号:

风功率预测问题设计 摘要 未来风力发电可能成为和太阳能比肩的新能源行业。随着全球经济的发展和人口的增长,人类正面临着能源利用和环境保护两方面的压力。一方面煤炭、石油和天然气等化石燃料的储量由于大量开采而日益减少:另一方面是大量使用化石燃料对自然环境产生了严重的污染和破坏。这两方面的问题已经引起世界各国政府和人民的高度重视,并在积极寻求一条可持续发展的能源道路,以风能首当其冲。风速的随机性,给,和风电场的功率输Hj带来很大的困难。本文旨在研究分电功率在一段时间的变化规律,本文组建三个模型来解决风电功率的预测问题通过对历史数据的分析,挖掘5月31号到6月6日风电功率的变化趋势,以便直观的检验模型与实际数据是否相吻合。 在问题一中考虑天气变化的随机性,分析不同时间点的数据,将Pa,Pb,Pc,Pd,P58表中5月30日第81时间点到96时间点的数据提取出来运用灰色理论作为预测2006年5月31日开始前四个小时内的16个时间点的数据预。同理以表中已给出的5月31日1-16时间点的数据预测出17-32时间的数据,然后运用此模型得出时间范围a,b内各时间点的风电功率。然后可与题目中以给的数据相比较得出误差。第二种预测方法运用指数平滑模型得出时间范围a,b内各时间点的风电功率。第三种预测方法运用移动平均模型,预测出时间范围a,b内各时间点的风电功率。通过三种预测方法的误差分析我们推荐指数平滑预测法。 在问题二中,通过比较分析问题一的预测结果,比较单台风电机组功率(P A ,P B ,P C , P D )的相对预测误差与多机总功率(P 4 ,P 58 )预测的相对误差,得出风电机组的汇聚程 度越高,对于预测风电功率结果误差影响越小。 在问题三中,选用了BP神经网络的预测方法,加入了更多的自变量,使得预测结果更精确。 (关键词:风速的随机性,风速的预测,风电功率数值,灰色理论,指数平滑模型,移动平均模)

光伏理论发电功率及受阻电量计算方法

光伏理论发电功率及受阻电量计算方法 第一章总则 第一条为进一步完善电网实时平衡能力监视功能,规范日内市场环境下光伏理论发电功率及受阻电量等指标的统计分析,依据《光伏发电站太阳能资源实时监测技术要求》(GB/T 30153-2013)、《光伏发电功率预测气象要素监测技术规范》(Q/GDW 1996-2013)的有关要求,制定本方法。 第二条本方法所称的光伏电站,是指按照公共电站要求已签订《并网调度协议》、集中并入电网的光伏发电站,不包括分布式光伏发电系统。 第三条本方法适用于国家电网公司各级电力调度机构和调管范围内并网光伏电站开展理论发电功率及受阻电量统计计算工作。 第二章术语和定义 第四条光伏电站发电功率指标包括理论发电功率和可用发电功率。光伏电站理论发电功率指在当前光资源情况下站内所有逆变器均可正常运行时能够发出的功率,其积分电量为光伏电站理论发电量;光伏电站可用发电功率指考虑站内设备故障、缺陷或检修等原因引起受阻后能够发出的功率,其积分电量为光伏电站可用发电量。 第五条光伏电站受阻电力分为站内受阻电力和站外受

阻电力两部分:站内受阻电力指光伏电站理论发电功率与可用发电功率之差,其积分电量为站内受阻电量;站外受阻电力指光伏电站可用发电功率与实发功率之差,其积分电量为站外受阻电量。 第六条全网理论发电功率指所有光伏电站理论发电功率之和;全网可用发电功率指考虑断面约束的光伏电站可用发电功率之和;可参与市场交易的光伏富余电力指全网可用发电功率与实发功率之差。 第七条全网站内受阻电力指所有光伏电站站内受阻电力之和;全网断面受阻电力为因通道稳定极限、电网设备检修、电网故障等情况导致的光伏受阻;全网调峰受阻电力指全网可用发电功率与实发功率之差。 第三章数据准备 第八条计算理论发电功率和受阻电力需准备的实时数据包括光伏电站实际发电功率、逆变器运行数据和状态信息、气象监测数据、开机容量;非实时数据包括光伏电站基本参数 (格式见附表)、样板逆变器型号及其数量、全站逆变器型号及其数量等。 第九条所有光伏电站应配备气象监测设备,并向调度机构实时上报气象测量数据,气象数据满足以下条件:(一)气象监测设备测量要素

风电功率预测综述(成品)

风电功率预测综述 摘要: Abstract 引言: 随着环境和能源问题日益突出,开发可再生清洁能源备受人们关注,风能已成为目前最具大规模商业化开发前景的可再生能源,风力发电是有效利用风能的主要途径,也是世界各国为实现能源和电力可持续发展的最佳选择。自1990年以来,风力发电技术有了飞速的发展,在过去的10年之间,风电装机容量在全球范围内已翻了四番,从2002年的24.3GW 到今年预期的203.5GW[1]。 在电力系统中,功率平衡是通过连续不断的调整发电能力以及控制供电需求来实现的。与热力发电相比,由于大自然风的波动特性,使得风电功率具有随机性以及不可控性等特点,因此,大规模风电并网对电力系统的平稳运行提出了更高的要求,当风电功率波动范围超过电力系统的平衡能力时,将会威胁电力系统的运行安全。对风电功率的预测变得至关重要,功率预测技术有助于提前预判风电功率变化,从而使得电网可进行平稳调控,保证电力系统运行的安全性和经济性。短期(从1小时至72小时不等)的风电功率预测技术将便于电网的合理调度,保证供电质量,为风电场的竞价提供保证;中期(从3天到7天不等)风电功率预测技术一般用于维护和调试风电场或电网其他部分;长期(以年为单位)风电功率预测技术主要用于风电场设计研究,进而预测风电场建成之后的年产电量。 风电功率预测的基本方法 以研究对象来分,风力发电的预测模型可以分为两种。第一种为基于一系列风电历史数据分析的直接预测,此方法运用统计方法预测每小时的平均风速,或直接预测电力功率生产。第二种是通过将数值天气预报(NWP)模型作为输入进行的间接预测,此方法使用事先已从气象风动力模型中派生出的变量(主要指一个小时内的平均风速以及风向)对风电功率进行预测。 按照采用的预测模型划分,风电功率预测一般被分为物理方法,统计方法,复合预测方法。对于统计预测方法来讲,大量的历史时间序列数据是必不可少的,通常短期(3h至6h)的预测模型均是以统计学为基础的,较之物理模型有较高的精度,然而对于超过15个小时的预测来说,运用NWP方法更加准确。表1给出了国际上领先的风电功率预测软件模型。 基于数值天气预报(NWP)的风电功率预测 NWP是指根据大气实际情况,设定一定的初值和边界条件,通过计算机程序作数值计算,求解描述天气演变过程的流体动力学和热力学的方程组,预测未来某个时段的大气运动状态和天气现象。 NWP模型的选择标准包括:地理位置,分辨率(包括空间和时间),预测尺度,以及要求的精确度等。NWP模型通常有三个主要部分:动态的大气流所在中心,描述气象变化(例如流动和辐射)的物理方程式和信息采集的软件代码。NWP模型对原始条件(例如温度等)是很敏感的,同时原始条件的确定以及对方程组的求解也是难度极大的。 在区域预测和中尺度水平的另一类NWP模型日益受人们关注,此模型重点用于研究某一地域的天气现象。例如静态的ETA模型,HIRLAM模型和ALADIN模式以及MM5模型。由于预测某个特定风电场的大气现象难度大且花费时间长,因此利用‘升尺度’的方法对该问题进行研究。在升尺度方法中,来自特定区域多个风电

光伏功率预测系统SPSF-3000

光伏功率预测系统(SPSF-3000) “光伏功率预测系统(SPSF-3000)”是国能日新独立开发的国内第一款光伏并网电站负荷预测系统。系统具备高精度数值天气预报功能、光伏信号数值净化、高性能时空模式分类器、网络化实时通信、通用电力信息数据接口、神经网络模型等高科技模块;可以准确预报太阳能并网电站未来168小时负荷——时间曲线。系统平均预测精度超过85%,完全可以达到电网对太阳能并网电站电力负荷输出的调度要求。 1、总体设计 本系统包括硬件终端设施与国能日新自主研发的光伏功率预测软件系统。通过采集数值气象预报数据、实时气象站数据、实时输出功率数据、逆变机组状态等数据,完成对光伏电站的短期功率预测、超短期功率预测工作,并按电网要求上传到调度侧功率预测系统。 根据光伏电站以及并网电网公司具体要求,光伏功率预测系统部署在安全II区,部署如下: 气象服务器通过接收高精度数值气象预报进行存储、分析、计算,通过反向隔离器传送至安全II区功率预测服务器,功率预测服务器通过接收光伏电站逆变器监控系统和气象站数据,进行核心处理计算。待计算的功率预测结果通过电站调度数据专用网传至电网侧调度中心,同时通过PC工作站方便的查看系统的运行状态及界面展示。 2、系统功能

光伏功率预测系统采用B/S模式,用户登录系统不需要安装其它软件,在系统所在网段任何一台电脑的浏览器上输入功率预测系统的链接,便可以进入系统的登陆界面。所有操作必须在用户成功登陆并授权的情况下进行。系统功能如下: 1)实时监控:预测信息、实时信息、气象信息、状态监控; 2)曲线展示:功率及气象的历史曲线展示、预测曲线展示; 3)上报管理:功率上报管理、气象上报管理; 4)发电计划:发电计划管理(日前、实时); 5)统计分析:完整性、频率分布、功率误差、辐照度误差、事件、电量; 6)数据报表:功率预测、实际发电、发电申报、辐照度统计(日、月); 7)系统设置:开机容量、限电、故障、检修设置; 8)用户管理:浏览员、操作员、管理员; 9)系统诊断:实时对系统的运行状况进行分析统计。

相关主题
文本预览
相关文档 最新文档