当前位置:文档之家› 光伏发电预测

光伏发电预测

光伏发电预测
光伏发电预测

太阳能发电预测综述

在煤矿,石油开采量日益见底和生态环境急速恶化的严峻形势下,太阳能作为一种自然能源,以其储量丰富且清洁无污染性显示了其独特的优势,已被国际公认为未来最具竞争性的能源之一。

从太阳能获得电力,需通过太阳电池将光能转化为电能。它同以往其他电源发电原理完全不同。要使太阳能发电真正达到实用水平,一是要提高太阳能光电变换效率并降低其成本,二是要实现太阳能发电同的电网联网。

1.太阳能发电的分类

目前太阳能发电主要有以下两种形式:

1.太阳能光发电

太阳能光发电是指无需通过热过程直接将光能转变为电能的发电方式。它包括光

伏发电、光化学发电、光感应发电和光生物发电。光伏发电是利用太阳能级半导

体电子器件有效地吸收太阳光辐射能,并使之转变成电能的直接发电方式,是当今

太阳光发电的主流。在光化学发电中有电化学光伏电池、光电解电池和光催化电池,目前得到实际应用的是光伏电池。[1]

2.太阳能热发电

通过水或其他工质和装置将太阳辐射能转换为电能的发电方式,称为太阳能热发电。

先将太阳能转化为热能,再将热能转化成电能,它有两种转化方式:一种是将太阳

热能直接转化成电能,如半导体或金属材料的温差发电,真空器件中的热电子和热

电离子发电,碱金属热电转换,以及磁流体发电等;另一种方式是将太阳热能通过

热机(如汽轮机)带动发电机发电,与常规热力发电类似,只不过是其热能不是来

自燃料,而是来自太阳能。太阳能热发电有多种类型,主要有以下五种:塔式系统、

槽式系统、盘式系统、太阳池和太阳能塔热气流发电。前三种是聚光型太阳能热

发电系统,后两种是非聚光型。一些发达国家将太阳能热发电技术作为国家研发

重点,制造了数十台各种类型的太阳能热发电示范电站,已达到并网发电的实际应

用水平。[2]

2.太阳能光伏发电影响因素

太阳能光伏发电成为目前太阳能利用的主要方式之一。光伏发电分为离网和并网两种形式,随着光伏并网技术的成熟与发展,并网光伏发电已成为主流趋势。由于大规模集中并网光伏发电系统容量的急速增加,并网光伏发电系统输出功率固有的间歇性和不可控等缺点对电网的冲击成为制约并网光伏发电的重要元素。太阳能光伏发电系统发电量受当地太阳辐射量、温度、太阳能电池板性能等方面因素的影响。

(1)光照强度对光伏发电量的影响:光照强度是指在单位时间和单位面积内,在地球表面上接收到的垂直投射的太阳辐射能量。光伏发电系统产生电能所需的能量完全来自、于太阳的辐照,因此光照强度对光伏发电系统的发电量具有决定性的作用,二者之间呈正相关性,即光照强度越强,光伏发电量越多。

(2)季节类型对光伏发电量的影响:由于在不同的季节,太阳入射角的大小以及方向、日照时间的长短、光照强度的强弱存在明显的差异,到达地表的太阳辐照度经过吸收、散射,辐射等各种减弱作用后也会不同,光伏发电系统的发电量的多少也在变化。这种差异性即为不同的季节类型对光伏发电量的影响。

(3)天气类型对光伏发电量的影响:将天气类型的时间范围确定在24 小时之内。由于晴

天、阴云和雨天3 种天气类型在全年中出现的天数最多,因此最具有代表性。在晴天时,由于天空中遮挡太阳辐射物较少,辐照度的几乎不会有衰减,光伏发电系统发电量较高;在阴天时,由于天空中云层的遮挡,会造成辐照度的衰减,加之其他衰减因素的共同作用,光伏发电量值大幅度减小;在雨天时,由于云层、湿度、风况以及其他衰减因素的共同作用,此时光伏发电量曲线无规律性,发电量值最低。

(4)温度对光伏发电量的影响:光伏发电量的多少与温度有很大的相关性。这种影响来自于以下两个方面:环境温度升高,光伏组件温度随之升高,开路电压减小,在20℃到100℃之间,每升高1℃,电压约减少2mV;与之相反,电流略有增加,约为0.1mA。对于光伏发电量来说,温度每升高1℃,则其近似减少0.35%。

(5)相对湿度对光伏发电量的影响:在季节类型、天气类型相同,环境温度与太阳能电池组件的温度相近时,相对湿度增加,光伏发电系统发电量将会减少。其一,是因为相对湿度增加,大气层将会增大对光照强度的削弱力度;其二,由于相对湿度会影响光伏组件的热传导效应,使其散热能力降低。

太阳能具有不稳定、间歇性和不可控性等特点,给微电网的并网运营带来很多挑战。光伏发电受自然环境、地理条件和设备性能的影响,光伏发电量存在着的很强的不确定性。因此光伏发电的有效预测可以为电力部门调度分配电量提供依据,同时也能促进光伏产业的大力发展。

3.太阳能光伏发电预测原理

当前,对太阳能光伏发电预测的研究主要集中在太阳能辐射强度的预测上。太阳辐射的逐日或逐时观测数据构成了随机性很强的时间序列,但太阳辐射序列的内部仍有某种确定性的规律,只有充分了解掌握太阳能光伏发电的特点、变化规律,才能建立符合实际情况的

预测模型及方法。太阳辐射分为直接太阳辐射和散射太阳辐射。直接太阳辐射为太阳光通过大气到达地面的辐射;散射太阳辐射为被大气中的微尘、分子、水汽等吸收、反射和散射后,到达地面的辐射。散射太阳辐射和直接太阳辐射之和称为总辐射。太阳总辐射强度的影响因素包括:太阳高度角、大气质量、大气透明度、海拔、纬度、坡度坡向、云层。太阳能光伏发电预测是根据太阳辐射原理,通过历史气象资料、光伏发电量资料、卫星云图资料等,运用回归模型、人工神经网络、卫星遥感技术、数值模拟等方法获得预测信息,包括太阳高度角、大气质量、大气透明度、海拔、纬度、坡度坡向、云层等要素,根据这些要素建立太阳辐射预报模型。

4.太阳能光伏发电预测方法分类

4.1 按预测时间尺度分类

从时间尺度上可以分为中长期功率预测、短期功率预测和超短期功率预测[3]。中长期功率预测的时间尺度大,一般为1周或1个月,主要用于光伏电站的规划设计和电网中长期调度等,短期功率预测的时间尺度一般为1~3 d,超短期功率预测的时间尺度为0~4 h,短期和超短期功率预测对电网实时调度等具有重要的决定作用,对系统运行安全性和稳定性具有直接影响。目前,中长期功率预测一般采用统计方法利用历史数据进行预测,短期功率预测一般需根据数值天气预报获得未来1~3 d 内气象要素预报值,然后根据历史数据和气象要素信息得到地面辐照强度的预测值,进而获得光伏电站输出功率的预测值,超短期功率预测的主要原则是根据地面拍摄的云图或地球同步卫星拍摄的卫星云图推测云层运动情况,从而计算出未来几h内太阳辐照强度,再通过光伏发电功率模型得到光伏发

电输出功率的预测值。

4.2 按预测空间尺度分类

光伏发电功率预测方法按照空间尺度主要分为4种,分别是微尺度、小尺度、中尺度、大尺度功率预测方法[3]。依次针对单个发电单元、单个光伏电站、由多个光伏电站组成的光伏电站集群和更大地理区域内的光伏发电站。空间尺度越小,功率预测越难,这是因为预测时无法采用平均值,尺度越小对功率预测时的空间分辨率的要求越高。近年来,小功率的分布式发电系统大量发展,其发电功率波动性很大,对电网系统的稳定性和安全性造成较大威胁,这对光伏发电系统功率预测提出了更高要求。

4.3 按预测方式分类

从预测方式上可分为直接预测和间接预测两类。前者直接对光伏电站的输出功率进行预测;后者又叫分步预测,首先对太阳辐射强度进行预测,然后根据光伏发电系统发电模型得到输出功率。直接预测方式简洁方便,但直接预测模型需要从历史发电数据直接预测未来的发电功率,预测的准确性一方面决定于预测算法,另一方面决定于是否有大量准确的历史数据。分步预测方式包括太阳辐照强度预测和光伏发电系统功率模型两个过程,在每个过程中可灵活选择不同的方法,某种程度上克服了直接预测方式的局限性。

4.4 按预测方法分类

从预测方法上来说,光伏功率预测包含统计方法和物理方法。统计方法的原理是统计分析历史数据,从而发现其内在规律并最终用于发电功率预测,可以直接预测输出功率,也可以预测太阳辐照强度;物理方法是在已知太阳辐射强度预测值的情况下,研究光能转化的物理过程,采用物理方程,考虑温度、寿命等影响因素,由预测的太阳辐射强度得到光伏系统发电功率预测值。

5. 预测方法国内外研究情况

5.1 直接预测方法

直接预测方法本质上都是统计方法,由历史数据预测未来数据。其原理是假定光伏发电系统不发生衰减,那么发电历史规律不会发生改变,根据简单天气预报和历史发电数据,就可对未来的发电功率进行预测。

5.1.1 线性预测方法

1)时间序列法。时间序列预测法是应用较早的一种方法。它把负荷数据看作是一个周期性变化的时间序列。根据系统发电的历史数据,建立数学模型来描述发电功率的统计规律性,在此基础上对光伏发电功率进行预报[4-5]。

2)时间趋势外推法。时间趋势外推法主要

使用马尔科夫链模型预测光伏发电量[6-8]。由于该方法受天气影响很大,目前较少使用。

5.1.2 非线性预测方法

1)人工神经网络。人工神经网络(ANN)算法在复杂非线性预测方面有着良好表现,适用于光伏发电功率预测这样的场合。将天气、季节等影响因素作为输入,用历史数据对算法进行训练,最终可实现光伏发电功率的预测[9-11]。

2)支持向量机。支持向量机(SVM)是一种机器学习算法,与传统的神经网络学习方法不同的是,它实现了结构风险最小化(SRM)。在国外,法国玛格丽特太阳能协会使用支持向量机算法进行了光伏系统发电量预测研究。在国内,栗然等[12]建立了基于支持向量机的光伏系统发电功率预测模型。

3)其它非线性方法。常用的非线性方法还有模糊逻辑预测法[13]、小波分析预测法[14]、卡尔曼滤波预测法[15]等。各种非线性方法是未来直接预测法发展的重点,目前国内外的研究也多集中于此。

5.1.3 组合预测方法

组合预测法是指使用几种方法分别预测后,再对多种结果进行分析处理。组合预测有两类方法:一种是指将几种预测方法所得的结果进行比较,最后选取误差最小的模型进行预测,该方法难点在于误差计算方法;另外一种是将几种结果进行加权平均,提高预测的准确性。该方法的难点在于如何计算各种预测方法的权重。

5.2 分步预测法中的太阳辐照强度预测方法

上节中的直接预测方法也可用于太阳辐照强度预测,只是输入数据中的历史发电功率变为历史太阳辐照强度,其它类似,不再赘述。而以下介绍的几种方法可直接进行太阳辐照强度预报,无需历史数据。

5.2.1 基于数值天气预报的方法

数值天气预报根据流动力学和热力学原理建立微分方程组,确定大气初始状态后,就可迭代计算出来某个时间大气的状态,就是通常所说的温度、风、降水、太阳辐照度等。目前经常使用的全球数值天气预报模型主要有美国的GFS模型和欧盟的ECMWF模型,最长可进行15 d 的预报,其中GFS 免费提供预报。全球数值天气预报模型的空间分辨率和时间分辨率都比较低,目前的模型其空间分辨率为16~50 km,时间分辨率为3~6 h。全球数值天气预报模型难以直接应用,常常作为其它更小尺度预报的基础。中尺度数值天

气预报模型仅仅覆盖地球上的一小部分地区,由各个国家或商业公司运行,空间分辨率和时间分辨率要高得多,空间分辨率在1~20 km,时间分辨率为1 h。中尺度预报模型常用的是WRF模型。WRF模型是20世纪90年代由美国的科研机构为中心开发的一种统一的中尺度数值天气预报模型,2000年开始免费对外发布,已更新了数个版本,用户可在此基础上开发本地的数值天气预报模型,空间分辨率可达1 km。目前数值天气预报的缺点在于其空间和时间分辨率仍然不够高。1 km的空间分辨率无法对具体的一块云做出预测,只能对某一片区域的整体平均天气做出预测。1 h的时间分辨率也无法进行高时间分辨率的功率预测。因此,基于数值天气预报的方法目前主要应用于较大区域的光伏发电系统功率预测。另外,数值天气预报方法中的气象和环境因素较为复杂,精准度的提高一直是目前研究的重点和难点。

5.2.2 基于云图的方法

云的大小、形状、厚度、致密度等因素都会直接影响到达地面的太阳辐照强度,而云在时间上和空间上很容易发生变化。因此,知道并预测云的变化是太阳辐照强度预测面临的一项挑战任务。通过卫星云图和地面拍摄的云图,可以预测云的变化。其基本原理是由历史的云图数据预测未来云的变化。使用气象卫星云图进行光伏发电功率预测的方法,这些卫星实际上都是遥感卫星,通过勘测地球大气系统发射或反射的电磁辐射可获得遥感图像数据。但基于卫星云图的方法空间分辨率仍然不够高,基于地面的云图方法则弥补了这一缺陷。该方法利用地面的监测装置抓拍云图,能够捕捉云的突然变化。基于地面的云图方法预测的时间范围在0~25 min之间。

5.3 分步预测法中的光伏发电系统功率模型建立方法

光伏系统发电功率模型是实现发电功率准确预测的关键。目前,国内外有关光伏发电功率模型的建模方法主要有物理模型方法和统计模型方法两大类。

5.3.1 物理模型方法

物理模型方法的有效性取决于对研究对象内部构成及其所遵循规律的把握程度和模型参数的精度。

1)效率模型。即直接通过太阳辐照强度和效率因子估算光伏发电系统输出功率。该方法计算精度低,只适用于光伏电站选址等对精度要求很低的场合。

2)电子元件模型[16-17]。使用基于光伏半导体设备物理或发光二极管的物理原理来建立电子元件模型。由于模型考虑因素不够全面,基于该类模型的预测方法基本不再使用。3)物理模型。综合考虑寿命、温度、雨雪等的影响,建立光伏发电的物理模型。结合天气、太阳阵的构型布片方式等,日本学者建立三维模型考虑了建筑物遮挡情况下对复杂光伏发电量预测方法[18]。

5.3.2 统计模型方法

统计模型把光伏发电系统看作一个“黑箱”,并不关注内部各模块的特性或内部各因素影响分析,而是基于实际运行数据对其功率特性进行拟合。常用的统计建模方法有神经网络、关联数据等方法。

5.4各类预测方法对比

( 1) 在间接预测方法中,光照幅度预测模型的预测精度是影响间接预测方法预测效果的决

定性因素。发电功率预测模型中,经验公式法因无需历史发电功率数据而广泛应用于新建成光伏电站,并且由简单物理模型逐步发展为复杂物理模型。统计学习模型由于结合光照幅度与历史发电功率等因素,预测效果一般优于其它预测方法,但建模条件较高;

( 2) 直接预测方法的总体预测精度一般低于间接预测方法,对变化天气状况下的适应性与间接预测方法相比较低,但由于直接预测方法无需预测光照幅度,建模简单、预测成本较低,因而也得到大量应用。根据光伏电站的实际情况将单一预测模型组合形成的混合模型具有更好的适应性、容错性和预测效果,成为直接预测方法中一个重要研究方向;

( 3) 无论哪种预测方法,气象条件都是影响光伏发电短期预测效果的一个重要原因,划分天气类型、使用数值天气预报都可降低其对预测精度的影响。然而,目前在多云、阵雨等不稳定气象条件下的预测效果仍然不理想。季节变化相对具有一定规律可寻,一般通过利用地外辐照度、按季节建立子预测模型来补偿季节更替对预测的影响,并取得了较好的效果。6.太阳能发电预测软件

目前,市场上有许多用于光伏电站发电量计算的软件,如RETScreen、PVsystem、PVSOL、Sunny Design、PVF-chart和Conergy等等,常用主要是PVsystem和RETScreen。6.1基本情况

1、RETScreen

RETScreen是一种标准整体可再生能源工程分析软件,用以评估各种能效、可再生能源技术的能源生产量、节能效益、寿命周期成本、减排量和财务风险,也包括产品、成本和气侯数据库。该软件由加拿大政府通过CANMET加拿大自然资源能源多样化研究所向全世界提供,免费使用。

该软件功能比较强大,可对风能、小水电、光伏、热电联产、生物质供热、太阳能采暖供热、地源热泵等各类应用进行经济性、温室气体、财务及风险分析,计算光伏发电系统发电量只是其功能之一。但该软件不太适用于专业的光伏发电系统设计。软件中的全球气象数据库来自美国航空航天局,其地面数据与中国的气象站提供的地面数据有较大差别,在使用时应予注意。

2、PVSystem

PVSystem是光伏系统设计的专业软件,可用于设计并网、离网、抽水系统和DC-网络光伏系统,并包括了广泛的气象数据库、光伏系统组件数据库,以及一般的太阳能工具等。

基于项目的不同进展阶段,该软件提供了初步设计、项目设计、详细数据分析3种水平上的光伏系统研究。

初步设计:在这种模式下,光伏发电系统的产出仅需输入很少的系统特征参数而无须指定详细的系统单元即可被非常迅速的用月值来评估,还可以得到一个粗略的系统费用评估。

项目设计:用详细的小时模拟数据来进行详细的系统没计。在“项目”对话框中,可以模拟不同的系统运行情况并比较它们。这个模块在设计光伏阵列、选择逆变器、蓄电池组或泵等方面能给设计人员提供很大的帮助。

详细数据分析:当一个光伏系统正在运行或被详细监控时,这部分允许输出详细数据,并以表格或者图形的形式显示。

此外,在“工具”中还包含了数据库管理,如气象数据库、光伏组件数据库以及一些用于处理太阳能资源的特定工具(从不同数据源中导入气象数据、气象数据或太阳相关几何参数的表或图形显示、晴朗天空的辐射模型、光伏阵列在部分阴影或组件失谐条件下的性能等等,均可由用户自行扩展。

因此,该软件既可以通过几个系统特征参数对系统进行粗略的评估,也可以用详细的数据对

电站进行整体设计。同时,用户可以对该软件的数据库可以修改和扩展。

6.2计算结果对比

为了验证RETScreen和PVSystem两个软件本身算法之间的差异,选取北京、广州、西宁、呼和浩特、武汉5个城市作为代表点,采用相同的太阳能资源数据进行计算时,对不同软件输出结果的分析

1、最佳倾角和倾斜面辐射量计算

1)用两种软件计算出的最佳倾角结果相差1°~2°,而用同一种软件计算时,在最佳倾角附近±3°,倾斜面上的辐射量数值几乎相同。

2)计算出的最佳倾角辐射量的结果差异在0.22%~0.67%之间。

因此,当采用相同的太阳能资源数据进行计算,两种软件的计算结果几乎相同。

2、不同系统效率下的理论发电小时数计算

为进一步进行对比,对利用两种软件进行不同系统效率下的发电小时数进行了对比分析。计算的前提条件为:光伏组件10年衰减10%、25年衰减20%,线性衰减。

6.3结论

作为两种常用的发电量计算软件,RETScreen和PVSystem的计算原理基本相同。当采用相同的的太阳能资源数据进行计算,两种软件的计算结果几乎相同。由于RETScreen和PVSystem都有自带的太阳能资源数据,两者差异较大。因此,如果采用默认数据时,用两个软件计算的结果差异会比较大。

设计人员在计算发电量时,可根据个人习惯和具体需求,采用RETScreen和PVSystem的任何一个都可以。

[1]太阳能发电技术综述.中国知网.2008-02-15[引用日期2016-11-17]

[2]分布式光伏发电解决方案.AAB国际[引用日期2013-08-22]

[3]王飞. 并网型光伏电站发电功率预测方法与系统[D]. 北京:华北电力大学,2013.

[4]Chowdhury B H,Rahman S. Forecasting Sub-hourly Solar Irra?diance for Prediction of Photovoltaic Output[C]//New Orleans,LA:IEEE Photovoltaic Specialists Conference,1987:171-176.

[5]中兰华,廖志民,赵阳. 基于ARMA模型的光伏电站出力预测[J]. 电测与仪表,2011,48 (2):31-35.

[6]Safie F M. Probabilistic Modeling of Solar Power Systems[C]//Atlanta,GA:Reliability and Maintainability Symposium,1989:425-430.

[7]Muselli M,Poggi P,Notton G,et al. First Order Markov ChainModel for Generating Synthetic“Ttypical Days” Series of Glob?al Irradiation in Order to Design Photovoltaic Stand Alone Sys?tems[J]. Energy Conversion and Management,2001,42(6):675-687.

[8]丁明,徐宁舟. 基于马尔科夫链的光伏发电系统输出功率短期预测方法[J]. 电网技术,2011,35 (1):152-157. [9]Hiyama T. Neural Network Based Estimation of MaximumPower Generation from PV Module Using Environmental In ?formation[J]. IEEE Transactions on Energy Conversion,1997,12 (3):241-247.

[10]Yona A,Senjyu T,Saber A Y,et al. Application of Neural Net?work to 24-hour-ahead Generating Power Forecasting for PVSystem[C]//IEEE Power and Energy Society General Meet?ing-conversion and Delivery of Electrical Energy in the 21stCentury,2008,1-6.

[11]Cao S H,Cao J C. Forecast of Solar Irradiance Using Recur?rent Neural Networks Combined with Wavelet Analysi [J].Applied Thermal Engineering,2005,25 (2/3):161-172.

[12]栗然,李广敏. 基于支持向量机回归的光伏发电出力预测[J]. 中国电力,2008,41 (2):74-78.

[13]Mellit A,Kalogirou S,Shaari S,et al. Methodology for Predict?ing Sequences of Mean Monthly Clearness Index and Daily So?lar Radiation Data in Remote Areas:Application for Sizing aStand-alone PV System[J]. Renewable Energy,2008,33(7):1570-1590.

[14]Mellit A,Benghanem M,Kalogirou S A. An Adaptive Wave?let-network Model for Forecasting Daily Total SoIar-radiation[J]. Applied Energy,2006,83 (7):705-722.

[15]Chaabene M,Ammar M. Neuro-fuzzy Dynamic Model with Kal?man Filter to Forecast Irradiance and Temperature for SolarEnergy Systems[J]. Renewable Energy,2008,33(7):1435-1443.

[16]Osterwald C R. Translation of Device Performance Measure?ments to Reference Conditions[J]. Solar Cells,1986,18(18):269-279.

[17]Green M A. Solar Cells:Operating Principles,Technology and

System Application [M]. New Jersey:Prentice-Hall,1982.

[18]杨超,榑沼弘贵. 太阳能光伏发电系统发电量的预测方法[J]. 智能建筑电气技术,2011,5 (2):29-34.

光伏发电预测

太阳能发电预测综述 在煤矿,石油开采量日益见底和生态环境急速恶化的严峻形势下,太阳能作为一种自然能源,以其储量丰富且清洁无污染性显示了其独特的优势,已被国际公认为未来最具竞争性的能源之一。 从太阳能获得电力,需通过太阳电池将光能转化为电能。它同以往其他电源发电原理完全不同。要使太阳能发电真正达到实用水平,一是要提高太阳能光电变换效率并降低其成本,二是要实现太阳能发电同的电网联网。 1.太阳能发电的分类 目前太阳能发电主要有以下两种形式: 1.太阳能光发电 太阳能光发电是指无需通过热过程直接将光能转变为电能的发电方式。它包括光 伏发电、光化学发电、光感应发电和光生物发电。光伏发电是利用太阳能级半导 体电子器件有效地吸收太阳光辐射能,并使之转变成电能的直接发电方式,是当今 太阳光发电的主流。在光化学发电中有电化学光伏电池、光电解电池和光催化电池,目前得到实际应用的是光伏电池。[1] 2.太阳能热发电 通过水或其他工质和装置将太阳辐射能转换为电能的发电方式,称为太阳能热发电。 先将太阳能转化为热能,再将热能转化成电能,它有两种转化方式:一种是将太阳 热能直接转化成电能,如半导体或金属材料的温差发电,真空器件中的热电子和热 电离子发电,碱金属热电转换,以及磁流体发电等;另一种方式是将太阳热能通过

热机(如汽轮机)带动发电机发电,与常规热力发电类似,只不过是其热能不是来 自燃料,而是来自太阳能。太阳能热发电有多种类型,主要有以下五种:塔式系统、 槽式系统、盘式系统、太阳池和太阳能塔热气流发电。前三种是聚光型太阳能热 发电系统,后两种是非聚光型。一些发达国家将太阳能热发电技术作为国家研发 重点,制造了数十台各种类型的太阳能热发电示范电站,已达到并网发电的实际应 用水平。[2] 2.太阳能光伏发电影响因素 太阳能光伏发电成为目前太阳能利用的主要方式之一。光伏发电分为离网和并网两种形式,随着光伏并网技术的成熟与发展,并网光伏发电已成为主流趋势。由于大规模集中并网光伏发电系统容量的急速增加,并网光伏发电系统输出功率固有的间歇性和不可控等缺点对电网的冲击成为制约并网光伏发电的重要元素。太阳能光伏发电系统发电量受当地太阳辐射量、温度、太阳能电池板性能等方面因素的影响。 (1)光照强度对光伏发电量的影响:光照强度是指在单位时间和单位面积内,在地球表面上接收到的垂直投射的太阳辐射能量。光伏发电系统产生电能所需的能量完全来自、于太阳的辐照,因此光照强度对光伏发电系统的发电量具有决定性的作用,二者之间呈正相关性,即光照强度越强,光伏发电量越多。 (2)季节类型对光伏发电量的影响:由于在不同的季节,太阳入射角的大小以及方向、日照时间的长短、光照强度的强弱存在明显的差异,到达地表的太阳辐照度经过吸收、散射,辐射等各种减弱作用后也会不同,光伏发电系统的发电量的多少也在变化。这种差异性即为不同的季节类型对光伏发电量的影响。 (3)天气类型对光伏发电量的影响:将天气类型的时间范围确定在24 小时之内。由于晴

光伏发电量计算及综合效率影响因素

光伏发电量计算及综合效率影响因素 Hessen was revised in January 2021

光伏发电量计算及综合效率影响因素 一、光伏电站理论发电量计算 1.太阳电池效率n的计算 在太阳电池受到光照时,输出电功率和入射光功率之比就称为太阳电池的效率,也称为光电转换效率。 厂巴一AX—〃仏匕 A几A几A几 其中,At为太阳电池总而积(包括栅线图形面积)。考虑到栅线并不产生光电,所以可以把At换成有效面积Aa (也称为活性面积),即扣除了栅线图形面积后的而积,同时计算得到的转换效率要高一些。Pin为单位而积的入射光功率。实际测量时是在标准条件下得到的:Pin取标准光强:AM 条件,即在25°C下,Pin 二1000W / nA 2.光伏系统综合效率(PR) n 总=HIX n 2X n 3 光伏阵列效率Hl:是光伏阵列在1000 W/m2太阳辐射强度下实际的直流输出功率与标称功率之比。光伏阵列在能量转换过程中的损失包括:灰尘/污渍,组件功率衰减,组件串联失配损失、温升损失、方阵相互遮挡损失、反射损失、光谱偏离损失、最大功率点跟踪精度及直流线路损失等,目前取效率86%计算。 逆变器转换效率112:是逆变器输岀的交流电功率与直流输入功率之比,取逆变器效率97%计算。 交流并网效率A3:是从逆变器输出,至交流配电柜,再至用户配电室变压器10 KV高压端,主要是升压变压器和交流线缆损失,按96%计算。

3. 理论发电量计算

太阳电池的名牌功率是在标准测试条件下测得的,也就是说在入射功率为 1000W/m:的光照条件下,lOOOWp太阳电池1小时才能发一度电。而实际上,同一天不同的时间光照条件不同,因此不能用系统的容量乘以日照时间来预测发电量。计算日发电量时,近似计算: 理论日发电量二系统峰值功率(kw) x等效日照小时数(h) x系统效率 等效峰值日照小时数h/d二(日太阳辐照量m7d) /lkW/m: (H照时数:辐射强度^120W/m2的时间长度) 二、影响发电量的因素 的发电量由三个因素决定:装机容量、峰值小时数、系统效率。当电站的 地点和规模确定以后,前两个因素基木己经定了,要想提高发电量,只能提高 此图:来源于王斯成老师的ppi 灿观

光伏并网发电防逆流方案

. 光伏并网发电防逆流 自动控制技术方案和实施方案 保定特创电力科技有限公司

1工程概况 光伏电源并网供电系统,与其公众电网配电系统(380V低压侧供电)一起并网供电。鉴于对于负荷变化控制有特殊要求,一方面需要供电部门保证用户的供电质量和可靠性,同时使光伏电源能正常工作,充分发挥光伏能源经济效益和试验与示范作用。另一方面,光伏电源的运行不应影响配电系统的安全,不允许光伏电源通过低压配电380V 网络向电力系统倒送电,同时最科学合理使用光伏电源供电,减少用户用电成本。因此,需要对光伏电源进行安全控制。 本装置的任务是对配电变压器的低压侧380V侧进行实时监测;对光伏电源进行必要的控制。采用专门为其设计的微机装置和控制电路,这样可以保证保护动作快速性和控制的准确性。 2 工程配置原则 1、可靠性:提供成熟技术和可靠方案,保证电网运行安全。 2、先进性:工程施工不影响正常供电。 3、拓展性:工程方案易于拓展,有利于将来的升级改造。 4、智能性:先进的逻辑分析和控制手段,合理有效地提供清洁能源。 3 方案概述 光伏电源工程供电系统的运行方式: 光伏电源并网供电由光伏逆变器经过主变低压380V侧后,并网于供电局主进线线路。图纸见附图。 根据以上运行方式,这时的逆功率监控装置控制要求如下: 电流测量点为变压器的低压侧(或系统主进线)380V电力局总入口电流:IA,IB,IC。(由CT来) 电压测量点为变压器的低压侧380V并网电压:UAB、UBC。(电压直接采集来)

1、两个CT互感器的倍率为 A/5A;根据现场配置,精度0.5级 2、电压回路接线,为直接采集式.直接接在并网380V侧即可. 3、每个并网点需要控制的逆变器为3-6台,15KW. 20KW. 4、控制逆变器的方式为通过交流接触器分,合闸逆变器的交流侧方式。 3.1解决方案 基于以上分析,我们提出以下解决方案: 在每个并网点的低压侧电力局公网入口处安装一台TC-3065逆功率监控装置。实时监测380V低压线路的电流电压和功率方向、幅值,同时TC-3065逆功率监控装置控制多路接触器,控制逆变器的交流输出,TC-3065逆功率监控装置的外围设备(如电流互感器、空开、通讯线缆),用户需根据图纸设计自行安装在现场的低压交流配电柜或者低压侧计量柜内,户内柜体嵌入式安装方式。 3.2 系统自动控制过程与功能设置 光伏电源工程供电系统的正常运行方式:一台10kV/400V的配电变压器正常供电,同时清洁电源并网供电,此时的控制要求如下: (1)若测量点出现电压过高、或者电压过低、电流过高(通过设置参数整定),则TC-3065逆功率监控装置在液晶显示上发报警信息,可通过通讯把报 警信息上传。 (2)检测交流电网(AC380V,50Hz)供电回路三相电压、电流(测量点),判断功率流向和功率大小。如果电网供电回路出现逆功率现象,防逆流装 置立即逐级断开清洁电源并网系统中4个模组,直到逆功率现象消失。 防逆流装置控制清洁电源并网系统中4个模组断开逐级累加时间为不大 于600S(可设置)。 (3)逆功率恢复的控制:当防逆流装置检测到逆功率,切断清洁电源供电回路后,若测量点逆功率消失,并且检测到负荷功率(测量点的正向功率)大 于某一门槛值(可设定,单位W二次功率值)时,经过不大于600S延 时(可设置)后,防逆流装置把清洁电源并网系统中接入点合上(控制点)。

光伏发电量计算及综合效率影响因素

一、光伏电站理论发电量计算 1.太阳电池效率η 的计算 在太阳电池受到光照时,输出电功率和入射光功率之比就称为太阳电池的效率,也称为光电转换效率。 其中,At 为太阳电池总面积(包括栅线图形面积)。考虑到栅线并不产生光电,所以可以把 At 换成有效面积 Aa (也称为活性面积),即扣除了栅线图形面积后的面积,同时计算得到的转换效率要高一些。Pin 为单位面积的入射光功率。实际测量时是在标准条件下得到的:Pin 取标准光强:AM 条件,即在 25℃下, Pin= 1000W / m 2。 2.光伏系统综合效率(PR) η总=η1×η2×η3 光伏阵列效率η1:是光伏阵列在 1000 W/m2 太阳辐射强度下实际的直流输出功率与标称功率之比。光伏阵列在能量转换过程中的损失包括:灰尘/污渍,组件功率衰减,组件串联失配损失、温升损失、方阵相互遮挡损失、反射损失、光谱偏离损失、最大功率点跟踪精度及直流线路损失等,目前取效率86%计算。 逆变器转换效率η2:是逆变器输出的交流电功率与直流输入功率之比,取逆变器效率97%计算。 交流并网效率η3:是从逆变器输出,至交流配电柜,再至用户配电室变压器10 KV 高压端,主要是升压变压器和交流线缆损失,按96%计算。 3.理论发电量计算 太阳电池的名牌功率是在标准测试条件下测得的,也就是说在入射功率为1000W/m2的光照条件下,1000Wp 太阳电池 1 小时才能发一度电。而实际上,

同一天不同的时间光照条件不同,因此不能用系统的容量乘以日照时间来预测发电量。计算日发电量时,近似计算: 理论日发电量=系统峰值功率(kw)x等效日照小时数(h)x系统效率 等效峰值日照小时数h/d=(日太阳辐照量m2/d)/1kW/m2 (日照时数:辐射强度≥120W/m2的时间长度) 二、影响发电量的因素 光伏电站的发电量由三个因素决定:装机容量、峰值小时数、系统效率。当电站的地点和规模确定以后,前两个因素基本已经定了,要想提高发电量,只能提高系统效率。 自然原因:温度折减、不可利用太阳光; 设备原因:光伏组件的匹配度、逆变器、箱变的效率、直流线损、交流线损、设备故障,光伏组件衰减速度超出预期; 人为原因:设计不当、清洁不及时。 三、影响光伏发电效率的具体情况如下: 1.温度折减 对系统效率影响最大的自然因素就是温度。温度系数是光伏组件非常重要的一个参数。一般情况下,晶硅电池的温度系数一般是~%/℃,非晶硅电池的温度系数一般是%/℃左右。而光伏组件的温度并不等于环境温度。下图就是光伏组件输出功率随组件温度的变化情况。 在正午12点附近,图中光伏组件的温度达到60摄氏度左右,光伏组件的输出功率大约仅有85%左右。除了光伏组件,当温度升高时,逆变器等电气设备

光伏电站技术方案(整理后)

光伏电站技术方案 1.系统概况 1.1项目背景及意义 系统由室外太阳电池组件阵列系统、室外太阳能电池组件汇流系统、室内控制储能系统、逆变配电装置与布线系统、室内光伏发电综合测试系统组成。用于研究不同材料电池组件的光伏阵列,采取跟踪模式和固定模式时发电的情况,以及5种相同功率不同方式的太阳能电发电的对比。本系统建成后可以作为学校光伏科研方向的重点实验室,为学校学科建设、科技创新、人才培养发挥重要作用。 1.2光伏发电系统的要求 系统是一个教学实习兼科研项目,根据要求设计一个5kWp的小型光伏电站系统,包含3kWp的并网光伏系统,2kWp的离网光伏系统,共计平均每天发电约9.5kWh,可供一个1kW的负载工作9小时左右。 2.项目概况 2.1光伏系统方案的确定 根据现场资源和环境条件,系统设计采用独立型离网光伏系统和离散型并网光伏系统方案。 太阳能光伏并网发电系统主要组成如下: (1)太阳能电池组件及其专用固定支架; (2)光伏阵列汇流箱; (3)光伏并网逆变器; (4)系统的通讯监控装置;

(5)系统的防雷及接地装置; (6)土建、配电房等基础设施; (7)系统的连接电缆及防护材料; 太阳能光伏离网发电系统主要组成如下: (1)太阳能电池组件及其双轴跟踪逐日支架; (2)光伏阵列汇流箱; (3)光伏控制器; (4)光伏离网逆变器; (5)系统的通讯监控装置; (6)系统的防雷及接地装置; (7)土建、配电房等基础设施; (8)系统的连接电缆及防护材料; 3.设计方案 3.1方案介绍 将系统分成并网和离网两个部份。并网和离网系统中用到的太阳能电池组件有3种,一是175Wp单晶硅太阳能电池板,其工作电压为35.9V,开路电压为43.6V,经过计算,6块此类电池板串联,构成1个1KW的光伏阵列。二是175Wp多晶硅太阳能电池板,其工作电压为33.7V,开路电压为42.5V, 经过计算,6块此类电池板串

光伏发电预测方法简析

太阳能光伏发电作为一种取之不尽,用之不竭的清洁环保能源,已成为未来能源发展的重点,本文对太阳能光伏发电的预测方法进行了分析与总结,根据太阳能光伏发电的应用及需求,归纳了各类太阳能光伏发电预测方法的优点及不足,希望对我国太阳能光伏发电预测方法的发展起到一定的促进和推动作用。 在石油开采量日益见底和生态环境急速恶化的严峻形势下,太阳能作为一种自然能源,以其储量丰富且清洁无污染性显示了其独特的优势,已被国际公认为未来最具竞争性的能源之一。太阳能光伏发电成为太阳能利用的主要方式之一。 光伏发电分为离网和并网两种形式,随着光伏并网技术的成熟与发展,并网光伏发电已成为主流趋势。由于大规模集中并网光伏发电系统容量的急速增加,并网光伏发电系统输出功率固有的间歇性和不可控等缺点对电网的冲击成为制约并网光伏发电的重要元素。太阳能光伏发电系统发电量受当地太阳辐射量、温度、太阳能电池板性能等方面因素的影响。其中太阳辐射强度的大小直接影响发电量的多少,辐射强度越大,发电量越大,功率越大。 太阳辐射受季节和地理等因素的影响,具有明显的不连续性和不确定性特点,有着显着的年度变化、季节变化和日变化周期,且大气的物理化学状况如云量、湿度、大气透明度、气溶胶浓度也影响着太阳辐射的强弱。 美国、欧洲、日本等发达国家对太阳能光伏发电预测方法的较早的进行了研究与实验。我国太阳能光伏发电预测技术起步较晚,少数几个知名大学相继开展了以建模、仿真为主的技术研究。本文对对太阳能光伏发电的预测方法进行了分析与总结,归纳了各种预测方法的优点及不足,为国内太阳能光伏发电行业的发展提供重要依据。 1 太阳能光伏发电预测原理 当前,对太阳能光伏发电预测的研究主要集中在太阳能辐射强度的预测上。太阳辐射的逐日或逐时观测数据构成了随机性很强的时间序列,但太阳辐射序列的内部仍有某种确定性的规律,只有充分了解掌握太阳能光伏发电的特点、变化规律,才能建立符合实际情况的预测模型及方法。 太阳辐射分为直接太阳辐射和散射太阳辐射。直接太阳辐射为太阳光通过大气到达地面的辐射;散射太阳辐射为被大气中的微尘、分子、水汽等吸收、反射和散射后,到达地面的辐射。散射太阳辐射和直接太阳辐射之和称为总辐射。太阳总辐射强度的影响因素包括:太阳高度角、大气质量、大气透明度、海拔、纬度、坡度坡向、云层。 太阳能光伏发电预测是根据太阳辐射原理,通过历史气象资料、光伏发电量资料、卫星云图资料等,运用回归模型、人工神经网络、卫星遥感技术、数值模拟等方法获得预测信息,包括太阳高度角、大气质量、大气透明度、海拔、纬度、坡度坡向、云层等要素,根据这些要素建立太阳辐射预报模型。 2 太阳能光伏发电预测方法分析 太阳能变化趋势主要受到当地地理条件和气象条件的影响。地理条件的影响有明显规律,可以根据当地经纬度计算出全年太阳的运行轨迹,并结合光伏电池阵列自身的参数计算出太阳能变化的一个总体变化趋势。但该趋势并不能反映出几小时内,甚至不能反映出几天内的太阳能变化的大致情况。

光伏理论发电功率及受阻电量计算方法

光伏理论发电功率及受阻电量计算方法(试行) 第一章总则 第一条为规光伏理论发电功率及受阻电量等指标的统计分析,依据《光伏发电站太阳能资源实时监测技术要求》(GB/T 30153-2013)、《光伏发电功率预测气象要素监测技术规》(Q/GDW 1996-2013)的有关要求,制定本方法。 第二条本方法所称的光伏电站,是指按照公共电站要求已签订《并网调度协议》、集中并入电网的光伏发电站,不包括分布式光伏发电系统。 第三条本方法适用于国家电网公司各级电力调度机构和调管围并网光伏电站开展理论发电功率及受阻电量统计计算工作。 第二章术语和定义 第四条光伏电站发电功率指标包括理论发电功率和可用发电功率。 光伏电站理论发电功率指在某时刻光资源情况下站所有逆变器及相关设备均正常运行时可发出的功率,其积分电量为某时段的光伏电站理论发电量。 光伏电站可用发电功率指扣除站设备故障、缺陷或检修等原因引起受阻后可发出的功率,其积分电量为某时段的光伏电站可用发电量。

第五条光伏电站受阻电力分为站受阻电力和站外受阻电力两部分。 站受阻电力指光伏电站理论发电功率与可用发电功率之差,其积分电量为站受阻电量。 站外受阻电力指光伏电站可用发电功率与实发功率之差,其积分电量为站外受阻电量。 第六条全网理论发电功率指所有光伏电站理论发电功率之和;全网可用发电功率指考虑断面约束的光伏电站可用发电功率之和;可参与市场交易的光伏富余电力指全网可用发电功率与实发功率之差。 第七条全受阻电力指所有光伏电站站受阻电力之和;全网断面受阻电力为因通道稳定极限、电网设备检修、电网故障等情况导致的光伏受阻;全网调峰受阻电力指全网可用发电功率与实发功率之差。 第三章数据准备 第八条计算理论发电功率和受阻电力需准备的实时数据包括光伏电站实际发电功率、逆变器运行数据和状态信息、气象监测数据、开机容量;非实时数据包括光伏电站基本参数(格式见附表)、样板逆变器型号及其数量、全站逆变器型号及其数量等。 第九条所有光伏电站应配备气象监测设备,并向调度机

我国光伏发电成本变化分析

我国光伏发电成本变化分析 近年来,特别是“十二五”期间,我国光伏发电发展取得了可喜的成绩,光伏装机规模和发电量均快速增长,至2015 年底,我国光伏发电累计装机容量达到4318 万千瓦(其中地面光伏电站为3712 万千瓦,分布式光伏为606 万千瓦),并网容量4158 万千瓦,年发电量383 亿千瓦时,约占全球光伏装机的1/5 ,并超过德国(光伏装机容量为3960 万千瓦)成为世界光伏装机第一大国。预计2020 年我国光伏装机容量将达到1.2?1.5亿千瓦,2030年光伏装机将达4?5亿千瓦,以满足我国2020 年非化石能源占一次能源消费比重达到15%、2030 年比重达到20% 的能源发展目标。我国光伏发电的快速发展、装机规模的不断扩大,带动了光伏行业的技术进步和材料价格下降,也带来了光伏装机和发电成本的下降,将使我国光伏发电由最初的主要依赖政策补贴转变为逐渐走向电力市场实现平价上网。 光伏电池组件效率持续提升、成本不断下降太阳能光伏发电系统的核心是太阳能电池,又称光伏电池。近年来,中国太阳能电池与组件规模迅速扩大的同时,产业化太阳能电池与组件效率也大幅提升,太阳能电池每年绝对效率平均提升0.3%左右。2014 年,高效多晶太阳能电池产业化平均效率达17.5% 以上,2014 年底最高测试值已达20.76%; 单晶太阳能电池产业效率达19% 以上,效率已达到或超过国际平均水平。2015 年底,我国多晶及单晶太阳能电池产业

化平均效率分别达到18.3% 和19.5% 。 伴随着太阳能电池效率持续提升,太阳能电池组件成本也在大幅下降。2007 年我国太阳能电池组件价格为每瓦约4.8 美元(36 元),2010 年底我国太阳能电池的平均成本为每瓦1.2?1.4美元,2014年底每瓦降至0.62美元(3.8元)以下,7年时间成本下降到了原来的1/10(见下图),光伏组件成本已在2010 ?2013 年间大幅下降。2015 年,我国晶硅组件平均价格为0.568 美元/瓦,光伏制造商单晶硅太阳能电池组件的直接制造成本约0.5 美元/瓦,多晶硅太阳能电池组件成本已降至0.48 美元/瓦以下。 同样条件下,美国平均每瓦组件的制造成本为0.68?0.70 美元,受制造成本影响,目前全球光伏产业也逐渐向少数国家和地区集中,中国大陆、台湾地区、马来西亚、美国是当今全球排在前四位的主要光伏制造产业集中地。预计未来3?5 年,中国晶体硅太阳能电池成本将下降至每瓦0.4 美元左右(2.5 元)。 光伏发电系统单位建设成本持续下降已建地面光伏电站初始投资的大小占光伏电站总成本的大部分,土地费用等占整体建设及运行维护的成本一般不 大,暂不考虑其影响。光伏电站初始投资大致可分为光伏组件、并网逆变器、配电设备及电缆、电站建设安装等成本,其中光伏组件投资成本占初始投资的50%?60%。因此,光 伏电池组件效率的提升、制造工艺的进步以及原材料价格下降等因素

国电南瑞NSF3200光伏发电功率预测系统-技术规范书120904

1总体要求 (2) 2系统功能要求 (3) 2.1技术规范 (3) 2.1功能要求 (4) 3系统功能技术要求 (4) 3.1数据功能技术要求 (4) 3.1.1数据采集功能 (4) 3.1.2 数据统计功能 (4) 3.1.3 数据分析、处理功能 (4) 3.2功率预测功能 (5) 3.2.1 预测的时间 (5) 3.2.2 系统启动 (5) 3.2.3 其它 (5) 3.3 界面要求 (5) 3.3.1展示界面 (5) 3.3.2操作界面 (6) 3.3.3统计查询界面 (6) 3.3.4其他要求 (6) 3.4实时气象数据采集系统 (6) 3.4.1系统功能 (6) 3.4.2采集器单元 (6) 3.4.3测量设备 (7) 1

3.4.4供电系统 (7) 3.4.5通讯系统 (8) 3.4.6数据采集和处理 (8) 4进度要求 (8) 5报价要求 (8) 6预期目标 (8) 7系统技术参数 (9) 7.1短期功率预测功能 (9) 7.2超短期功率预测功能 (9) 7.3人机界面功能 (9) 7.4信息上报功能 (9) 8通信要求 (10) 9质保和售后服务 (10) 9.1质保期 (10) 9.2售后服务 (10) 10交货日期 (11) 1总体要求 投标人应具备招标公告所要求的资质,具体资质要求详见招标文件的商务部分。 本规范书对光伏发电功率预测系统应用功能、管理、文档资料以及验收等方面提出了技术要求。本技术规范应用范围是光伏电站的光伏发电功率预测系统。 1

本招标文件提出的是最低限度的技术要求,并未对一切技术细节做出规定,也未充分引述有关标准和规范的条文,投标人应提供符合本技术规范引用标准的最新版本标准和本招标文件技术要求的全新产品,如果所引用的标准之间不一致或本招标文件所使用的标准如与投标人所执行的标准不一致时,按要求较高的标准执行 如果投标人没有以书面形式对本招标文件技术规范的条文提出差异,则意味着投标人提供的设备完全符合本招标文件的要求。如有与本招标文件要求不一致的地方,必须逐项在“技术差异表”中列出。 投标方应熟悉网/省公司光伏发电功率预测系统的技术规范要求,并长期从事光伏发电功率预测相关方向的研究。提供的光伏发电功率预测系统在同类型企业运行1年以上业绩清单。投标人在同类型的系统工程上至少已有2年以上的从业经验,使用的产品应具有自主知识产权且有不少于5个合同业绩和1套的成功运行业绩,且经实践证明是成熟可靠的产品,经过电力行业相关部门的验收,并有验收证明,具有软件产品自主知识产权者优先。 投标方应具备自动环境监测站安装、改造及数据实时采集传输的资质和经验,以及超短期光伏发电功率预测系统运行业绩,可根据需要提供自动环境监测站改造及预测系统建设的一揽子解决方案。 光伏发电功率预测系统是预测光伏电站未来发电能力的重要手段,是推动光伏行业持续健康发展的必要条件之一。根据网/省光伏发电功率预测系统主站及直调光伏电站功率预测子站,结合我公司所属光伏电站现状,根据网/省公司的要求,光伏电站需要上报自动环境监测站实时采集的数据、光伏发电功率预测结果等内容。为此,光伏电站需要建设如下内容:(1)自动环境监测站的建设。 (2)光伏发电功率预测系统的建设:包括中心站的硬件、平台软件、短期光伏发电功率预测软件、超短期光伏发电功率预测软件等。 1

光伏发电功率预测与模型分析

光伏发电功率预测与模型分析 摘要 近年来,随着对可再生能源需求的日益提高,太阳能光伏发电技术得到了迅速的发展,大规模光伏发电系统的应用也日益广泛起来,但也随之出现了很多问题。由于太阳辐射量与季度、阴晴及昼夜等气象条件密切相关,从而造成了光伏发电系统输出功率的随机性和间歇性的固有缺点,而且考虑到储能技术上的不成熟等因素,当大量的光伏发电系统接入电网时,势必会对电力系统的安全稳定运行和电能质量等带来严峻挑战,从而限制光伏发电产业的发展,所以对光伏发电系统输出功率进行预测对于电力系统运行而言具有非常重要的意义。 本文通过对影响光伏发电功率因素进行分析对目前现有的光伏发电功率预测方法进行分类,并根据统计方法和物理方法为依据,对太阳辐照量预测进行预测和直接对光伏发电系统的输出功率预测两种方法进行阐述和细化对比。再根据各自所使用的数学模型不同将预测方法分为时间序列法、神经网络法、支持向量机方法、回归分析方法和智能预测方法[6]。最后对不同分类的预测方法及相应的数学模型进行分析阐述和对比,说明其适用范围及精确度,并对其可行性进行分析,提出在功率预测中需要解决的问题。 关键词:光伏系统;功率预测;数学模型;方法 Abstrackt

\ In recent years, with the demand for renewable energy increasing, solar photovoltaic technology has been rapid development of large-scale photovoltaic power generation system applications are increasingly widespread up, but also will be a lot of problems. Since the amount of solar radiation quarter, Teenage and other weather conditions closely related to circadian, resulting in a power output of photovoltaic power generation system and intermittent randomness inherent shortcomings, and taking into account factors such as energy storage technology immaturity, when a large number PV system connected to the grid ,it must have a safe and stable operation of power systems and power quality pose serious challenges, thus limiting the development of photovoltaic power generation industry, so the output power of the photovoltaic power generation system to predict in terms of the power system operation has a very important significance. Based on the impact of photovoltaic power factor analysis on currently available PV power prediction method for classification, and physical methods based on statistical methods and is based on the amount of solar radiation forecasts and projections directly to the output power of photovoltaic systems forecast describes two methods and refined contrast. And then according to their mathematical models used to forecast method is divided into different time series, neural networks, support vector machine, regression analysis and intelligent prediction method. Finally, the prediction of different classification methods and the corresponding mathematical model to analyze and compare elaborated, indicating its scope and accuracy, and its feasibility analysis, forecasting in power need to be resolved. Keywords: PV systerm;Power Prediction;Mathematical model;Method 1前言

光伏理论发电功率及受阻电量计算方法

光伏理论发电功率及受阻电量计算方法 第一章总则 第一条为进一步完善电网实时平衡能力监视功能,规范日内市场环境下光伏理论发电功率及受阻电量等指标的统计分析,依据《光伏发电站太阳能资源实时监测技术要求》(GB/T 30153-2013)、《光伏发电功率预测气象要素监测技术规范》(Q/GDW 1996-2013)的有关要求,制定本方法。 第二条本方法所称的光伏电站,是指按照公共电站要求已签订《并网调度协议》、集中并入电网的光伏发电站,不包括分布式光伏发电系统。 第三条本方法适用于国家电网公司各级电力调度机构和调管范围内并网光伏电站开展理论发电功率及受阻电量统计计算工作。 第二章术语和定义 第四条光伏电站发电功率指标包括理论发电功率和可用发电功率。光伏电站理论发电功率指在当前光资源情况下站内所有逆变器均可正常运行时能够发出的功率,其积分电量为光伏电站理论发电量;光伏电站可用发电功率指考虑站内设备故障、缺陷或检修等原因引起受阻后能够发出的功率,其积分电量为光伏电站可用发电量。 第五条光伏电站受阻电力分为站内受阻电力和站外受

阻电力两部分:站内受阻电力指光伏电站理论发电功率与可用发电功率之差,其积分电量为站内受阻电量;站外受阻电力指光伏电站可用发电功率与实发功率之差,其积分电量为站外受阻电量。 第六条全网理论发电功率指所有光伏电站理论发电功率之和;全网可用发电功率指考虑断面约束的光伏电站可用发电功率之和;可参与市场交易的光伏富余电力指全网可用发电功率与实发功率之差。 第七条全网站内受阻电力指所有光伏电站站内受阻电力之和;全网断面受阻电力为因通道稳定极限、电网设备检修、电网故障等情况导致的光伏受阻;全网调峰受阻电力指全网可用发电功率与实发功率之差。 第三章数据准备 第八条计算理论发电功率和受阻电力需准备的实时数据包括光伏电站实际发电功率、逆变器运行数据和状态信息、气象监测数据、开机容量;非实时数据包括光伏电站基本参数 (格式见附表)、样板逆变器型号及其数量、全站逆变器型号及其数量等。 第九条所有光伏电站应配备气象监测设备,并向调度机构实时上报气象测量数据,气象数据满足以下条件:(一)气象监测设备测量要素

光伏发电并网系统工程设计技术探讨

光伏发电并网系统工程设计技术探讨 摘要:太阳能光伏系统主要利用太阳能电池组件与其他辅助设备将太阳能转变 为电能,分为独立系统、并网系统与混合系统三种。它最大特点是光伏阵列产生 的直流电经过并网逆变器转换成符合电网要求的交流电,直接接入电网网络,并 网系统中PV 方阵所产生电力除了供给交流负载外,多余电力还能及时反馈给电网。而且我国幅员辽阔,日照时间和面积有很大优势,为太阳能光伏发电系统的 应用提供了良好的条件。 关键词:光伏发电并网系统;工程设计;技术; 随着社会的飞速进步,传统能源的紧缺及其对环境带来的负面影响给新能源 的蓬勃发展带来了新的契机。可以肯定,在未来的几十年中以太阳能为首的新能 源势必将逐步取代传统能源。目前,光伏发电技术主要应用于独立光伏系统与并 网光伏发电系统。 一、太阳能光伏发电并网系统的核心关键技术 并网发电系统一般由太阳组件,并网逆变器等组成。通常还包括数据采集系统、数据交换、参数显示和监控设备等。并网发电方式是将太阳能电池阵列所发 出的直流电通过逆变器转变成交流电能输送到公用电网中,无需蓄电池进行储能,相比较而言,并网发电较便宜,而且完全无污染。并网发电系统采用的并网逆变 器拥有自动相位和电压跟踪装置,能够非常好的配合电网的微小相位和电压波动,不会对电网造成影响。太阳能光伏发电并网系统所运用的核心技术有最大功率点 追踪(MPPT)技术、注入电网的谐波电流控制及控制与保护。①对太阳能光伏 发电系统运用的最大功率点追踪技术来说,英文全称为Maximum Power Point Tracking,主要对光伏系统的电气模块工作状态进行调节,使光伏板能够输出更多电能,并将太阳能电池组件产生的直流电有效地储存在蓄电池中,光伏电池的输 出功率和最大功率点追踪控制器的工作电压有直接的关系,只有在最合适的电压 之下,其输出功率才有唯一的最大值。而当前应用的最大功率点追踪技术主要有 在线扰动法、下山法、微分法及模糊规则法四种,能够动态地对太阳能辐射能量 进行追踪。②为了保证电能的质量,要抑制注入电网的谐波电流,保证在最低水平,主要的方法有提高载波频率、合理整定参数、滤波器设计以及群控技术等。 对于控制与保护来说,主要难点在于速度要求、与电网配合方面,常见的保护措 施有抗孤岛保护可整定短路、过欠压/频保护及通讯接口对接。 二、光伏发电并网系统工程设计技术 1.子系统的构成。太阳能光伏发电系统的各个子系统都是相对独立的,均是 由光伏子系统、直流监测配电系统以及并网逆变器系统等构成,将各个子系统的 进行有机结合后,再进行380V 三相交流电接至升压变,最后进入供电网络。 2.主设备选型。在大多数情况下,单台逆变器的容量越大,单位造价就会相 对较低,但是当单台逆变器容量过大时,一旦出现故障就会对整个电网系统产生 重大的影响,因此需要依据光伏组件安装场地的真实状况,选取适合额定电量的 并网型逆变器。在当前国内生产的并网逆变器单台容量最大可以达到500kVA,但是100kVA 及以上的产品的运行不足。为确保光伏发电场能够稳定、经济的运行,并网型逆变器能通过分散成组相对独立并网的方式,这就能够促进整个光伏发电 系统的顺畅运营。并网型逆变器需要过、欠电压,过、欠频率,进行短路保护, 防孤岛效应,逆向功率保护等保护方式。每个逆变器都需要连接到多个串光伏电 池组件,而这些电池组件可以利用直流监测配电箱连接到逆变器。直流监测配电

光伏电站监控系统实施方案分析

光伏电站监控系统实施方案分析

————————————————————————————————作者:————————————————————————————————日期:

光伏电站监控系统分析 摘要:综合论述了目前国内具有实际工程意义的大型光伏电站及分布式光伏系统的几种监控系统方案。光伏监控系统采用的通讯手段主要包括:有线方式:工业RS485总线、PROFIBUS总线、工业以太网、CAN总线、Modern电话线;无线方式:ZIGBEE、GPRS、WIFI、BLUETEETH、IRDA红外。文中对各种通讯方式的构成、特点及应用作了简要阐述及对比。 引言 太阳能光伏发电项目随中国政府持续出台的支持光伏产业发展的政策不断增多[1],截至2012 年底,我国累计建设容量7.97 GW,其中大型光伏电站4.19 GW,分布式光伏系统3.78 GW [2]。国家能源局发布的《太阳能发电发展“十二五”规划》称,到2015 年底,太阳能发电装机容量达到2100万kW(即21 GW)以上,年发电量达到250 亿kWh。随着大型光伏电站及分布式光伏系统的建设和投运,业主及电网公司对设备的实时监控提出了更高的要求。 光伏监控系统需实现的功能有:1)汇流箱、逆变器、电池板、蓄电池组及其控制器(带储能功能的光伏系统)、环境温度等底层设备实时数据及状态的采集;2)底层设备故障报警;3)重要数据的历史存储;4)远方及本地对电站设备的必要操控。即集遥测、遥控、遥信、遥调功能为一体,且需具备高可靠性,全年不间断工作。目前具有实际工程意义的监控系统从物理实现方式上可分为有线及无线两种。有线方式主要包括:工业RS485总线、PROFIBUS现场总线、CAN 总线、Modem电话线、工业以太网;无线方式主要包括:ZIGBEE、GPRS、WIFI、BLUETEETH、IRDA红外。需根据实际工程要求及各种通讯方式的特点选择适合的监控方案。 1 基于现场总线的光伏监控系统 1.1 兆瓦级及以上并网光伏电站监控系统 兆瓦级及以上光伏电站占地面积广、设备数量及种类庞大、建设集中。目前最为广泛采用的是有线监控方式。整体架构包括:本地数据采集、数据传输、数据存储与处理三部分,如图1所示。

1MW光伏并网发电系统技术方案

1MW光伏并网发电系统 技术方案 深圳市盛弘电气有限公司 2011年9月

目 录 1 系统组成 (1) 2 相关规范和标准 (1) 3 总体设计方案 (2) 3.1 项目分析 (2) 3.2 方案简介 (2) 3.3 电池组件串联方案的设计 (3) 3.4 光伏防雷汇流箱的设计 (4) 3.5 直流防雷配电柜的设计 (5) 3.6 并网逆变器的设计(SW 250KTL) (5) 3.6.1 总体介绍 (5) 3.6.2 技术参数 (7) 3.6.3 方案优点 (8) 3.7 交流防雷配电柜的设计 (9) 4 系统监控方案 (9) 4.1 低压配电监控 (9) 5 接入电网方案 (10) 5.1 升压变压器技术要求 (11) 6 接地及防雷 (11) 7 电气设备配置清单及成本 (11) 8 发电量估算 (12) 9 补充说明 (13)

1系统组成 光伏并网发电系统主要组成如下: 1)光伏电池组件及其支架; 2)光伏阵列防雷汇流箱; 3)直流防雷配电柜; 4)光伏并网逆变器; 5)交流防雷配电柜; 6)系统的通讯监控装置; 7)系统的防雷及接地装置; 8)土建、配电房等基础设施; 9)系统的连接电缆及防护材料。 2相关规范和标准 光伏并网逆变系统的制造、试验和验收可参考如下标准: GB/T 191 包装储运图示标志 GB/T 19939-2005 光伏系统并网技术要求 GB/T 20046-2006 光伏(PV)系统电网接口特性(IEC 61727:2004,MOD) GB/Z 19964-2005 光伏发电站接入电力系统技术规定 GB/T 2423.1-2001 电工电子产品基本环境试验规程 试验A:低温试验方法 GB/T 2423.2-2001 电工电子产品基本环境试验规程 试验B:高温试验方法 GB/T 2423.9-2001 电工电子产品基本环境试验规程 试验Cb:设备用恒定湿热试验方法 GB 4208 外壳防护等级(IP代码)(equ IEC 60529:1998) GB 3859.2-1993 半导体变流器 应用导则 GB/T 14549-1993 电能质量 公用电网谐波 GB/T 15543-1995 电能质量 三相电压允许不平衡度

光伏功率预测系统SPSF-3000

光伏功率预测系统(SPSF-3000) “光伏功率预测系统(SPSF-3000)”是国能日新独立开发的国内第一款光伏并网电站负荷预测系统。系统具备高精度数值天气预报功能、光伏信号数值净化、高性能时空模式分类器、网络化实时通信、通用电力信息数据接口、神经网络模型等高科技模块;可以准确预报太阳能并网电站未来168小时负荷——时间曲线。系统平均预测精度超过85%,完全可以达到电网对太阳能并网电站电力负荷输出的调度要求。 1、总体设计 本系统包括硬件终端设施与国能日新自主研发的光伏功率预测软件系统。通过采集数值气象预报数据、实时气象站数据、实时输出功率数据、逆变机组状态等数据,完成对光伏电站的短期功率预测、超短期功率预测工作,并按电网要求上传到调度侧功率预测系统。 根据光伏电站以及并网电网公司具体要求,光伏功率预测系统部署在安全II区,部署如下: 气象服务器通过接收高精度数值气象预报进行存储、分析、计算,通过反向隔离器传送至安全II区功率预测服务器,功率预测服务器通过接收光伏电站逆变器监控系统和气象站数据,进行核心处理计算。待计算的功率预测结果通过电站调度数据专用网传至电网侧调度中心,同时通过PC工作站方便的查看系统的运行状态及界面展示。 2、系统功能

光伏功率预测系统采用B/S模式,用户登录系统不需要安装其它软件,在系统所在网段任何一台电脑的浏览器上输入功率预测系统的链接,便可以进入系统的登陆界面。所有操作必须在用户成功登陆并授权的情况下进行。系统功能如下: 1)实时监控:预测信息、实时信息、气象信息、状态监控; 2)曲线展示:功率及气象的历史曲线展示、预测曲线展示; 3)上报管理:功率上报管理、气象上报管理; 4)发电计划:发电计划管理(日前、实时); 5)统计分析:完整性、频率分布、功率误差、辐照度误差、事件、电量; 6)数据报表:功率预测、实际发电、发电申报、辐照度统计(日、月); 7)系统设置:开机容量、限电、故障、检修设置; 8)用户管理:浏览员、操作员、管理员; 9)系统诊断:实时对系统的运行状况进行分析统计。

光伏发电功率预测方法研究报告综述(成品)

光伏发电功率预测方法研究综述 姓名王森专业班级电气0802 摘要:太阳能光伏发电作为一种重要的分布式电源正逐渐从独立系统向大规模并网方向逐渐被人们所利用。发展光伏电站输出功率预测对于保持电力系统的功率平 衡和经济运行有着重要的意义。通过对光伏发电功率预测影响因素进行探讨,分 析了太阳辐照、温度、云量等各种气象因素对光伏电站输出功率的影响,并分析 比较数学统计方法和人工智能方法的优缺点。 关键词:光伏发电、隔离、功率预测、神经网络 1.光伏能源特点及其应用前景 1.1.开展光伏发电的能源预测的目的与意义 随着社会经济的快速发展,能源消耗剧增,化石能源日趋枯竭,加之与日俱增的化石燃料燃烧所造成的环境污染,给地球的生态平衡和人类的生活带来了严重的威胁,所以建设大型的光伏电站来满足人类对能源的需求是当前的发展趋势。太阳能作为一种新型的绿色可再生能源,与其他新能源相比是最理想的可再生能源。特别是近几十年来,随着科学技术的不断进步,太阳能及其相关产业成为世界发展最快的行业之一。因为它具有以下的特点: <1)储量丰富。太阳能是取之不尽的可再生能源,可利用量巨大。太阳每秒钟辐射的能量大约是1.6×1023kW,其中到达地球的能量高达8×1013kW相当于燃烧6×109吨标准煤。按此计算,一年内到达地球表面的太阳能总量折合成标准煤约1.892×106亿吨,是目前世界主要能源探明储量的一万倍。相对于常规能源的有限性,太阳能储量是无限的,取之不尽,用之不竭。这就决定了开发利用太阳能将是人类解决常规能源匮乏枯竭的最有效途径。 <2)清洁性和经济性。太阳能像风能、潮汐能等洁净能源一样,其开发利用几乎无任何物质的排放,既不会留下污染物,也不会向大气中排放废气,加之储量的无限性,是人类理想的替代能源。 <3)分布范围广泛。纬度的不同和气候条件的差异造成了太阳能辐射的不均匀,但相对于其他能源来说,太阳能对于绝大多数地区具有存在的普遍性,可就地取用。这就为常规能源缺乏的国家和地区解决能源问题提供了美好前景。 太阳能的开发利用主要有光热利用、光伏利用、光化学利用等三种形式。光热利

相关主题
文本预览
相关文档 最新文档