当前位置:文档之家› 化工流动过程综合实验-8页word资料

化工流动过程综合实验-8页word资料

化工流动过程综合实验-8页word资料
化工流动过程综合实验-8页word资料

化工流动过程综合实验

讲义

天津大学化工基础实验中心

2019.02

一、实验目的:

1.学习直管摩擦阻力f P ?、直管摩擦系数λ的测定方法。

2.掌握直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系及变化规律。

3.掌握局部摩擦阻力f P ?,局部阻力系数ζ的测定方法。

4.学习压强差的几种测量方法和提高其测量精确度的一些技巧。

5.熟悉离心泵的操作方法。

6.掌握离心泵特性曲线和管路特性曲线的测定方法、表示方法,加深对离心泵性能的了解。 二、实验内容:

1.测定实验管路内流体流动的阻力和直管摩擦系数λ。

2.测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系曲线。

3.测定管路部件局部摩擦阻力f P ?和局部阻力系数ζ。

4.熟悉离心泵的结构与操作方法。

5.测定某型号离心泵在一定转速下的特性曲线。

6.测定流量调节阀某一开度下管路特性曲线。 三、实验原理:

1.直管摩擦系数λ与雷诺数Re 的测定:

直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。

流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为:

ρ

ρ

f

f P P P h ?=

-=

2

1 (1)

又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式)

2

2u d l h f

P f λρ

==

? (2)

整理(1)(2)两式得 22u P l d f

???=

ρλ (3) μ

ρ

??=

u d Re (4)

式中: -d 管径,m ; -?f P 直管阻力引起的压强降,Pa ;

-l 管长,m ; -u 流速,m / s ;

-ρ流体的密度,kg / m 3; -μ流体的粘度,N ·s / m 2。

在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降

f P ?与流速u (或流量q v )之间的关系。

根据实验数据和式(3)可计算出不同流速下的直管摩擦系数λ,用式(4)计算对应的Re ,整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。

2.局部阻力系数ζ的测定: 22

'u P h f

f ζρ

=?=

' 2'2u

P f ?????? ??=ρζ 式中: -ζ局部阻力系数,无因次;

-?'f P 局部阻力引起的压强降,Pa ; -'f h 局部阻力引起的能量损失,J /kg 。

图-1 局部阻力测量取压口布置图

局部阻力引起的压强降'f P ? 可用下面方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在上、下游各开两对测压口a-a'和b-b '如图-1,使 ab =bc ; a 'b '=b 'c ',则 △P f ,a b =△P f ,bc ; △P f ,a 'b '= △P f ,b 'c '

在a~a '之间列柏努利方程式 P a -P a '

=2△P f ,a b +2△P f ,a 'b '+△P

f

(5)

在b~b '之间列柏努利方程式: P b -P b ' = △P f ,bc +△P f ,b 'c '+△P 'f

= △P f ,a b +△P f ,a 'b '+△P 'f (6) 联立式(5)和(6),则:'f P ?=2(P b -P b ')-(P a -P a ')

为了实验方便,称(P b -P b ')为近点压差,称(P a -P a ')为远点压差。其数值用差压传感器或U 型管压差计来测量。 3.离心泵特性曲线的测定:

离心泵是最常见的液体输送设备。在一定的型号和转速下,离心泵的扬程H 、轴功率N 及效率η均随流量Q 而改变。通常通过实验测出H —Q 、N —Q 及η—Q 关系,并用曲线表示之,称为特性曲线。特性曲线是确定泵的适宜操作条件和选用泵的重要依据。泵特性曲线的具体测定方法如下:

(1) H 的测定:

在泵的吸入口和排出口之间列柏努利方程

出入入出

出入入入-+++=+++f H g u g P Z H g u g P Z 2222ρρ (7)

()出入入出入出入出-+-+-+-=f H g

u u g P P Z Z H 222ρ (8)

上式中出入-f H 是泵的吸入口和压出口之间管路内的流体流动阻力,与柏努力方程中其它项比较,出入-f H 值很小,故可忽略。于是上式变为:

()g

u u g P P Z Z H 222入

出入出入出-+-+-=ρ (9)

将测得的()入出Z Z -和入出P P -值以及计算所得的出入u u ,代入上式,即可求得H 。

(2) N 测定:

功率表测得的功率为电动机的输入功率。由于泵由电动机直接带动,传动效率可视为1,所以电动机的输出功率等于泵的轴功率。即:

泵的轴功率 N=电动机的输出功率,Kw

电动机输出功率=电动机输入功率×电动机效率。 泵的轴功率=功率表读数×电动机效率,Kw 。

(3) η 测定 N

Ne

=

η (10) )(102

1000Kw HQ g HQ Ne ρ

ρ== (11)

式中:η—泵的效率; N —泵的轴功率,Kw ;

Ne-泵的有效功率Kw ; H —泵的扬程,m ; Q —泵的流量,m 3/s ; ρ-水的密度,Kg/m 3。 4.管路特性曲线的测定:

当离心泵安装在特定的管路系统中工作时,实际的工作压头和流量不仅与离心泵本身的性能有关,还与管路特性有关,也就是说,在液体输送过程中,泵和管路二者相互制约的。

管路特性曲线是指流体流经管路系统的流量与所需压头之间的关系。若将泵的特性曲线与管路特性曲线在同一坐标图上,两曲线交点即为泵的在该管路的工作点。因此,如同通过改变阀门开度来改变管路特性曲线,求出泵的特性曲线一样,可通过改变泵转速来改变泵的特性曲线,从而得出管路特性曲线。泵的压头H 计算同上。

5.流量计性能的测定:

流体通过节流式流量计时在上、下游两取压口之间产生压强差,它与流量的关系为: ρ

)

(2q 0

0V P P A C -= (12)

式中:-V q 被测流体(水)的体积流量,m 3/s ; —0C 流量系数,无因次;

化工流动过程综合实验

一、实验目的: 1.学习直管摩擦阻力f P ?,直管摩擦系数λ的测定方法。. 2.掌握直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系及其变化规律。 3.掌握局部摩擦阻力f P ?,局部阻力系数ζ的测定方法。. 4.学习压强差的几种测量方法和提高其测量精确度的一些技巧。 5.熟悉离心泵的操作方法。 6.掌握离心泵特性曲线和管路特性曲线的测定方法、表示方法、加深对离心泵性能的了解。 二、实验内容: 1.测定实验管路内流体流动的阻力和直管摩擦系数λ。 2.测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系曲线。 3.测定管路部件局部摩擦阻力f P ?和局部阻力系数ζ。 4.熟悉离心泵的结构与操作方法。 5.测定某型号离心泵在一定转速下的特性曲线。 6.测定流量调节阀某一开度下管路特性曲线。 三、实验原理: 1.直管摩擦系数λ与雷诺数Re 的测定: 直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。 流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为: ρ ρf f P P P h ?=-= 2 1 (1) 又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式) 2 2 u d l h f P f λρ == ? (2) 整理(1)(2)两式得 22u P l d f ???= ρλ (3)

μ ρ ??= u d Re (4) 式中: -d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -μ流体的粘度,N ·s / m 2。 在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。 根据实验数据和式(3)可计算出不同流速下的直管摩擦系数λ,用式(4)计算对应的Re ,整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。 2.局部阻力系数ζ的测定 22 'u P h f f ζρ =?= ' 2'2u P f ?????? ??=ρζ 式中: -ζ局部阻力系数,无因次; -?'f P 局部阻力引起的压强降,Pa ; -'f h 局部阻力引起的能量损失,J /kg 。 图-1 局部阻力测量取压口布置图 局部阻力引起的压强降'f P ? 可用下面方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在上、下游各开两对测压口a-a'和b-b '如图-1,使 ab =bc ; a 'b '=b 'c ',则 △P f ,a b =△P f ,bc ; △P f ,a 'b '= △P f ,b 'c ' 在a~a '之间列柏努利方程式 P a -P a ' =2△P f ,a b +2△P f ,a 'b '+△P 'f (5) 在b~b '之间列柏努利方程式: P b -P b ' = △P f ,bc +△P f ,b 'c '+△P 'f = △P f ,a b +△P f ,a 'b '+△P 'f (6) 联立式(5)和(6),则:'f P ?=2(P b -P b ')-(P a -P a ')

化工原理实验报告

化工原理实验报告 Prepared on 22 November 2020

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面积求得) (m/s)

1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位差可 知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 222121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图 泵额定流量为10L/min,扬程为8m,输入功率为80W. 实验管:内径15mm 。 四、实验操作步骤与注意事项 1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。 2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。 3、打开阀5,观察测压管水头和总水头的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况。 4、将流量控制阀开到一定大小,观察并记录各测压点平行与垂直流体流动方向的液位差△h 1…△h 4。要注意其变化情况。继续开大流量调节阀,测压孔正对水流方向,观察并记录各测压管中液位差△h 1…△h 4。 5、实验完毕停泵,将原始数据整理。 实验二 离心泵性能曲线测定 一、实验目的 1. 了解离心泵的构造和操作方法 2. 学习和掌握离心泵特性曲线的测定方法

化工原理实验报告

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面 积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

化工原理实验讲义(doc 55页)

化工原理实验讲义化工与环境学院化学工程与控制系化工原理实验室

编写说明 近几年来,本实验室的实验装置中的大部分都进行了更新或改造。过去编写的实验讲义已经不能适应目前的状况,兄弟院校的相关实验教程也由于装置、内容、重点等方面的差异而有一定的局限。所以有必要重新编写一本适用的实验讲义。这有助于提高实验教学质量,改善教学效果。 本实验讲义的大部分内容,曾经以补充讲义电子版的形式提供给2003和2004级两个年级的本科生700多名同学试用,取得了比较满意的效果。此次正式交付印刷,又增补了一些必要的基础知识,各个实验项目的思考题,以及选修实验项目的内容。第一、第二章由毋俊生执笔,其余章节由邓文生,康惠宝执笔,全书由刘文芳排版编辑。本次又根据2011年更换的设备,对流体阻力测定、干燥实验、雷诺实验部分进行了修订,并对其它部分的一些笔误进行了更正。虽然编者都具有较长期指导本实验课程的经历,但受知识结构、理解深度、认识水平等方面的局限,不当之处在所难免。期望使用本讲义的老师和同学提出您的意见、建议和指正。 2007年7月编 2012年4月修订

目录 第 1 章化工基础实验技术 (2) 1.1 温度的测量 (2) 1.2 压力的测量 (3) 1.3 流量的测量 (5) 第 2 章实验数据分布及基本数据处理 (9) 2.1 实验数据的分布 (9) 2.2 实验数据的基本处理 (9) 2.3 实验报告的基本要求 (10) 第 3 章化工原理基本实验 (12) 3.1 流体流动阻力的测定 (12) 3.2 离心泵特性曲线的测定 (16) 3.3 对流传热系数的测定 (20) 3.4 填料塔压降曲线和吸收系数的测定 (23) 3.5 精馏塔效率的测定 (28) 3.6 干燥速率曲线的测定 (32) 3.7 扩散系数的测定 (35) 3.8 液—液萃取塔的操作 (39) 第 4 章演示实验 (42) 4.1 雷诺实验 (42) 4.2 机械能守恒与转换 (45) 4.3 边界层形成与分离 (47) 第 5 章化工流动过程综合实验 (48)

化工原理实验

《化工原理实验》 讲稿 二0一四年二月

1.雷诺实验 一、实验目的 1.观察层流、湍流的流态及其转化特征; 2.测定临街雷诺准数,掌握圆管流动形态的判别准则; 3.观察紊流(或湍流)产生过程,理解紊流产生机理。 二、实验原理 1. 液体在运动时,存在着两种根本不同的流动状态。当液体流速较小时,惯性力较小,粘滞力对质点起控制作用,使各流层的液体质点互不混杂,液流呈层流运动。当液体流速逐渐增大,质点惯性力也逐渐增大,粘滞力对质点的控制逐渐减弱,当流速达到一定程度时,各流层的液体形成涡体并能脱离原流层,液流质点即互相混杂,液流呈紊流运动。这种从层流到紊流的运动状态,反应了液流内部结构从量变到质变的一个变化过程。 2.当初始状态流速较大时,从紊流到层流的过渡流速为下临界流速,对应的雷诺准数为下临界雷诺数,反之为上临界流速和上临界雷诺数。 μ ρu d = Re (1) 式中 d ——导管直径,m ; ρ——流体密度,kg ·m 3-; μ——流体粘度,Pa ·s ; u ——流体流速,m ·s 1-; 大量实验测得:当雷诺准数小于某一下临界值时,流体流动型态恒为层流;当雷诺数大于某一上临界值时,流体流型恒为湍流。在上临界值与下临界值之间,则为不稳定的过渡区域。对于圆形导管,下临界雷诺数为2000,上临界雷诺数为10000。一般情况下,上临界雷诺数为4000时,即可形成湍流。 应当指出,层流与湍流之间并非是突然的转变,而是两者之间相隔一个不稳定过渡区域,因此,临界雷诺数测定值和流型的转变,在一定程度上受一些不稳定的其他因素的影响。 三、实验装置 (雷诺实验仪CEA —F01型) 雷诺试验装置主要由稳压溢流水槽、试验导管和转子流量计等部分组成,如图1所示。自来水不断注入并稳压溢流水槽。稳压溢流水槽的水流经试验导管和流量计,最后排入下水道。稳压溢流水槽的溢流水,也直接排入下水道。

化工原理精馏实验报告

北 京 化 工 大 学 实 验 报 告 课程名称: 化工原理实验 实验日期: 2011.04.24 班 级: 化工0801 姓 名: 王晓 同 组 人:丁大鹏,王平,王海玮 装置型号: 精馏实验 一、摘要 精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。 关键词:精馏、板式塔、理论板数、总板效率、单板效率 二、实验目的 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气-液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数。 三、实验原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量和采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。 实际回流比常取用最小回流比的1.2-2.0倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E e N E N 式中 E —总板效率; N —理论板数(不包括塔釜); Ne —实际板数。

化工原理实验讲义全

化工原理实验 讲义 专业:环境工程 应用化学教研室 2015.3

实验一 流体机械能转化实验 一、实验目的 1、了解流体在管流动情况下,静压能、动能、位能之间相互转化关系,加深对伯努利方程的理解。 2、了解流体在管流动时,流体阻力的表现形式。 二、实验原理 流动的流体具有位能、动能、静压能、它们可以相互转换。对于实际流体, 因为存在摩擦,流动过程中总有一部分机械能因摩擦和碰撞,而被损失掉。所以对于实际流体任意两截面,根据能量守恒有: 2211221222f p v p v z z H g g g g ρρ++=+++ 上式称为伯努利方程。 三、实验装置(d A =14mm ,d B =28mm ,d C =d D =14mm ,Z A -Z D =110mm ) 实验装置与流程示意图如图1-1所示,实验测试导管的结构见图1-2所示: 图1-1 能量转换流程示意图

图1-2实验导管结构图 四、操作步骤 1.在低位槽中加入约3/4体积的蒸馏水,关闭离心泵出口上水阀及实验测试 导管出口流量调节阀和排气阀、排水阀,打开回水阀后启动离心泵。 2.将实验管路的流量调节阀全开,逐步开大离心泵出口上水阀至高位槽溢流 管有液体溢流。 3.流体稳定后读取并记录各点数据。 4.关小流量调节阀重复上述步骤5次。 5.关闭离心泵出口流量调节阀后,关闭离心泵,实验结束。 五、数据记录和处理 表一、转能实验数据表 流量(l/h) 压强mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 测试点标 号 1 2 3 4 5 6 7 8

化工综合实验考试题A答案

哈工大 2006 年 秋 季学期 化工综合实验 A 答案 试 题 一 填空(每题1分,共10分) 1.雷诺实验的目的是为了测定流体流动的型态,临界雷诺数 。 2.在流动阻力测定实验中,对于固定的管道其摩擦系数是 雷诺数 的函数。 3.传热实验中由于忽略了污垢和管壁热阻,因此总的传热系数和热水的传热膜系数数值关系近似为 1/2,一半 。 4.吸收实验测定二氧化碳在水中的浓度时,空白实验取 10 mL 的氢氧化钡用标准盐酸溶液滴定。 5.蒸馏实验中,分析塔顶和塔釜样品乙醇和丙醇的摩尔分数时,我们使用 阿贝折光仪 测得的实验数据。 6.干燥实验湿空气的相对湿度可以通过 湿球温度计 温度计测得,对干燥而言空气的湿度对于干燥操作影响很大。 7.离心泵特性曲线是在一定的条件下用清水测定的,主要有 压头-流量,效率-流量和功率-流量 组成。 8.转子流量计有用于测量空气和水的流量之分,使用时需要校正流量曲线,其正确的安装方法是 垂直向上 。 第 1 页 (共 4 页)

9.伯努力实验中,某一个截面的动压头等于该截面的冲压头与静压头之差。 10.在化工综合实验中,为了简化实验,便于数据处理,得到准数关联式。我们采用了量纲分析法,因次分析法 二简答题(20分) 1.U型压差计中指示液的选择原则是什么?(3分) 答:(1)指示液与管路流体互不相溶; (2)为了提高实验的精度,根据待测压差可能的最大值选择密度合理的指示液,待测压差较大的就应选择密度较大的指示液。 2.离心泵实验操作时,为何用控制出口阀的开度调节流量?(3分) 答:一个输送系统是由泵和管路共同构成,其工作状况也是由泵的特性与管路特性共同决定。控制出口阀的开度调节流量好处在于:(1)方便;(2)改变管路特性。 第2 页(共4 页)

化工原理实验传热实验报告

传热膜系数测定实验(第四组) 一、实验目的 1、了解套管换热器的结构和壁温的测量方法 2、了解影响给热系数的因素和强化传热的途径 3、体会计算机采集与控制软件对提高实验效率的作用 4、学会给热系数的实验测定和数据处理方法 二、实验内容 1、测定空气在圆管内作强制湍流时的给热系数α1 2、测定加入静态混合器后空气的强制湍流给热系数α1’ 3、回归α1和α1’联式4.0Pr Re ??=a A Nu 中的参数A 、a * 4、测定两个条件下铜管内空气的能量损失 二、实验原理 间壁式传热过程是由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三个传热过程所组成。由于过程复杂,影响因素多,机理不清楚,所以采用量纲分析法来确定给热系数。 1)寻找影响因素 物性:ρ,μ ,λ,c p 设备特征尺寸:l 操作:u ,βg ΔT 则:α=f (ρ,μ,λ,c p ,l ,u ,βg ΔT ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1],λ[ML T -3 Q -1],c p [L 2 T -2 Q -1],l [L] ,u [LT -1], βg ΔT [L T -2], α[MT -3 Q -1]] 3)选基本变量(独立,含M ,L ,T ,Q-热力学温度) ρ,l ,μ, λ 4)无量纲化非基本变量 α:Nu =αl/λ u: Re =ρlu/μ c p : Pr =c p μ/λ βg ΔT : Gr =βg ΔT l 3ρ2/μ2 5)原函数无量纲化 6)实验 Nu =ARe a Pr b Gr c 强制对流圆管内表面加热:Nu =ARe a Pr 0.4 圆管传热基本方程: 热量衡算方程: 圆管传热牛顿冷却定律: 圆筒壁传导热流量:)] /()ln[)()()/ln(11221122121 2w w w w w w w w t T t T t T t T A A A A Q -----?-?=δλ 空气流量由孔板流量测量:54.02.26P q v ??= [m 3h -1,kPa] 空气的定性温度:t=(t 1+t 2)/2 [℃]

化工原理实验思考题答案

实验1单项流动阻力测定 (1)启动离心泵前,为什么必须关闭泵的出口阀门? 答:由离心泵特性曲线知,流量为零时,轴功率最小,电动机负荷最小,不会过载烧毁线圈。 (2)作离心泵特性曲线测定时,先要把泵体灌满水以防止气缚现象发生,而阻力实验对泵灌水却无要求,为什么? 答:阻力实验水箱中的水位远高于离心泵,由于静压强较大使水泵泵体始终充满水,所以不需要灌水。 (3)流量为零时,U形管两支管液位水平吗?为什么? 答:水平,当u=0时柏努利方程就变成流体静力学基本方程: Z l P l ? :?g =Z2 P2;g,当P l = P2 时,Z I = Z2 (4 )怎样排除管路系统中的空气?如何检验系统内的空气已经被排除干净? 答:启动离心泵用大流量水循环把残留在系统内的空气带走。关闭出口阀后,打开U形管顶部的阀门,利用空气压强使U形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。 (5)为什么本实验数据须在双对数坐标纸上标绘? 答:因为对数可以把乘、除变成加、减,用对数坐标既可以把大数变成小数,又可以把小数扩大取值范围,使坐标点更为集中清晰,作出来的图一目了然。 (6)你在本实验中掌握了哪些测试流量、压强的方法?它们各有什么特点? 答:测流量用转子流量计、测压强用U形管压差计,差压变送器。转子流量计,随流量的大小,转子可以上、下浮动。U形管压差计结构简单,使用方便、经济。差压变送器,将压差转换 成直流电流,直流电流由毫安表读得,再由已知的压差~电流回归式算出相应的压差,可测 大流量下的压强差。 (7 )读转子流量计时应注意什么?为什么? 答:读时,眼睛平视转子最大端面处的流量刻度。如果仰视或俯视,则刻度不准,流量就全有误^^。 (8)两个转子能同时开启吗?为什么? 答:不能同时开启。因为大流量会把U形管压差计中的指示液冲走。 (9 )开启阀门要逆时针旋转、关闭阀门要顺时针旋转,为什么工厂操作会形成这种习惯?答:顺时针旋转方便顺手,工厂遇到紧急情况时,要在最短的时间,迅速关闭阀门,久而久之就形成习惯。当然阀门制造商也满足客户的要求,阀门制做成顺关逆开。 (10)使用直流数字电压表时应注意些什么? 答:使用前先通电预热15分钟,另外,调好零点(旧设备),新设备,不需要调零点。如果有波动,取平均值。 (11)假设将本实验中的工作介质水换为理想流体,各测压点的压强有何变化?为什么?答:压强相等,理想流体u=0,磨擦阻力F=0,没有能量消耗,当然不存在压强差。 Z j +P/? +uj/2g =Z2 +u;/2g , T d1=d2 二U1=U2 又T Z1=Z2 (水平管)P1 = P2 (12)离心泵送液能力,为什么可以通过出口阀调节改变?往复泵的送液能力是否也可采用同样的调节方法?为什么? 答:离心泵送液能力可以通过调节出口阀开度来改变管路特性曲线,从而使工作点改变。往复泵是正往移泵 流量与扬程无关。若把出口堵死,泵内压强会急剧升高,造成泵体,管路和电机的损 坏。 (13)本实验用水为工作介质做出的入一Re曲线,对其它流体能否使用?为什么?

化工原理流体综合实验报告

流体综合实验 实验目的 1)能进行光滑管、粗糙管、闸阀局部阻力测定实验,测出湍流区阻力系数与雷诺数关系曲线图; 2)能进行离心泵特性曲线测定实验,测出扬程与流量、功率与流量以及离心泵效率与流量的关系曲线图; 3)学习工业上流量、功率、转速、压力和温度等参数的测量方法,使学生了解涡轮流量计、电动调节阀以及相关仪表的原理和操作; 离心泵特性测定实验 一、基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H、轴功率N及效率η与泵的流量Q之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 1.扬程H的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: (1-1)由于两截面间的管子较短,通常可忽略阻力项fhΣ,速度平方差也很小,故也可忽略,则有 (1-2)式中:H=Z2-Z1,表示泵出口和进口间的位差,m; ρ——流体密度,kg/m3 ; g——重力加速度m/s2; p 1、p 2 ——分别为泵进、出口的真空度和表压,Pa;

H 1、H 2 ——分别为泵进、出口的真空度和表压对应的压头,m; u 1、u 2 ——分别为泵进、出口的流速,m/s; z 1、z 2 ——分别为真空表、压力表的安装高度,m。 由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.轴功率N的测量与计算 N=N电×k (W)(1-3) 其中,N 电 为电功率表显示值,k代表电机传动效率,可取k=0.95 3.效率η的计算 泵的效率η是泵的有效功率Ne与轴功率N的比值。有效功率Ne是单位时间内流体经过泵时所获得的实际功率,轴功率N是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。 泵的有效功率Ne可用下式计算: N e=HQρg (1-4)故泵效率为 (1-5)四、实验步骤及注意事项 (一)实验步骤: 1.实验准备: (1)实验用水准备:清洗水箱,并加装实验用水。 (2)离心泵排气:通过灌泵漏斗给离心泵灌水,排出泵内气体。 2、开始实验: (1)仪表自检情况,打开泵进口阀,关闭泵出口阀,试开离心泵,检查电机运转时声音是否正常,,离心泵运转的方向是否正确。 (2)开启离心泵,当泵的转速达到额定转速后,打开出口阀。 (3)实验时,通过组态软件或仪表逐渐改变出口流量调节阀的开度,使泵出口流量从1000L/h 逐渐增大到4000L/h,每次增加500L/h。在每一个流量下,待系统稳定流动5分钟后,读 取相应数据。离心泵特性实验主要需获取的实验数据为:流量Q、泵进口压力p 1 、泵出

化工原理实验答案

实验四 1.实验中冷流体和蒸汽的流向,对传热效果有何影响? 无影响。因为Q=αA△t m,不论冷流体和蒸汽是迸流还是逆流流动,由 于蒸汽的温度不变,故△t m不变,而α和A不受冷流体和蒸汽的流向的影响, 所以传热效果不变。 2.蒸汽冷凝过程中,若存在不冷凝气体,对传热有何影响、应采取什么 措施? 不冷凝气体的存在相当于增加了一项热阻,降低了传热速率。冷凝器 必须设置排气口,以排除不冷凝气体。 3.实验过程中,冷凝水不及时排走,会产生什么影响?如何及时排走冷 凝水? 冷凝水不及时排走,附着在管外壁上,增加了一项热阻,降低了传热速 率。在外管最低处设置排水口,及时排走冷凝水。 4.实验中,所测定的壁温是靠近蒸汽侧还是冷流体侧温度?为什么?传热系数k 接近于哪种流体的 壁温是靠近蒸汽侧温度。因为蒸汽的给热系数远大于冷流体的给热系 数,而壁温接近于给热系数大的一侧流体的温度,所以壁温是靠近蒸汽侧温度。而总传热系数K接近于空气侧的对流传热系数 5.如果采用不同压强的蒸汽进行实验,对α关联式有何影响? 基本无影响。因为α∝(ρ2gλ3r/μd0△t)1/4,当蒸汽压强增加时,r 和△t 均增加,其它参数不变,故(ρ2gλ3r/μd0△t)1/4变化不大,所以认为蒸汽压强 对α关联式无影响。

实验五固体流态化实验 1.从观察到的现象,判断属于何种流化? 2.实际流化时,p为什么会波动? 3.由小到大改变流量与由大到小改变流量测定的流化曲线是否重合,为什么? 4流体分布板的作用是什么? 实验六精馏 1.精馏塔操作中,塔釜压力为什么是一个重要操作参数,塔釜压力与哪些因素有关? 答(1)因为塔釜压力与塔板压力降有关。塔板压力降由气体通过板上孔口或通道时为克服局部阻力和通过板上液层时为克服该液层的静压力而引起,因而塔板压力降与气体流量(即塔内蒸汽量)有很大关系。气体流量过大时,会造成过量液沫夹带以致产生液泛,这时塔板压力降会急剧加大,塔釜压力随之升高,因此本实验中塔釜压力可作为调节塔釜加热状况的重要参考依据。(2)塔釜温度、流体的粘度、进料组成、回流量。 2.板式塔气液两相的流动特点是什么? 答:液相为连续相,气相为分散相。 3.操作中增加回流比的方法是什么,能否采用减少塔顶出料量D的方法? 答:(1)减少成品酒精的采出量或增大进料量,以增大回流比;(2)加大蒸气量,增加塔顶冷凝水量,以提高凝液量,增大回流比。 5.本实验中进料状态为冷态进料,当进料量太大时,为什么会出现精馏段干板,甚至出现塔顶既没有回流也没有出料的现象,应如何调节?

化工原理实验报告

化工原理实验报告

————————————————————————————————作者:————————————————————————————————日期: ?

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截 面积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

化工原理实验指导书

化工原理实验指导书 目录

实验一流体流淌阻力的测定 (1) 实验二离心泵特性曲线的测定 (5) 实验三传热系数测定实验 (7) 实验四筛板式精馏塔的操作及塔板效率测定 (9) 实验五填料塔吸取实验 (12) 演示实验柏努利方程实验 (14) 雷诺实验 (16) 实验一流体流淌阻力的测定 一、实验目的

1、了解流体在管道内摩擦阻力的测定方法; 2、确定摩擦系数λ与雷诺数Re 的关系。 二、差不多原理 由于流体具有粘性,在管内流淌时必须克服内摩擦力。当流体呈湍流流淌时,质点间不断相互碰撞,引起质点间动量交换,从而产生了湍动阻力,消耗了流体能量。流体的粘性和流体的涡流产生了流体流淌的阻力。在被侧直管段的两取压口之间列出柏努力方程式,可得: ΔP f =ΔP L —两侧压点间直管长度(m) d —直管内径(m) λ—摩擦阻力系数 u —流体流速(m/s ) ΔP f —直管阻力引起的压降(N/m 2 ) μ—流体粘度(Pa.s ) ρ—流体密度(kg/m 3 ) 本实验在管壁粗糙度、管长、管径、一定的条件下用水做实验,改变水流量,测得一系列流量下的ΔP f 值,将已知尺寸和所测数据代入各式,分不求出λ和Re ,在双对数坐标纸上绘出λ~Re 曲线 。 三、实验装置简要讲明 水泵将储水糟中的水抽出,送入实验系统,第一经玻璃转子流量计测量流量,然后送入被测直管段测量流体流淌的阻力,经回流管流回储水槽,水循环使用。 被测直管段流体流淌阻力△P 可依照其数值大小分不采纳变压器或空气—水倒置U 型管来测量。 四、实验步骤: 1、向储水槽内注蒸馏水,直到水满为止。 2、大流量状态下的压差测量系统,应先接电预热10-15分钟,观擦数字外表的初始值并记录后方可启动泵做实验。 3、检查导压系统内有无气泡存在.当流量为0时打开B1、B2两阀门,若空气-水倒置U 型管内两液柱的高度差不为0,则讲明系统内有气泡存在,需要排净气泡方可测取数据。 排气方法:将流量调至较大,排除导压管内的气泡,直至排净为止。 4、测取数据的顺序可从大流量至小流量,反之也可,一样测15~20组数,建议当流量读数小于300L/h 时,用空气—水倒置U 型管测压差ΔP 。 5、待数据测量完毕,关闭流量调剂阀,切断电源。 五、使用实验设备应注意的事项: 2 2u d L P h f f ?=?= λ ρ 2 2u P L d f ??= ρλμ ρ du = Re

实验四化工流体过程综合实验

实验四 化工流体过程综合实验 一、 实验目的 1?掌握光滑直管、粗糙直管阻力系数的测量方法,并绘制光滑管及粗糙管的 '-R e 曲线,将 其与摩擦系数图进行比较; 2?掌握阀门的局部阻力系数的测量方法; 3?了解各种流量计(节流式、转子、涡轮)的结构、性能及特点,掌握其使用方法;掌握节 流式流量计标定方法,会测定并绘制文丘里、孔板、喷嘴流量计流量标定曲线(流量 -压差 关系)及流量系数和雷诺数之间的关系( C 。- R e 关系); 4?了解离心泵的结构、操作方法,掌握离心泵特性曲线测定方法,并能绘制相应曲线。 二、 实验内容 1?测定光滑直管和粗糙直管摩擦阻力系数,绘制光滑管及粗糙管的 ? - Re 曲线; 2?测定阀门的局部阻力系数; 3?测定并绘制文丘里、孔板、喷嘴流量计(三选一)流量标定曲线(流量 -压差关系)及流 量系数和雷诺数之间的关系( C 。- R e 关系); 4?测量离心泵的特性曲线,并绘制相应曲线,确定其最佳工作范围。 三、 实验原理、方法和手段 1. 流体阻力实验 a. 直管摩擦系数,与雷诺数Re 的测定: 直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即 ?二f (Re, ;/d ),对一定的相 对粗糙度而言,,=f (Re )。 流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为: 又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式) h f Pi - P 2 P

i_u 2 d 2 整理⑴⑵两式得 h f P f

2d ■:Pf u 2 d -管径,m ; :Pf -直管阻力引起的压强降,Pa ; I -管长,m ; u -流速,m / s ; 3 『-流体的密度,kg / m ; 亠-流体的粘度,N ?s / m 2。 在实验装置中,直管段管长 I 和管径d 都已固定。若水温一定,则水的密度 p 和粘度卩也是 定值。所以本实验实质上是测定直管段流体阻力引起的压强降 , ;p f 与流速u (流量V )之间 的关系。 根据实验数据和式⑶可计算出不同流速下的直管摩擦系数 入用式⑷计算对应的 Re ,从 而整理出直管摩擦系数和雷诺数的关系,绘出 入与Re 的关系曲线。 b. 局部阻力系数'的测定: 式中: ■ -局部阻力系数,无因次; p 'f -局部阻力引起的压强降,Pa ; h 'f -局部阻力引起的能量损失, J /kg 。 式中: hf =

最新浙江大学化工原理实验---填料塔吸收实验报告分析解析

实验报告 课程名称:过程工程原理实验(乙) 指导老师: 叶向群 成绩:__________________ 实验名称:吸收实验 实验类型:工程实验 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 填料塔吸收操作及体积吸收系数测定 1 实验目的: 1.1 了解填料吸收塔的构造并熟悉吸收塔的操作; 1.2 观察填料塔的液泛现象,测定泛点空气塔气速; 1.3 测定填料层压降ΔP 与空塔气速u 的关系曲线; 1.4 测定含氨空气—水系统的体积吸收系数K y a 。 2 实验装置: 2.1 本实验的装置流程图如图1: 专业: 姓名: 学号: 日期:2015.12.26 地点:教十2109

2.2物系:水—空气—氨气。惰性气体由漩涡气泵提供,氨气由液氮钢瓶提供,吸收剂水采用自来水,他们的流量分别通过转子流量计。水从塔顶喷淋至调料层与自下而上的含氮空气进行吸收过程,溶液由塔底经过液封管流出塔外,塔底有液相取样口,经吸收后的尾气由塔顶排至室外,自塔顶引出适量尾气,用化学分析法对其进行组成分析。 3 基本原理: 实验中气体流量由转子流量计测量。但由于实验测量条件与转子流量计标定条件不一定相同,故转子流量计的读数值必须进行校正。校正方法如下:

3.2 体积吸收系数的测定 3.2.1相平衡常数m 对相平衡关系遵循亨利定律的物系(一般指低浓度气体),气液平衡关系为: 相平衡常数m与系统总压P和亨利系数E的关系如下: 式中:E—亨利系数,Pa P—系统总压(实验中取塔内平均压力),Pa 亨利系数E与温度T的关系为: lg E= 11.468-1922 / T 式中:T—液相温度(实验中取塔底液相温度),K。 根据实验中所测的塔顶表压及塔顶塔底压差△p,即可求得塔内平均压力P。根据实验中所测的塔底液相温度T,利用式(4)、(5)便可求得相平衡常数m。 3.2.2 体积吸收常数 体积吸收常数是反映填料塔性能的主要参数之一,其值也是设计填料塔的重要依据。本实验属于低浓气体吸收,近似取Y≈y、X≈x。 3.2.3被吸收的氨气量,可由物料衡算 (X1-X2) 式中:V—惰性气体空气的流量,kmol/h;

2014化工原理实验复习提纲(下册):

第一部分 实验基础知识 1、 如何读取实验数据 2、 如何写实验报告 3、 数据处理 一、实验数据的误差分析 1. 真值 2、平均值及其种类 3、误差的分类 4、精密度和精确度 5、实验数据的记数法和有效数字 错误认识:小数点后面的数字越多就越正确,或者运算结果保留位数越多越准确。 二、实验数据处理 实验数据中各变量的关系可表示为列表式,图示式和函数式。 第二部分 实验内容 a log log log log ln ln ln ln ln 1212=--+=?=+=?=截矩直线的斜率=真值,双对数坐标半对数坐标x x y y x b a y ax y bx a y ae y b bx Θ

每个实验的原理、操作方法、仪表的使用、实验记录、数据处理、思考题 一、精馏实验: 物系、实验原理、流程图、数据处理(用公式表示)、思考题 1)测定指定条件下的全塔效率或等板高度 2)操作中可调节可控制的量 3)物料浓度的测定方法 4)操作步骤,先全回流,再确定一定回流比操作,为什么 5)实验中出现异常现象(液泛,无回流),如何判断?如何处理? 6)进料状态对精馏塔的操作有何影响?确定q线需要测定哪几个 量?查取进料液的汽化潜热时定性温度应取何值? 7)什么是全回流?全回流操作的标志有哪些?在生产中有什么实际 意义? 8)其他条件都不变,只改变回流比,对塔性能会产生什么影响? 9)进料板位置是否可以任意选择,它对塔的性能有何影响? 10)为什么酒精蒸馏采用常压操作而不采用加压蒸馏或真空蒸馏? 11)将本塔适当加高,是否可以得到无水酒精?为什么? 12)影响精馏塔操作稳定的因素有哪些?如何确定精馏塔操作已达 稳定?本实验装置能否精馏出98%(质量)以上的酒精?为什么? 13)各转子流量计测定的介质及测量条件与标定时的状态不同,应如 何校正?

化工原理实验思考题答案汇总

流体流动阻力的测定 1.在测量前为什么要将设备中的空气排尽?怎样才能迅速地排尽?为什么?如何检验管路中的空气已经被排除干净? 答:启动离心泵用大流量水循环把残留在系统内的空气带走。关闭出口阀后,打开U 形管顶部的阀门,利用空气压强使U 形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。 2.以水为介质所测得的?~Re关系能否适用于其他流体? 答:能用,因为雷诺准数是一个无因次数群,它允许d、u、、变化 3?在不同的设备上(包括不同管径),不同水温下测定的?~Re数据能否关联在同一条曲线上? 答:不能,因为Re二du p仏与管的直径有关 离心泵特性曲线的测定 1.试从所测实验数据分析,离心泵在启动时为什么要关闭出口阀门?本实验中,为了得到较好的实验效果,实验流量范围下限应小到零,上限应到最大,为什么? 答:关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,会烧坏电机 (2)启动离心泵之前为什么要引水灌泵?如果灌泵后依然启动不起来,你认为可能的原因是什么? 答:离心泵不灌水很难排掉泵内的空气,导致泵空转而不能排水;泵不启动可能是电路问题或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。 (3)泵启动后,出口阀如果不开,压力表读数是否会逐渐上升?随着流量的增大,泵进、出口压力表分别有什么变化?为什么? 答:当泵不被损坏时,真空表和压力表读数会恒定不变,水泵不排水空转不受

外网特性曲线影响造成的 恒压过滤常数的测定 1.为什么过滤开始时,滤液常常有混浊,而过段时间后才变清? 答:开始过滤时,滤饼还未形成,空隙较大的滤布使较小的颗粒得以漏过,使滤液浑浊,但当形成较密的滤饼后,颗粒无法通过,滤液变清。? 2.实验数据中第一点有无偏低或偏高现象?怎样解释?如何对待第一点数据? 答:一般来说,第一组实验的第一点△ A A q会偏高。因为我们是从看到计量桶出现第一滴滤液时开始计时,在计量桶上升1cm 时停止计时,但是在有液体流出前管道里还会产生少量滤液,而试验中管道里的液体体积产生所需要的时间并没有进入计算,从而造成所得曲线第一点往往有较大偏差。 3?当操作压力增加一倍,其K值是否也增加一倍?要得到同样重量的过滤液,其过滤时间是否缩短了一半? 答:影响过滤速率的主要因素有过滤压差、过滤介质的性质、构成滤饼的 颗粒特性,滤饼的厚度。由公式K=2I A P1-s, T=qe/K可知,当过滤压强提高一倍时,K增大,T减小,qe是由介质决定,与压强无关。 传热膜系数的测定 1.将实验得到的半经验特征数关联式和公认式进行比较,分析造成偏差的原因。 答:答:壁温接近于蒸气的温度。 可推出此次实验中总的传热系数方程为 其中K是总的传热系数,a是空气的传热系数,02是水蒸气的传热系数,3是铜管的厚度,入是铜的导热系数,R1、R2为污垢热阻。因R1、R2和金属壁的热阻较小,可忽略不计,则Tw- tw,于是可推导出,显然,壁温Tw接近于给热系数较大一侧的流体温度,对于此实验,可知壁温接近于水蒸气的温度。

化工原理实验实验报告

篇一:化工原理实验报告吸收实验 姓名 专业月实验内容吸收实验指导教师 一、实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数kya. 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z ?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量l0=0时,可知 为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z ?p值较小时为恒持z折线位置越向左移动,图中l2>l1。每条折线分为三个区段, 液区,?p?p?p~uo关系曲线斜率与干塔的相同。值为中间时叫截液区,~uo曲zzz ?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。 姓名 专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。在液泛区塔已z 无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 图2-2-7-1 填料塔层的?p~uo关系图 z 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名 专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2] h——填料层高度[m] ?ym——气相对数平均推动力 kya——气相体积吸收系数[kmolnh3/m3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2): na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h] l——吸收剂(水)的流量[kmolh20/h] y1——塔底气相浓度[kmolnh3/kmol空气] y2——塔顶气相浓度[kmolnh3/kmol空气] x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20] 由式(1)和式(2)联解得: kya?v(y1?y2)(3) ??h??ym 为求得kya必须先求出y1、y2和?ym之值。 1、y1值的计算:

相关主题
文本预览
相关文档 最新文档