当前位置:文档之家› 实验四化工流体过程综合实验

实验四化工流体过程综合实验

实验四化工流体过程综合实验
实验四化工流体过程综合实验

实验四 化工流体过程综合实验

、实验目的

1?掌握光滑直管、粗糙直管阻力系数的测量方法,并绘制光滑管及粗糙管的

R e 曲线,将

其与摩擦系数图进行比较;

2?掌握阀门的局部阻力系数的测量方法;

3?了解各种流量计(节流式、转子、涡轮)的结构、性能及特点,掌握其使用方法;掌握节

流式流量计标定方法,会测定并绘制文丘里、孔板、喷嘴流量计流量标定曲线(流量

-压差

关系)及流量系数和雷诺数之间的关系(

c o R e 关系);

4?了解离心泵的结构、操作方法,掌握离心泵特性曲线测定方法,并能绘制相应曲线。

二、 实验内容

1?测定光滑直管和粗糙直管摩擦阻力系数,绘制光滑管及粗糙管的 R e 曲线;

2?测定阀门的局部阻力系数;

3?测定并绘制文丘里、孔板、喷嘴流量计(三选一)流量标定曲线(流量

-压差关系)及流

量系数和雷诺数之间的关系(

c o R e 关系);

4?测量离心泵的特性曲线,并绘制相应曲线,确定其最佳工作范围。

三、 实验原理、方法和手段

1?流体阻力实验

a. 直管摩擦系数与雷诺数Re 的测定:

直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即

f (Re, /d ),对一定的相

对粗糙度而言,

f (Re )。

流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为:

又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式)

整理⑴⑵两式得

h f

Pl P 2

P f

h f

P f

l u 2

2d P

f

u 2

b.

局部阻力系数 的测定:

h f

2 p 'f

— 2

u

式中: 局部阻力系数,无因次;

p 'f 局部阻力引起的压强降,Pa ;

式中:

d 管径,m ;

P f 直管阻力引起的压强降,Pa ;

l 管长,m ;

u 流速,m / s ;

流体的密度,kg / m 3; 流体的粘度,N ?s / m 2。

在实验装置中,直管段管长

I 和管径d 都已固定。若水温一定,则水的密度

p 和粘度卩也是

定值。所以本实验实质上是测定直管段流体阻力引起的压强降

P f 与流速u (流量V )之间

的关系。

根据实验数据和式⑶可计算出不同流速下的直管摩擦系数 入用式⑷计算对应的 Re ,从

而整理出直管摩擦系数和雷诺数的关系,绘出

入与Re 的关系曲线。

P f

图-1局部阻力测量取压口布置图

局部阻力引起的压强降

p f 可用下面的方法测量:在一条各处直径相等的直管段上,

安装待测局部阻力的阀门,在其上、下游开两对测压口

a-a'和b-b /,见图-1,使

ab = be ;

a z

b z = b z

c z

贝V

△ P f ,a b =△ P f ,be ; △ P f ,a b = △ P f ,b z e z

在a~a z 之间列柏努利方程式:

P a — F V =2A P f , a b +2 △ P f , a ,b ,+ △ P f

(5)

在b~b ,之间列柏努利方程式:

/

P b — P b , = △ P f , be +A P f , b ,e ,+△ P f

/

=△ P f , a b + △ P f , a ,b ,+ △ P f

(6)

联立式⑸和⑹,则:

P f = 2(P b — P b ,) — (P a — P a )

为了实验方便,称(P b — P b ,)为近点压差,称(P a — P a ,)为远点压差。其数值用差压传感器 来测量。

2?流量计性能测定:

流体通过节流式流量计时在上、下游两取压口之间产生压强差,它与流量的关系为:

式中: V —被测流体(水)的体积流量,m 3/s ;

C o —流量系数,无因次;

A o —流量计节流孔截面积, m 2;

p 上 p 下一流量计上、下游两取压口之间的压强差,

Pa ;

—被测流体(水)的密度,kg / m 3。

用涡轮流量计作为标准流量计来测量流量

V S 。,每一个流量在压差计上都有一对应的读

c f

C o Ao.ZP 上 P 下

数,将压差计读数厶P 和流量V s 绘制成一条曲线,即流量标定曲线。同时利用上式整理数 据可进一步得到 C o — Re 关系曲线。

3?离心泵性能测定实验

离心泵的特征方程是从理论上对离心泵中液体质点的运动情况进行分析研究后,得出

的离心泵压头与流量的关系。离心泵的性能受到泵的内部结构、 叶轮形式和转数的影响。故

在实际工作中,其内部流动的规律比较复杂, 实际压头要小于理论压头。因此,离心泵的扬

程尚不能从理论上作出精确的计算,需要实验测定。

a 扬程H 的测定:

在泵的吸入口和排出口之间列柏努利方程

Z 入

P 入 g 2

u 入 2g

H z 出

P 出 g

2

u 入 2g

h f 入出

2r

2 A

P 出 P 入 u 出

u 入

H

z 出 z 入

h f 入出

g

2g

上式中h f 入出是泵的吸入口和排出口之间管路内的流体流动阻力,

与柏努利方程中其它项比

较,h f 入出值很小,故可忽略。于是上式变为:

将测得的z 出 Z 入和P 出 P 入的值以及计算所得的 U 入,U 出代入上式即可求得 H 的值。

b. 轴功率N 的测定:

功率表测得的功率为电动机的输入功率。

由于泵由电动机直接带动,传动效率可视为1,

所以电动机的输出功率等于泵的轴功率。即: 泵的轴功率N =电动机的输出功率,kw 电动机的输出功率=电动机的输入功率X 电动机的效率。 泵的轴功率=功率表读数 >电动机效率,kw 。

c. 效率的测定:

Ne N 些

Ne 3

z

z 入

p 出 P 入 U 2出 U 2入 g 2g

式中: —泵的效率;

102

1000

孔板流量计 孔径 0.020m

喷嘴流量计 孔径 0.020m 实验管路管径: 0.042m

c. 离心泵性能部分:

离心泵:型号 WB70/055 电机效率 60%;

真空表:用于泵吸入口压强的测量 测量范围 0.1-0MPa

真空表测压位置管内径 d 1=0.036m

N —泵的轴功率, kw ; Ne

— 泵的有效功率 kw ;

H — 泵的扬程, m ; Q — 泵的流量, m 3/s

—水的密度, kg/m 3

四、实验组织运行要求

集中授课形式

五、实验条件

1. 实验设备主要技术参数: a. 流体阻力部分:

被测直管段:光滑管管径

d-0.008 (m) 管长 L-1.700 (m)

粗糙管管径 d-0.010 (m) 管长 L-1.700 (m)

材料不锈钢 材料不锈钢

玻璃转子流量计

: LZB — 25 100~1000(L/h )

VA10-15F 10~100 ( L/h )

压差传感器:

型号 LXWY

测量范围 200 KPa

数字显示仪表: 测量参数名称

仪表名称

数量

温度

AI-501B 1

压差

AI-501BV24 1

流量

AI-501BV24 1

功率

AI-501B

1

b.流量计性能部分:

流量测量:文丘里流量计

文丘里喉径 0.020m

精度 1.5 级,

离心泵:型号 WB70/055

压力表:用于泵出口压力的测量

测量范围0-0.25MPa 精度1.5级

压强表测压位置管内径 d 2=0.042m

流量计:涡轮流量计

精度0.5级;

两测压口之间距离:真空表与压强表测压口之间的垂直距离

h o =o.25m

d. 管路特性部分:

变频器:型号E301-201-H 规格:(0-50)Hz

2.实验装置流程图及流程简介:

图-2流体流动过程综合实验流程示意图

1-水箱;2-水泵;3-入口真空表; 4-出口压力表;

5、16-缓冲罐;

6、14-测局部阻力近端

31-倒U 型管平衡阀

⑴流体阻力测量流程:

水泵2将储水槽1中的水抽出,送入实验系统,经玻璃转子流

阀;7、15-测局部阻力远端阀; & 17-粗糙管测压阀; 9、 21-光

滑管测压阀; 10-局部阻力阀; 11-文丘里流量计

(孔板流量计) ;12-

压力传感器; 13-涡流流量计;

18、32-阀门; 20-粗糙管阀;

22- 小转子流量计;

23-大转子流量计 ?; 24阀门;

25-水箱放水阀;

26- 倒U 型管放空阀;27-倒U 型管;28、30-倒U 型管排水阀; 29、

迅世 KPa)

无刃m 、/h )

[ ____ i ■_.

B

紬矗聲裁溜

量计22、23测量流量,然后送入被测直管段测量流体流动阻力,经回流管流回储水槽 被测直管段流体流动阻力 AP 可根据其数值大小分别采用变送器 12或空气一水倒置U 型管

来测量。

⑵流量计、离心泵性能测定流程:

水泵2将水槽1内的水输送到实验系统, 流体经涡轮流量计13计量,用流量调节阀32 调节流量,回到储水槽。同时测量文丘里流量计两端的压差, 离心泵进出口压强、离心泵电

机输入功率并记录。 ⑶管路特性测量流程:

用流量调节阀32调节流量到某一位置,改变电机频率,测定涡轮流量计的频率、泵入 口压强、泵出口压强并记录。

六、实验步骤

1?流体阻力测量:

⑴向储水槽内注水至水箱三分之二。 (最好使用蒸馏水,以保持流体清洁 )

⑵光滑管阻力测定:

关闭粗糙管路阀门,将光滑管路阀门全开,在流量为零条件下,打开通向倒置 U 型管

U 型管内液柱高度差不为零,则表明导

-3所示:

3、4-排水阀; 11- U 型管进水阀; 12- 压力传感器; 26- U 型管放空阀; 27- U 型管

图-3导压系统示意图

导压系统排气操作方法如下:

a 打开11, 3, 4, 10~30秒(层流实验时 30~60秒);

b. 关闭11;

c. 打开26,将倒U 型压差计中的水排净;

的进水阀,检查导压管内是否有气泡存在。若倒置 压管内存在气泡。需要进行赶气泡操作。导压系统如图

d. 关闭3, 4, 26;

e. 打开11,使水进入倒U型压差计;

f. 闭流量调节阀24,此时若倒U型压差计中的差值为0,则说明管线中的气已排净。女口不为零则表明管路中仍有气泡存在,需要重复进行赶气泡操作。

该装置两个转子流量计并联连接, 根据流量大小选择不同量程的流量计测量流量。差压变送器与倒置U型管亦是并联连接,用于测量压差,小流量时用U型管压差计测量,大流量时用差压变送器测量。应在最大流量和最小流量之间进行实验操作,一般测取15?20组

数据。

注:在测大流量的压差时应关闭U 型管的进出水阀11,防止水利用U 型管形成回路影响实验数据。

⑶粗糙管阻力测定:关闭光滑管阀,将粗糙管阀全开,从小流量到最大流量,测取15~20组数据。

⑷测取水箱水温。待数据测量完毕,关闭流量调节阀,停泵。

⑸粗糙管、局部阻力测量方法同前。

2. 流量计、离心泵性能测定(以文丘里流量计为例):

⑴向储水槽内注入蒸馏水。检查流量调节阀32,压力表4的开关及真空表3的开关是否关

闭(应关闭)。

⑵启动离心泵,缓慢打开调节阀32至全开。待系统内流体稳定,即系统内已没有气体,打

开压力表和真空表的开关,方可测取数据。

⑶用阀门32调节流量,从流量为零至最大或流量从最大到零,测取10?15组数据,同时

记录涡轮流量计频率、文丘里流量计的压差、泵入口压强、泵出口压强、功率表读数,并记录水温。

⑷实验结束后,关闭流量调节阀,停泵,关闭电源。

七、实验注意事项:

1. 直流数字表操作方法请仔细阅读说明书,待熟悉其性能和使用方法后再进行使用操作。

2. 启动离心泵之前以及从光滑管阻力测量过渡到其它测量之前,都必须检查所有流量调节阀是否关闭。

3?利用压力传感器测量大流量下△ P时,应切断空气一水倒置U型玻璃管的阀门否则将影响测量数值的准确。

4. 在实验过程中每调节一个流量之后应待流量和直管压降的数据稳定以后方可记录数据。

5. 若之前较长时间未做实验,启动离心泵时应先盘轴转动,否则易烧坏电机。

6. 该装置电路采用五线三相制配电,实验设备应良好接地。

7. 使用变频调速器时一定注意FWD指示灯亮,切忌按FWREV键,REV指示灯亮时电机反转。

8. 启动离心泵前,必须关闭流量调节阀,关闭压力表和真空表的开关,以免损坏测量仪表。

9?实验水质要清洁,以免影响涡轮流量计运行。

八、思考题

1?本实验中的U型压差计的指示剂是何物?为什么选择它?

2?本实验中,倒置U型压差计一开始就排了气的,为什么在实验过程中还可以两边示数自由

增大和减小?

3?在做各实验时,如何判断流量这一数据是否合理?一般气体流速和流体流速各在什么范围?

九、实验报告

实验报告应体现预习、实验记录和实验报告

1?实验预习

在实验前每位同学都需要对本次实验进行认真的预习,并写好预习报告,在预习报告中

要写出实验目的、要求,需要用到的仪器设备、物品资料以及简要的实验步骤,形成一个操作提纲。对实验中的安全注意事项及可能出现的现象等做到心中有数,但这些不要求写在预

习报告中。

2.实验记录

学生开始实验时,应该将记录本放在近旁,将实验中所做的每一步操作、观察到的现象

和所测得的数据及相关条件如实地记录下来。

实验记录中应有指导教师的签名。

附:数据记录表

a. 直管阻力损失的测定

b. 局部阻力损失的测定

c. 流量计性能测定

d. 离心泵特性曲线测定

3 ?数据处理要求

实验数据处理需详细写出典型计算步骤,数据处理结果填入数据记录表;选用相应坐标

纸绘制实验内容中要求绘制的曲线。

4?实验总结

对实验数据、实验中的特殊现象、实验操作的成败、实验的关键点等内容进行整理、解释、分析总结,回答思考题,提出实验结论或提出自己的看法等。

化工流动过程综合实验

一、实验目的: 1.学习直管摩擦阻力f P ?,直管摩擦系数λ的测定方法。. 2.掌握直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系及其变化规律。 3.掌握局部摩擦阻力f P ?,局部阻力系数ζ的测定方法。. 4.学习压强差的几种测量方法和提高其测量精确度的一些技巧。 5.熟悉离心泵的操作方法。 6.掌握离心泵特性曲线和管路特性曲线的测定方法、表示方法、加深对离心泵性能的了解。 二、实验内容: 1.测定实验管路内流体流动的阻力和直管摩擦系数λ。 2.测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系曲线。 3.测定管路部件局部摩擦阻力f P ?和局部阻力系数ζ。 4.熟悉离心泵的结构与操作方法。 5.测定某型号离心泵在一定转速下的特性曲线。 6.测定流量调节阀某一开度下管路特性曲线。 三、实验原理: 1.直管摩擦系数λ与雷诺数Re 的测定: 直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。 流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为: ρ ρf f P P P h ?=-= 2 1 (1) 又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式) 2 2 u d l h f P f λρ == ? (2) 整理(1)(2)两式得 22u P l d f ???= ρλ (3)

μ ρ ??= u d Re (4) 式中: -d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -μ流体的粘度,N ·s / m 2。 在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。 根据实验数据和式(3)可计算出不同流速下的直管摩擦系数λ,用式(4)计算对应的Re ,整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。 2.局部阻力系数ζ的测定 22 'u P h f f ζρ =?= ' 2'2u P f ?????? ??=ρζ 式中: -ζ局部阻力系数,无因次; -?'f P 局部阻力引起的压强降,Pa ; -'f h 局部阻力引起的能量损失,J /kg 。 图-1 局部阻力测量取压口布置图 局部阻力引起的压强降'f P ? 可用下面方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在上、下游各开两对测压口a-a'和b-b '如图-1,使 ab =bc ; a 'b '=b 'c ',则 △P f ,a b =△P f ,bc ; △P f ,a 'b '= △P f ,b 'c ' 在a~a '之间列柏努利方程式 P a -P a ' =2△P f ,a b +2△P f ,a 'b '+△P 'f (5) 在b~b '之间列柏努利方程式: P b -P b ' = △P f ,bc +△P f ,b 'c '+△P 'f = △P f ,a b +△P f ,a 'b '+△P 'f (6) 联立式(5)和(6),则:'f P ?=2(P b -P b ')-(P a -P a ')

流体力学实验指导书( 建环专业)

目录 实验一静水压强实验???????????????????????????????????????????1实验二伯努利方程式的验证?????????????????????????????????????3实验三雷诺实验??????????????????????????????????????????????6实验四管道沿程阻力实验??????????????????????????????????????9实验五管道局部阻力系数的测定????????????????????????????????12

实验一静水压强实验 (一)实验目的 1、测定静止液体中某点的静水压强,加深对静压公式p=p0+γh的理解; 2、测定有色液体的重度,并通过实验加深理解位置水头,压强水头及测压管水 头的基本概念,观察静水中任意两点测压管水头Z+p/γ=常数。 p=p0+γh 式中:P——被测点的静水压强; P0——水箱中水面的表面压强; γ——液体重度; h——被测点在表面以下的竖直深度。 可知在静止的液体内部某一点的静水压强等于表面压强加上液体重度乘以该点在液面下的竖直深度。 (四)实验步骤 1、打开密封水箱E顶上空气阀门a,此时水箱内水面上的压强p0=p a。观察各测压连通管内液面是否平齐,如果不齐则检查各管内是否阻塞并加以勾通。

2、读取A点、B点的位置高度Z A、Z B。 3、关闭空气阀门a,转动手柄,抬高长方形小水箱F至一定高度,此时表面压力P0>P a,待水面稳定后读各测压管中水位标高▽=▽I(I=1、2、3、 4、5),并记入表中。 4、在保持P0>P a的条件下,改变长方形小水箱F高度,重复进行2-3次。 5、打开空气阀门a,使水箱内的水面上升,然后关闭空气阀门a,下降长方形小水箱。 6、在P0<P a的条件下,改变水箱水位重复进行2-3次。 (五)对表中数据进行分析 单位:mm

化工仪表及自动化实验讲义

化工自动化及仪表实验讲义 程万里编 过程装备与控制工程教学组 2002.9

目录实验须知 实验一热电偶温度计的使用 实验二电动温度变送器的调整和使用实验三电子电位计的校验 实验四温度控制系统实验(一) 实验五温度控制系统实验(二)

实验须知 1.必须自始自终以认真和科学态度进行实验。 2.实验课不能迟到,实验期间不得擅自离开岗位。 3.切实注意安全,不得穿背心和拖鞋进入实验室。在连接线路时应先切断电源,不许带电操作。 4.为了顺利地进行实验和取得好的实验效果,必须认真预习,写出预习报告,若指导教师发现有同学尚未预习,则不准其参加实验。 5.实验中如发生异常现象或事故,必须立即切断电源,并保持现场,即及时报告教师,共同处理。 6.要爱护公物,不得擅自拆开仪器仪表,非本实验仪器设备不得随便动用。 7.实验完成后,应切断电源,整理好一切仪器设备,并把原始记录交教师签字,经允许后方可离开实验。 8.实验后,每人应独立完成实验报告,报告与原始记录均按教师规定的时间上交。

实验一 热电偶温度计的使用 一.实验目的: 1.掌握热电偶与动圈仪的配套连接,测温方法及外阻影响。 2.掌握热电偶配手动电位计的测温方法。 3.掌握热电偶冷端温度影响及补偿方法。 二.实验仪器: 1.管状电炉 2.自耦变压器(带电流表) 3.广口保温瓶 4.动圈仪 5.热电偶 6.接线板(带调整电阻) 7.手动电位差计 8.30cm不锈钢直尺 三.实验内容 (一)热电偶配手动电位差计测温: 1.按图1-1接线,注意极性是否接对,接点是否牢固等。为保持热电偶冷端温度为零度,将热电偶冷端放置保温瓶中内冰水混合物中。

化工综合实验考试题A答案

哈工大 2006 年 秋 季学期 化工综合实验 A 答案 试 题 一 填空(每题1分,共10分) 1.雷诺实验的目的是为了测定流体流动的型态,临界雷诺数 。 2.在流动阻力测定实验中,对于固定的管道其摩擦系数是 雷诺数 的函数。 3.传热实验中由于忽略了污垢和管壁热阻,因此总的传热系数和热水的传热膜系数数值关系近似为 1/2,一半 。 4.吸收实验测定二氧化碳在水中的浓度时,空白实验取 10 mL 的氢氧化钡用标准盐酸溶液滴定。 5.蒸馏实验中,分析塔顶和塔釜样品乙醇和丙醇的摩尔分数时,我们使用 阿贝折光仪 测得的实验数据。 6.干燥实验湿空气的相对湿度可以通过 湿球温度计 温度计测得,对干燥而言空气的湿度对于干燥操作影响很大。 7.离心泵特性曲线是在一定的条件下用清水测定的,主要有 压头-流量,效率-流量和功率-流量 组成。 8.转子流量计有用于测量空气和水的流量之分,使用时需要校正流量曲线,其正确的安装方法是 垂直向上 。 第 1 页 (共 4 页)

9.伯努力实验中,某一个截面的动压头等于该截面的冲压头与静压头之差。 10.在化工综合实验中,为了简化实验,便于数据处理,得到准数关联式。我们采用了量纲分析法,因次分析法 二简答题(20分) 1.U型压差计中指示液的选择原则是什么?(3分) 答:(1)指示液与管路流体互不相溶; (2)为了提高实验的精度,根据待测压差可能的最大值选择密度合理的指示液,待测压差较大的就应选择密度较大的指示液。 2.离心泵实验操作时,为何用控制出口阀的开度调节流量?(3分) 答:一个输送系统是由泵和管路共同构成,其工作状况也是由泵的特性与管路特性共同决定。控制出口阀的开度调节流量好处在于:(1)方便;(2)改变管路特性。 第2 页(共4 页)

化工原理实验讲义(doc 55页)

化工原理实验讲义化工与环境学院化学工程与控制系化工原理实验室

编写说明 近几年来,本实验室的实验装置中的大部分都进行了更新或改造。过去编写的实验讲义已经不能适应目前的状况,兄弟院校的相关实验教程也由于装置、内容、重点等方面的差异而有一定的局限。所以有必要重新编写一本适用的实验讲义。这有助于提高实验教学质量,改善教学效果。 本实验讲义的大部分内容,曾经以补充讲义电子版的形式提供给2003和2004级两个年级的本科生700多名同学试用,取得了比较满意的效果。此次正式交付印刷,又增补了一些必要的基础知识,各个实验项目的思考题,以及选修实验项目的内容。第一、第二章由毋俊生执笔,其余章节由邓文生,康惠宝执笔,全书由刘文芳排版编辑。本次又根据2011年更换的设备,对流体阻力测定、干燥实验、雷诺实验部分进行了修订,并对其它部分的一些笔误进行了更正。虽然编者都具有较长期指导本实验课程的经历,但受知识结构、理解深度、认识水平等方面的局限,不当之处在所难免。期望使用本讲义的老师和同学提出您的意见、建议和指正。 2007年7月编 2012年4月修订

目录 第 1 章化工基础实验技术 (2) 1.1 温度的测量 (2) 1.2 压力的测量 (3) 1.3 流量的测量 (5) 第 2 章实验数据分布及基本数据处理 (9) 2.1 实验数据的分布 (9) 2.2 实验数据的基本处理 (9) 2.3 实验报告的基本要求 (10) 第 3 章化工原理基本实验 (12) 3.1 流体流动阻力的测定 (12) 3.2 离心泵特性曲线的测定 (16) 3.3 对流传热系数的测定 (20) 3.4 填料塔压降曲线和吸收系数的测定 (23) 3.5 精馏塔效率的测定 (28) 3.6 干燥速率曲线的测定 (32) 3.7 扩散系数的测定 (35) 3.8 液—液萃取塔的操作 (39) 第 4 章演示实验 (42) 4.1 雷诺实验 (42) 4.2 机械能守恒与转换 (45) 4.3 边界层形成与分离 (47) 第 5 章化工流动过程综合实验 (48)

流体力学综合实验数据处理表

流体力学综合实验数据处理表 水在管道内流动的直管阻力损失 由附录查得水温t=20C 时,密度3 /2.998m kg 粘度1 001.0 s pa 由公式 p h f (1) 22u d l h f (2) u d Re (3)可分别算出f h , 和 Re 管内径管a=管b=管c d=0.02m 长度管a=管b=管c L=1m 以a 管第一组数据为例 p =10.323 10 pa 则2 .9981032.103 f h =10.34(J/k g ) 平均流速201.014.3360013.11 u =9.85m/s 则 =2 85.9134 .1002.02 =0.0043 Re = 001 .02 .99885.902.0 =196645 管b

管c 局部阻力系数 的计算 由公式22 u h f 得22u h f 不同开度下截止阀的局部阻力系数 管a 管b

离心泵的特性曲线 杨程H= f h g u g p g p 22 真表 0 f h 离心泵轴功率N=传电电 N 离心泵的效率 是理论功率与轴功率的比值,即 N N t 而理论功率t N 是离心泵对水所作的有效功,即)(102 kw QH N t 以第一组数据为例计算H= 10 201.014.3360002 .20102.99818000102.998125000215.21 m O H 2 N=95.075.01489 =1.601(kw) 2 .99821.1502.20 1.86 离心泵特性曲线

思考与讨论 1, 只管阻力产生的原因是什么?如何测定及计算? 答:原因是流涕在管道内流动时,由于内摩擦力的存在,必然有能量的损耗,此损耗能量为直观阻力损失。测定及计算方法为 p h f (1) 22 u d l h f (2) 2, 影响本实验测量准确度的原因有哪些?怎样侧准数据? 答:读数不精确,供水系统不稳定,电压不稳定,出口胶管排气未排完,如果要侧准数据,应该等仪器上显示的数据稳定后再读取。 3,根据实验测定数据,如何确定离心泵的工作点?水平或是垂直管中,对相同直径,相同条件下所测出的阻力损失是否相同? 答:根据极值数据来确定离心泵的工作点,水平或是垂直管中,对相同直径,相同条件下所测出的阻力损失不相同,

化工类专业实践综合试题及参考答案(04)

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至5页,第Ⅱ卷6至10页。满分200分,考试时间120分钟。考试结束后,将本试卷和答题卡一并交回。 第Ⅰ卷(选择题,共100分) 注意事项: 1.答第Ⅰ卷前,考生务必将自己的、准考号、考试科目用铅笔涂写在答题卡上。 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。 一、单项选择题(本大题共50个小题,每小题2分,共100分。在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出) 1.以下不属于压强单位的是() A.N/m2 B.atm C.mmHg D.N·m 2.以下关系式表达正确的是() A.大气压强=绝对压强+表压B.绝对压强=大气压强-真空度 C.真空度=绝对压强-大气压强D.大气压强=绝对压强-真空度 3.水在管道中稳定流动时,若管径增大一倍,则流速变为原来的()倍A.2 B.1/2 C.4 D.1/4 4.液体的粘度一般随温度的升高而() A.增大B.减小C.不变D.先增大后减小 5.流体在直管流动时,若其已进入完全湍流区,则摩擦系数λ与Re的关系为()A.Re增大,λ增大B.Re增大,λ减小 C.Re增大,λ基本不变D.Re增大,λ先增大后减小 6.离心泵启动前泵体未灌满液体,会发生的现象为() A.气缚B.气蚀C.喘振D.液泛 7.离心泵的扬程是指() A.泵的输送高度B.液体出泵和进泵时的压强差换算成的液柱高度 word版本.

C.泵的安装高度D.单位重量液体通过泵所获得的机械能 8.离心泵的效率η和流量Q的关系为() A.Q增加,η增大B.Q增加,η减小 C.Q增加,η先减小后增大D.Q增加,η先增大后减小 9.当转速变化不太大时,离心泵的流量Q和转速n的关系为() A.Q1/Q2≈n1/n2B.Q1/Q2≈n2/n1 C.Q1/Q2≈( n1/n2 )2D.Q1/Q2≈( n2/n1 )2 10.离心泵的工作点() A.与管路特性有关,与泵的特性无关B.与管路特性无关,与泵的特性有关 C.与管路特性和泵的特性均无关D.与管路特性和泵的特性均有关 11.在固体部,传热的基本方式为() A.热传导 B.热对流 C.热辐射 D.传导和对流 12.在多层平壁的定常热传导中,传热的总推动力() A.与各层的推动力相等B.与各层的推动力之和相等 C.与各层中最小的推动力相等D.与各层中最大的推动力相等 13.对流传热方程式Q=αA△t中,△t是指() A.两流体温度差(T-t)B.冷流体进、出口温度差(t2-t1) C.热流体进、出口温度差(T2-T1)D.流体和壁面温度差(T-T w)或(t w-t)14.忽略壁阻和污垢热阻,若对流传热系数α1《α2,则总传热系数K≈() A.α1B.α2C.(α1+α2)/2 D.(α2-α1)/2 15.在列管式换热器中,安装折流挡板的目的是() A.提高管程对流传热系数B.减小管程对流传热系数 C.提高壳程对流传热系数D.减小壳程对流传热系数 16.某双组分理想溶液,其中A为易挥发组分。液相组成x A=0.5时相应的泡点为t1,气相组成y A=0.3时相应的露点为t2,则() A.t1=t2B.t1<t2C.t1>t2D.无法判断 17.在精馏塔自下而上,气相中易挥发组分的含量逐板() word版本.

化工原理实验讲义全

化工原理实验 讲义 专业:环境工程 应用化学教研室 2015.3

实验一 流体机械能转化实验 一、实验目的 1、了解流体在管流动情况下,静压能、动能、位能之间相互转化关系,加深对伯努利方程的理解。 2、了解流体在管流动时,流体阻力的表现形式。 二、实验原理 流动的流体具有位能、动能、静压能、它们可以相互转换。对于实际流体, 因为存在摩擦,流动过程中总有一部分机械能因摩擦和碰撞,而被损失掉。所以对于实际流体任意两截面,根据能量守恒有: 2211221222f p v p v z z H g g g g ρρ++=+++ 上式称为伯努利方程。 三、实验装置(d A =14mm ,d B =28mm ,d C =d D =14mm ,Z A -Z D =110mm ) 实验装置与流程示意图如图1-1所示,实验测试导管的结构见图1-2所示: 图1-1 能量转换流程示意图

图1-2实验导管结构图 四、操作步骤 1.在低位槽中加入约3/4体积的蒸馏水,关闭离心泵出口上水阀及实验测试 导管出口流量调节阀和排气阀、排水阀,打开回水阀后启动离心泵。 2.将实验管路的流量调节阀全开,逐步开大离心泵出口上水阀至高位槽溢流 管有液体溢流。 3.流体稳定后读取并记录各点数据。 4.关小流量调节阀重复上述步骤5次。 5.关闭离心泵出口流量调节阀后,关闭离心泵,实验结束。 五、数据记录和处理 表一、转能实验数据表 流量(l/h) 压强mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 测试点标 号 1 2 3 4 5 6 7 8

化工原理流体综合实验报告

流体综合实验 实验目的 1)能进行光滑管、粗糙管、闸阀局部阻力测定实验,测出湍流区阻力系数与雷诺数关系曲线图; 2)能进行离心泵特性曲线测定实验,测出扬程与流量、功率与流量以及离心泵效率与流量的关系曲线图; 3)学习工业上流量、功率、转速、压力和温度等参数的测量方法,使学生了解涡轮流量计、电动调节阀以及相关仪表的原理和操作; 离心泵特性测定实验 一、基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H、轴功率N及效率η与泵的流量Q之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 1.扬程H的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: (1-1)由于两截面间的管子较短,通常可忽略阻力项fhΣ,速度平方差也很小,故也可忽略,则有 (1-2)式中:H=Z2-Z1,表示泵出口和进口间的位差,m; ρ——流体密度,kg/m3 ; g——重力加速度m/s2; p 1、p 2 ——分别为泵进、出口的真空度和表压,Pa;

H 1、H 2 ——分别为泵进、出口的真空度和表压对应的压头,m; u 1、u 2 ——分别为泵进、出口的流速,m/s; z 1、z 2 ——分别为真空表、压力表的安装高度,m。 由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.轴功率N的测量与计算 N=N电×k (W)(1-3) 其中,N 电 为电功率表显示值,k代表电机传动效率,可取k=0.95 3.效率η的计算 泵的效率η是泵的有效功率Ne与轴功率N的比值。有效功率Ne是单位时间内流体经过泵时所获得的实际功率,轴功率N是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。 泵的有效功率Ne可用下式计算: N e=HQρg (1-4)故泵效率为 (1-5)四、实验步骤及注意事项 (一)实验步骤: 1.实验准备: (1)实验用水准备:清洗水箱,并加装实验用水。 (2)离心泵排气:通过灌泵漏斗给离心泵灌水,排出泵内气体。 2、开始实验: (1)仪表自检情况,打开泵进口阀,关闭泵出口阀,试开离心泵,检查电机运转时声音是否正常,,离心泵运转的方向是否正确。 (2)开启离心泵,当泵的转速达到额定转速后,打开出口阀。 (3)实验时,通过组态软件或仪表逐渐改变出口流量调节阀的开度,使泵出口流量从1000L/h 逐渐增大到4000L/h,每次增加500L/h。在每一个流量下,待系统稳定流动5分钟后,读 取相应数据。离心泵特性实验主要需获取的实验数据为:流量Q、泵进口压力p 1 、泵出

综合化学实验讲义

宁夏理工学院综合化学实验(试用版) 罗桂林陈兵兵陈丽等主编 文理学院化工系 2014年10月

目录 实验一过氧化钙的合成及含量分析.............................. 错误!未定义书签。实验二三草酸合铁(Ⅲ)酸钾的制备及组成测定.................. 错误!未定义书签。实验三食盐中碘含量的测定(分光光度法)..................... 错误!未定义书签。实验四乙酸正丁酯的制备...................................... 错误!未定义书签。实验五水果中总酸度及维生素C含量的测定...................... 错误!未定义书签。实验六查尔酮的全合成........................................ 错误!未定义书签。

实验一过氧化钙的合成及含量分析 一、实验目的 1. 掌握制备过氧化钙的原理及方法。 2. 掌握过氧化钙含量的分析方法。 3. 巩固无机制备及化学分析的基本操作。 二、实验原理 在元素周期表中,第一主族和第二主族以及银与锌等均可形成化学稳定性各异的简单过氧化物;它们是氧化剂,对生态环境是有好的,生产过程中一般不排放污染物,可以实现污染的零排放。 CaO 2·8H 2 O是白色或微黄色粉末,无臭无味,在潮湿空气中可以长期缓慢释 放出氧气,50℃转化为CaO 2·2H 2 O,110℃-150℃可以脱水,转化为CaO 2, 室温下 较为稳定,加热到270℃时分解为CaO和O 2。 2CaO 2 =2CaO + O 2 △ r H m = mol CaO 2难溶于水,不溶于乙醇和丙酮,它与稀酸反应生成H 2 O 2 ,若放入微量的 碘化钾作催化剂,可作为应急氧气源;CaO 2 广泛用作杀菌剂、防腐剂、解酸剂和 油类漂白剂,CaO 2 也是种子及谷物的消毒剂,如将其用于稻谷种子拌种,不易发生秧苗烂根。 制备的原料可以是CaCl 2·6H 2 O、H 2 O 2 、NH 3 ·H 2 O,也可以是Ca(OH) 2 和NH 4 Cl, 在较低的温度下,通过原料物质之间的反应,在水溶液生成CaO 2·8H 2 O,在110℃ 条件下真空干燥,得到白色或微黄色粉末CaO 2 。有关反应式如下: CaCl 2 + 2 NH 3 ·H 2 O = 2NH 4 Cl + Ca(OH) 2 Ca(OH) 2 + H 2 O 2 + 6 H 2 O = CaO 2 ·8H 2 O 连解得: CaCl 2 + H 2 O 2 + 2 NH 3 ·H 2 O + 6 H 2 O ══ CaO 2 ·8H 2 O + 2NH 4 Cl 过氧化钙含量的测定,可以利用在酸性条件下,过氧化钙与稀酸反应生成过氧化氢,用标准高锰酸钾滴定来确定其含量。为加快反应,可加入微量的硫酸锰。 5CaO 2 + 2MnO 4 - + 16H+ = 5Ca2+ + 2Mn2+ + 5O 2 ↑+ 8H 2 O CaO 2的质量分数为:W(CaO 2 )= *C *V *M /m

实验四化工流体过程综合实验

实验四 化工流体过程综合实验 一、 实验目的 1?掌握光滑直管、粗糙直管阻力系数的测量方法,并绘制光滑管及粗糙管的 '-R e 曲线,将 其与摩擦系数图进行比较; 2?掌握阀门的局部阻力系数的测量方法; 3?了解各种流量计(节流式、转子、涡轮)的结构、性能及特点,掌握其使用方法;掌握节 流式流量计标定方法,会测定并绘制文丘里、孔板、喷嘴流量计流量标定曲线(流量 -压差 关系)及流量系数和雷诺数之间的关系( C 。- R e 关系); 4?了解离心泵的结构、操作方法,掌握离心泵特性曲线测定方法,并能绘制相应曲线。 二、 实验内容 1?测定光滑直管和粗糙直管摩擦阻力系数,绘制光滑管及粗糙管的 ? - Re 曲线; 2?测定阀门的局部阻力系数; 3?测定并绘制文丘里、孔板、喷嘴流量计(三选一)流量标定曲线(流量 -压差关系)及流 量系数和雷诺数之间的关系( C 。- R e 关系); 4?测量离心泵的特性曲线,并绘制相应曲线,确定其最佳工作范围。 三、 实验原理、方法和手段 1. 流体阻力实验 a. 直管摩擦系数,与雷诺数Re 的测定: 直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即 ?二f (Re, ;/d ),对一定的相 对粗糙度而言,,=f (Re )。 流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为: 又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式) h f Pi - P 2 P

i_u 2 d 2 整理⑴⑵两式得 h f P f

2d ■:Pf u 2 d -管径,m ; :Pf -直管阻力引起的压强降,Pa ; I -管长,m ; u -流速,m / s ; 3 『-流体的密度,kg / m ; 亠-流体的粘度,N ?s / m 2。 在实验装置中,直管段管长 I 和管径d 都已固定。若水温一定,则水的密度 p 和粘度卩也是 定值。所以本实验实质上是测定直管段流体阻力引起的压强降 , ;p f 与流速u (流量V )之间 的关系。 根据实验数据和式⑶可计算出不同流速下的直管摩擦系数 入用式⑷计算对应的 Re ,从 而整理出直管摩擦系数和雷诺数的关系,绘出 入与Re 的关系曲线。 b. 局部阻力系数'的测定: 式中: ■ -局部阻力系数,无因次; p 'f -局部阻力引起的压强降,Pa ; h 'f -局部阻力引起的能量损失, J /kg 。 式中: hf =

(A-10)化工传热综合实验

换热器传热系数测定 实验装置 说明书 天津大学化工基础实验中心 2014.08

一、实验目的: 1.了解套管换热器和列管换热器的结构,掌握对流传热系数i α和总传热系数的测定方法,加深对其概念和影响因素的理解。 2.学会并应用线性回归分析方法,确定传热管关联式Nu=ARe m Pr 0.4中常数A 、m 数值。 二、实验内容: 1.测定不同流速下套管换热器的对流传热系数i α。 2.测定不同流速下列管换热器的总对流传热系数K 。 3.对i α实验数据进行线性回归,确定关联式Nu=ARe m Pr 0.4中常数A 、m 的数值。 三、实验原理: 1.套管换热器传热系数测定及准数关联式的确定: (1)对流传热系数i α的测定 在该传热实验套管换热器中,空气走内管,热水走外管。 对流传热系数i α可以根据牛顿冷却定律,用实验来测定 i i i S t Q ??= α (1) 式中:i α—管内流体对流传热系数,W/(m 2?℃); Q i —管内传热速率,W ; S i —管内换热面积,m 2; t ?—内壁面与流体间的温差,℃。 t ?由下式确定: 2 2 1t t T t w +- =? (2) 式中:t 1,t 2 —冷流体(空气)的入口、出口温度,℃; T w —壁面平均温度,℃; 因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,用t w 来表示。 管内换热面积: i i i L d S π= (3) 式中:d i —内管管内径,m ; L i —传热管测量段的实际长度,m 。

由热量衡算式: )(12t t Cp W Q m m i -= (4) 其中质量流量由下式求得: 3600 m m m V W ρ= (5) 式中:m V —冷流体在套管内的平均体积流量,m 3 / h ; m Cp —冷流体的定压比热,kJ / (kg ·℃); m ρ—冷流体的密度,kg /m 3 。 m Cp 和m ρ可根据定性温度t m 查得,2 2 1t t t m += 为冷流体进出口平均温度。t 1,t 2, T w , m V 可采取一定的测量手段得到。 (2)对流传热系数准数关联式的实验确定 流体在管内作强制湍流,被加热状态,准数关联式的形式为 n m A Nu Pr Re =. (6) 其中: i i i d Nu λα= , m m i m d u μρ=Re , m m m Cp λμ=P r 物性数据m λ、m Cp 、m ρ、m μ可根据定性温度t m 查得。经过计算可知,对于管内被加热的空气,普兰特准数Pr 变化不大,可以认为是常数,则关联式的形式简化为: 4.0Pr Re m A Nu = (7) 这样通过实验确定不同流量下的Re 与Nu ,然后用线性回归方法确定A 和m 的值。 2.列管换热器传热系数的测定: 管壳式换热器又称列管式换热器。是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。一种在管内流动,称为管程流体(冷流体);另一种在管外流动,称为壳程流体(热流体)。 传热系数Ko 用实验来测定

化工专业实验

化工专业实验 Experiment of Chemical Engineering and Technolog y 课程编号: 学分:1.5 实验总学时: 45 先修课程:化工设备机械基础、物理化学、化工原理、化工热力学、化学反应工程、分离工程、化学工艺学 适用专业:化学工程与工艺 一、目的与任务 本课程是化学工程与工艺专业必修的实践性课程。它是从工程与工艺两个角度出发,即以化工工艺生产为背景,又以解决工艺或过程开发中所遇到的共性工程问题为目的,选择典型的工艺与工程要素,所组成系列的工艺与工程实验。它是进行(化工类)工程师基本训练的重要环节之一,在专业教学计划中占有重要的地位。化学工程与工艺实验是在学生已经接受了基础理论与专业知识教育,有经受过初步工程实验训练的基础上进行的。在本实验教学中,将使学生了解与熟悉有关化工工艺过程、化学反应工程、传质与分离工程等学科发展方向上的实验技术和方法;掌握与学会过程开发的基本研究方法和常用的实验基本技能;培养学生的创造性思维方法、理论联系实际的学风与严谨的科学实验态度,提高实践动手能力。为毕业环节乃至今后工作打下坚实的基础,起到承前起后的作用。 二、实验教学的基本要求 (1)复习相关原理,认真写好预习报告,独立设计实验方法。 (2)了解仪器设备的原理构造和使用方法。 (3)按实验要求作好实验。 (4)数据处理。 (5)实验分析。

注:1、类型---指设计性、综合性、验证性;2、实验内容可调整。 四、实验成绩的考核与评定办法: 实验成绩的考核,以实验预习报告、实验报告和实验过程为考核依据,成绩分优、良、中、及格和不及格五等。 五、有关说明: 根据《化工热力学》、《化学工艺学》、《化学反应工程》、《分离工程》课程教学大纲,参考教材: 《化学工程与工艺实验》,房鼎业、乐清华、李福清主编化学工业出版社。 撰写人:沈玉堂 审定人:姜廷顺 批准人:倪良 时间:2013年5月10日

打印化工流动过程综合实验装置

化工流体过程综合实验 装置说明书

一、实验目的: 1.学习直管摩擦阻力f P ?,直管摩擦系数λ的测定方法。. 2.掌握直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系及其变化规律。 3.掌握局部摩擦阻力f P ?,局部阻力系数ζ的测定方法。. 4.学习压强差的几种测量方法和提高其测量精确度的一些技巧。 5.熟悉离心泵的操作方法。 6.掌握离心泵特性曲线和管路特性曲线的测定方法、表示方法、加深对离心泵性能的了解。 二、实验内容: 1.测定实验管路内流体流动的阻力和直管摩擦系数λ。 2.测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系曲线。 3.测定管路部件局部摩擦阻力f P ?和局部阻力系数ζ。 4.熟悉离心泵的结构与操作方法。 5.测定某型号离心泵在一定转速下的特性曲线。 6.测定流量调节阀某一开度下管路特性曲线。 三、实验原理: 1.直管摩擦系数λ与雷诺数Re 的测定: 直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。 流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为: ρ ρf f P P P h ?=-= 2 1 (1) 又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式) 2 2 u d l h f P f λρ == ? (2) 整理(1)(2)两式得

2 2u P l d f ?? ?=ρλ (3) μ ρ ??=u d Re (4) 式中: -d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -μ流体的粘度,N ·s / m 2。 在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。 根据实验数据和式(3)可计算出不同流速下的直管摩擦系数λ,用式(4)计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。 2.局部阻力系数ζ的测定 2 2'u P h f f ζρ =?= ' 2'2u P f ????? ? ??=ρζ 式中: -ζ局部阻力系数,无因次; -?'f P 局部阻力引起的压强降,Pa ; -'f h 局部阻力引起的能量损失,J /kg 。

流体力学综合实验报告

四川大学 化工原理实验报告 学院化学工程学院专业化学工程与工艺班号姓名学号实验日期年月日指导老师 一.实验名称 流体力学综合实验 二.实验目的 测定流体在管道内流动时的直管阻力损失,作出与Re的关系曲线。 观察水在管道内的流动类型。 测定在一定转速下离心泵的特性曲线。 标定孔板流量计,绘制Co与Re的关系曲线。 熟悉流量、压差、温度等化够不够仪表的使用。 三.实验原理 1求与Re的关系曲线 流体在管道内流动时,由于实际流体有粘性,其在管内流动时存在摩擦阻力,必然会引起流体能量损耗,此损耗能量分为直管阻力损失和局部阻力损失。流体在水平直管内作稳态流动(如图1所示)时的阻力损失可根据伯努利方程求得。 以管中心线为基准面,在1、2截面间列伯努利方程: 因,,故流体在等直径管的1、2两截面间的阻力损失为流体以流速u通过管内径d、长度为l的一段管道时,其直管阻力为

由上面两式得: 而 由此可见,摩擦系数与流体流动类型、管壁粗糙度等因素有关。由因次分析法整理可形象地表示为 式中: f h -----------直管阻力损失,J/kg ; λ------------摩擦阻力系数; d l .----------直管长度和管内径,m ; P ?---------流体流经直管的压降,Pa ; ρ-----------流体的密度, ; μ-----------流体黏度,Pa ·s ; u -----------流体在管内的流速,m/s ; 流体在一段水平等管径管内流动时,测出一定流量下流体流经这段管路所产生的压降,即可算得。两截面压差由差压传感器测得;流量由涡轮流量计测得,其值除以管道截面积即可求得流体平均流速。在已知管径和平均流速的情况下,测定流体温度,确定流体的密度和黏度 ,则可求出雷诺数,从而关联出流体流过水平直管的摩擦系数与雷诺数 的关系曲线图。 2求离心泵的特性曲线 离心泵的特性,可用该泵在一定转速下,扬程与流量 , 轴功 率与流量 ,效率与流量 三条曲线形式表示。若将扬程 H 、轴功率N 和效率 对流量之间的关系分别绘制在同一直角坐标上所得的 三条曲线,即为离心泵的特性曲线,如图二所示。 ①流量:离心泵输送的流量由涡轮流量计测定。 ②扬程H :扬程是指离心泵对单位重量的液体所提供的外加能量。以离心

化工流程及综合实验中条件控制答题模板

化工流程及综合实验中条件控制答题策略 一、pH控制: 经典考题例析 1.实验室用CuSO4—NaCl混合液与Na2SO3溶液反应制取CuCl相关装置及数据如图。 乙图是体系pH随时间变化关系图,写出制备CuCl的离子方程式______________________。丙图是产率 随pH变化关系图,实验过程中往往用Na2SO3—Na2CO3混合溶液代替Na2SO3溶液,其中Na2CO3的作用 是___并维持pH在___左右以保证较高产率。 【答案】. 2Cu2++SO32-+2Cl-+H2O=2CuCl↓+2H++SO42-与H+作用,调整pH,防止减小降低产率 3.5 2.甘氨酸亚铁[(NH2CH2COO)2Fe]是一种补铁强化剂。实验室利用FeCO3与甘 氨酸(NH2CH2COOH)制备甘氨酸亚铁,加入柠檬酸促进FeCO3溶解并调节溶液 pH,溶液pH与甘氨酸亚铁产率的关系如图所示。 pH过低或过高均导致产率下降,其原因是_____________________; 【答案】pH过低,H+与NH2CH2COOH反应生成NH3+CH2COOH;pH过高, Fe2+与OH-反应生成Fe(OH)2沉淀 3.Na2S2O3制备:SO2通入Na2CO3、Na2S的混合溶液,加热、搅拌,至溶液pH约为7时,停止通入SO2 气体,得产品混合溶液。反应混合溶液pH过高或过低将导致产率降低,原因是_______。 【答案】pH过高,Na2CO3、Na2S反应不充分;pH过低,导致Na2S2O3转化为S和SO2 4.[2019新课标Ⅲ]高纯硫酸锰作为合成镍钴锰三元正极材料的原料,工业上可由天然二氧化锰粉与硫化 锰矿(还含Fe、Al、Mg、Zn、Ni、Si等元素)制备,工艺如下图所示。回答下列问题: 相关金属离子[c0(M n+)=0.1 mol·L?1]形成氢氧化物沉淀的pH范围如下: 金属离子Mn2+Fe2+Fe3+Al3+Mg2+Zn2+Ni2+ 开始沉淀的pH 8.1 6.3 1.5 3.4 8.9 6.2 6.9 沉淀完全的pH 10.1 8.3 2.8 4.7 10.9 8.2 8.9 。

流体力学综合实验

实验报告 课程名称:过程工程原理实验(甲) 指导老师: 成绩:__________________ 实验名称:流体力学综合实验(一、二) 实验类型:工程实验 同组学生姓名:姿 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 1、流体流动阻力的测定实验 1.1 实验目的: 1.1.1 掌握测定流体流经直管、阀门时阻力损失的一般实验方法 1.1.2 测定直管摩擦系数λ与雷诺数 的关系,验证在一般湍流区内λ与 的关系曲线 1.1.3测定流体流经阀门时的局部阻力系数ξ 1.1.4 识辨组成管路的各种管件、阀门,并了解其作用 1.2 实验装置与流程: 1. 2.1 实验装置: 实验对象部分由贮水箱、离心泵、不同管径和材质的水管、阀门、管件、涡轮流量计、U 形流量计等所组成。实验管路部分有两段并联长直管,自上而下分别用于测定粗糙管直管阻力系数和光滑管直管阻力系数。同时在粗糙直管和光滑直管上分别装有闸阀和截止阀,用于测定不同种类阀门的局部阻力阻力系数。 水的流量使用涡流流量计或转子流量计测量,管路直管阻力和局部阻力采用压差传感器测量。 1.2.2 实验装置流程示意图,如图1,箭头所示为实验流程: 其中:1——水箱 2——离心泵 3——涡轮流量计 4——温度计 5——光滑管实验段 6——粗糙管实验段 7——截止阀 8——闸阀 9、10、11、12——压差传感器 13——引水漏斗 图 1 流体力学综合实验装置流程示意图 Re Re

1.3 基本原理: 流体通过由直管、管件和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。流体流经直管时所造成的机械能损失成为直管阻力损失。流体通过管件、阀门时由于流体运动方向和速度大小的改变所引起的机械能损失成为局部阻力损失。 1.3.1直管阻力摩擦系数λ的测定: 由流体力学知识可知,流体在水平等径直管中稳定流动时,阻力损失为: (1) 公式中: f p ?:流体流经l 米直管的压力将,Pa ; λ:直管阻力摩擦系数,无因次; d :直管内径,m ; f h :单位质量流体流经l 米直管的机械能损失,J/kg ; ρ:流体密度,kg/ ; l :直管长度,m ; u :流体在管内流动的平均速度,m/s ; 由上面的式子可知: (2) 雷诺数: ρμ 式子中:μ:流体粘度,kg/(m ·s)。 湍流时λ是Re 和相对粗糙度(ε/ d )的函数,须由实验测定。 由(2)可知,要测定λ,需要确定l 、d ,测定f p ?、u 、ρ、μ等参数。其中l 和d 由装置参数 表给出,ρ、μ通过测定流体温度,查相关手册而得,u 通过测定流体流量,再由管径计算得到。 本装置采用涡流流量计测量流量 π (3) 式中:v 为流量计测得的流量, /h f p ?可直接从仪表中读出 根据实验装置结构参数l 、d ,指示液密度,液体温度,以及实验测定的f p ? 、V ,求取Re 和λ,然后 将Re 和λ在双对数坐标图上绘制成曲线。 1.3.2 局部阻力系数ξ的测定: 流体通过某一管件或者阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种算法,叫做阻力系数法。即: (4) 故: (5) 2 ρ2 u d l p h f f λ =?=2 ρlu 2f p d ?=λ2ρ2 ' u p h f f ξ =?=ρg u 22 ' f p ?=ξ

化工流动过程综合实验

化工流动过程综合实验 讲义 天津大学化工基础实验中心 2014.02

一、实验目的: 1.学习直管摩擦阻力f P ?、直管摩擦系数λ的测定方法。 2.掌握直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系及变化规律。 3.掌握局部摩擦阻力f P ?,局部阻力系数ζ的测定方法。 4.学习压强差的几种测量方法和提高其测量精确度的一些技巧。 5.熟悉离心泵的操作方法。 6.掌握离心泵特性曲线和管路特性曲线的测定方法、表示方法,加深对离心泵性能的了解。 二、实验内容: 1.测定实验管路内流体流动的阻力和直管摩擦系数λ。 2.测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系曲线。 3.测定管路部件局部摩擦阻力f P ?和局部阻力系数ζ。 4.熟悉离心泵的结构与操作方法。 5.测定某型号离心泵在一定转速下的特性曲线。 6.测定流量调节阀某一开度下管路特性曲线。 三、实验原理: 1.直管摩擦系数λ与雷诺数Re 的测定: 直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。 流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为: ρ ρ f f P P P h ?= -= 2 1 (1) 又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式) 2 2u d l h f P f λρ == ? (2) 整理(1)(2)两式得 22u P l d f ???= ρλ (3)

μ ρ ??= u d Re (4) 式中: -d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -μ流体的粘度,N ·s / m 2。 在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降 f P ?与流速u (或流量q v )之间的关系。 根据实验数据和式(3)可计算出不同流速下的直管摩擦系数λ,用式(4)计算对应的Re ,整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。 2.局部阻力系数ζ的测定: 22 'u P h f f ζρ =?= ' 2'2u P f ????? ? ??=ρζ 式中: -ζ局部阻力系数,无因次; -?'f P 局部阻力引起的压强降,Pa ; -'f h 局部阻力引起的能量损失,J /kg 。 图-1 局部阻力测量取压口布置图 局部阻力引起的压强降'f P ? 可用下面方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在上、下游各开两对测压口a-a'和b-b '如图-1,使 ab =bc ; a 'b '=b 'c ',则 △P f ,a b =△P f ,bc ; △P f ,a 'b '= △P f ,b 'c ' 在a~a '之间列柏努利方程式 P a -P a ' =2△P f ,a b +2△P f ,a 'b '+△P 'f (5)

相关主题
文本预览
相关文档 最新文档