当前位置:文档之家› 微积分基本公式说课稿

微积分基本公式说课稿

微积分基本公式说课稿
微积分基本公式说课稿

微积分基本定理说课稿

一、教材分析

1、地位与作用

“微积分基本定理”是高中人教版选修2-2第一章第6的内容。这节课的主要内容是:微积分基本定理的形成,以及用它求定积分。

在本节课之前教材已经引入导数和定积分的概念,并研究了其性质。该定理揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法。本节内容不仅是本书一个非常重要的内容,也是整个数学学习中的一块重要知识,该定理为下一节定积分的应用的学习奠定了基础,同时也为学生深入研究数学作了一个知识储备。

2、教学目标

根据以上的教材分析,确定本节课的教学目标如下:

知识与技能:

(1)了解微积分基本定理,学会应用微积分基本定理求定积分;

(2)通过对本课学习,培养应用微积分思想解决实际问题的能力。

过程与方法:

(1)通过自主探究速度与位移的关系对图像的研究,巩固数形结合的方法,;

(2)通过设问,探究速度与位移的关系,培养化整为零,以直代曲的思想。

情感态度与价值观:

(1)感知寻求计算定积分新方法的必要性,激发求知欲;

(2)通过对定理的应用,体会微积分基本定理的优越性;

(3)帮助建立微观与宏观的联系桥梁。

3、教学重点

根据教材分析,及教学目标我对本节课确定了以下重点:通过探究变速直线运动中的速度和位移的关系导出出微积分基本定理,以及对微积分基本定理的应用。

二、学情分析

1、已有的知识与能力

学生是在高二时学习该定理,因此学生具备了以下知识和能力储备

(1)学生在学习本节内容之前,变速直线运动中的位移、速度、时间三者的关系已经很熟悉;

(2)已经熟练掌握高中导数的知识,并能应用这些知识解决问题; (3)理解了定积分的定义及其几何意义,并能按定积分的定义求解定积分; (4)相对高一而言具有更好地抽象思维能力和计算、化简能力。 2、学生可能遇到的困难

(1)学生在本学期才开始接触微分和逐步逼近的思想,所以大部分学生微积分基本定理的形成还是比较困难的,因此只要求学生通过实例了解微积分基本定理;

(2)在用微积分基本定理计算定积分时,部分学生对该定理的条件的理解和找满足

()()x f x F ='

的()x F 还是存在困难,但在高中对此要求不高,故提醒学生不必深究。

3、教学难点

针对以上的学情分析,以及教学目标和重点的制定,我确定了本课的难点:微积分基本定理的导出。

三、教法与学法

1、教学方法:教法以老师讲授为主,引导学生探究为辅。

2、学习方法:课前预习探究发现例题理解练习巩固课后复习。

3、教学手段:黑板教学与多媒体教学相结合。

四、教学过程

总体设计:复习旧知、设题引入、探究归纳、定理导出与应用、定理延伸、课堂小结与布置作业 1、复习旧知(10分钟)

1.1老师和学生一起复习定积分的定义:

如果函数()x f 在区间[]b a ,连续,用分点 b x x x x x a n i i =<<<<<=- 110将区间[]b a ,等分成个小区间,在每个小区间[]i i x x ,1-上任取一点()n i i ,,2,1 =ξ,作和式

()()()i

n

i i n i i f n

a b x f ξξ∑

∑==-=?1

1

当∞→n 时,上述和式无限接近某个常数,这个常数叫做函数()x f 在区间[]b a ,上的定积分,记作

()dx x f b

a

?,即

()()∑

?

=→∞

-=1

lim )(i i

n b

a

f n

a b dx x f ξ,

这里,与分别叫做积分下限和积分上限,函数)(x f 叫做被积函数,叫做积分变量。 1.2复习完定义,引入例题:

例1. 用定义法求定积分 (1)

dx x ?

1

03 (2)dx x ?1

5

解:(1)

1

30lim n i x dx f x n →∞??≈?? ???? (2)x n i f dx x n ????

?

??≈∞

→?lim 105

∑=∞→???? ??=n

i n n n i 13

1lim n n i n

i n 1

lim 4

1???

? ??=∑=∞→

2

1141lim ???

??+=∞→n n ∑=∞→=n

i n n

i 154lim

4

1

=

此时无法再化简 1.3在求解(2)时无法得到确切的结果,这时继续引发学生思考被积函数为)2(≥n x n 、该如何求解?

设计意图:复习定积分的定义是为了加深学生对定积分的印象,设置例1.(1)是为了引导学生回顾按定义法求定积分的步骤:分割、近似替代、逼近求和,这可以帮助学生更好地理解微积分基本定理的形成过程。设置例1.(2)是让学生体会按照定义求定积分的复杂性,从而引发学生思考,激发学生的求知欲。同时也为微积分基本定理的导出做好铺垫。

2、设题引入(5分钟)

引例:如图,一个作变速直线运动的物体的运动规律是()t s s =,由导数的概念可知,它在任意时刻的速度是()()t s t v '=。设这个物体在时间段[]b a ,内的位移为,你能分别用

()()t s t v ,表示吗?

2.1引导学生把探究的基本思路分解成以下3个内容: (1)画出函数()t s s =的图像,通过观察()t s s =的 图像或根据位移的定义探索发现并得出;

()()a s b s S -=——基本定理的右端雏形

(2)当时间差距很小时,物体运动是否可以近似看

做在内做运速运动?

注: 定义导数时就是用了在无限小段时间内变速运动近似与匀速运动的方法去探究的。 (3)变速直线运动的物体在时间区间[]i i t t ,1-上的位移与点速度()1-i t v 之间有什么样的关系?

设计意图:从物理的位移与速度之间的关系引入微积分基本定理基于两方面考虑:(1)学生对于位移、速度、时间三者的关系已经相当的熟悉,并且在学习定积分的概念时学生已经按定义求解过具体速度时的位移,这有助于学生对该公式的形成。(2)当初牛顿也是从研究位移与速度发现微积分基本定理,逻辑性比较强。同时,在探究过程中可以培养学生自主探究的能力以及化整为零和一直带曲思想。 3、探究归纳(5分钟)

经过学生对上述三个问题的探究教师可以归纳出在每个小区间[]i i t t ,1-位移为:

()()11--?-≈i i i i t v t t S

由微分求和可以得出在的位移为:

()11

lim -∞

=∞→∑

-=i i n t v n a

b S

由定积分定义可以得出:

()()dt t v t v n a

b S b a i i n ?∑=-=-∞

=∞→11

lim ——基本定理左端雏形

综上可得到:

()()()a s b s dt t v b

a

-=?——基本定理雏形

4、定理的导出与应用(20分钟)

4.1由定理导出得到定理雏形可以直接归纳一般连续函数()x f 在区间[]b a ,的积分与其导数的关系,即微积分基本定理:

如果()x f 是区间[]b a ,连续函数,若()()()()()a F b F dx x f x f x F b

a

-=='?则

该公式也称作牛顿——莱布尼茨公式

4.2可以简要介绍一下牛顿和莱布尼茨。 4.3 活学活用

例2.利用微积分基本定理解决前面的问题

(1)

dx x ?

2

1

4 (2)()?≥1

2n dx x n (3)?1

0d x e x

解:(1)令4)(x x f =,取55

1)(x x F ?=

,则()()x f x F ='

由微积分基本定理得

()()5

1011

4=

-=?

F F dx x 同理,可以解出(2)1

1+n (3)1-e ,同时也可以解出dx x ?103

练习:课本A 组1.(2)、(4)、(6)

例3.汽车以36km/h 的速度行使,到某处需要减速停车,设汽车以加速度2

/5s m a -= 刹车,试问这辆车从开始刹车到停车走了多少距离?

解:由题意知设s m h km v /10/361==,为时刻的速度,则这辆车从开始刹车到停车的

时间为 201

1=-=

a

v t , 所以 t at v t 5=-= 故位移为()m t dt t S 100

225522

=??? ???==

? 答:这辆车从开始刹车到停车走了m 10 5、定理延伸

5.1让同学课后思考:微积分基本定理与定积分几何意义的联系 例4.计算下列定积分并给出定积分的几何意义 (1)

π

2d sin x x (2)?π

20

d sin x x

通过求解得:(1),(2) 其几何意义如下图:

(1) (2)

归纳总结:微积分基本定理求的是整个区间的定积分,若要求曲线与轴围成的面积则需将轴上下部分分开求解。

设计意图:4.2简单介绍牛顿和莱布尼兹的个人背景资料以丰富课堂内容。4.3学生和上一节例题比较,得出结论:结果相同,但比用定义计算定积分简单,给出规范格式,初步

展示微积分基本定理的优越性。练习和例3是为了让学生巩固强化对微积分基本定理的应用。4.4让学生课后探究微积分基本定理与定积分几何意义的联系,为下节课定积分的应用做好铺垫,同时也指出易错点:求曲线面积时,学生没有考虑图像的分布就直接应用微积分基本定理求解。

6、课堂小结与布置作业(5分钟)

5.1以问答形式引导学生回顾并总结本节内容,强调重、难点。

问:本节课我们学了什么?

答:微积分基本定理

问:我们是怎么形成这个定理的?

答:先微分,在近似替代,然后求和,最后取极限逼近

问:还有什么问题吗?

5.2布置作业: 1.(1)、(3)、(5),2.

设计意图:5.1以问答形式可以提高学生的归纳、整理能力,对所学知识形成清晰的知识网络,同时也可以了解到学生对本堂课的掌握程度。5.2根据学生掌握情况布置作业可以帮助学生巩固已掌握的知识,同时也可以帮助他们发现和解决存在的问题。

五、板书设计

六、教学效果预估

15%的学生通过老师引导自己形成定理雏形;50%的学生通过老师的讲解能理解微积分基本定理的形成过程;80%的学生了解微积分基本定理形成过程并能对定理进行熟练应用;90%经过课后复习后能够用微积分基本定理解题。

七、教学评价

对本堂课我从四个方面评价

(1)时间安排:根据本次课每个环节的所花时间评价时间安排的合理性;

(2)学生的反应:在上课时关注学生的反应,了解学生对知识的理解程度,评价教师教学技能;

(3)提问与解答:通过学生对设置问题的解答情况了解学生对知识的掌握程度,评价问题设计;

(4)习题完成情况:通过学生对例题和习题的完成情况,掌握学生动态评价例题与习题设计。

7.微积分基本定理练习题

7、微积分基本定理 一、选择题 1.??0 1(x 2 +2x )d x 等于( ) A.13 B.23 C .1 D.43 2.∫2π π(sin x -cos x )d x 等于( ) A .-3 B .-2 C .-1 D .0 3.自由落体的速率v =gt ,则落体从t =0到t =t 0所走的路程为( ) A.13gt 20 B .gt 2 0 C.12gt 20 D.16gt 20 4.曲线y =cos x ? ????0≤x ≤3π2与坐标轴所围图形的面积是( ) A .4 B .2 C.5 2 D .3 5.如图,阴影部分的面积是( ) A .2 3 B .2- 3 C.323 D.35 3 6.??0 3|x 2-4|d x =( ) A.213 B.223 C.233 D.25 3 7.??241 x d x 等于( ) A .-2ln2 B .2ln2 C .-ln2 D .ln2 8.若??1a ? ?? ??2x +1x d x =3+ln2,则a 等于( ) A .6 B .4 C .3 D .2 9.(2010·山东理,7)由曲线y =x 2 ,y =x 3 围成的封闭图形面积为( ) A.112 B.14 C.13 D.7 12 10.设f (x )=??? ?? x 2 0≤x <12-x 1

11.从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为________. 12.一物体沿直线以v =1+t m/s 的速度运动,该物体运动开始后10s 内所经过的路程是________. 13.求曲线y =sin x 与直线x =-π2,x =5 4π,y =0所围图形的面积为________. 14.若a =??02x 2 d x ,b =??02x 3 d x ,c =??0 2sin x d x ,则a 、b 、c 大小关系是________. 三、解答题 15.求下列定积分: ①??0 2(3x 2+4x 3 )d x ; ② sin 2 x 2 d x . 17.求直线y =2x +3与抛物线y =x 2 所围成的图形的面积. 18.(1)已知f (a )=??0 1(2ax 2 -a 2 x )d x ,求f (a )的最大值; (2)已知f (x )=ax 2 +bx +c (a ≠0),且f (-1)=2,f ′(0)=0,??0 1f (x )d x =-2,求a ,b ,c 的值. DBCDCCDDAC 11. 13 12. 23(1132-1) 13.4-2 2 [解析] 所求面积为 =1+2+? ?? ?? 1-22=4-22. 14.[答案] c

《高等数学教程》第十一章重积分习题参考答案

《高等数学教程》第十一章 重积分 习题参考答案 习题11-1 1.(,)D Q x y d μσ=??. 3.(1)0; (2)0; (3)124I =I 4.(1)12I ≥I ; (2) 12I ≤I ; (3)12I ≥I ; (4) 12I ≤I . 5.(1)02≤I ≤; (2)20π≤I ≤; (3)28≤I ≤; (4)36100ππ≤I ≤. 习题11-2(A) 1. (1)4 0(,)x dx f x y dy ?? 或240 4 (,)y y dy f x y dx ??; (2)122 20 1 2 2 (,)(,)x x x x dx f x y dy dx f x y dy +????或2122 1 2 2 (,)(,)y y y y dy f x y dx dy f x y dx +????; (3)2 2 4 (,)x x f x y dy -?或240 2 (,)(,)dy f x y dx dy f x y dx +??. 2. (1)4 2 (,)x dx f x y dy ??; (2) 10 1(,)y dy f x y dx ?? ; (3)1 10 2(,)y dy f x y dx -?? ; (4) 1 (,)y e e dy f x y dx ? ?. 3. (1) 203; (2)32π-; (3)655; (4)64 15; (5)1e e -- 4. (1)92; (2)211 22e e -+. 5. 335. 6. (1)20 (cos ,sin )b a d f r r rdr π θθθ??; (2)2cos 20 2 (cos ,sin )d f r r rdr π θ πθθθ- -?? ; (3)1 (cos sin )20 (cos ,sin )d f r r rdr π θθθθθ-+?? ; (4)3sec tan cot 44 4 (cos ,sin )(cos ,sin )d f r r rdr d f r r rdr π πθθ θ πθθθθθθ+++?? ??

高中数学选修2-2公开课教案16微积分基本定理

1.6 微积分基本定理 一、教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例体会用微积分基本定理求定积分的方法 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二、教学重难点 重点 通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。 难点 了解微积分基本定理的含义 三、教学过程 1、复习: 定积分的概念及用定义计算 2、引入新课 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 变速直线运动中位置函数与速度函数之间的联系 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为 21()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1()T T v t dt ?=12()()S T S T - 而()()S t v t '=。 对于一般函数()f x ,设()()F x f x '=,是否也有

()()()b a f x dx F b F a =-? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。 注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则 ()()()b a f x dx F b F a =-? 证明:因为()x Φ=()x a f t dt ?与()F x 都是()f x 的原函数,故 ()F x -()x Φ=C (a x b ≤≤) 其中C 为某一常数。 令x a =得()F a -()a Φ=C ,且()a Φ= ()a a f t dt ?=0 即有C=()F a ,故()F x =()x Φ+()F a ∴ ()x Φ=()F x -()F a =()x a f t dt ? 令x b =,有()()()b a f x dx F b F a =-? 此处并不要求学生理解证明的过程 为了方便起见,还常用()|b a F x 表示()()F b F a -,即 ()()|()()b b a a f x dx F x F b F a ==-? 该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。 它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。 例1.计算下列定积分: (1)2 11dx x ?; (2)3211(2)x dx x -?。 解:(1)因为'1(ln )x x =, 所以22111ln |ln 2ln1ln 2dx x x ==-=?。 (2))因为2''211()2,()x x x x ==-, 所以3332211111(2)2x dx xdx dx x x -=-??? 233111122||(91)(1)33x x =+=-+-=。 练习:计算 120x dx ? 解:由于313 x 是2x 的一个原函数,所以根据牛顿—莱布尼兹公式有 120x dx ?=3101|3x =33111033?-?=13 例2.计算下列定积分:

《微积分基本定理》教案1

1.6微积分基本定理 一:教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例体会用微积分基本定理求定积分的方法 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二:教学重难点 重点通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。 难点 了解微积分基本定理的含义 三:教学过程: 1、复习: 定积分的概念及用定义计算 2、引入新课 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 变速直线运动中位置函数与速度函数之间的联系 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为 21()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1()T T v t dt ?=12()()S T S T - 而()()S t v t '=。 对于一般函数()f x ,设()()F x f x '=,是否也有 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。 注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则 证明:因为()x Φ=()x a f t dt ?与()F x 都是()f x 的原函数,故 ()F x -()x Φ=C (a x b ≤≤) 其中C 为某一常数。 令x a =得()F a -()a Φ=C ,且()a Φ=()a a f t dt ?=0 即有C=()F a ,故()F x =()x Φ+()F a

常用微积分公式大全

常用微积分公式大全 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

常用微积分公式 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.

公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数) 例3 求不定积分.

微积分基本定理说课稿

《微积分基本定理》(说课稿) 一、教材分析 1、教材的地位及作用 我所选用的教材是科学出版社出版的高等教育“十一五”规划教材《经济数学基础》,由宋劲松老师主编。微积分基本定理是第四章第二节内容,本节内容共设计两个课时,这节课的主要内容是微积分基本公式的导出以及用它求定积分。 本节课是学生学习了不定积分和定积分这两个概念后的继续,它不仅揭示了不定积分和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。 二、教学目标及重点、难点 1、教学目标 根据学生的认知结构特征以及教材内容的特点,依据新课程标准要求,确定本节课的教学目标如下: (1)知识与技能目标:通过本节的学习,使学生了解变上限的定积分的定义及相关定理,掌握牛顿—莱布尼兹公式,通过例题及练习,使学生在增加对牛顿—莱布尼兹公式感性认识的基础上,熟练掌握求定积分的方法,从而能够熟练计算定积分. (2)能力目标:本节所讲数学知识主要是为学生学习专业课做准备。要逐步培养学生具有比较熟练的基本运算能力、提高综合运用所学知识分析和解决实际问题的能力。 (3)德育目标:通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 2、教学重点、难点 根据教材内容特点及教学目标的要求确定本节重点为通过探究变上限定积分与原函数的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分. 根据学生的年龄结构特征和心理认知特点确定本节难点:了解微积分基本定理的含义. ——以学生现有的知识水平对于微积分基本定理的严密证明是存在着一定难度的,而突破难点的关键在于让学生主动去探索,体会微积分基本公式的导出以及利用它来计算简单的定积分,这样才能从真正意义上把握该定理的含义,提高学生的能力,体现学生的主体地位. 三、教法和学法 1、教法: 素质教育理论明确要求:教师是主导,学生是主体,只有教师在教学过程中注重引导,才能充分发挥学生的主观能动性,有利于学生创造性思维的培养和能力的提高,根据本节的教学内容及教学目标和学生的认识规律,我采用类比、启发、引导、探索式相结合的方法,启发、引导学生积极思考本节课所遇到的问题,引导学生联想旧知识来解决和探索新知识,从而使学生产生浓厚的学习兴趣和求知欲,体现了学生的主体地位。 2、学法:

微积分基本定理 教案

微积分基本定理 一:教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的内容,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二:教学重难点 重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基 本定理的含义,并能正确运用基本定理计算简单的定积分。 难点:了解微积分基本定理的含义 三:教学过程: 1、知识链接: 定积分的概念: 用定义计算的步骤: 2、合作探究: ⑴导数与积分的关系; 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。有没有计算定积分的更直接方法,也是比较一般的方法呢? 下面以变速直线运动中位置函数与速度函数之间的联系为例: 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为2 1()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1()T T v t dt ?=12()()S T S T - 而()()S t v t '=。 说出你的发现 ⑵ 微积分基本定理 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()()b a f x dx F b F a =-?? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差

微积分基本教程48502

微积分教程 微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。 微积分的基本介绍 微积分学基本定理指出,求不定积分与求导函数互为逆运算[把上下限代入不定积分即得到积分值,而微分则是导数值与自变量增量的乘积],这也是两种理论被统一成微积分学的原因。我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。 微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,但是理论基础是不牢固的。因为“无限”的概念是无法用已经拥有的代数公式进行演算,所以,直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。 学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。所以,必须要利用代数处理代表无限的量,这时就精心构造了“极限”的概念。在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,相反引入了一个过程任意小量。就是说,除的数不是零,所以有意义,同时,这个小量可以取任意小,只要满足在德尔塔区间,都小于该任意小量,我们就说他的极限为该数——你可以认为这是投机取巧,但是,他的实用性证明,这样的定义还算比较完善,给出了正确推论的可能性。这个概念是成功的。 微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。 客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。 由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。 微积分的本质 【参考文献】刘里鹏.《从割圆术走向无穷小——揭秘微积分》,长沙:湖南科学技术出版社,2009 1.用文字表述: 增量无限趋近于零,割线无限趋近于切线,曲线无限趋近于直线,从而以直代曲,以线性化的方法解决非线性问题,这就是微积分理论的精髓所在。 2.用式子表示:

微分学的基本定理

微分学的基本定理 【费马(Fermat)定理】 若(i)函数)(x f 在0x 点得某一邻域),(0δx O 内有定义,并且在此邻域内恒有 )(x f )(0x f ≤, 或者)(x f )(0x f ≥; (ii)函数)(x f 在0x 点可导, 则有 0)(0='x f 证明我们对)(x f 的情形给出假设证明.由于假设)(0x f '存在,按定义,也就是 +'f (0x )=-'f (0x )=f '(0x ), 另一方面,由于)(x f )(0x f ≤,所以对(δ+00,x x )内的各点x ,有 ≤--0 0)()(x f x f 0;而对(00,x x δ-)内的各点x ,有 0)()(0 0≥--x f x f .再由极限性质得 )(0x f '=+'f (0x )=lim 0+→o x x ≤--00)()(x x x f x f 0,)(0x f '=-'f (0x )=lim 0 -→o x x 0)()(00≥--x x x f x f .而)(0x f '是一个定数,因此它必须等于零,即)(0x f '=0. 对于)(x f )(0x f ≥的情形,也可相仿证明. 这个定理的几何意义是:如果曲线)(x f y =在0x 点具有极大值(也就是函数)(x f 在0x 点的值不小于)(x f 在0x 点近旁的其他点上的值)或者曲线)(x f y =在0x 点具有极小值(也就是函数)(x f 在0x 点的值不大于)(x f 在0x 点近旁的其他点上的值),并且曲线

)(x f y =在0x 点具有切线l ,那么,费马定理就表明了切线l 必为水平线. 【拉格朗日(Lagrange)中值定理】 这个定理也称为微分学的中值定理,它是微分学中的一个很重要的定理. 若函数)(x f 满足 (i) 在[]b a ,连续;(ii)在(b a ,)可导, 则在(b a ,)内至少存在一点ξ,使 )(ξf '=a b a f b f --)()(.这个定理从几何图形上看是很明显的.画出[]b a ,上的一条曲线)(x f y =,连接A,B 两点,作弦AB,它的斜率是 = ?tan a b a f b f --)()(.下面对此定理给以证明. 证明不妨假设)(x f 在[]b a ,上不恒为常数.因为如果)(x f 恒为常数,则0)(='x f 在(b a ,)上处处成立,这时定理的结论是明显的. 由于)(x f 在[]b a ,连续,由闭区间连续函数的性质,)(x f 必在[]b a ,上达到其最大值M 和最小值m,我们分两种情形来证明. (1)考虑特殊情形,)()(b f a f =.由于)(x f 不恒为常数,所以此时必有M >m,且M 和m 中至少有一个不等式.这时根据闭区间上连续函数的性质,在(b a ,)内至少有一点ξ,使得))(()(m f M f ==ξξ或者,于是对(b a ,)内任一点x ,必有 )) ()()(()(ξξf x f f x f ≥≤或于是由费马定理,即得 0)(='ξf . 而此时0)()(=-a f b f ,这就证明了定理成立. 对于这样特殊情况的中值定理,也叫【罗尔(Rolle)定理】. (2)考虑一般情形,)()(b f a f ≠.此时,作辅助函数[] 1

微积分基本定理 说课稿 教案 教学设计

微积分基本定理 一、教学目标: 知识与技能: 1.通过实例,直观了解微积分基本定理的内容,会用牛顿-莱布尼兹公式求简单的定积分 2.通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义 过程与方法: 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 情感、态度与价值: 让学生探索、发现数学知识和掌握数学知识的内在规律的过程中不,不断获得成功积累愉快的体验,不断增进学习数学的兴趣,同时还通过探索这一活动培养学生善于和他人合作的精神. 二、教学重点、难点 重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。 难点:了解微积分基本定理的含义。 三、教学模式与教法、学法 教学模式:本课采用“探究——发现”教学模式. 教师的教法:利用多媒体辅助教学,突出活动的组织设计与方法的引导. “抓三线”,即(一)知识技能线(二)过程与方法线(三)能力线. “抓两点”,即一抓学生情感和思维的兴奋点,二抓知识的切入点. 学法:突出探究、发现与交流. 四、教学过程 n

有没有计算定积分的更直接方法,也是比较一般的方法呢? (1)下面以变速直线运动中位置函数与速度函数之间的联系为例: 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为 2 1 ()T T v t dt ? 。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1 ()T T v t dt ? =12()()S T S T - ()()S t v t '=。 3.微积分基本定理 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()()b a f x dx F b F a =-? ? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差 ()()F b F a -来计算()f x 在[,]a b 上的定 积分的方法。 设()()F x f x '=则在[,]a b 上, ⊿y=()()F b F a - 将[,]a b 分成n 等份,在第i 个区间[xi-1,xi]上,记⊿yi=F(xi)-F(xi-1),则 ⊿y=∑⊿yi 如下图,因为⊿hi=f(xi-1) ⊿ 分与导数的关系: 学生说出你的发现; 2 1 ()T T v t dt ? =12()()S T S T - 微积分基本定理: 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则 ()()()b a f x dx F b F a =-? ? b a dx x f )(为了方便起见, 还常用()|b a F x 表示()()F b F a -, 即 ()()|()()b b a a f x dx F x F b F a ==-? 问题的解决过程的抽象。让学生体会积分与导数的关系。. 不要求学生理解证明的过程

5.2 微积分基本公式-习题

1.设函数0 cos x y tdt = ?,求'(0)y ,'()4 y π。 【解】由题设得'()cos y x x =, 于是得 '(0)cos01y ==,'()cos 4 4 2 y ππ == 。 2.计算下列各导数: ⑴20x d dx ?; 【解】20x d dx ?2)x =2= ⑵ 1t d dt dx ; 【解】1t d dt dx 1 ()t d dt dx =-=-=。 ⑶ cos 2 sin cos()x x d t dt dx π?; 【解】cos 2sin cos()x x d t dt dx π?0cos 2 2sin 0[cos()cos()]x x d t dt t dt dx ππ=+?? 》 0cos 22 sin 0cos()cos()x x d d t dt t dt dx dx ππ= +?? sin cos 2200 [cos()]cos()x x d d t dt t dt dx dx ππ=-+?? 22cos(sin )(sin )cos(cos )(cos )d d x x x x dx dx ππ=-+ 22cos(sin )cos cos[(1sin )](sin )x x x x ππ=-+-- 22cos(sin )cos cos(sin )sin x x x x πππ=--- 22cos(sin )cos cos(sin )sin x x x x ππ=-+ 2cos(sin )(sin cos )x x x π=-。 ⑷2ln 1 x x d dt dx t ?。 【解】 2ln 1x x d dt dx t ?21ln 11 1[]x x d dt dt dx t t =+?? 21ln 111x x d d dt dt dx t dx t =+?? …

《高等数学》视频教程 蔡高厅教授主讲

《高等数学》视频教程蔡高厅教授主讲 中文名称:蔡高厅高等数学上下册RM压缩清晰版本 地区:大陆 语言:普通话 简介: 高等数学辅导讲座(蔡高厅) 分189讲上册95讲下册94讲!赠送与之配套的电子书课文! 本教程讲解之细致,容量之庞大令人叹为观止!适合任何程度的朋友学习。即使只有高中数学水平,凭此讲座可在一月内快速成为高数高手,也可作为复习后期查缺补漏之用。本教程是目前国内水平最高的高等数学长期教程,影音俱佳,强烈推荐!! 第一章函数第二章极限第三章导数与微分第四章导数的应用第五章不定积分 第六章定积分第七章空间解析几何与矢量代数第八章多元函数微积分第九章重积分 第十章曲线积分及曲面积分第十一章级数第十二章微分方程

适合人群: 1、在校大学生 2、自考人 3、考研人士(高数一,二) 4、其它想学习数学的人士 [点评][天津大学][高数](蔡高厅) 我来谈谈对天津大学蔡高厅高数的一些看法。这部高等数学教程应该是现在名气最大的,也是好评最高的。原因我认为有这么些,首先,整部教程体积很小(全部一起不到3G),而北航柳重堪高等数学加起来超过10G,对硬盘空间不是很大的用户是个不小的负担,这点使的很多人选择了它(包括我本人),在着,一共189讲的超大 容量,整个高等数学的全部知识,无论巨细,无一遗漏,是其他教程所不能及的(北航柳重堪高等数学),其次,本科学校的正规教程也是个很诱人的地方。以上说的是它的优点,下面说说我自己的体会。我是在看完北航柳重堪高等数学第一章时再看的,对比而言,蔡高厅高数给我感受就是蔡高厅本人一直在黑板上不停的版书,对知识本身的讲解很机械,这点我很不喜欢。既然是本科学校的教程,就应该讲究对知识本身和思维的沟通,重点应该是放上创造性上,而不只是知识的简单堆砌,蔡高厅的讲课完全是教科书的移植,加上一点做题的技巧,对基本概念的理解讲解很生硬,缺少沟通性。跟真正的数学教学相差很远“蔡高厅的讲课完全是教科书的移植”,这点我很同意。他的例题基本上都是他与别人合写的那本高数上的。[点评][天津大学][数学]【蔡教授讲】 提起蔡教授的数学,想想我干瘪的荷包真是感慨呀!那时想考试,看到网上无数的同志推荐这门课程,在购回后,白天在办公室偷偷看,晚上回家接着看,整整花了偶2月光阴才大功告成。因此,昨天看了网友对蔡教授的批评,本人对此是不同意的,数学是一门逻辑性很强的课程,讲究环环紧密相扣,因此,学习的风 格也以稳重为主,正是基于这一点,本人是十分推崇蔡教授的课的,别的不说,光是他老人家,诺高的身材弯腰板书,这种敬业精神与师德,就强过了许多年轻后辈。就以课程的本身而言,蔡教授讲得条理清晰,对每个定理都进行了详细的证明,辅以充足的示例,让你想不学好这门课都难。个人认为,蔡教授的这门课,无论下 载还是购买都值得!

(完整word版)证明微积分基本公式

定义(定积分) 设函数f (x )是定义在闭区间[a ,b ]上的连续函数,用n + 1个分点 a = x 0 < x 1 < x 2 < … < x n – 1 < x n = b 把闭区间[a ,b ]划分成n 个小区间 [x 0,x 1],[x 1,x 2],…,[x i – 1,x i ],…,[x n – 1,x n ] 记各小区间[x i – 1,x i ](i = 1,2,…,n )的长度为Δx i = x i - x i – 1,在各小区间[x i – 1,x i ]内任取一点ξi ,取函数值f (ξi )与小区间长度Δx i 的乘积f (ξi )Δx i ,作和式 n n i i n i i i x f x f x f x f x f Δ)(Δ)(Δ)(Δ)(Δ)(22111ξξξξξ+++++=∑= 称为函数f (x )在区间[a ,b ]上的积分和。记各小区间的最大长度为d = max{Δx i },如果对于区间 [a ,b ]任意的划分和点ξi 在[x i – 1,x i ]上的任意取法,当d → 0时,积分和的极限存在,则称此极限为函数f (x )在区间[a ,b ]上的定积分,简称积分,记为 ∑?=→=n i i i d b a x x f x x f 10Δ)(lim d )( 其中?为积分号,[a , b ]称为积分区间,f (x )称为被积函数,x 称为积分变量,a 称为积分下限,b 称为积分上限。如果函数f (x )在区间[a ,b ]上的积分存在,则称f (x )在[a ,b ]上可积。 上述定义中的积分限要求a < b ,实际上这个限制可以解除,补充两条规定: (1)当a = b 时,规定0d )(=?a a x x f ; (2)当a > b 时,规定??-=a b b a x x f x x f d )(d )(。 可以看出,这两条规定是合理的,其中第一条规定也可以根据第二条推出。 定理1(可积的必要条件) 如果函数f (x )在闭区间[a ,b ]上的可积,则f (x )在[a ,b ]上有界。 定理2(可积的充分条件) 1.如果函数f (x )在闭区间[a ,b ]上的连续,则f (x )在[a ,b ]上可积。 2.如果函数f (x )在闭区间[a ,b ]上的单调,则f (x )在[a ,b ]上可积。 3.如果在闭区间[a ,b ]内除去有限个不连续点外,函数f (x )有界,则f (x )在[a ,b ]上可积。 引理(微分中值定理) 设函数f (x )在闭区间[a ,b ]内连续,在开区间(a ,b )内可导,则至少存在一点ξ∈(a ,b ),成立等式 f (b ) ? f (a ) = f'(ξ)(b ? a ) 以上结论称为微分中值定理,等式称为微分中值公式。 设函数f (x )在闭区间[a ,b ]内连续,则可以证明f (x )在[a ,b ]上可积,于是存在新的函数F (x ),成立微分关系F'(x ) = f (x )或d F (x ) = f (x )d x ,则称F (x )为f (x )的一个原函数。试利用微分中值定理和定积分的定义证明微积分基本公式 )()()(d )(a F b F x F x x f b a b a -==? 这个公式又称为牛顿-莱布尼茨公式。 证明:

微积分基本定理 说课稿 教案 教学设计

微积分基本定理 【学习目标】1.理解微积分基本定理的含义。 2.能够利用微积分基本定理求解定积分相关问题。 【要点梳理】 要点一、微积分基本定理的引入 我们已学过过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 (1)导数和定积分的直观关系: 如下图:一个做变速直线运动的物体的运动规律是s=s (t ),由导数的概念可知,它在任意时刻t 的速度v (t )=s '(t )。设这个物体在时间段[a ,b]内的位移为s ,你能分别用 s (t )、v (t )表示s 吗? 一方面,这段路程可以通过位置函数S (t )在[a ,b]上的增量s (b )-s (a )来表达, 即 s=s (b )-s (a )。 另一方面,这段路程还可以通过速度函数v (t )表示为 ()d b a v t t ? , 即 s = ()d b a v t t ? 。 所以有: ()d b a v t t =? s (b )-s (a ) (2)导数和定积分的直观关系的推证: 上述结论可以利用定积分的方法来推证,过程如下: 如右图:用分点a=t 0<t 1<…<t i -1<t i <…<t n =b , 将区间[a ,b]等分成n 个小区间: [t 0,t 1],[t 1,t 2],…,[t i ―1,t i ],…,[t n ―1,t n ], 每个小区间的长度均为

1i i b a t t t n --?=-= 。 当Δt 很小时,在[t i ―1,t i ]上,v (t )的变化很小,可以认为物体近似地以速度v (t i ―1)做匀速运动,物体所做的位移 111()'()'()i i i i i b a s h v t t s t t s t n ----?≈=?=?= 。 ② 从几何意义上看,设曲线s=s (t )上与t i ―1对应的点为P ,PD 是P 点处的切线,由导数的几何意义知,切线PD 的斜率等于s '(t i ―1),于是 1tan '()i i i s h DPC t s t t -?≈=∠??=??。 结合图,可得物体总位移 111 1 1 1 ()'()n n n n i i i i i i i i s s h v t t s t t --=====?≈=?=?∑∑∑∑。 显然,n 越大,即Δt 越小,区间[a ,b]的分划就越细,1 11 1 ()'()n n i i i i v t t s t t --==?=?∑∑与s 的近似程度就越好。由定积分的定义有 11lim ()n i n i b a s v t n -→∞=-=∑11 lim '()n i n i b a s t n -→∞=-=∑()d '()d b b a a v t t s t t ==??。 结合①有 ()d '()d ()()b b a a s v t t s t t s b s a ===-??。 上式表明,如果做变速直线运动的物体的运动规律是s=s (t ),那么v (t )=s '(t )在 区间[a ,b]上的定积分就是物体的位移s (b )―s (a )。 一般地,如果()f x 是区间[a ,b]上的连续函数,并且'()()F x f x =,那么 ()d ()()b a f x x F b F a =-? 。 这个结论叫做微积分基本定理。 要点二、微积分基本定理的概念 微积分基本定理: 一般地,如果'()()F x f x =,且()f x 在[a ,b]上可积,则()d ()()b a f x x F b F a =-? 。 这个结论叫做微积分基本定理,又叫做牛顿-莱布尼兹公式。 其中,()F x 叫做()f x 的一个原函数。为了方便,我们常把()()F b F a -记作()b a F x ,即 ()d ()()()b b a a f x x F x F b F a ==-? 。

微积分基本定理

微积分基本定理(教案)(总4 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

微积分基本定理 一:教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的内容,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二:教学重难点 重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积 分基本定理的含义,并能正确运用基本定理计算简单的定积分。 难点:了解微积分基本定理的含义 三:教学过程: 1、知识链接: 定积分的概念: 用定义计算的步骤: 2、合作探究: ⑴导数与积分的关系; 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。有没有计算定积分的更直接方法,也是比较一般的方法呢? 下面以变速直线运动中位置函数与速度函数之间的联系为例: 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为2 1()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1()T T v t dt ?=12()()S T S T - 而()()S t v t '=。 说出你的发现 ⑵ 微积分基本定理 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()()b a f x dx F b F a =-??

高等数学常用积分公式查询表

导数公式: 基本积分表: 1.d x ax b +?=1ln ax b C a ++ 2.()d ax b x μ+?=11()(1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +?=21(ln )ax b b ax b C a +-++ 5.d ()x x ax b +?=1ln ax b C b x +-+ 6.2d ()x x ax b +?=21ln a ax b C bx b x +-++ 10 .x C 19.22d x x a +?=1arctan x C a a + 21.22d x x a -?=1ln 2x a C a x a -++ 23.2d x x ax b +?=21ln 2ax b C a ++ 24.2 2d x x ax b +?=2d x b x a a ax b -+? a x x a a a x x x x x x x x x x a x x ln 1)(log ln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan 22='='?-='?='-='='222211)cot (11)(arctan 11)(arccos 11)(arcsin x x arc x x x x x x +-='+='--='-='

31. 1arsh x C a +=ln(x C + 32. =C + 33. x =C 34. x =C + 35.2 x =2ln(2a x C -++ 39. x 2 ln(2a x C +++ 43.x a C + 44.2d x x ?=ln(x C +++ 47. x =C 53.x 2 ln 2 a x C 57.x =arccos a a C x + 59. arcsin x C a + 61. x =C

相关主题
文本预览
相关文档 最新文档