当前位置:文档之家› 高中数学16微积分基本定理(教案)

高中数学16微积分基本定理(教案)

高中数学16微积分基本定理(教案)
高中数学16微积分基本定理(教案)

三、教学过程 1、复习:

定积分的概念及用定义计算 2、引入新课

我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。

变速直线运动中位置函数与速度函数之间的联系

设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为

2

1

()T T v t dt ?

另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即

2

1

()T T v t dt ?

=12()()S T S T -

而()()S t v t '=。

对于一般函数()f x ,设()()F x f x '=,是否也有

()()()b

a

f x dx F b F a =-?

若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算

()f x 在[,]a b 上的定积分的方法。

注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则

()()()b

a

f x dx F b F a =-?

证明:因为()x Φ=

()x

a

f t dt ?

与()F x 都是()f x 的原函数,故 ()F x -()x Φ=C (a x b ≤≤)

其中C 为某一常数。

令x a =得()F a -()a Φ=C ,且()a Φ=

()a

a

f t dt ?

=0 即有C=()F a ,故()F x =()x Φ+()F a

∴ ()x Φ=()F x -()F a =()x

a

f t dt ?

令x b =,有

()()()b

a

f x dx F b F a =-?

此处并不要求学生理解证明的过程

为了方便起见,还常用()|b

a F x 表示()()F

b F a -,即

()()|()()b

b a a

f x dx F x F b F a ==-?

该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求

定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。 它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。

例1.计算下列定积分:

(1)2

11dx x ?; (2)3211

(2)x dx x

-?。

解:(1)因为'1(ln )x x

=,所以22

111ln |ln 2ln1ln 2dx x x ==-=?。

(2))因为2'

'211()2,()x x x x ==-,所以3332211111(2)2x dx xdx dx x

x -=-???

23

3111122||(91)(1)33

x x =+=-+-=

。 练习:计算1

20

x dx ?

解:由于

313x 是2x 的一个原函数,有 120x dx ?=3101|3x =33111033?-?=1

3

例2.计算下列定积分:

220

sin ,sin ,sin xdx xdx xdx π

ππ

π

?

??。

由计算结果你能发现什么结论?试利用曲边梯形的面积表示所发现的结论。 解:因为'

(cos )sin x x -=,所以

00sin (cos )|(cos )(cos 0)2xdx x π

ππ=-=---=?

2

2

sin (cos )|(cos 2)(cos )2xdx x π

π

ππππ=-=---=-?, 22

sin (cos )|(cos 2)(cos 0)0xdx x π

π

π=-=---=?

. 可以发现,定积分的值可能取正值也可能取负值,还可能是0: ( l )当对应的曲边梯形位于 x 轴上方时(图1.6一3 ) ,定积分的值取正值,且等于曲边梯形的面积;

图1 . 6 一 3 ( 2 )

(2)当对应的曲边梯形位于 x 轴下方时(图 1 . 6 一 4 ) ,定积分的值取负值,且等于曲边梯形的面积的相反数;

( 3)当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0(图 1 . 6 一 5 ) ,且等于位于 x 轴上方的曲边梯形面积减去位于 x 轴下方的曲边梯形面积.

例3.汽车以每小时32公里速度行驶,到某处需要减速停车。设汽车以等减速度a =1.8米/秒2

刹车,问从开始刹车到停车,汽车走了多少距离?

解:首先要求出从刹车开始到停车经过了多少时间。当t =0时,汽车速度0v =32公里/小时=321000

3600

?米

/秒≈8.88米/秒,刹车后汽车减速行驶,其速度为0(t)=t=8.88-1.8t v v a -当汽车停住时,速度(t)=0v ,故从

(t)=8.88-1.8t=0v 解得8.88

t= 4.931.8

≈秒 于是在这段时间内,汽车所走过的距离是

4.93

4.93

(t)(8.88 1.8t)s v dt dt ==-?

?

= 4.93

20

1

(8.88 1.8t )

21.902-?≈米,即在刹车后,汽车需走过

21.90米才能停住.

微积分基本定理揭示了导数和定积分之间的内在联系,同时它也提供了计算定积分的一种有效方法.微积分基本定理是微积分学中最重要的定理,它使微积分学蓬勃发展起来,成为一门影响深远的学科,可以毫不夸张地说,微积分基本定理是微积分中最重要、最辉煌的成果.

微积分基本定理(17)

1.6 微积分基本定理( 2) 一、【教学目标】 重点:使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分. 难点:利用微积分基本定理求积分;找到被积函数的原函数. 能力点:正确运用基本定理计算简单的定积分. 教育点:通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩 证唯物主义观点,提高理性思维能力. 自主探究点:通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义. 易错点:准确找到被积函数的原函数,积分上限与下限代人求差注意步骤,以免符号出错. 考试点:高考多以填空题出现,以考查定积分的求法和面积的计算为主. 二、【知识梳理】 1. 定积分定义:如果函数() f x在区间[,] a b上连续,用分点 0121- =<<<<<<<= i i n a x x x x x x b,将区间[,] a b等分成n个小区间,在每一个小区间 1 [,] i i x x - 上任取一点(1,2,,) ξ= i i n,作和 1 ()() ξξ = - ?=∑n i i i i b a f x f n ,当n→∞时,上述和式无限接近某个常数,这个常数叫做函数() f x在区间[,] a b上的定积分,记作() b a f x dx ?,即 1 ()lim() n b a i n i b a f x dx f n ξ →∞ = - =∑ ?,这里a、b分别叫做积分的下限与上限,区间[,] a b叫做积分区间,函数() f x叫做被积函数,x叫做积分变量,() f x dx叫做被积式. 2.定积分的几何意义 如果在区间[,] a b上函数连续且恒有()0 f x≥,那么定积分() b a f x dx ?表示由直线, x a x b ==(a b ≠),0 y=和曲线() y f x =所围成的曲边梯形的面积.

定积分及微积分基本定理练习题及答案

1.4定积分与微积分基本定理练习题及答案 1.(2011·一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系是 ( ) A .a2,c =??02sinxdx =- cosx|02=1-cos2∈(1,2), ∴c

微积分基本定理的证明

理学院 School of Sciences 微积分基本定理的证明 Proof of the fundamental theorem of calculus 学生姓名:张智 学生学号:201001164 所在班级:数学101 所在专业:数学与应用数学 指导老师:杨志林

摘要 微积分学这门学科在数学发展中的地位是十分重要的,自十七世纪以来,微积分不断完善成为一门学科。而微积分基本定理的则是微积分中最重要的定理,它的建立标志着微积分的完成,成为数学发展史的一个里程碑。因此就有了研究微积分基本定理的必要性。本文从十七世纪到二十世纪以来的科学家如巴罗、牛顿、莱布尼兹、柯西、黎曼、勒贝格等人对微积分基本定理的发展所作出的贡献展开论述。并论述了定理在微积分学理论发展中的应用。如换元公式、分部积分公式、Taylor中值定理的积分证明、连续函数的零点定理的证明,建立了微分中值定理与积分中值定理的联系,在一元函数和多元函数上的推广等等。最后给出定理的几个证明方法。 关键词:微积分基本定理,发展史,定理的应用,定理的证明

ABSTRACT Calculus the subject in the position of the development of mathematics is very important,since seventeenth Century,calculus constantly improved as a discipline.While the fundamental theorem of calculus is the most important theorems in calculus,which establishment marks the complete of the calculus, become a milepost of the development history of mathematics. So it is necessary to study the fundamental theorem of calculus. In this paper,since seventeenth Century to twentieth Century,launches the elaboration from scientists such as Barrow, Newton, Leibniz, Cauchy, Riemann, Lebesgue and others on made the contribution to the development of the fundamental theorem of calculus. And discusses the application of theorem in the development of the calculus theory.Such as the transform formula, integral formula of integration by parts, proof of the Taylor mean value theorem of continuous function, the zero point theorem proof, established the differential mean value theorem and the integral mean value theorem in contact,a unary function and multivariate function on the promotion and so on.Finally gave several proofs of the theorem. Keywords:Fundamental Theorem of Calculus,phylogeny,Application,Proof

高中数学选修2-2公开课教案16微积分基本定理

1.6 微积分基本定理 一、教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例体会用微积分基本定理求定积分的方法 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二、教学重难点 重点 通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。 难点 了解微积分基本定理的含义 三、教学过程 1、复习: 定积分的概念及用定义计算 2、引入新课 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 变速直线运动中位置函数与速度函数之间的联系 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为 21()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1()T T v t dt ?=12()()S T S T - 而()()S t v t '=。 对于一般函数()f x ,设()()F x f x '=,是否也有

()()()b a f x dx F b F a =-? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。 注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则 ()()()b a f x dx F b F a =-? 证明:因为()x Φ=()x a f t dt ?与()F x 都是()f x 的原函数,故 ()F x -()x Φ=C (a x b ≤≤) 其中C 为某一常数。 令x a =得()F a -()a Φ=C ,且()a Φ= ()a a f t dt ?=0 即有C=()F a ,故()F x =()x Φ+()F a ∴ ()x Φ=()F x -()F a =()x a f t dt ? 令x b =,有()()()b a f x dx F b F a =-? 此处并不要求学生理解证明的过程 为了方便起见,还常用()|b a F x 表示()()F b F a -,即 ()()|()()b b a a f x dx F x F b F a ==-? 该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。 它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。 例1.计算下列定积分: (1)2 11dx x ?; (2)3211(2)x dx x -?。 解:(1)因为'1(ln )x x =, 所以22111ln |ln 2ln1ln 2dx x x ==-=?。 (2))因为2''211()2,()x x x x ==-, 所以3332211111(2)2x dx xdx dx x x -=-??? 233111122||(91)(1)33x x =+=-+-=。 练习:计算 120x dx ? 解:由于313 x 是2x 的一个原函数,所以根据牛顿—莱布尼兹公式有 120x dx ?=3101|3x =33111033?-?=13 例2.计算下列定积分:

牛顿-莱布尼茨公式的详细证明

牛顿—莱布尼茨公式 前言 此证明主要是献给那些无论如何,竭斯底里都想知道自已手上这条无与伦比公式背后的秘密的高中生。 公式的证明首先是从定积分的基本性质和相关定理的证明开始,然后给出积分上限函数的定义,最后总揽全局,得出结论。证明过程会尽可能地保持严密,也许你会不太习惯,会觉得多佘,不过在一些条件上如函数f(x),我们是默认可积的。 所有证明过程都是为后续的证明做铺掂的,都是从最低层最简单开始的,所以你绝对,注意,请注意,你是绝对能看懂的,对于寻求真理的人,你值得看懂! (Ps :如果你不太有耐心,我建议你别看了,因为这只会让你吐出垃圾两个字) 定积分性质的证明 首先给出定积分的定义: 设函数f(x)在区间[a,b]上连续,我们在区间[a,b]上插入n-1个点分成n 个区间[a,x 1],[x 1,x 2]…[x n ,x n-1],其中x 0=a ,x n =b ,第i 个小区间?x i = x i -x i-1(i=1,2…n)。 由它的几何意义,我们是用无数个小矩形的面积相加去模拟它的面积,因此任一个小矩形的面积可表示为?S i =f(εi ) ?x i ,为此定积分可以归结为一个和式的极 限 即: 性质1:证明?b a c dx = C(b-a),其中C 为常数. 几何上这就是矩形的面积 性质2:F(x)和G(x)为函数z(x)的两个原函数,证明F(x)=G(x)+C,C 为常数. 设K(x)=F(x)-G(x) 定义域为K 1021110()lim ()lim (...)lim ()()n b i i n n a n n i n n f x dx f x c x x x x x x c x x c b a ε-→∞→∞=→∞=?=-+-++-=-=-∑?0()()() ()()()()()0()()()lim 0x F x G x z x K x F x G x z x z x K x x K x K x x ?→''=='''∴=-=-=+?-'∴==?Q 1()lim ()n b a n i i i f x dx f x ε→∞==?∑ ?

微积分基本定理说课稿

《微积分基本定理》(说课稿) 一、教材分析 1、教材的地位及作用 我所选用的教材是科学出版社出版的高等教育“十一五”规划教材《经济数学基础》,由宋劲松老师主编。微积分基本定理是第四章第二节内容,本节内容共设计两个课时,这节课的主要内容是微积分基本公式的导出以及用它求定积分。 本节课是学生学习了不定积分和定积分这两个概念后的继续,它不仅揭示了不定积分和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。 二、教学目标及重点、难点 1、教学目标 根据学生的认知结构特征以及教材内容的特点,依据新课程标准要求,确定本节课的教学目标如下: (1)知识与技能目标:通过本节的学习,使学生了解变上限的定积分的定义及相关定理,掌握牛顿—莱布尼兹公式,通过例题及练习,使学生在增加对牛顿—莱布尼兹公式感性认识的基础上,熟练掌握求定积分的方法,从而能够熟练计算定积分. (2)能力目标:本节所讲数学知识主要是为学生学习专业课做准备。要逐步培养学生具有比较熟练的基本运算能力、提高综合运用所学知识分析和解决实际问题的能力。 (3)德育目标:通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 2、教学重点、难点 根据教材内容特点及教学目标的要求确定本节重点为通过探究变上限定积分与原函数的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分. 根据学生的年龄结构特征和心理认知特点确定本节难点:了解微积分基本定理的含义. ——以学生现有的知识水平对于微积分基本定理的严密证明是存在着一定难度的,而突破难点的关键在于让学生主动去探索,体会微积分基本公式的导出以及利用它来计算简单的定积分,这样才能从真正意义上把握该定理的含义,提高学生的能力,体现学生的主体地位. 三、教法和学法 1、教法: 素质教育理论明确要求:教师是主导,学生是主体,只有教师在教学过程中注重引导,才能充分发挥学生的主观能动性,有利于学生创造性思维的培养和能力的提高,根据本节的教学内容及教学目标和学生的认识规律,我采用类比、启发、引导、探索式相结合的方法,启发、引导学生积极思考本节课所遇到的问题,引导学生联想旧知识来解决和探索新知识,从而使学生产生浓厚的学习兴趣和求知欲,体现了学生的主体地位。 2、学法:

§1.6微积分基本定理

1.6微积分基本定理 一:教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例体会用微积分基本定理求定积分的方法 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二:教学重难点 重点通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。 难点 了解微积分基本定理的含义 三:教学过程: 1、复习: 定积分的概念及用定义计算 2、引入新课 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 变速直线运动中位置函数与速度函数之间的联系 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为 21()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 21()T T v t dt ? =12()()S T S T - 而()()S t v t '=。 对于一般函数()f x ,设()()F x f x '=,是否也有

()()()b a f x dx F b F a =-? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。 注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则 ()()()b a f x dx F b F a =-? 证明:因为()x Φ=()x a f t dt ?与()F x 都是()f x 的原函数,故 ()F x -()x Φ=C (a x b ≤≤) 其中C 为某一常数。 令x a =得()F a -()a Φ=C ,且()a Φ= ()a a f t dt ?=0 即有C=()F a ,故()F x =()x Φ+()F a ∴ ()x Φ=()F x -()F a =()x a f t dt ? 令x b =,有()()()b a f x dx F b F a =-? 此处并不要求学生理解证明的过程 为了方便起见,还常用()|b a F x 表示()()F b F a -,即 ()()|()()b b a a f x dx F x F b F a ==-? 该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。 它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。 例1.计算下列定积分: (1)2 11dx x ?; (2)3211(2)x dx x -?。 解:(1)因为'1(ln )x x =, 所以22111ln |ln 2ln1ln 2dx x x ==-=?。 (2))因为2''211()2,()x x x x ==-, 所以3332211111(2)2x dx xdx dx x x -=-??? 233111122||(91)(1)33x x =+=-+-=。 练习:计算 120x dx ? 解:由于313 x 是2x 的一个原函数,所以根据牛顿—莱布尼兹公式有

高中数学16微积分基本定理教案

三、教学过程 1、复习: 定积分的概念及用定义计算 2、引入新课 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 变速直线运动中位置函数与速度函数之间的联系 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为 2 1 ()T T v t dt ? 。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1 ()T T v t dt ? =12()()S T S T - 而()()S t v t '=。 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()()b a f x dx F b F a =-? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算 ()f x 在[,]a b 上的定积分的方法。 注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则 ()()()b a f x dx F b F a =-? 证明:因为()x Φ= ()x a f t dt ? 与()F x 都是()f x 的原函数,故 ()F x -()x Φ=C (a x b ≤≤) 其中C 为某一常数。 令x a =得()F a -()a Φ=C ,且()a Φ= ()a a f t dt ? =0 即有C=()F a ,故()F x =()x Φ+()F a ∴ ()x Φ=()F x -()F a =()x a f t dt ? 令x b =,有 ()()()b a f x dx F b F a =-? 此处并不要求学生理解证明的过程 为了方便起见,还常用()|b a F x 表示()()F b F a -,即 ()()|()()b b a a f x dx F x F b F a ==-? 该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求 定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。 它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。

牛顿-莱布尼茨公式的详细证明

牛顿—莱布尼茨公式 ● 前言 此证明主要是献给那些无论如何,竭斯底里都想知道自已手上这条无与伦比公式背后的秘密的高中生。 公式的证明首先是从定积分的基本性质和相关定理的证明开始,然后给出积分上限函数的定义,最后总揽全局,得出结论。证明过程会尽可能地保持严密,也许你会不太习惯,会觉得多佘,不过在一些条件上如函数f(x),我们是默认可积的。 所有证明过程都是为后续的证明做铺掂的,都是从最低层最简单开始的,所以你绝对,注意,请注意,你是绝对能看懂的,对于寻求真理的人,你值得看懂! (Ps :如果你不太有耐心,我建议你别看了,因为这只会让你吐出垃圾两个字) ● 定积分性质的证明 首先给出定积分的定义: 设函数f(x)在区间[a,b]上连续,我们在区间[a,b]上插入n-1个点分成n 个区间 [a,x 1],[x 1,x 2]…[x n ,x n-1],其中x 0=a ,x n =b ,第i 个小区间?x i = x i -x i-1(i=1,2…n)。 由它的几何意义,我们是用无数个小矩形的面积相加去模拟它的面积,因此任一个小矩形的面积可表示为?S i =f(εi ) ?x i ,为此定积分可以归结为一个和式的极限 即: 性质1:证明?b a c dx = C(b-a),其中C 为常数. 几何上这就是矩形的面积 性质2:F(x)和G(x)为函数z(x)的两个原函数,证明F(x)=G(x)+C,C 为常数. 设K(x)=F(x)-G(x) 定义域为K 1021110()lim ()lim (...)lim ()()n b i i n n a n n i n n f x dx f x c x x x x x x c x x c b a ε-→∞→∞=→∞=?=-+-++-=-=-∑?0()()() ()()()()()0 ()()()lim 0x F x G x z x K x F x G x z x z x K x x K x K x x ?→''=='''∴=-=-=+?-'∴==?Q 1()lim ()n b a n i i i f x dx f x ε→∞==?∑ ?

微积分基本定理 教案

微积分基本定理 一:教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的内容,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二:教学重难点 重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基 本定理的含义,并能正确运用基本定理计算简单的定积分。 难点:了解微积分基本定理的含义 三:教学过程: 1、知识链接: 定积分的概念: 用定义计算的步骤: 2、合作探究: ⑴导数与积分的关系; 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。有没有计算定积分的更直接方法,也是比较一般的方法呢? 下面以变速直线运动中位置函数与速度函数之间的联系为例: 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为2 1()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1()T T v t dt ?=12()()S T S T - 而()()S t v t '=。 说出你的发现 ⑵ 微积分基本定理 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()()b a f x dx F b F a =-?? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差

微积分基本定理

微积分基本定理(教案)(总4 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

微积分基本定理 一:教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的内容,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二:教学重难点 重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积 分基本定理的含义,并能正确运用基本定理计算简单的定积分。 难点:了解微积分基本定理的含义 三:教学过程: 1、知识链接: 定积分的概念: 用定义计算的步骤: 2、合作探究: ⑴导数与积分的关系; 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。有没有计算定积分的更直接方法,也是比较一般的方法呢? 下面以变速直线运动中位置函数与速度函数之间的联系为例: 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为2 1()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1()T T v t dt ?=12()()S T S T - 而()()S t v t '=。 说出你的发现 ⑵ 微积分基本定理 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()()b a f x dx F b F a =-??

1-定积分与微积分基本定理(理)含答案版

定积分与微积分基本定理(理) 基础巩固强化 1.求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( ) A .S =??0 1(x 2-x )d x B .S =??0 1(x -x 2)d x C .S =??0 1(y 2-y )d y D .S =??0 1(y - y )d y [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图形的面积S =??0 1(x -x 2)d x . 2.如图,阴影部分面积等于( ) — A .2 3 B .2-3 [答案] C [解析] 图中阴影部分面积为

S =??-3 1 (3-x 2-2x )d x =(3x -13x 3-x 2)|1-3 =32 3. 4-x 2d x =( ) A .4π B .2π C .π [答案] C [解析] 令y =4-x 2,则x 2+y 2=4(y ≥0),由定积分的几何意义知所求积分为图中阴影部分的面积, / ∴S =1 4×π×22=π. 4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是( ) A .在t 1时刻,甲车在乙车前面 B .在t 1时刻,甲车在乙车后面 C .在t 0时刻,两车的位置相同 D .t 0时刻后,乙车在甲车前面 [答案] A [解析] 判断甲、乙两车谁在前,谁在后 的问题,实际上是判断在t 0,t 1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时间段内速度函数的定积分,即速度函数v (t )的图象与t 轴以及时间段围成区域的面积.从图象知:在t 0时刻,v 甲的图象与t 轴和t =0,t =t 0围成区域的面积大于v 乙的图象与t 轴和t =0,t =t 0围成区域的

第二节·微积分基本定理

Fundamentals of Advanced Mathematics (I)
Xueli Wang School of Science, BUPT Tel: 6228-2117 E-Mail: wangxlpku@https://www.doczj.com/doc/40666217.html,
1

Section 5.2
The Fundamental Theorems of Calculus
2

Newton-Leibniz Formula
Definition. (Primitive function) If F ′( x ) = f ( x ) , x ∈ I , then F ( x ) is called an antiderivative of the function f ( x ) on I .
For instance, sin x is an antiderivative of cos x and ln x 1 . is an antiderivative of x The evaluation of a definite integral is closely related to the antiderivative of the integrand function.
3

Newton-Leibniz Formula
Example: Suppose that a particle moves along a straight line from t = a to t = b . If the velocity v = v ( t ) is known, then by the definition of definite integral we know that
s = ∫ v ( t )dt
a b
if the displacement function, s = s( t ) , is known, then
s = s( b ) ? s( a )
Hence, we have

b a
v ( t )dt = s(b ) ? s(a )
It is well known that s′( t ) = v ( t ) or s( t ) is an antiderivative of v ( t ) , then, by the last equation, we can establish the following theorem.
4

导学案16微积分基本定理

高二数学导学案 编号016 2014-03-04 班级 姓名 §1.6微积分基本定理(1) 学习目标 1.理解定积分的概念和定积分的性质,理解微积分基本原理; 2.掌握微积分基本定理,并会求简单的定积分; 3.能够运用基本初等函数的求导公式和导数的四则运算法则从反方向上求出,满足()()F x f x '=的函数()F x . 重点:掌握微积分基本定理,并会求简单的定积分 难点:微积分定理的基本应用 一、课前准备 复习1:函数33cos y x x =的导数为 复习2:若函数2()cos (3)3f x x π=+,则2()9 f π '= 二、新课导学 了解感知 探究任务一:导数与定积分的联系 问题1:一个作变速直线运动的物体的运动规律是()s s t =.由导数的概念可知,它在任意时刻t 的速度()()v t s t '=.设这个物体在时间段[,]a b 内的位移为S ,你能分别用(),()s t v t 表示S 吗? 新知:如果函数()F x 是[,]a b 上的连续函数,并且()()F x f x '=,那么()()()b a f x dx F b F a =-? 这个结论叫做微积分基本定理,也叫牛顿—莱布尼兹公式 为了方便起见,还常用()|b a F x 表示()()F b F a -,即()()|()()b b a a f x dx F x F b F a ==-? 试试:计算1 20x dx ? 反思:计算定积分()b a f x dx ?的关键是找到满足()()F x f x '=的函数()F x . 通常我们可以运用 基本初等函数的求导公式的四则运算法则从反方向求出()F x . 深入学习 例1 计算下列定积分: (1)211dx x ?; (2)3211 (2)x dx x -?

牛顿-莱布尼茨公式的详细证明word版本

牛顿-莱布尼茨公式的 详细证明

牛顿—莱布尼茨公式 ●前言 此证明主要是献给那些无论如何,竭斯底里都想知道自已手上这条无与伦比公式背后的秘密的高中生。 公式的证明首先是从定积分的基本性质和相关定理的证明开始,然后给出积分上限函数的定义,最后总揽全局,得出结论。证明过程会尽可能地保持严密,也许你会不太习惯,会觉得多佘,不过在一些条件上如函数f(x),我们是默认可积的。 所有证明过程都是为后续的证明做铺掂的,都是从最低层最简单开始的,所以你绝对,注意,请注意,你是绝对能看懂的,对于寻求真理的人,你值得看懂! (Ps:如果你不太有耐心,我建议你别看了,因为这只会让你吐出垃圾两个字) ●定积分性质的证明 首先给出定积分的定义: 设函数f(x)在区间[a,b]上连续,我们在区间[a,b]上插入n-1个点分成n个区间[a,x1],[x1,x2]…[x n,x n-1],其中x0=a,x n=b,第i个小区间?x i= x i-x i-1(i=1,2…n)。由它的几何意义,我们是用无数个小矩形的面积相加去模拟它的面积,因此任一个小矩形的面积可表示为?S i=f(εi)?x i ,为此定积分可以归结为一个和式的极 限即: 1 ()lim() n b a n i i i f x dx f x ε →∞ = =? ∑ ? 收集于网络,如有侵权请联系管理员删除

收集于网络,如有侵权请联系管理员删除 性质1:证明?b a c dx = C(b-a),其中C 为常数. 几何上这就是矩形的面积 性质2:F(x)和G(x)为函数z(x)的两个原函数,证明F(x)=G(x)+C,C 为常数. 设K(x)=F(x)-G(x) 定义域为K 即对任意的x ∈K,都存在一个以|x ?|为半径的区间,使得K(x+x ?)=K(x) ∴函数值在K 内处处相等,K(x)=C K(x)为一直线 即: F(x)-G(x)=C 性质3:如果f(x)≤g(x),则 设k(x)=f(x)-g(x),有k(x)≤0. 即 1021110()lim ()lim (...)lim ()()n b i i n n a n n i n n f x dx f x c x x x x x x c x x c b a ε-→∞→∞=→∞ =?=-+-++-=-=-∑?0()()() ()()()()() ()()()lim 0x F x G x z x K x F x G x z x z x K x x K x K x x ?→''=='''∴=-=-=+?-'∴==?Q ()()b b a a f x dx g x dx ≤??1()lim ()0n b i i a n i k x dx k x ε→∞==?≤∑? Q ()[()()]()()0b b b b a a a a k x dx f x g x dx f x dx g x dx =-=-≤? ???()()b b a a f x dx g x dx ∴≤??

高中数学选修微积分基本定理

[学习目标] 1.了解导数和微积分的关系.2.掌握微积分基本定理.3.会用微积分基本定理求一些函数的定积分. 知识点一导数与定积分的关系 f(x)d x等于函数f(x)的任意一个原函数F(x)(F′(x)=f(x))在积分区间[a,b]上的 s可 s=t=s(b)-s t等于 (1) (2) (3) (4)若f(x)=e x,则F(x)=e x; (5)若f(x)=a x,则F(x)=(a>0且a≠1); (6)若f(x)=sin x,则F(x)=-cos x; (7)若f(x)=cos x,则F(x)=sin x.

知识点二微积分基本定理 一般地,如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么f(x)d x =F(b)-F(a). 思考(1)函数f(x)的原函数F(x)是否唯一? (2)用微积分基本定理计算简单定积分的步骤是什么? (2) 例 解 所以3d x=(3x)=3×2-3×1=3. (2)因为(x2+3x)′=2x+3, 所以(2x+3)d x=(x2+3x) =22+3×2-(02+3×0)=10.

(3)因为′=4x-x2, 所以(4x-x2)d x= =-=. (4)因为′=(x-1)5, 所以(x-1)5d x =( = ① ② (2) ① ②C F′(x)=f)= F(x)|,所以利用f(x)的原函数计算定积分时,一般只写一个最简单的原函数,不用再加任意常数C了. 跟踪训练1求下列函数的定积分: (1)2d x;(2)(1+)d x. 解(1)2d x

=d x =x2d x+2d x+d x =x3+2x+ =×(23-13)+2×(2-1)-=. =( = = 例 解 f(x = =++ =+-+- =+.

《微积分基本定理》导学案

sx-14-(2-2)-026 1.6《微积分基本定理》导学案 编写:刘威 审核:陈纯洪 编写时间:2014.5.13 班级_____组名_______姓名_______等级_______ 【学习目标】 1. 通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分; 2. 通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。 【重点与难点】: 重点:微积分基本定理(牛顿-莱布尼兹公式及其运用 难点:微积分基本定理的含义 【知识链接】 知识点一:微积分基本定理 自学教材 51—53页.探究一下导数和定积分的联系

). 知识点二:利用微积分基本定理求定积分 阅读教材53-54,完成下列问题

()()1 3222 20111::1;22;(3)(2cos sin 1)dx x dx x x dx x x π --?? -+- ?? ?? ??例计算下列定积分 202:,()f x dx ≤≤??≤? ?2x 0x 1 例设f(x)=求5 1

最新导学案16微积分基本定理

导学案16微积分基 本定理

高二数学导学案编号016 2014-03-04班级姓名 §1.6微积分基本定理(1) 学习目标 1.理解定积分的概念和定积分的性质,理解微积分基本原理; 2.掌握微积分基本定理,并会求简单的定积分; 3.能够运用基本初等函数的求导公式和导数的四则运算法则从反方向上求出,满足?Skip Record If...?的函数?Skip Record If...?. 重点:掌握微积分基本定理,并会求简单的定积分 难点:微积分定理的基本应用 一、课前准备 复习1:函数?Skip Record If...?的导数为 复习2:若函数?Skip Record If...?,则?Skip Record If...?= 二、新课导学 了解感知 探究任务一:导数与定积分的联系 问题1:一个作变速直线运动的物体的运动规律是?Skip Record If...?.由导数的概念可知, 它在任意时刻?Skip Record If...?的速度?Skip Record If...?.设这个物体在时间段?Skip Record If...?内的位移为S,你能分别用?Skip Record If...?表示S吗? 新知:如果函数?Skip Record If...?是?Skip Record If...?上的连续函数,并且 ?Skip Record If...?,那么?Skip Record If...? 这个结论叫做微积分基本定理,也叫牛顿—莱布尼兹公式 为了方便起见,还常用?Skip Record If...?表示?Skip Record If...?,即?Skip Record If...? 试试:计算?Skip Record If...? 反思:计算定积分?Skip Record If...?的关键是找到满足?Skip Record If...?的函数?Skip Record If...?. 通常我们可以运用基本初等函数的求导公式的四则运算法则从反方向求出?Skip Record If...? . 深入学习 例1 计算下列定积分: (1)?Skip Record If...?;(2)?Skip Record If...?

相关主题
文本预览
相关文档 最新文档