当前位置:文档之家› 峰值电流模式控制在移相全桥变换器中的应用

峰值电流模式控制在移相全桥变换器中的应用

峰值电流模式控制在移相全桥变换器中的应用
峰值电流模式控制在移相全桥变换器中的应用

峰值电流模式控制在移相全桥变换器中的应用

陈咸丰,尹斌

(河海大学,南京,210098)

摘要:本文主要讨论了峰值电流模式控制的斜坡补偿的原理和意义,设计了移相全桥零电压开关控制电路中的斜坡补偿电路。

关键词:峰值电流模式;斜坡补偿;稳定性;移相全桥

Application of Peak-Current-Mode-Control Technique in Phase-shift Full-bridge Converter

CHEN Xian-feng,Yin Bing

(Hohai University,Nanjing,210098,China) Abstract:The paper analyzes the principle and the meaning of slope compensation in peak current mode control .At last t he slope compensation in phase-shift full-bridge zero-voltage-switching circuit is designed.

Keywords:peak current mode;slope compensation;stability;phase-shift full-bridge

1 引言

随着我国科技的发展和工业化进程的进一步提高,对通信开关电源和电力操作直流电源的效率、功率密度、可靠性和EMI 等提出了更高的要求。因此就需要采用新的主电路拓扑结构和采用新的PWM控制模式。目前研究较多的就是移相全桥软开关PWM 变换器的电路拓扑。其PWM控制模式也有电压模式控制和电流模式控制两种。传统的开关电源普遍采用电压模式控制的PWM技术,但在此控制模式下系统的动态响应速度比较慢。峰值电流模式控制的PWM技术正是针对电压模式控制PWM技术的缺点发展起来的。该模式控制因动态响应速度快、补偿电路简化、增益带宽大、易于均流等优点而被广泛应[]1

用。在移相全桥变换器中,控制策略多采用峰值电流模式控制。

2 两种PWM控制模式基本原理及特点2.1 两种PWM控制模式的基本原理

图1(a)为电压模式控制的PWM原理图。由图可以看出电压模式控制只有一个电压反馈闭环,采用脉冲宽度调制法。它工作的基本原理是:输出电压Uo与参考电压Uref经误差放大器EA放大后得到了一个误差电压信号Ue,Ue再与振荡电路产生的固定锯齿波电压经PWM比较器COM比较,由锁存器输出占空比随误差电压信号Ue变化的一系列脉冲。图1(b)为峰值电流模式控制的PWM原理图。由图可以看出,它是一个双闭环控制系统,电压外环控制电流内环。它工作的基本原理是:输出电压Uo与参考电压Uref经误差放大器EA 放大后得到一个误差电压信号Ue,Ue再与电感电流的采样电压Ur比较,由恒频时钟脉冲置位锁存器输出脉冲。当Ur幅度达到Ue电平时,PWM比较器的状态反转,锁存器复位,驱动撤除,功率管关断,电路逐个地检测和调节电流脉冲,由此控制电源输出的电压。

(a)电压模式控制 (b)峰值电流模式控制

图1 电压模式控制和峰值电流模式控制PWM原理图

2.2 两种PWM控制模式的特点]2[

电压模式控制采用单一反馈电压闭环设计,

因此调试比较容易。此外PWM比较器的锯齿波

振幅较大,在调制过程具有较好的抗噪声裕量。

且它的低阻抗功率输出,对多输出电源具有较

好的交互调节特性。但它对输入电压的变化动

态响应速度较慢,且输出的LC滤波器又给控制

环增加了双极点,在补偿设计误差放大器时就

需要将主导极点低频衰减,或是增加一个零点

进行补偿。

峰值电流模式控制PWM是双闭环控制系

统,电压外环控制电流内环。电流环只负责输

出电感的动态变化,而电压环仅需控制输出电

容,不必控制LC储能电路。因此峰值电流模式

控制PWM具有比电压模式控制大得多的带宽。它

具有以下优点:(1)具有良好的线性调整率和快

速的输入输出动态响应;(2)固有的逐个脉冲电

流限制,简化了过载保护和短路保护,在推挽

电路和全桥电路中具有自动磁通平衡功能;(3)

消除了输出滤波电感带来的极点和系统的二阶

特性,使系统不存在有条件的环路稳定性问题,

具有最佳的大信号特性;(4)多电源单元并联易

于实现自动均流。但它同时又具有以下缺点:

(1)需要双环控制,增加了电路设计和分析的

难度;(2)电流上升率不够大,在没有斜坡补

偿时,当占空比大于50 %时,控制环变得不

稳定,抗干扰性能差;(3)控制信号来自输出

电流,功率级电路的谐振会给控制环带来噪

声;(4)控制环控制电流,使负载调整率变差,

在多路输出时,需要耦合电感实现交互调节。

3 峰值电流模式控制的稳定性分析及

斜坡补偿

3.1 峰值电流模式控制的稳定性分析

采用峰值电流模式控制的电路,在没有

斜坡补偿时,当占空比大于50 %时,控制环

就会变得不稳定]3[,其具体原因分析如下。

图2 中,Ve 是误差放大器输出的误差电压信

号,△Io是扰动电流,m1、m2分别是电感电

流的上升沿及下降沿斜率。实线为实际输出

的电感电流,虚线为无扰动时的电感电流。

由于开关频率通常都较高,因此这里假定在

开关周期内,电感电流是线性变化的。令e 为△Io 所引起的偏差,根据几何关系,可得相邻开关

周期内e 的递推表达式:

()112/-?-=i i e m m e

(1)

则第n 周期的误差:

()012/e m m e n

n ?-=

(2)

因此当m1>m2时,也就是占空比小于50%,

误差是收敛的,其频率为开关频率的1/2,振幅逐渐趋向于零,系统是稳定的;而当m1

(a)占空比小于50%

(b)占空比大于50% 图2 峰值电流模式控制系统中电感

电流对扰动的响应

3.2 斜坡补偿原理

由上述分析知,当占空比大于

50%时,此时电感电流上升率小于电感电流下降率,系统是不稳定的。为了解决这一问题,需要引入斜坡补偿,如图3所示。

图3 峰值电流模式控制的斜坡补偿

图中m 为补偿斜率,由几何关系可知,加入斜坡补偿后的误差递推表达式为:

()0

1

2

)()(e m m m m e n n

?++-= (3)

因此选择合适的m ,就可以使

()12

m m m m ++<1

(4)

满足(4)式就可确保系统的稳定性。由图3和上面的补偿后的误差表达式可知,当选择补偿斜率m 等于电感电流下降沿的斜率m2,这时扰动信号在一个周期内就完成了校正,如图4所示。

图4 补偿坡度等于m2的斜坡补偿 3.3 斜坡补偿电路设计

根据图1峰值电流控制的电路图可以看到,加入斜坡补偿有两种方法。一种是将斜坡补偿信号加到电流检测信号中,也就是加到PWM 比较器的同相端。另一种是将斜坡补偿信号从误差电压信号中减去,实际上间接加到PWM 比较器的反相端。由于第二种方法的斜坡补偿信号不是直接加到PWM 比较器上的,实现起来就相对困难些。因此我们主要讨论第一种方法的实现。

图5为斜坡补偿简化电路。从图中可以看出,锯齿波输入脚RAMP 的信号为原边的电流信号和晶振脚Vslope 的输出信号叠加得到的。

图5 斜坡补偿的简化电路

图6为斜坡补偿的等效电路,由此可以算出斜坡补偿后加到芯片锯齿波输入脚的电压:

slope m ram p V V V +=2

(5)

图6 斜坡补偿等效电路

因此斜坡补偿电压slope com p V V =。由前面分析知,当选择补偿斜率m 等于电感电流下降沿的斜率m2时,扰动信号在一个周期内就完成了校正。但在实际应用时,根据经验常选m 在0.5~1之间。令2m slope com p mV V V ==,可得到补偿的锯齿波斜率:

dt

dV m

dt

dV m slope 2

=。 (6)

对于BOOST 电路,电感电流上升的斜率:

L

V V dt dV OUT

IN m -=2 (7)

由于输入电压IN V 随电网变化,所以补偿值不恒定,这样对于固定补偿网络,很多时候会发生过补偿或补偿不足,降低了电路的性能并导致波形畸变, 因此BOOST 电路通常不采用峰值电流模式控制。而对于BUCK 型移相全桥变换器电路,有

L

V dt dV OUT

m =2 (8)

此时斜坡补偿值恒定且容易计算。

4移相全桥零电压开关变换器控制电路的设计

美国Unitrode 公司针对移相控制方案推出了UC3875芯片。该集成电路用一个半桥支路对另一个半桥支路的移相开关实行全桥功率级的控制,使得固定PWM 与谐振零电压开关相结合,在高频具有高效性能。它主要包括以下九个方面的功能:工作电源、基准电源、振荡器、锯齿波、移相控制信号发生电路、过流保护、死区时间设置、输出级、误差放大器和软启动]4[。该PWM 控制器使移相

全桥变换器控制电路的设计大为简化。控制电路主要可分为如下几部分:电路的参数设置,电压电流反馈环节,输出电流限制,电路的保护等。下面主要讨论峰值电流模式控制下的斜坡补偿问题,其它的在此均不作讨论。

由前面分析可知,采用峰值电流模式控制需要进行斜坡补偿。UC3875芯片内部有锯齿波发生器和斜坡补偿电路。斜坡设置脚SLOPE 与某一个电源Vx 之间接一个电阻Rslope ,为锯齿波脚RAMP 提供一个电流为slope x

R V 的恒流源,其中Vx 通常接芯片的基准电源Vref 。在RAMP 脚与信号地GND 之间接一个电容Cramp ,就决定了锯齿波的斜率:

ramp

slope X

slope C R V dt

dV ?=

(9)

另外,选定了Rslope 和Cramp ,同时也就决定了锯齿波的幅值T dt

dV U slope pr ?=

,其

中T 为锯齿波产生的周期。把此固定斜率的

锯齿波输入到PWM 比较器就构成了电压控制型。若在此基础上,把原边电流采样信号叠加在RAMP 脚作电流取样输入到PWM 比较器,就构成了峰值电流模式控制。具体接法如图7所示。则需要补偿的斜率:

dt

dV m

dt

dV m slope 2

==L V m OUT

(10)

根据上面所述就可计算出斜坡补偿电路

的参数。

图7 移相全桥零电压开关变换器的控制电路

5结论

峰值电流模式控制的系统稳定性好,响应速度快,实现也很容易,并且能够限制电路中的峰值电流,从而保护器件。对此控制电路采用斜坡补偿可以增加电路稳定性,改善电路的性能, 特别对占空比大于50%的电路,进行斜坡补偿是必要的。实验表明,采用此控制策略应用在移相全桥变换器中,明显的改善了系统的性能。参考文献:

[1] 周志敏等.开关电源实用技术设计与应用.北京:人民邮电出版社,2004.

[2] 王创社等.开关电源两种控制模式的分析比较[J].电力电子技术,1998 ,(3) :78~81.

[3] 杨汝.峰值电流控制模式中斜坡补偿电路的设计[J].电力电子技术,2001,35(3):35~38.

[4]Phase Shift Resonant Controller Handbook of Unitrode.1995

作者简介:

陈咸丰:男,1981年11月生,硕士生。主要研究方向为电力电子技术及计算机测量与控制。尹斌:男,1958年生,副教授。主要研究方向为电力电子技术及计算机测量与控制。

桥式直流PWM变换器仿真分析解析

黑龙江大学课程设计说明书 学院:机电工程学院 专业:电气工程及其自动化 课程名称:电力电子技术 设计题目:桥式直流PWM变换器仿真 姓名: 学号: 指导教师: 成绩:

目录 第一章课程设计的性质和目的 (2) 第二章课程设计的内容 (2) 第三章设计报告要求 (2) 第四章参考资料 (2) 第五章课程设计的题目 (3) 第六章课程设计的内容 (3) 6.1总体电路的功能框图及其说明 (3) 6.2单相桥式PWM逆变电路 (3) 6.3控制电路 (4) 6.4驱动电路 (5) 6.5缓冲电路 (6) 6.6双极性PWM控制方式 (6) 6.7单极性PWM控制方式 (9) 第七章心得与体会 (11) 第八章参考文献 (13) 附录:评分标准 (14)

一、课程设计的性质和目的 性质:是电气自动化专业的必修实践性环节。 目的: 1、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。 2、培养学生综合分析问题、发现问题和解决问题的能力。 3、培养学生运用知识的能力和工程设计的能力。 4、培养学生运用仿真工具的能力和方法。 5、提高学生课程设计报告撰写水平。 6、加深理解《电力电子技术》课程的基本理论; 7、初步掌握电力电子电路的设计方法。 二、课程设计的内容: 1、整流电路的选择 2、整流变压器额定参数的计算 3、晶闸管(全控型器件)电压、电流额定的选择 4、平波电抗器电感值的计算 5、保护电路(缓冲电路)的设计 6、触发电路(驱动电路)的设计 7、画出完整的主电路原理图和控制电路原理图 8、用MATLAB进行仿真,观察结果 三、设计报告要求 依据“课程设计说明书”(电子文档)的模板格式撰写。内容应包括: 1、主电路设计说明 2、控制电路设计说明 3、仿真结果讨论(说明是否达到设计指标的要求) 4、附录:主电路和控制电路原理图 四、参考资料 电力电子技术教材及相关资料

直流变换器开题报告汇总

开题报告 一背景 直流变换器是一种将模拟量转变为数字量的半导体元件。按功能可分为:升压变换器、降压变换器和升降压变换器。在燃料电池汽车中主要采用升压变换器。变换器首先通过电力电子器件将直流电源转变成交流电(AC),一般称作逆变,然后通过变压器(升压比为1∶n)升压,最后通过整流、滤波电路产生变压后的直流电,以供负载使用. 直流转换器与一般的变换器相比,具有抗干扰能力强、可靠性高、输出功率大、品种齐全等特点,用途广泛,输入输出完全隔离,输出多路不限,极性任选。宽范围输入变换器是专为满足输入电压变化范围较大场合需要而开发的一种直流稳压电源,其输入直流电压可以在DC100V-375V宽范围内变动而保证输出电压的稳定性.此外,这种电源体积小,重量轻、保护功能完善,具有良好的电磁兼容性。本身具有过流、过热、短路保护。多档输出的变换器,它不仅提供电源而且有振铃和报警功能。该变换器分为军用、工业及商业三个品级,在诸如通信机房、舰船等蓄电池供电的场合极为适用。直流—直流变换器(DC/DC Converter)早在10年前就做成了元器件式样,在系统中损坏 时可以卸下更换。目前,它正从低技术、元器件型转向高技术、插件(Building black)型发展。系统设计师在开始方案设计阶段就要考虑系统究竟需要什么样的电源输入、输出?DC/DC变换器作为子系统的一个部件,应该更仔细地规定它的指标以及要付出多少费用。有趣的是,全球声称可供给军用DC/DC变换器的厂家超过300家,但却没有两

种产品是相同的,这给系统设计师选用该产品时造成困难。设计师们考虑的最重要的事是:对产品的性能价格比进行综合平衡,决定取舍。需求和市场决定制造厂的发展战略目前,对制造厂家而言,面临着要求降低噪声、减小尺寸以及提高功率和效率的挑战和市场竞争。现扼要介绍几家公司的做法。当今,在任何一个计算机系统中,各种电源都是以插件形式出现的。供应厂商均按用户的要求作相应改动以适应需求。DC/DC直流变换器的军品市场占很大比重,但增长缓慢。分析家们预测:到1996年,DC/DC变换器最大市场将是计算机和通信领域。 美国InterPoint公司的研究开发战略是:针对军用及宇航系统应用,提供一种更便宜、功率更大、性能更好的产品,它们比现有DC/DC 变换器有全面改进。预计今后几年的实际问题仍是产品价格。采用模块化方法可以降低成本,同时提高DC/DC变换器输出功率。一些应用系统要求功率高达2KW,如果采用200W的产品去构建系统,至少要10~12个产品,既麻烦也影响系统可靠性。该公司认为必须研制出功率比200W大2~3倍的大功率电源,而且单件成本控制在1.3~1.7倍才合适。 模块化方法,可以通过消除非重复工程成本(NRE)使系统成本降低。这种模块化的器件也是分布式供电系统的基本构件。鉴于分布式供电比集中供电系统有更多优点,而绝大多数应用系统要求在母线级上直流电压要分别供给不同逻辑电路各种电压,例如+5V、+12V、+3.3V 等等。一些厂家利用板级(on-Card)DC/DC变换器来实现,另一些供应商则把几种输出合在一起,把电源放在靠近需要供电的电路板上。

对一个简单的峰值电流限制进行改进方法

对一个简单的峰值电流限制进行改进方法 故障保护是所有电源控制器都有的一个重要功能。几乎所有应用都要求使用过载保护。对于峰值电流模式控制器而言,可以通过限制最大峰值电流来轻松实现这个功能。在非连续反向结构中,为峰值电流设置限制可最终限制电源从输入源获得的功率。但是,限制输入功率不会限制电源的输出电流。如果出现过载故障时输入功率保持不变,则随着输出电压下降,输出电流增加(P=V*I)。发生短路故障时,这会让输出整流器或者系统配电出现难以接受的高损耗。本文利用一些小小的创新和数个额外组件,为您介绍如何对一个简单的峰值电流限制进行改进,将电源变为一个恒定电流源,而非一个恒定功率源。 图1对比了理想输出电压与恒定功率和恒定电流限制的电流。这两种情况下,过载故障保护都在120%最大额定负载时起作用。在一个使用功率限制的系统中,输出电流随负载增加电压反向而增加。在现实系统中,有功率限制的反向控制器会在某个点关闭,原因是控制器的偏压损耗。相比之下,一旦超出过载阈值,有电流限制的系统便会立刻关闭。可以通过直接检测隔离边界二次侧的负载电流,实现电流限制。但是,这样做需要使用更多的电路,效率降低,而且成本一般会高得离谱。 图2 显示了移动设备充电器所使用的一个5V/5W 非连续反向电源的原理图。在范例中,我们使用了UCC28C44 控制器,它是大多数经济型峰值电流模式控制器的代表,拥有功率限制功能。在非连续反向结构中,如果忽略效率影响,可使用方程式1 计算负载功率(P)的大小。 由于变压器电感(L)和开关频率(f)均固定不变,因此可以通过控制峰值一次电流(IPK)对输出电压(VOUT)进行调节。随着输出电流(IOUT)增加,电压开始下降,但是反馈环路要求更高的峰值电流来维持电压调节。 在反向转换器内部,引脚1(COMP)的反馈电压与峰值电流比较。通过R15 检测该峰值

峰值电流控制优缺点

开关电源峰值电流模式控制PWM的优缺点 近年来电流模式控制面临着改善性能后的电压模式控制的挑战,因为这种改善性能的电压模式控制加有输入电压前馈功能,并有完善的多重电流保护等功能,在控制功能上已具备大部分电流模式控制的优点,而在实现上难度不大,技术较为成熟。 由输出电压VOUT 与基准信号VREF的差值经过运放(E/A)放大得到的误差电压信号 VE 送至PWM比较器后,并不是象电压模式那样与振荡电路产生的固定三角波状电压斜波比较,而是与一个变化的其峰值代表输出电感电流峰值的三角状波形或梯形尖角状合成波形信号 VΣ比较,然后得到PWM脉冲关断时刻。因此(峰值)电流模式控制不是用电压误差信号直接控制PWM脉冲宽度,而是直接控制峰值输出侧的电感电流大小,然后间接地控制PWM脉冲宽度。 电流模式控制是一种固定时钟开启、峰值电流关断的控制方法。因为峰值电感电流容易传感,而且在逻辑上与平均电感电流大小变化相一致。但是,峰值电感电流的大小不能与平均电感电流大小一一对应,因为在占空比不同的情况下,相同的峰值电感电流的大小可以对应不同的平均电感电流大小。而平均电感电流大小才是唯一决定输出电压大小的因素。电感电流下斜波斜率的至少一半以上斜率加在实际检测电流的上斜波上,可以去除不同占空比对平均电感电流大小的扰动作用,使得所控制的峰值电感电流最后收敛于平均电感电流。因而合成波形信号VΣ要有斜坡补偿信号与实际电感电流信号两部分合成构成。当外加补偿斜坡信号的斜率增加到一定程度,峰值电流模式控制就会转化为电压模式控制。因为若将斜坡补偿信号完全用振荡电路的三角波代替,就成为电压模式控制,只不过此时的电流信号可以认为是一种电流前馈信号。当输出电流减小,峰值电流模式控制就从原理上趋向于变为电压模式控制。 当处于空载状态,输出电流为零并且斜坡补偿信号幅值比较大的话,峰值电流模式控制就实际上变为电压模式控制了。峰值电流模式控制PWM是双闭环控制系统,电压外环控制电流内环。电流内环是瞬时快速的,是按照逐个脉冲工作的。 功率级是由电流内环控制的电流源,而电压外环控制此功率级电流源。在该双环控制中,电流内环只负责输出电感的动态变化,因而电压外环仅需控制输出电容,不必控制LC 储能电路。峰值电流模式控制PWM具有比起电压模式控制大得多的带宽。以下是开关电源峰值电流模式控制PWM的优缺点: 峰值电流模式控制PWM的优点是: ①暂态闭环响应较快,对输入电压的变化和输出负载的变化的瞬态响应均快; ②控制环易于设计; ③输入电压的调整可与电压模式控制的输入电压前馈技术相妣美; ④简单自动的磁通平衡功能; ⑤瞬时峰值电流限流功能,内在固有的逐个脉冲限流功能; ⑥自动均流并联功能。 峰值电流模式控制PWM的缺点是: ①占空比大于50%的开环不稳定性,存在难以校正的峰值电流与平均电流的误差。 ②闭环响应不如平均电流模式控制理想。 ③容易发生次谐波振荡,即使占空比小于50%,也有发生高频次谐波振荡的可能性。因而需要斜坡补偿。 ④对噪声敏感,抗噪声性差。因为电感处于连续储能电流状态,与控制电压编程决定的电流电平相比较,开关器件的电流信号的上斜波通常较小,电流信号上的较小的噪声就很容易使得开关器件改变关断时刻,使系统进入次谐波振荡。 ⑤电路拓扑受限制。

峰值电流模式控制总结(完整版)

峰值电流模式控制总结 PWM (Peak Current-mode Control PWM) 峰值电流模式控制简称电流模式控制。它的概念在60年代后期来源于具有原边电流保护功能的单端自激式反激开关电源。在70年代后期才从学术上作深入地建模研究。直至80年代初期,第一批电流模式控制PWM集成电路(UC3842、UC3846)的出现使得电流模式控制迅速推广应用,主要用于单端及推挽电路。近年来,由于大占空比时所必需的同步不失真斜坡补偿技术实现上的难度及抗噪声性能差,电流模式控制面临着改善性能后的电压模式控制的挑战。如图1所示,误差电压信号 Ue 送至PWM比较器后,并不是象电压模式那样与振荡电路产生的固定三角波状电压斜坡比较,而是与一个变化的其 比较,然后得到峰值代表输出电感电流峰值的三角状波形或梯形尖角状合成波形信号U Σ PWM脉冲关断时刻。因此(峰值)电流模式控制不是用电压误差信号直接控制PWM脉冲宽度,而是直接控制峰值输出侧的电感电流大小,然后间接地控制PWM脉冲宽度。 图1采用斜坡补偿的BUCK电流型控制 1. 峰值电流模式控制PWM的优点: ①暂态闭环响应较快,对输入电压的变化和输出负载的变化的瞬态响应均快;峰值电流模式控制PWM是双闭环控制系统,电压外环控制电流环。电流环是瞬时快速按照逐个脉冲工作的。功率级是由电流环控制的电流源,而电压外环控制此功率级电流源。在该双环控制中,电流环只负责输出电感的动态变化,因而电压外环仅需控制输出电容,不必控制LC储能电路。由于这些,峰值电流模式控制PWM具有比起电压模式控制大得多的带宽。 ②虽然电源的L-C滤波电路为二阶电路,但增加了电流环控制后,只有当误差电压发生变化时,才会导致电感电流发生变化。即误差电压决定电感电流上升的程度,进而决定功率开关的占空比。因此,可看作是一个电流源,电感电流与负载电流之间有了一定的约束关系,使电感电流不再是独立变量,整个反馈电路变成了一阶电路,由于反馈信号电路与电压型相比,减少了一阶,因此误差放大器的控制环补偿网络得以简化,稳定度

全桥变换器

Full-bridge converter变换器 电气0810 赵玮08292053 题目: 设计一Full-bridge converter变换器。输出电压48V,功率为100W。其中:输入电压为直流48V~8V。 要求: 1.通过计算选参数把输出电压纹波Vp-Vp控制在2%之内。 2.主电路元器件的选用、控制芯片的选用、各种为改善电源质量的电磁兼容措施等,任由各位同学自己决定,但要说明选用的理由。 3. 要有:过压和欠压保护;短路保护;过电流保护措施

一、主电路工作原理及器件选择 1、全桥变换工作原理 全桥变换器的主电路如下图1所示,其主要工作波形如下图2所示。仅需在全桥电路上增加一个谐振电感L或利用变压器漏感,便可通过L1与功率开关管输出电容Ci(i=1,2,3,4)的谐振,在电感储能释放过程中,使Ci上的电压u逐步下降到零,而使功率开关管体内的寄生二极管VDi(i=l,2,3,4)开通,使电路中4个开关器件实现零电压开通或零电流关断。通过改变对角线上开关管驱动信号之间的相位差来改变占空比,以达到控制输出电压的目的。变压器副边所接整流二极管VD5、VD6实现全波整流。 2、Full-bridge converter变换器结构 图1

3、全桥变换器工作波形 图2 4、参数计算和器件选择 1)变压器的选择 为了在规定的输入电压范围内能够输出所要求的电压,变压器的变比应按最低输入电压U 选择。为了降低输出整流二极管的反向电压,为了提高高频变压器的利用率,减小开关管的电流,选择副边的最大占空比为0.85,则可计算出副边电压为: (max)sec(min)sec(max)o D LF V V V V D ++= 其中:0(max)V 是最高输出电压,即均充电压;d V 是输出整流二极管 的通态压降;LF V 是输出滤波电感上的直流压降。取 (max)48(12%)49o V V =?+≈,d LF V =0.7V,V 1V =,所以sec(min)490.7163.3750.8 V V ++==,所以变压器原副边变比为

全桥DCDC变换器平均电流控制模式控制分析

一种大电流输出的全桥DC/DC变换器平均电流控制模式控制分析 2009年09月21日作者:王少坤来源:《中国电源博览》编辑:樊晓琳 摘要:倍流整流电路能够降低变压器副边的电流,特别适合于大电流输出的应用。本文分析和研究了平均电流模式控制策略在带有倍流整流电路的大电流输出全桥DC/DC变换器中的应用。并进行了仿真和实验。 关键词:DC/DC变换器;电流控制;倍流整流 Abstract: The two inductor rectifier circuit offers reduced secondary side current rating and is most suitable for high current applications. The paper analysis of average current mode Control on a high current output FB DC/DC Converter with two inductor rectifier circuit. Simulations and experiments ensure the rightness of the method. Key Words: FB DC/DC Converter; Current-mode Control; Compensation Network 0 引言 相比电压控制模式控制,电流控制模式通过对电感电流的相位补偿,大大改善了电源的动态响应和并联特性。倍流整流(CDR)能够降低变压器副边的电流,减少其损耗;同时它有两个输出滤波电感,流经每个电感的电流只有负载电流的一半,输出滤波电感的损耗也小,特别适用于现今越来越多的需要大电流输出的场合。本文对一种带倍流整流电路的全桥 DC/DC变换器的平均电流模式控制进行了分析和仿真。 1 两种电流控制模式的优缺点比较 电流控制模式有两种类型:峰值电流模式控制(PCMC)和平均电流模式控制(ACMC)。 峰值电流模式的优点是控制具有内在的输入电压反馈,逐个脉冲峰值电流限制和在保证隔离变压器磁芯的磁通平衡;但其缺点是易受噪声干扰,具有平均电流误差和需要斜坡补偿。平均电流模式则由于其显著优点得到了广泛应用, ○1跟踪电流设定值。这点应用在高功率因数控制电路中尤其重要,此时用一个小电感就能获得小于3%的谐波畸变,并且即使电路模型由连续电流模式过渡到不连续电流模式,平均电流法也能很好地工作;②噪声抑制能力强,因为当时钟脉冲使功率开关管开通后,晶振幅度迅速降到了一个低值; ③无须斜坡补偿,但为了电路工作稳定,在开关频率附近必须限定环路增益; ④平均电流法可应用在任意电路拓扑上,既能控制Buck 和Flyback 电路的输入电流,又能控制Boost 和Flyback 电路的输出电流。 2 带有倍流整流电路的全桥DC/DC变换器电路拓扑

30kW电流模式PWM控制的DCDC功率变换器

华 伟 1965年生,1990 年获北京工业大学功率半 导体器件专业工学硕士学位,副教授,从事新型电力电子器件应用及开关功率变换器的教学和科研工作。 设计与研究 30k W 电流模式PWM 控制的 DC DC 功率变换器 北方交通大学(北京100044) 华 伟 摘 要:新型30k W 电流模式P WM 控制的功率变换器采用N PT -IGBT 器件,无需串联隔直防偏磁电容,使用有源斜坡补偿技术,效率达到90%,具有极好的动态响应、过流保护及模块均流并联性能,是一种具有极大功率扩容(可达到100k W )潜力并易于工程化实现的IGBT 功率变换器。 关键词:电流模式 IGBT 全桥拓扑 开关模式整流器 变换器 收修改稿日期:1999203215 30k W curren t m ode P WM con trolled DC DC power converter N o rthern J iao tong U n iversity (B eijing 100044) Hua W e i Abstract :P resen ted in the paper is a novel 30k W cu rren t mode P WM con tro lled pow er converter .T he converter ,of w h ich the efficiency reaches 90%,app lies N PT -IGBT device and an active slope compen sati on techno logy w ith no need to series connect a DC b lock ing and b ias 2p roof capacito r .It featu res excellen t dynam ic respon se ,over 2cu rren t p ro tecti on ,parallel modu le cu rren t equalizati on ,very h igh pow er expan si on po ten tial (as h igh as 100k W )as w ell as easy engineering realizati on . Key words :cu rren t mode ,IGBT ,fu ll 2b ridge topo logy ,S M R ,converter . 近年来,随着新型电力电子器件的飞速发展, 10k W 以上的直流功率变换器已从SCR 的低频相控整流器方式发展为IGB T 的高频DC DC 开关功率变换器方式。国外的DW A 、GEC -AL STON 、AD tranz 、ABB [1] 等公司也于近年研制出各自的IGB T DC DC 充电机,主要用于高速电气化列车及地铁列车。IGB T DC DC 充电机的重量、 体积大幅度减小,性能明显改善,但要实现15k W ~200k W 的DC DC 高频开关功率变换,存在许多技术问题需要解决。下面根据30k W IGB T DC DC 充电机的研制情况,对有关技术问题进行分析研究。 1 主电路及控制方案 (1)主电路原理图 不同的DC DC 功率变换器拓扑及PWM 控制方法可以构成许多不同的主电路及控制方案[2]。根据技 术的成熟程度、工程化实现难度、装置的性能要求、系列化功率扩容考虑、长期可靠性要求等,在设计30k W IGB T DC DC 充电机时,选择了电流模式PWM 控制 的全桥拓扑(无隔直电容)功率变换器方案。功率变换器的工作频率约为20kH z 。主电路原理如图1所示。 其中C 2为母线单电容型snubber 电路,CT 为检测一次侧电流用的电流互感器。此一次侧电流信号用作电流模式PWM 反馈控制 。 图1 IGBT DC DC 充电机用功率变换器主电路原理图 (2)控制系统原理方框图 控制系统原理如图2所示。这是一个由110V 输出电压控制的电压外环及电流互感器CT 所检测的一次侧电流内环构成的双闭环反馈系统。斜坡补偿电路是电流模式PWM 控制的大占空比双端开关电源电路是为防止次谐波振荡所必需的。反馈补偿网络用以控制电压反馈闭环的稳定性。A 、B 两路驱动信号分别提供给图1中的两路对角线IGB T V 1、V 3和V 2、V 4。 1999年第5期机 车 电 传 动№5,1999  1999年9月10日EL ECTR I C DR I V E FOR LOCOM O T I V E Sep .10,1999

20170807-峰值电流型控制Buck等效功率级的小信号传递函数

峰值电流型控制Buck 等效功率级的小信号传递函数 普高(杭州)科技开发有限公司 张兴柱 博士 Buck 变换器在峰值电流型控制下的等效功率级小信号传递函数(CCM ): ) 1)(1()1()(220n n p p zc vc vc s Q s s s G s G ωωωω++++′≈′ )1)(1()1()(220 n n p p zc vg vg s Q s s s G s G ωωωω++++′≈′ ) 1()1()(0p zc out s s R s Z ωω++′≈′ 其中:101F R R G i vc = ′,120F F L RT G s vg =′,10F R R =′ 11F RC p =ω,)5.0(1?′=D m Q c p π,C R c zc 1=ω,s n T πω= )5.0(11?′+ =D m L RT F c s ,)]21([2D D m D F c ??′=,n e c S S m +=1 i o g n R L V V S ×?= 从求得的峰值电流控制Buck 等效功率级的三个CCM 小信号传递函数,我们可以来分析这种控制的特点。其峰值电流控制等效功率级的控制电压到输出电压小信号传递函数)(s G vc ′,和输入电压到输出电压小信号传递函数)(s G vg ′,形式完全相同,所不同的只是零频分量。它由一个左半平面单极点,一个1/2开关频率处的双极点和一个因输出滤波电容ESR 引起的左半平面单零点组成。双极点的频率在1/2开关频率,比起开关电源的带宽要高得多,故一般情况下可将其忽略。在R.Ridely 引入采样函数之前的分析文章中,所得到的结果都是用一阶小信号传递函数近似,所以就不能解释在实验中出现的子谐波振荡现象。所谓的子谐波振荡是峰值电流型控制的等效功率级,在工作占空比大于0.5时和无外部补偿斜波时,会在输出产生一种1/2开关频率的有规则的振荡,可在MOSFET 的ds V 波形上反映出来,它在时钟的相邻开关周期内,具有不同的导通时间和截止时间,一长一短,其波形示意图如图1所示。虽然这种振荡波形,人耳一般听不到,但它会影响开关电源长期工作的可靠性,所以必须避免。

带飞跨电容的三电平全桥直流变换器输入中点电压的自平衡分析

2018年9月电工技术学报Vol.33 No. 18 第33卷第18期TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Sep. 2018 DOI: 10.19595/https://www.doczj.com/doc/dd15588092.html,ki.1000-6753.tces.171245 带飞跨电容的三电平全桥直流变换器 输入中点电压的自平衡分析 刘朋陈昌松段善旭 (华中科技大学电气与电子工程学院强电磁工程与新技术国家重点实验室武汉 430074) 摘要输入中点电压平衡问题通常是三电平拓扑的研究重点,但是在现有的文献中针对三电平全桥(TLFB)直流变换器的输入中点电压平衡问题还没有深入分析。针对TLFB直流变换器,给出其详细的模态分析,进而揭示其中点电压偏移的原因,并说明飞跨电容能带来中点电压自平衡的功能。首先通过对比无飞跨电容的三电平半桥(TLHB)和TLFB变换器的供电模态,指出在对管关断不一致的情况下,TLFB电路也会出现单个分压电容提供负载电流的模态,从而导致输入中点电压偏移;之后针对带飞跨电容的TLFB电路进行模态分析,证明即使在对管关断不一致的情况下,飞跨电容的引入能极大缓解中点电压的偏移,从而实现自平衡;最后分析稳态情况下偏移电压的影响因素,推导带飞跨电容的TLFB电路中点电压稳态误差的数学表达式,该表达式能够对TLFB变换器中飞跨电容的设计提供理论指导。通过仿真和实验验证了所提方法的有效性。 关键词:三电平全桥直流变换器中点电压平衡飞跨电容 中图分类号:TM46 Self-Balance Mechanism Analysis of the Neutral Point Voltage in Three-Level Full Bridge DC-DC Converter with Flying Capacitors Liu Peng Chen Changsong Duan Shanxu (State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China) Abstract The balance of the neutral point voltage is always an important issue for the three-level topologies, but the deep analysis about the neutral point voltage balance in the three-level full bridge (TLFB) DC-DC converter has not been provided in publications. Focusing on the TLFB converter, this paper provides the detailed mode operation analysis of the converter and reveals the cause of the unbalanced neutral point voltage. Moreover, the mechanism of the self-balance ability brought by the flying capacitors is explained in detail. First, the supply modes of three-level half bridge (TLHB) and TLFB converters without flying capacitors are compared. It is pointed out that in the case of inconsistent turn-off of the diagonal switches, an individual input capacitor will have to provide the load current, resulting in an offset of the neutral point voltage. Then the detailed mode operation of TLFB with flying capacitor has been provided when the diagonal switches turn off inconsistently, which proves that flying capacitors can relieve the drift of the neutral point voltage and further achieve the self-balance of the neutral point voltage. At last, the influence factor of the voltage drift in steady 国家自然科学基金(51477067)和光宝电力电子技术科研基金(PRC20161047)资助项目。 收稿日期 2017-08-29 改稿日期 2017-11-18

峰值电流1

一、电流型控制原理及特点 原理: 电流型脉宽调制(PWM)控制器是在普通电压反馈PWM 控制环内部增加了电流反馈的控制环节,因而除了包含电压型PWM 控制器的功能外,还能检测开关电流或电感电流,实现电压电流的双环控制。控制原理框图如下图(图1)所示。 图 1 双环电流型控制器原理图 从图 1 可以看出,电流型控制器有两个控制闭合环路:一个是输出电压反馈误差放大器A,用于与基准电压比较后产生误差电压;另一个是变压器初级(电感)中电流在Rs 上产生的电压与误差电压进行比较,产生调制脉冲的脉宽,使得误差信号对峰值电感电流起着实际控制作用。系统工作过程如下:假定输入电压下降,整流后的直流电压下降,经电感延迟使输出电压下降,经误差放大器延迟Vca 上升,占空比变化,从而维持输出电压不变,在电流环中电感的峰值电流也随输入电压下降,电感电流的斜率di/dt 下降,导致斜坡电压推迟到达Vca,使PWM 占空比加大,起到调整输出电压的作用。由于既对电压又对电流起控制作用,所以控制效果较好在实际中得到广泛应用。 特点: a)由于输入电压Vi 的变化立即反映为电感电流的变化,不经过误差放大器就能在比较器中改变输出脉冲宽度(电流控制环),因而使得系统的电压调整率非常好,可达到0.01%V, 能够与线性移压器相比。 b)由于双环控制系统内在的快速响应和高稳定性,反馈回路的增益较高,不会造成稳定性与增益的矛盾,使输出电压有很高的精度。 c)由于Rs 上感应出峰值电感电流,只要Rs 上电平达到1V,PWM 控制器就立即关闭,形成逐个脉冲限流电路,使得在任何输入电压和负载瞬态变化时,功率开关管的峰值电流被控制在一定范围内,在过载和短路时对主开关管起到有效保护。 d)误差放大器用于控制,由于负载变化造成的输出电压变化,使得当负载减小时电压升高的幅度大大减小,明显改善了负载调整率。 e)由于系统的内环是一个良好的受控电流放大器,所以把电流取样信号转变成的电压信号和一个公共电压误差放大器的输出信号相比较,就可以实现并联均流,因而系统并联较易实现。 二、峰值电流控制与平均电流控制的比较 峰值电流模式控制和平均电流模式控制相比主要具有以下缺点: (1)对噪声敏感,峰值电流模式控制是将电感电流的上升沿(即开关电流)同设定的电流值相比较,当瞬态电流达到设定值,PWM比较器输出翻转将功率开关管关断。电感电流上升到设定值的坡度即(Vin-Vout)/L 很小,特别是Vin 小时坡度更小,所以这种控制方法易受噪声干扰。每次开关管通断时都会产生噪声尖峰,并且耦合到控制电路的一个小电压就能使开关管迅速关断,使电路处于次谐波运作模式产生很大的纹波,所以

电流峰值控制boost电路数学模型

Boost 变换器基本电路形式如图1所示 图1 Boost 变换器基本电路 在boost 电路中, g V 是输入电压,L 是滤波电感,1、2为开关器件,C 是滤波电容,R L 为负载电阻,)(t i L 是流过电感的电流,)(t i C 是流过电容的电流,V 是输出电压。该电路有两种工作状态; 一种为开关接到1的工作状态,如图2所示 图2 Boost 电路开关1状态 分析可知 ; (1) 另一种开关接到2的工作状态,如图3所示

图3 Boost 电路开关2状态 其中 (2) 根据电压定理作)(t V L 与时间的函数关系,如图4所示 图4 电感电压与时间的函数关系 S g S g S L T D V V DT V T 0 dt t V ')()(-+?=? 即 )()(''S S S g T VD T D DT V 0-++?= 可得 D 11D 1 V V D M g -===')( (3) 根据电流定理作)(t i C 与时间的函数关系,如图6所示

图6 电容电流与时间的函数关系 S L S S C T D R V i DT R V dt T 0t i ')()()(-+?-=? 即 L S S S i T D T D DT R V 0?++?-='')()( 可得; R D 1Vg i 2L )(-= (4) 通过对理想Boost 变换器在一个开关周期内两个工作阶段的分析,得到电感电压的分段函数: ()()?? ????+=??ττττd V d V T 1V S T D L D 0L S L (5) 用平均变量代替瞬时变量,化简得 ()()V V D 1DV V g g L --+= (6) 又因为 ()()dt t di L d V T 1 V L T 0L L S ==?ττ (7) 将上式带入(5)得电感电压平均值的表达式 ()()V D 1V dt t di L g L --= (8) 同理可得电容电流平均值的分段表达式 ()()()R V t i D 1dt t dv C L --= (9) 为了将上式非线性问题线性化,找到变换器的静态工作点,对上面式子分离扰动,表示为直流分量和小信号分量之和,直流分量描述变换器的稳态解,交流小信号分量描述变换器在静态工作点处的动态性能。 )()(_____t v V t v g g g ∧ += )()(____t i I t i ∧ += )()(____t v V t v ∧ +=

全桥变换器报告

1600W全桥变换器Saber仿真及读书报告 学院信息工程学院 专业电子与通信工程 年级班别 2017级(2)班 学号 2111703116 学生姓名陈文威 指导教师李志忠 2017年12月

目录 一、1600W 全桥变换器Saber 仿真 (1) 1性能指标: (1) (1)最大占空比max D 的确定 ....................................................................... 1 (2)变压器匝比K=S P N N 、最小占空比min D 的确定 .. (1) (3)磁芯的选择 ........................................................................................... 2 (4)初级线圈和次级线圈的匝数 ............................................................... 2 (5)输出电感的计算 ................................................................................... 3 (6)输出电容的计算 ................................................................................... 4 (7)选择功率开关管Q1~Q4 ....................................................................... 4 (8)选择反并二极管D1~D4........................................................................ 5 (8)选择整流二极管DR1和DR2 ............................................................... 5 (9)防止磁通不平衡的隔直流电容的计算 ............................................... 5 (10)设计II 型误差放大器 ......................................................................... 6 (11)开环仿真 ............................................................................................. 8 (12)闭环仿真 (9) 二、读书报告 (12) 1 不对称pwm 反激变换器 ................................................................................ 12 2 最大无线功率传输效率的自适应最优负载电路的设计 .............................. 21 3综述 . (26)

PFC峰值控制模式

电流模式降压控制器的精确控制环路 标签: 控制器电流2012-09-16 14:56 峰值电流控制模式通常是电源设计人员的首选方案,因为其控制-输出传输函数具有一阶频率响应特性。基于一阶模型的控制回路设计的相位裕量接近90°。然而,实际应用中发现所能获得的相位裕量远远小于90°,具体取决于单位增益频率的选择、占空比和所采用的斜率补偿,这是由于控制回路电流比较器的采样效应引起的。本文描述了MAX1954A电流模式控制器的控制回路设计,设计时考虑了采样效应的影响,准确预测了相位裕量。这里使用的分析方法并不针对MAX1954A,能够适用于目前市场上的大多数电流模式降压IC。 一阶模型 降压型DC-DC转换器的典型电流模式控制环路如图1所示。采用固定频率时钟(CLK)导通高边MOSFET。PWM比较器反相输入端由电感电流产生的电压大于控制电压vc时,Q1关闭。通过vc设置峰值电感电流,以保持输出电压vo的稳定。这样,输出电感表现为一个电流源,从而得到一阶控制-输出传输函数。斜坡补偿电压vs 加到PWM比较器的第二反相输入端,在占空比高于0.5时可防止工作周期内的谐波不稳定性,提高噪声抑制。电流控制模式的相关波形如图2所示。 图1. 峰值电流控制模式电路原理图

图2. 电流控制模式波形图 控制-输出传输函数通常用于设计峰值电流模式控制器,如下式所示: 由上式可以估算输出电容Co和负载电阻Ro产生的极点ωp。由该式还可估算出输出电容及其等效串联电阻(ESR) Rc产生的零点ωz。由以上模型得出的增益和相位与实际应用获得的值不同,这是由于PWM比较器的“采样和保持”效应,每周期仅对电流波形采样一次的结果。查阅参考文献[1]可知:必须对以上公式中的简单峰值电流控制模型加以改进,使其在1/2开关频率处具有双极点,以体现采样效应。 估算相位裕量 下文描述了MAX1954A电流模式控制器的环路设计,考虑高频效应并精确估算了相位裕量。利用 MAX1954A*估板电路原理图实现该设计,参考了MAX1954A*估板数据资料和MAX1954A数据资料。 以下公式给出了精确的控制-输出传输函数:

DC-DC直流变换器

第一章绪论 本章介绍了双向DC/DC变换器(Bi-directional DC/DC Converter,BDC)的基本原理概述、研究背景和应用前景,并指出了目前双向直流变换器在应用中遇到的主要问题。 1.1 双向DC/DC变换器概述 所谓双向DC/DC变换器就是在保持输入、输出电压极性不变的情况下,根据具体需要改变电流的方向,实现双象限运行的双向直流/直流变换器。相比于我们所熟悉的单向DC/DC 变换器实现了能量的双向传输。实际上,要实现能量的双向传输,也可以通过将两台单向DC/DC变换器反并联连接,由于单向变换器主功率传输通路上一般都需要二极管,因此单个变换器能量的流通方向仍是单向的,且这样的连接方式会使系统体积和重量庞大,效率低下,且成本高。所以,最好的方式就是通过一台变换器来实现能量的双向流动,BDC就是通过将单向开关和二极管改为双向开关,再加上合理的控制来实现能量的双向流动。 1.2 双向直流变换器的研究背景 在20世纪80年代初期,由于人造卫星太阳能电源系统的体积和重量很大,美国学者提出了用双向Buck/Boost直流变换器来代替原有的充、放电器,从而实现汇流条电压的稳定。之后,发表了大量文章对人造卫星应用蓄电池调节器进行了系统的研究,并应用到了实体中。 1994年,香港大学陈清泉教授将双向直流变换器应用到了电动车上,同年,F.Caricchi 等教授研制成功了用20kW水冷式双向直流变换器应用到电动车驱动,由于双向直流变换器的输入输出电压极性相反,不适合于电动车,所以他提出了一种Buck-Boost级联型双向直流变换器,其输入输出的负端共用。1998年,美国弗吉尼亚大学李泽元教授开始研究双向直流变换器在燃料电池上的配套应用。可见,航天电源和电动车辆的技术更新对双向直流变换器的发展应用具有很大的推动力,而开关直流变换器技术为双向DC/DC变换器的发展奠定了基础。 1994年,澳大利亚Felix A.Himmelstoss发表论文,总结出了不隔离双向直流变换器的拓扑结构。他是在单管直流变换器的开关管上反并联二极管,在二极管上反并联开关管,从而构成四种不隔离的双向直流变换器:Buck-Boost、Buck/Boost、Cuk和Sepi-Zeta双向直流变换器。 隔离式双向直流变换器有正激、反激、推挽和桥式等拓扑结构。 反激式变换器是基于Buck/Boost直流变换器设计的,电路结构对称,相比之下更易于构成双向直流变换器。但普通的反激式变换器容易产生电压尖峰和振荡,2001年陈刚博士提出了有源嵌位双向反激式直流变换器,有效的消除了电压尖峰和振荡,并且实现了开关管的零电流开关,减少了开关器件的电压应力。 推挽式变换器也具有对称的电路结构,且结构简单,但存在变压器的偏磁和漏感,从而限制了变换器的应用。所以有学者提出,在输入输出电压相差较大的场合,可以应用由推挽变换器和半桥变换器组成的混合式变换器。 桥式直流变换器有两类电路:一种是双有源桥式变换器,电路结构对称,通过控制相位

相关主题
文本预览
相关文档 最新文档