当前位置:文档之家› 液压密封件的结构及合理使用(F)

液压密封件的结构及合理使用(F)

液压密封件的结构及合理使用(F)
液压密封件的结构及合理使用(F)

液压密封件的结构及合理的使用方法

液压密封件的结构

压缩性材料的密封结构其结果如图1所示。它的的结构简单,容易调整和拆换。缺点是工作中摩擦力的大小一定,不能随工作压力的变化而变化。

1.图2为一改进结构。其中一个零件是耐磨易损件,另一个零件具有弹性。

图1 图2

图3 图4

2.柔性材料的密封结构这种密封件是一种自密封结构。图3是V型密封件,

由低刚度材料制成。其密封力大小取决于压力值。因此,低压时摩擦力大,符合使用需要。这种结构的缺点是尺寸大。符合使用需要。这种结构的缺点是尺寸大。图4是U型密封件,由弹性材料制成,如橡胶;或由皮革中添加弹性膨胀体,以保证与密封撑架接触,使密封件在有相对运动时不致被摩擦力说所移动。图5是矩形截面密封件,由低刚度和高弹性材料制成制造容易,对静密封或动密封均适用。图6为O 型密封件,能装备在矩形槽或V型槽内。在矩形槽内,由于液压力的增加,使接触面和摩擦逐渐增加,在高压和摩擦面和摩擦力迅速增加,使挤入延至。所以,这种结构具有矩形密封圈和U型密封圈的优点,但在液压换向使密封圈有较大的游移。

图5

图6

V型及U型密封圈只在单向起密封作用,所以,必须成对使用。起配置方式如图7(a)。图(7)的配置方式是不正确的。在一对密封圈之间的液体不能排出,导致压力和摩擦了力上升,使温度升高。

为了减小每个密封圈的工作载荷,有时可采用两个双向密封圈,这时在两个密封圈之间的低压区开孔,通向大气,如图8

(a)(b)

图7

图8

3.组合密封件在高压系统中,为了提高密封性能和延长密封件的使用寿

命,常采用组合密封件。组合密封件有以下两种类型。

1).用一个坚固而非整体的高压密封组件和一个整体的低压密封件串联使用。图9所示组合密封件由两个环和一个有弹性的橡胶密封圈或加强纤维物组成高压密封件,低压密封件组件之间开孔通向低压。高压密封处允许稍有漏洞,有助于润滑、减小摩擦力。

图9

2). 另一类组合密封结构如图10所示。图10(a)中。挡环由金属、加强塑料或皮革圈制成,紧贴相对运动的密封面。阻止主密封圈挤入缝隙。图10(b)是在T型主密封圈的两边用两片薄得加强塑料环作挡圈。这些环只是在工作时。由于液压力的工作才与相对运动面接触。图10(c)是类似的密封组件,挡圈是两个柔性材料型环组成。

(a)(b1)

(b2)(c1)

图11

合成使用密封件

1. 密封料的选用

对密封材料有三点要求:(1)满足物理上所需的物理性能;(2)在使用期限内,保持物理性能的能力;(3)耐磨损。天然橡胶和合成橡胶是较理想的密封材料。目前采用的密封材料以合成橡胶或皮革为主。合成橡胶刚度低,可随密封面的不平整而变形;抗拉强度、延伸率高;具有高的冲击

弹性;耐磨损。

2. 密封件结构形式的选择可根据不同的工作压力,来选择密封件的结构形式。但任何一种密封材料不可能同时满足多种工作性能要求,例如,希望具有一定弹性的密封件有较广阔的前景。图11所示的密封组件式聚四氟乙烯作为滑动面的密封材料,用O型密封圈从背后施加以弹力。

3.密封件的几何形状及尺寸密封件的材料在工作温度下长期工作,体积约增大10~20%。对安装V型密封件的填料箱尺寸的设计必须考虑密封件在工作中的体积膨胀因素。否则会引起密封件的粘合,产生过度的磨损。安装O型密封圈的配合间隙严格控制,以防止挤入现象。其极限间隙值可按图12查出。钱其密封件本身的几何形状及尺寸对密封件本身的密封及摩擦性能有较大的影响,应根据工作条件的不同,合理选用或设计。

薄得加强塑料环作挡圈。这些环只是在工作时。由于液压力的工作才与相对运动面接触。图10(c)是类似的密封组件,挡圈是两个柔性材料型环组成。

合成使用密封件

1. 密封料的选用

对密封材料有三点要求:(1)满足物理上所需的物理性能;(2)在使用期限内,保持物理性能的能力;(3)耐磨损。天然橡胶和合成橡胶是较理想的密封材料。目前采用的密封材料以合成橡胶或皮革为主。合成橡胶刚度低,可随密封面的不平整而变形;抗拉强度、延伸率高;具有高的冲击

4.提高密封面的表面光洁度提高表面光洁度可改善摩擦条件。对作直线运动的密封面需进行衍磨;作旋转运动的密封面需进行磨削和抛光。

5.密封件的正确安装往往由于装配不当致使密封件在工作前就损坏了。装入密封圈出必须倒角,避免锐尖擦伤密封件,也可作为安装密封圈时的导承。安装密封件要经过螺纹时,必须采用专用工具,以保护密封件对密封表面不被安装时碰伤。

6.改善油液的润滑性在油液中加入胶态石墨,可改善油液的润滑性,提高密封件的寿命;加入油酸可改善摩擦和磨损状况,但对密封件材料有腐蚀作用。

7. 装配是需保持清洁,避免与污染液体接触,例如,三氟乙烯清洁剂会使天然橡胶迅速膨胀。

液压缸结构图示共12页

液压缸的结构 液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端 盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、缸筒6、缸盖10、活塞4、活塞杆7 和导向套8 等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为了保 证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11 和防尘圈12。 下面对液压缸的结构具体分析。 3.2.1 缸体组件

缸体组件与活塞组件形成的密封容腔承受油压作 用,因此,缸体组件要有足够的强度,较高的表面精 度可靠的密封性。 3.2.1.1 缸筒与端盖的连接形式 常见的缸体组件连接形式如图 3.10 所示。 (1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉, 它是常用的一种连接形式。 (2)半环式连接(见图b),分为外半环连接和内 半环连接两种连接形式,半环连接工艺性好,连 接可靠,结构紧凑,但削弱了缸筒强度。半环连 接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。 (3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。

(4)拉杆式连接(见图d),结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的 中、低压液压缸。 (5)焊接式连接(见图e),强度高,制造简单,但焊接时易引起缸筒变 形。 3.2.1.2 缸筒、端盖和导向套的基本要求 缸 筒 是 液 压 缸 的 主 体, 其 内 孔 一 般 采 用 镗 削、 绞 孔、 滚 压 或 珩 磨等精密加工工艺制造,要求表面粗糙度在0.1~0.4μm,使活塞及其密封件、支承件能顺利滑动,从而保证密封效果,减少磨损;缸筒要 承受很大的液压力,因此,应具有足够的强度和刚度。

各种液压缸工作原理及结构分析(动画演示)

各种液压缸工作原理及结构分析(动画演示) 什么是液压缸液压缸是将液压能转变为机械 能的、做直线往复运动(或摆动运动)的液压执行元件。它结构简单、工作可靠。用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。液压缸输出力和活塞有效面积及其两边的压差成正比;液压缸的结构液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。缸体组件缸体组件与活塞组件形成的密封容腔承受油压作用,因此,缸体组件要有足够的强度,较高的表面精度可靠的密封性。(1)法兰式连接,结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用的一种连接形式。(2)半环式连接,分为外半环连接和内半环连接两种连接形式,半环连接工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。半环连接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。(3)螺纹式连接,有

外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。(4)拉杆式连接,结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的中、低压液压缸。(5)焊接式连接,强度高,制造简单,但焊接时易引起缸筒变形。液压缸的基本作用形式:标准双作用:动力行程在两个方向并且用于大多数应用场合: 单作用缸:当仅在一个方向需要推力时,可以采用一个单作用缸;双杆缸:当在活塞两侧需要相等的排量时,或者当把一个负载连接于每端在机械有利时采用,附加端可以用来安装操作行程开关等的凸轮.弹簧回程单作用缸:通常限于用来保持和夹紧的很小的短行程缸。容纳回程弹簧所需要的长度使得它们在需要长行程时很讨厌;柱塞式单作用缸:仅有一个流体腔,这种类型的缸通常竖直安装,负载重置使缸内缩,他们又是被成为“排量缸”,并且对长行程是实用的;多级伸缩缸:最多可带4个套简,收拢长度比标准缸短.有单作用或双作用,它们与标准缸相比是比较贵的,通常用于安装空间较小但需要较大行程的场合, 串联缸:一个串联缸足由两个同轴安装的缸组成的,两个缸的活塞由一个公共活塞杆链接,在两缸之前设置杆密封件以便使每个缸都能双作用,当安装宽度或高度受限制时.串联

液压缸设计

第一章液压系统设计 1.1液压系统分析 1.1.1 液压缸动作过程 3150KN热压成型机液压系统属于中高压液压系统,涉及快慢速切换、多级调压、保压补压等多个典型的液压回路。工作过程为电机启动滑块快速下行滑块慢速下行保压预卸滑块慢速回程滑块快速回程推拉缸推出推拉缸拉回循环结束。按液压机床类型初选液压缸的工作压力为28Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。1.1.2液压系统设计参数 (1)合模力; (2)最大液压压28Mp; (3)主缸行程700㎜; (4)主缸速度υ 快=38㎜/s、 υ 慢=4.85㎜/s。 1.1.2分析负载 (一)外负载压制过程中产生的最大压力,即合模力。 (二)惯性负载 设活塞杆的总质量m=100Kg,取△t=0.25s (三)阻力负载 活塞杆竖直方向的自重 活塞杆质量m≈1000Kg,同时设活塞杆所受的径向力等于重力。 静摩擦阻力 动摩擦阻力 由此得出液压缸在各个工作阶段的负载如表****所示。

工况负载组成负载值F 工况负载组成负载值F 启动981 保压3150×103加速537 补压3150×103快速491 快退+G 10301 按上表绘制负载图如图***所示。 F/N v/mm s-1 537 491 981 38 4.85 0 l/mm 0 l/mm -491 -981 由已知速度υ 快=38㎜/s、 υ 慢=4.85㎜/s和液压缸行程s=700mm,绘制简略速度图,如 图***所示。 1.2确定执行元件主要参数 1.2.1 液压缸的计算 (一)液压缸承受的合模力为3150KN,最大压力p1=28Mp。 鉴于整个工作过程要完成快进、快退以及慢进、慢退,因此液压缸选用单活塞杆式的。在液压缸活塞往复运动速度有要求的情况下,活塞杆直径d根据液压缸工作压力选取。 由合模力和负载计算液压缸的面积。 将这些直径按GB/T 2348—2001以及液压缸标准圆整成就近标准值,得:

液压油对密封件的影响及其使用方法

液压油对密封件的影响及其使用方法 液压油对密封件的影响及其使用方法 液压油用于液压传动系统中作为工作介质,起能量的传递、转换和控制作用,同时还起着液压系统内各部件的润滑、防腐蚀、防锈和冷却等作用。而液压系统中的密封件起着防止流体从结合面间泄漏、保持压力、维持能量传递或转换作用。 目前国内外使用的密封材料大部分是高分子弹性体,一些特殊条件下也有使用塑料及各类金属。但不管属于哪一种材料,都应具有下列性能: 1、具有一定的机械物理性能:如抗张强度、定伸强度、伸长率; 2、有一定的弹性、硬度合适,并且压缩永久变形小; 3、与工作介质相适应,不容易产生溶胀、分解、硬化; 4、耐磨,有一定的抗撕性能; 5、具有耐高温、低温的老化性能。 然而,没有任何密封材料包括上述全部性能,需要根据工作环境,如温度、压力、介质以及运动方式来选择适宜的密封材料,并通过制定材料的配合配方来满足一定的要求。或者采用两种以上材料复合或组合结构的形式发挥各自的特长,达到更加全面的效果。 密封效果的形成:动密封分为非接触密封和接触密封。非接触密封主要是各种机械密封,如:石墨填料环、浮环密封等;橡塑复合密封件和橡塑组合密封件均属于接触密封,依靠装填在密封腔体中的预压紧力,阻塞泄漏通道而获得密封效果。液压系统用的密封件多为静密封(端面密封)、往复动密封(活塞、活塞杆密封)及旋转密封。 影响密封效果的因素:密封结构的选择和油膜形成、压力、温度、材料的相容性,动密封所接触工作表面的材质、硬度、几何形状、表面光洁度等。 一、几种耐介质性能优异的密封材料及其特性 1、丁腈橡胶: 2、硅橡胶: 3、氟橡胶: 4、三元乙丙橡胶: 5、聚四氟乙烯: 6、聚氨酯橡胶: 7、丙稀酸酯橡胶: 二、密封材质与液压油(液)的相容性 液压油的颗粒污染来源之一是密封件材料与液压油不相适应而产生的“碎屑"或“磨屑"。密封件因“溶涨"被损坏产生的“碎屑"或被“抽提"出来的未被结合的无机物和填充补强材料,使密封件损坏并失效,同时对油品形成污染造成液压油变质以致失效。 液压系统中广泛使用叶片泵,在其工作压力大于6.9MPa的状态下,磨损问题变得突出,因

液压缸基本结构

液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、缸筒6、缸盖10、活塞4、活塞杆7和导向套8等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为了保证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11和防尘圈12。下面对液压缸的结构具体分析。 3.2.1 缸体组件 ?

缸体组件与活塞组件形成的 密封容腔承受油压作用,因此, 缸体组件要有足够的强度,较高 的表面精度可靠的密封性。 3.2.1.1 缸筒与端盖的连接 形式 常见的缸体组件连接形式如图3.10所示。 (1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用 的一种连接形式。 (2)半环式连接(见图b), 分为外半环连接和内半环连 接两种连接形式,半环连接 工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。半环连接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。 (3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,

但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。 ? (4)拉杆式连接(见图d),结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的中、低压液压缸。 (5)焊接式连接(见图e),强度高,制造简单,但焊接时易引起缸筒变形。 3.2.1.2 缸筒、端盖和导向套的基本要求 ?缸筒是液压缸的主体,其内孔一般采用镗削、绞孔、滚压或珩磨等精密加工工艺制造,要

液压密封件的结构形式及密封机理

液压密封件的结构形式及密封机理 文章来源于:https://www.doczj.com/doc/dc4808450.html, 常用的自封式压紧型液压密封件主要是○形密封圈,圆形密封圈和方形密封圈等,它们具有结构简单、易于制造、成本低廉等优点,因此它们是液压传动系统中广泛应用的动密封元件和静密封元件。它们安装在密封槽内通常产生10—25%的径向压缩变形,并对密封表面产生较高地初始接触应力,从而阻止无压力液体的泄漏。 液压缸工作时,压力液体挤压自封式压紧型液压密封件,使之进一步变形,并对密封表面产生较大的随压力液体的压力,严格地说应为压强。增高而增高的附加接触应力,并与初始接触应力一起共同阻止压力液体的泄漏。但当工作压力大于10Mpa时,为了避免合成橡胶质自封式压紧型液压密封件的一部分被挤入密封间隙而在液压缸往复运动中被切掉而造成泄漏,须在合成橡胶质自封式压紧型液压密封件的受压侧各设置一合成树脂挡圈,如尼龙挡圈、聚甲醛挡圈和填充聚四氟乙烯挡圈。 由于合成橡胶质自封式压紧型液压密封件工作时具有较大的压缩变形,因此其静摩擦阻力特别大,通常为其动摩擦阻力的两倍多。如此大的静摩擦阻力在一些低压液压传动系统中势必造成低压爬行及操作困难等不良现象,这正是自封式压紧型液压密封件很小单独用作动密封件的原因。 唇型密封件 目前,陶瓷工厂液压机械设备液压缸常用的液压组合密封件主要是由○形密封圈与方形密封圈、U形密封圈、Y形密封圈、YX形密封圈及其他特殊形状的液压密封圈的叠加使用构成的 V形密封圈 V形密封圈的密封性能较好,可根据工作压力的大小来确定所用密封圈的数目,通常须借助于压盖的调整来补偿密封圈的磨损量,其致命的弱点是结构复杂,通常须由支承环、密封圈和压环三部分组成,其摩擦阻力较大并随工作压力和密封圈数目的增大而增大。因此V形密封圈仅适宜于运动速度较低而工作压力较高的液压缸采用 U形密封圈 U形密封圈的密封性能较好,但单独使用是极易翻滚,因此需与锡青铜质支承环配套使用,其摩擦阻力较大并随工作压力的升高而增大。因此U形密封圈仅适宜于工作压力较低或运动速度较低的液压缸采用。

安装液压缸密封圈的方法

安装液压缸密封圈的方法 Prepared on 22 November 2020

安装液压缸密封圈的方法 孔用组合密封圈由O形圈和耐磨环组成(见图1)。由于O形圈弹性较大,安装比较容易;而耐磨环弹性较差,如果直接安装则活塞的各台阶、沟槽容易划伤其密封表面,影响密封效果。为保证耐磨环安装时不被损坏,应采取一定的安装措施。耐磨环主要由填充聚四氟乙烯(PTFE)材料制成,具有耐腐蚀的特性,热膨胀系数较大,故安装前先将其在100℃的油液中浸泡20min,使其逐渐变软,然后用图2所示工装将其装人活塞的沟槽中。 图2所示工装由定位套和涨套组成。定位套头部有5o倒角,用于引导O形圈和耐磨环装人活塞端部沟槽。涨套由弹性较好的65Mn钢经热处理制成,加工成均匀对称的8瓣结构。需要注意的是,加工各瓣底部的小孔时,分度要均匀,铣开各瓣时应使锯口对准小孔的中心,以保证涨套各瓣能均匀涨开。同时各部位都应进行(光滑)倒角,以免损坏密封圈。 每一种规格的密封圈都应有一套对应的工装来保证其装配要求。安装完成后不允许密封圈有折皱、扭曲、划伤和装反的现象存在。 图3所示为液压缸缸筒,缸筒上的螺纹孔常安排在焊接工序之后加工,这样就不可避免地要在螺纹孔出口与缸筒内壁的交界处产生毛刺。为清除毛刺,必须设计制做专用刀具对其进行加工,达到

光滑过渡的目的。专用刀具的结构见图4。使用时,先将刀杆从螺纹孔中插人,然后从侧面将刀头安装在刀杆上,旋转刀杆即可将毛刺除掉并加工出光滑完整的表面。 另一类密封件是聚氨酯材质的Y形密封圈因其具有高硬度、高弹性、耐油、耐磨和耐低温等优点,广泛用于液压油缸中。它的内、外唇根据轴用或孔用可制成不等高形状,以起到密封和自身保护的作用。不等高唇Y形圈,其短唇与密封面接触,滑动摩擦阻力小,耐磨性好,寿命长;长唇与非相对运动表面有较大的预压缩量,工作时不易窜动。 由于聚氨酯材质的Y形圈硬度高、预压缩量大,在安装、更换时常常会造成被挤破、翻卷和咬边等损坏现象,从而起不到应有的密封效果,甚至失效。装配时,我们曾用螺丝刀将密封唇沿缸径往里压;或用细铁丝将密封圈的外唇捆紧,使其外径小于缸的内径,然后将密封圈送入缸内,再将细铁丝抽出。但这两种装法都容易将密封圈划伤,导致密封失效,增加维修时间。针对这种情况,我们用厚的冷轧钢带或铜皮将其剪成长方形,其长度等于Y形圈外径的周长,然后用它将密封圈裹紧,再一点一点地送入液压缸缸筒中,待外唇口全部进入缸筒后再将其抽出,安装效果较好。

液压密封基础知识及油缸设计

液压密封基础知识及油缸设计 一、液压密封系统: 液压传动是靠密封油腔的容积变化来传递力和速度。密封不良可造成油液泄漏,从而使得机构运动不稳定,降低容积效率,污染环境,严重时会建立不起压力,系统不能工作。 二、常用的轴用、孔用(往复运动用)密封方法: 1. 间隙密封:(图1) 优点:简单,不用任何密封件,摩擦力小。 缺点:不能完全阻止泄漏,且密封性不能随压力升高而提高。 应用:直径较小,压力较低,速度较快,密封性能不是很高的环境,如换向阀、液压泵(柱塞泵)、液压马达等。在油缸中几乎不采用。 2.O形圈密封:(图2)

一般用橡胶制成。 优点:结构简单,密封性能良好,摩擦力小。 缺点:磨损后不能补偿,寿命短。 应用:可用于直线往复和回转运动,但更多的是用于固定密封,如管路、油缸盖和缸套间的密封。或适用于低等级、非关键器件。 3.U形密封件密封(即:常用的UN圈或Yx圈):(图3为孔轴通用) 分类:轴用、孔用、孔轴通用三种。一般选孔轴通用,即UN圈。 特点:两侧唇口对称。 优点:结构简单,安装相当简单,使用压力较高(最高可达40Mpa),密封性能良好,密封性能随压力升高而提高,并能自动补偿磨损量,摩擦力小,成本低,对油缸的表面要求也不高。 缺点: 密封圈质量容易材质影响,国产件一般寿命在1-2年。进口件则寿命较长。

使用温度一般<100℃ 往复速度:≤0.5m/s 应用:相当广泛。 4.挤压式密封件密封(即:常见的格来圈及斯特封):(图4) 格来圈(图4) 斯特封(图5) 优点:结构简单,使用压力高(最高可达70Mpa),密封性能良好,密封性能随压力升高而提高,并能自动补偿磨损量,摩擦力小,成本低,使用温度可达120℃,往复速度:≤15m/s,寿命长。 缺点: 对油缸的表面要求较高。

液压缸结构图示

创作编号:BG7531400019813488897SX 创作者:别如克* 液压缸的结构 · 液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸缸筒6、缸盖10、活塞4、活塞杆7 和导向套8 等组成;缸筒一

焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11 和防 下面对液压缸的结构具体分析。 3.2.1 缸体组件 ·

缸体组件与活塞组件形成的密封容腔承受油压作 用,因此,缸体组件要有足够的强度,较高的表面精 度可靠的密封性。 3.2.1.1 缸筒与端盖的连接形式 常见的缸体组件连接形式如图 3.10 所示。 (1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要筒端部有足够的壁厚,用以安装螺栓或旋入螺钉, 它是常用的一种连接形式。 (2)半环式连接(见图b),分为外半环连接和内 半环连接两种连接形式,半环连接工艺性好,连 接可靠,结构紧凑,但削弱了缸筒强度。半环连 接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。 (3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式 用于要求外形尺寸小、重量轻的场合。

液压缸的设计计算

液压缸的设计计算-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

液压缸的设计计算 作为液压系统的执行元件,液压缸将液压能转化为机械能去驱动主机的工作机构做功。由于液压缸使用场合与条件的千差万别,除了从现有标准产品系列选型外,往往需要根据具体使用场合自行进行设计。 设计内容 液压缸的设计是整个液压系统设计中的一部分,它通常是在对整个系统进行工况分析所后进行的。其设计内容为确定各组成部分(缸筒和缸盖、活塞和活塞杆、密封装置、排气装置等)的 结构形式、尺寸、材料及相关技术要求等,并全部通过所绘制的液压缸装配图和非标准零件工作图反映这些内容。 液压缸的类型及安装方式选择 液压缸的输入是液体的流量和压力,输出的是力和直线速速,液压缸的结构简单,工作可靠性好,被广泛地应用于工业生产各个部门。为了满足各种不同类型机械的各种要求,液压缸具有多种不同的类型。液压缸可广泛的分为通用型结构和专用型结构。而通用型结构液压缸有三种典型结构形式: (1)拉杆型液压缸 前、后端盖与缸筒用四根(方形端盖)或六根(圆形端盖)拉杆来连接,前、后端盖为正方形、长方形或圆形。缸筒可选用钢管厂提供的高精度冷拔管,按行程长度所相应的尺寸切割形成,一般内表面不需加工(或只需作精加工)即能达到使用要求。前、后端盖和活塞等主要零件均为通用件。因此,拉杆型液压缸结构简单、拆装简便、零件通用化程度较高、制造成本较低、适于批量生产。但是,受到行程长度、缸筒内径和额定压力的限制。如果行程长度过长时,拉杆长度就相应偏长,组装时容易偏歪引起缸筒端部泄漏;如缸筒内径过大和额定压力偏高时,因拉杆材料强度的要求,选取大直径拉杆,但径向尺寸不允许拉杆直径过大。 (2)焊接型液压缸 缸筒与后端盖为焊接连接,缸筒与前端盖连接有内螺纹、内卡环、外螺纹、外卡环、法兰、钢丝挡圈等多种形式。 焊接型液压缸的特点是外形尺寸较小,能承受一定的冲击负载和严酷的外界条件。但由于受到前端盖与缸筒用螺纹、卡环或钢丝挡圈等连接强度的制约缸筒内径不能太大和额定压力不能太高。 焊接型液压缸通常额定压力Mpa P n 25≤、缸筒内径mm D 320≤,在活塞杆和缸筒的加工条件许可下,允许最大行程m S 1510-≤。

液压缸结构图示

液压缸的结构 · 液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分 组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、 缸筒6、缸盖10、活塞4、活塞杆7 和导向套8 等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为了保 证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11 和防尘圈12。 下面对液压缸的结构具体分析。 3.2.1 缸体组件 ·

缸体组件与活塞组件形成的密封容腔承受油压作 用,因此,缸体组件要有足够的强度,较高的表面精 度可靠的密封性。 3.2.1.1 缸筒与端盖的连接形式 常见的缸体组件连接形式如图 3.10 所示。 (1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉, 它是常用的一种连接形式。 (2)半环式连接(见图b),分为外半环连接和内 半环连接两种连接形式,半环连接工艺性好,连 接可靠,结构紧凑,但削弱了缸筒强度。半环连 接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。 (3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。

· (4)拉杆式连接(见图d),结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的 中、低压液压缸。 (5)焊接式连接(见图e),强度高,制造简单,但焊接时易引起缸筒变 形。 · 3.2.1.2 缸筒、端盖和导向套的基本要求 ·缸筒是液压缸的主体,其内孔一般采用镗削、绞孔、滚压或珩磨等精密加工工艺制造,要求表面粗糙度在0.1~0.4μm,使活塞及其密封件、支承件能顺利滑动,从而保证密封效果,减少磨损;缸筒要承受很大的液压力,因此,应具有足够的强度和刚度。

橡胶密封件地类型及使用条件

1 橡胶密封件概述 表1橡胶密封件的类型及适用条件

常用往复密封件的选型与应用 在静密封场合,主要是O形圈;在动密封场合,各种动密封件名目繁多。动密封件按其功用可分为旋转密封件和往复密封件。特别是往复密封件品种多。 1 往复密封件的分类 往复密封件按功用可分为防尘圈、轴用密封圈、孔用密封圈。 往复密封件按结构可分为唇形密封件、组合密封件。唇形密封件按结构又可分为蕾形圈、T形圈、Y形圈及其派生产品、整体式活塞密封(气动)、自动补偿薄型紧凑密封PZ(气动)等;组合密封件按结构可分为同轴组合密封件、V形组合密封件、多功能紧凑型组合密封件。 (1)防尘圈 防尘圈可分为唇形防尘圈、特康组合防尘圈、佐康组合防尘圈,其中唇形防尘圈又可分为有骨架唇形防尘圈、无骨架唇形防尘圈。 1)骨架唇形防尘圈:它是利用骨架与腔体孔的过盈配合来实现防脱,防尘圈唇口与缸头端部齐平,该结构可使唇口免遭外部原因损坏,多用于工程机械、垃圾车等行走机械唇口易被损坏的场合(图3-27)。 2)无骨架唇形防尘圈:它安装在缸头前端的闭式沟槽内,设计时须将唇口稍稍凸出缸头端部,以便易于清除唇口所挡出的污物,该结构安装方便,应用最广,可用于一般工业液压、行走液压与气动(图3-25、3-28、3-29、3-30、3-31)。 3)特康组合防尘圈(聚四氟乙烯+橡胶):它利用O形圈的弹性对已磨损的聚四氟乙烯(PTFE)唇口进行实时磨损补偿,配以不同材质O形圈后可用于高速、高温及特殊工作介质的场合(图3-26)。 4)佐康组合防尘圈(聚胺脂+橡胶):不常用,结构同特康组合防尘圈,区别在于将聚四氟乙烯(PTFE)部分改成聚胺脂(Pu)。它利用O形圈的弹性对已磨损的聚氨脂(Pu)唇口进行实时磨损补偿,其优点是比普通唇形防尘圈寿命更长。(图3-26)防尘圈使用注意事项:所有防尘圈均不能承压,即不具有密封功能,它的作用仅在于防尘,它必须与其它密封件配套使用:设计时应避免防尘圈的唇口与活塞杆孔眼或扳手对边相接触而导致被割破。 (2)轴用密封圈 轴用密封圈可分为轴用唇形密封圈、轴用组合密封圈。 1)轴用唇形密封圈:轴用Y形圈及其派生产品(Yx形圈、U形圈、缓冲环等)、轴用蕾形圈、轴用T形圈。 2)轴用组合密封圈:轴用同轴组合密封圈(斯特封)、轴用V形组合圈、轴用多功能紧凑型组合圈(SM:B+S)。 (3)孔用密封圈 孔用密封圈可分为孔用唇形密封圈、孔用组合密封圈。 1)孔用唇形密封圈:孔用Y形圈及其派生产品(Y形圈、Yx形圈、u形圈)、孔用蕾形圈、孔用T形圈,适用于气动的还有整体式活塞密封(DP/DK:Parker)、自动补偿薄型紧凑密封

液压密封件基本类型及特征

机械用液压密封件特征 ①UN系列:UN型聚氨酯油封是液压缸中最常用的油封,是一种典型的唇口密封件,无 论用于活塞或是活塞杆均可获得良好的密封性能。U型圈在低压的情况下,只靠唇部的过盈变形产生密封,随着压力升高,唇口弹性变形量增加,拉伸,压缩及弯曲应力增加,U型圈径向压力自动变大,与密封面接触的长度不断增加直到U型圈整个轴向长度与密封面接触,从而保证高压状态下具有良好的密封性。UN是孔轴通用的,它的形状为两侧唇口对称,能够承受21mpa到35mpa的工作压力,可以耐温到-35℃到100℃。由M-90 材料制成。 ②DH型聚氨酯油封双向作用的防压密封圈,一方面刮除向里面运动的活塞杆表面脏污, 另一方面阻止腔体内液压油泄漏。无骨架/双作用防压圈,材料为M-90,硬度为90±2, 温度为-35到100℃。 ③D-1型:D-1型孔用密封件,它的形状为外侧唇口短而粗,也属于U型圈的一种,耐压 程度可以到40Mpa,常用于液压缸中,是一种典型的唇口密封件,安装于活塞杆都能够获得良好的密封效果。能够承受40Mpa的工作压力,使用温度可达到-35到100℃,运动速度为0.03-0.5m/s,由M-95材质制成。 ④D-2型:D-2型聚氨酯油封,是轴用的密封件。它的形状为内侧唇口短而粗,也属于U 型圈的一种,耐压程度到40Mpa。能够承受-35到100℃。运动速度为0.03-0.5m/s,由 M-95材质制成。 ⑤ME-1系列:是骨架/双作用油封,材料结构为M-90加铁壳,它具有防压作用,重载加

辅助密封,适用于环境条件较差(如在室外等)的场合。ME-1的运动速度为0.03-1.0m/s, 耐温范围为-35到100℃。 ⑥ME-2系列:ME-2型聚氨酯油封,是骨架/反向唇口油封,它的材质为M-90加铁壳, 具有防压作用,重载刮压能力强,适用于环境恶劣(如泥浆/灰渣等)的场合。ME-2的速度达到0.03-1.0m/s,工作温度是-35到100℃。 ⑦UPH系列:油缸往复用液压油封,可适用于活塞和活塞杆密封。此密封件有很大的截 面,可用于大范围的操作。使用的丁腈橡胶和氟橡胶材质保证有广泛的工作温度范围, 使用的规格广泛。 ⑧LBH系列:往复用密封件,这是一种防止粉尘进入,保护设备并保持密封性能的密封件, 这是一种防刮油双唇口全橡胶防压密封件。用丁腈橡胶和氟橡胶作材料的密封件适用于广泛的工作温度。

液压油缸设计计算公式

液压油缸的主要设计技术参数 一、液压油缸的主要技术参数: 1.油缸直径;油缸缸径,内径尺寸。 2. 进出口直径及螺纹参数 3.活塞杆直径; 4.油缸压力;油缸工作压力,计算的时候经常是用试验压力,低于16MPa乘以,高于16乘以 5.油缸行程; 6.是否有缓冲;根据工况情况定,活塞杆伸出收缩如果冲击大一般都要缓冲的。 7.油缸的安装方式; 达到要求性能的油缸即为好,频繁出现故障的油缸即为坏。应该说是合格与不合格吧好和合格还是有区别的。 二、液压油缸结构性能参数包括:1.液压缸的直径;2.活塞杆的直径;3.速度及速比;4.工作压力等。 液压缸产品种类很多,衡量一个油缸的性能好坏主要出厂前做的各项试验指标,油缸的工作性能主要表现在以下几个方面: 1.最低启动压力:是指液压缸在无负载状态下的

最低工作压力,它是反映液压缸零件制造和装配 精度以及密封摩擦力大小的综合指标; 2.最低稳定速度:是指液压缸在满负荷运动时没 有爬行现象的最低运动速度,它没有统一指标, 承担不同工作的液压缸,对最低稳定速度要求也 不相同。 3.内部泄漏:液压缸内部泄漏会降低容积效率, 加剧油液的温升,影响液压缸的定位精度,使液 压缸不能准确地、稳定地停在缸的某一位置,也 因此它是液压缸的主要指标之。 液压油缸常用计算公式 液压油缸常用计算公式 项目公式符号意义 液压油缸面积 (cm 2 ) A =πD 2 /4 D :液压缸有效活塞直径 (cm) 液压油缸速度 (m/min) V = Q / A Q :流量 (l / min) 液压油缸需要的流量(l/min) Q=V×A/10=A×S/10t V :速度 (m/min) S :液压缸行程 (m) t :时间 (min) 液压油缸出力 (kgf) F = p × A F = (p × A) -(p×A) ( 有背压存在时 ) p :压力 (kgf /cm 2 )

液压缸密封件的正确使用

液压缸密封件的正确使用 润滑与密封中阖彀给z程2006.01 文章编号:l67l一07ll(2006)0l一0058—02 液压缸密封件的正确使用 李锦平 (珠江啤酒股份公司,广东广州510315) 摘要:本文以活塞缸为例,分析,液压装置中影响密封什使用性能和寿命的因素,指出了使用密封什应 沣意的事项. 关键词:液压缸;活塞缸;密封件;使用 中图分类号:TH136文献标识码:B 液压缸可将液压能转换成机械能,其结构种类 繁多,有柱塞,活塞和摆动缸等,但其基本组件均 为缸体,活塞,活塞杆,缸盖,密封件等.下面以 活塞缸为例淡谈影响密封件使用性能和寿命的因 素,以及使用应注意的事项. 一 ,影响密封件使用性能及寿命的因素 1.表面粗糙度.活塞和活塞杆表面粗糙度? 般.8,密封什安装槽的粗糙度,侧面1.6,底 面R3.2.活塞杆淬火硬度为HRC55-60,镀铬层 厚30~501~m,活塞杆电镀后进行无向研磨消除磨 削加工螺旋线痕迹. 2.问隙.主要是指密封安装槽或密封件滑合 面在低压一侧的配合间隙.密封件在汕乐作用下, 将产生变形和塑性流动,密封件根部有被挤入配合 间隙的趋向.为保证液压缸的性能,精度及寿命,

密封结构常设置导向元件.密封摩擦副前,后的间 隙因压力,上况,密封什种类及材料而异. 3.速度.油膜厚度与往复运动速度相关.速 度过高油膜增厚,容易产牛泄漏;速度过低(小丁 0.05m/s,)则油膜过薄,摩擦增大,易产生"爬行". 4.温度.油温的变化影响油的黏度,油膜厚 度和密封性能.为保证密封的良好性能,液压系统 的工作温度应稳定住40~80.C. 5.压力.液压缸油压使密封件的变形可达到 密封效果,但也增加了滑动面的磨损,引起发热, 促使系统温升及进一步增大滑动阻力.所以在实际 使用中要严格控制压力.这也是保证密封使用寿命 的需要.如16MPa的密封件在16MPa液压系统中 的使用寿命为两年;如果用于21MPa液压系统中 则缩短为两个月:使用于31.5MPa的液』玉系统中使0 用寿命仅为两天. 6.接触压力.接触压力必须适中,以便形成 一 层极薄的连续油膜.如果接触压力过小,则油膜 厚,易泄漏;接触压力过大,油膜过薄,易造成干 摩擦,缩短密封件的使用寿命. 7.摩擦阻力.密封与运动件的摩擦阻力是变 化的.启动时摩擦阻力最大(干摩擦),当达到适 当速度时,摩擦副间形成了连续油膜,摩擦阻力下降,摩擦副运动速度过高时,油膜变厚,摩擦阻力 反增大. 8.介质.为满足各种要求,液压油中添加了不 同的添加剂.添加剂对密封材料的相容性及使用寿

液压缸结构图急

课程目录 3 . 2 液压缸的结构 ? 3.2 液压缸的结构 液压缸通常由后端盖、缸筒、活塞杆、活塞组件、 前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。

3 . 2 . 1 缸体组件 3 . 2 . 1 . 1 缸筒 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、缸筒6、缸盖10、活塞4、活塞杆7和导向套8等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为了保证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11和防尘圈12。下面对液压缸的结 构具体分析。 3.2.1 缸体组件 ? 缸体组件与活塞组件形成的 密封容腔承受油压作用,因此, 缸体组件要有足够的强度,较高 的表面精度可靠的密封性。 3.2.1.1 缸筒与端盖的连接 形式 常见的缸体组件连接形式如图3.10所示。

与端盖的连接形式 3 . 2 . 1 . 2 缸筒、端盖(1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用 的一种连接形式。 (2)半环式连接(见图b), 分为外半环连接和内半环连 接两种连接形式,半环连接 工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。半环连接应用十分普遍,常用于无缝钢管缸筒与端盖 的连接中。 (3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外 形尺寸小、重量轻的场合。 ?

液压缸结构图示

液压缸结构图示 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

液压缸的结构·液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底 1、缸筒 6、缸盖 10、活塞 4、活塞杆 7 和导向套 8 等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为了保证液压缸的可靠密封,在相应位置设置了密封圈 3、5、9、11 和防尘圈 12。 下面对液压缸的结构具体分析。 缸体组件·

缸体组件与活塞组件形成的密封容腔承受油压作 用,因此,缸体组件要有足够的强度,较高的表面精 度可靠的密封性。 缸筒与端盖的连接形式 常见的缸体组件连接形式如图所示。 (1)法兰式连接(见图 a),结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉, 它是常用的一种连接形式。 (2)半环式连接(见图 b),分为外半环连接和内 半环连接两种连接形式,半环连接工艺性好,连 接可靠,结构紧凑,但削弱了缸筒强度。半环连 接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。 (3)螺纹式连接(见图 f、c),有外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。

液压缸结构图示

液压缸结构图示标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

液压缸的结构 · 液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分 组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底 1、 缸筒 6、缸盖 10、活塞 4、活塞杆 7 和导向套 8 等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为了保 证液压缸的可靠密封,在相应位置设置了密封圈 3、5、9、11 和防尘圈 12。 下面对液压缸的结构具体分析。 3.2.1 缸体组件 ·

缸体组件与活塞组件形成的密封容腔承受油压作 用,因此,缸体组件要有足够的强度,较高的表面精 度可靠的密封性。 缸筒与端盖的连接形式 常见的缸体组件连接形式如图 3.10 所示。 (1)法兰式连接(见图 a),结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉, 它是常用的一种连接形式。 (2)半环式连接(见图 b),分为外半环连接和内 半环连接两种连接形式,半环连接工艺性好,连 接可靠,结构紧凑,但削弱了缸筒强度。半环连 接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。 (3)螺纹式连接(见图 f、c),有外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。

液压密封件的选用

液压密封件的选用 液压密封件的使用性能 泄漏量极小 要求液压密封件的泄漏量极小,具有良好的密封作用,并随液压油的压力增高而自动提高其密封作用,即使在高压及高温等恶劣工作环境下,液压密封件的泄漏量也无明显的增加。 良好的相容性 因液压密封件长期浸泡在液压油中,极易溶胀、溶解或脆化变硬等,使之丧失密封作用,因此要求液压密封件对液压油具有良好的相容性。 摩擦阻力小 为避免或减少液压设备产生低压爬行等不良现象,要求液压密封件具有较低的静摩擦阻力和动摩擦阻力,并且其摩擦系数应非常稳定。 使用寿命长 液压密封件应具有良好的弹性、耐热性、耐寒性、耐压性、耐磨性及一定的物理机械强度等,并且使用寿命长。 价格低廉 液压密封件应易于制造和安装,其相应的密封槽又易于加工制造,对密封表面的加工精度等要求又较低,并且低格低廉。 液压密封件的结构形式及密封机理

常用的自封式压紧型液压密封件主要是○形密封圈,圆形密封圈和方形密封圈等,它们具有结构简单、易于制造、成本低廉等优点,因此它们是液压传动系统中广泛应用的动密封元件和静密封元件。它们安装在密封槽内通常产生10—25%的径向压缩变形,并对密封表面产生较高地初始接触应力,从而阻止无压力液体的泄漏。 液压缸工作时,压力液体挤压自封式压紧型液压密封件,使之进一步变形,并对密封表面产生较大的随压力液体的压力,严格地说应为压强。增高而增高的附加接触应力,并与初始接触应力一起共同阻止压力液体的泄漏。但当工作压力大于10Mpa时,为了避免合成橡胶质自封式压紧型液压密封件的一部分被挤入密封间隙而在液压缸往复运动中被切掉而造成泄漏,须在合成橡胶质自封式压紧型液压密封件的受压侧各设置一合成树脂挡圈,如尼龙挡圈、聚甲醛挡圈和填充聚四氟乙烯挡圈。 由于合成橡胶质自封式压紧型液压密封件工作时具有较大的压缩变形,因此其静摩擦阻力特别大,通常为其动摩擦阻力的两倍多。如此大的静摩擦阻力在一些低压液压传动系统中势必造成低压爬行及操作困难等不良现象,这正是自封式压紧型液压密封件很小单独用作动密封件的原因。 唇型密封件

液压泵中橡胶密封件的使用特点及作用

液压泵中橡胶密封件的使用特点及作用? 液压泵中橡胶密封件的使用特点及作用?在选择合适的橡胶密封件材质和液压油,需注意对工作温度的适应性,以及对油的相容性。桂祺密封件告诉您可根据密封件与零件得配合位置、材料搭配、表面糙度较细使得寿命更长。 在液压泵橡胶密封件的密封件面润滑,能防止外部污染侵入,液压泵使用的橡胶密封件不仅要求标准粗糙度,使用时需适当调整密封唇边的径向簧力,安装时还要用一个安装套筒或薄垫片来保护密封件,以免唇边翻卷、扭曲,导致弹簧滑出;液压缸常用滚压加工方法,不仅改善了表面粗糙度,利于延长密封环的使用寿命。 液压泵橡胶密封件的使用过程会遇到哪些问题? 1、压力的高低,变化程度是影响橡胶密封件好坏的重要因素,其工作状况对密封件的挤压变化而变化,压力越高,其它的因素对密封件的性能影响越大,如工况温度,运动速度,密封件的材料,活塞和缸筒之间的间隙,活塞和缸头之间的间隙。 2、温度与摩擦力的产生,对橡胶密封件材料的较高使用温度和较低使用温度进行描述是比较困难的,其关系到的方面比较广泛。对于活塞和活塞杆的工作温度都不同,要对它们进行区别选择,其次密封件产品表面粗糙度,表面的特性,压力,介质,温度,密封件的材料,密封件的型式和运动速度这些都是影响密封件的因素。 3、表面处理,经验表明,油缸活塞和活塞杆表面的特性对橡胶密封件的寿命有着非常大的影响。表面特性以粗糙度衡量,同时检查表面形状是否偏离中心。不同的密封件规格型号表面的影响,这是因为即使在同样的粗糙度下,不同的表面形状特征可以导致对密封件不同程度的密封件磨损。 了解更多盾构机密封件的问题,就在桂祺密封件厂家批发网哦!

液压缸结构图示

液压缸的结构 ? 液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、缸筒6、缸盖10、活塞4、活塞杆7和导向套8等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为了保证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11和防尘圈12。 下面对液压缸的结构具体分析。 3.2.1 缸体组件 ?

缸体组件与活塞组件形成的密封容腔承受油压作 用,因此,缸体组件要有足够的强度,度可靠的密封性。 3.2.1.1 缸筒与端盖的连接形式 常见的缸体组件连接形式如图3.10(1)法兰式工方便筒端部有足够的壁厚,用以安装螺栓或旋入螺钉, 它是常用的一种连接形式。 半环连接接可靠,结构紧凑,但削弱了缸筒强度。半环连 接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。 (3)螺纹式连接(接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般 用于要求外形尺寸小、重量轻的场合。 较高的表面精 所示。 连接(见图a),结构简单,加,连接可靠,但是要求缸(2)半环式连接(见图b),分为外半环连接和内 两种连接形式,半环连接工艺性好,连 见图f、c),有外螺纹连接和内螺纹连

? 工艺性好,(4)拉杆式连接(见图d),结构简单,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的 ? 3.2.1.2 缸筒、端盖和导向套的基本要求 ? 缸筒是液压缸的主体,其内孔一般采用镗削、绞孔、滚压或珩磨等精密加工工艺制造,要求表面粗糙度在 0.1~0.4μm,使活塞及其密封件、支承件能顺利滑动,从而保证密封效果,减少磨损;缸筒要 承受很大的液压力,因此,应具有足够的强度和刚度。 中、低压液压缸。 (5)焊接式连接(见图e),强度高,制造简单,但焊接时易引起缸筒变 形。

相关主题
文本预览
相关文档 最新文档