当前位置:文档之家› 液压密封样本

液压密封样本

液压密封样本
液压密封样本

液压缸结构图示共12页

液压缸的结构 液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端 盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、缸筒6、缸盖10、活塞4、活塞杆7 和导向套8 等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为了保 证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11 和防尘圈12。 下面对液压缸的结构具体分析。 3.2.1 缸体组件

缸体组件与活塞组件形成的密封容腔承受油压作 用,因此,缸体组件要有足够的强度,较高的表面精 度可靠的密封性。 3.2.1.1 缸筒与端盖的连接形式 常见的缸体组件连接形式如图 3.10 所示。 (1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉, 它是常用的一种连接形式。 (2)半环式连接(见图b),分为外半环连接和内 半环连接两种连接形式,半环连接工艺性好,连 接可靠,结构紧凑,但削弱了缸筒强度。半环连 接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。 (3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。

(4)拉杆式连接(见图d),结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的 中、低压液压缸。 (5)焊接式连接(见图e),强度高,制造简单,但焊接时易引起缸筒变 形。 3.2.1.2 缸筒、端盖和导向套的基本要求 缸 筒 是 液 压 缸 的 主 体, 其 内 孔 一 般 采 用 镗 削、 绞 孔、 滚 压 或 珩 磨等精密加工工艺制造,要求表面粗糙度在0.1~0.4μm,使活塞及其密封件、支承件能顺利滑动,从而保证密封效果,减少磨损;缸筒要 承受很大的液压力,因此,应具有足够的强度和刚度。

美国Parker派克丹尼逊油泵

派克PV系列轴向柱塞泵【产品详情】 美国Parker派克PV系列轴向柱塞泵--使用注意事项1、油泵使用安装位置,泄油口朝上,管路背压须低于0.2MPa单独回油箱。 2、最高压力使用,每一循环运转时间不超过6秒、液压油清洁规范,请参见使用说明书。 3、本公司提供多连油泵,亦可与其他形式油泵连结,连结方式采用标准的公制连接尺寸和SAE连接尺寸。 4、其他事项请参照本公司综合样本。 美国Parker派克PV系列轴向柱塞泵--型号说明

派克PVP系列轴向柱塞泵【产品详情】 Parker派克PVP系列轴向柱塞泵最大排量从16至140ml/rev,额定工作压力为250bar,最低转速为每分钟500转。型号有:PVP016, PVP023, PVP033, PVP041, PVP048, PVP060, PVP076, PVP100, PVP140等。

派克PV/PV系列双联轴向柱塞泵【产品详情】 隆兴公司专业销售派克柱塞泵。PV系列轴向柱塞泵有带标准压力调节器和带功率调节器两种选择。最大排量从16至270ml/rev,额定工作压力为350bar,最低转速为每分钟300转,泄油口朝上。派克柱塞泵PV系列:PV016, PV020, PV023, PV032, PV040, PV046, PV063, PV080, PV092, PV140, PV180, PV270等。派克柱塞泵PAVC系列:PAVC33,PAVC38,PAVC65,PAVC100 Parker派克PV/PV系列双联轴向柱塞泵是由两个PV系列轴向柱塞泵组合而成,可以提供不同的排量组合。单个泵的最大排量从16至270ml/rev,额定工作压力为350bar,最低转速为每分钟300转,泄油口朝上。

液压密封件的结构形式及密封机理

液压密封件的结构形式及密封机理 文章来源于:https://www.doczj.com/doc/c810524233.html, 常用的自封式压紧型液压密封件主要是○形密封圈,圆形密封圈和方形密封圈等,它们具有结构简单、易于制造、成本低廉等优点,因此它们是液压传动系统中广泛应用的动密封元件和静密封元件。它们安装在密封槽内通常产生10—25%的径向压缩变形,并对密封表面产生较高地初始接触应力,从而阻止无压力液体的泄漏。 液压缸工作时,压力液体挤压自封式压紧型液压密封件,使之进一步变形,并对密封表面产生较大的随压力液体的压力,严格地说应为压强。增高而增高的附加接触应力,并与初始接触应力一起共同阻止压力液体的泄漏。但当工作压力大于10Mpa时,为了避免合成橡胶质自封式压紧型液压密封件的一部分被挤入密封间隙而在液压缸往复运动中被切掉而造成泄漏,须在合成橡胶质自封式压紧型液压密封件的受压侧各设置一合成树脂挡圈,如尼龙挡圈、聚甲醛挡圈和填充聚四氟乙烯挡圈。 由于合成橡胶质自封式压紧型液压密封件工作时具有较大的压缩变形,因此其静摩擦阻力特别大,通常为其动摩擦阻力的两倍多。如此大的静摩擦阻力在一些低压液压传动系统中势必造成低压爬行及操作困难等不良现象,这正是自封式压紧型液压密封件很小单独用作动密封件的原因。 唇型密封件 目前,陶瓷工厂液压机械设备液压缸常用的液压组合密封件主要是由○形密封圈与方形密封圈、U形密封圈、Y形密封圈、YX形密封圈及其他特殊形状的液压密封圈的叠加使用构成的 V形密封圈 V形密封圈的密封性能较好,可根据工作压力的大小来确定所用密封圈的数目,通常须借助于压盖的调整来补偿密封圈的磨损量,其致命的弱点是结构复杂,通常须由支承环、密封圈和压环三部分组成,其摩擦阻力较大并随工作压力和密封圈数目的增大而增大。因此V形密封圈仅适宜于运动速度较低而工作压力较高的液压缸采用 U形密封圈 U形密封圈的密封性能较好,但单独使用是极易翻滚,因此需与锡青铜质支承环配套使用,其摩擦阻力较大并随工作压力的升高而增大。因此U形密封圈仅适宜于工作压力较低或运动速度较低的液压缸采用。

液压缸技术标准

攀钢液压中心 二O一0年一月 目录 1、总则 2、引用标准 3、各部分常用材料及技术要求 3.1、缸筒的材料和技术要求 3.2、活塞的材料和技术要求 3.3、活塞杆的材料和技术要求 3.4、端盖的材料和技术要求 4、液压缸维修工艺流程 5、液压缸的检查 5.1、缸筒内表面 5.2、活塞杆的滑动面 5.3、密封

5.4、活塞杆导向套的内表面 5.5、活塞的表面 5.6、其它 6、液压缸的装配 7、液压缸试验 附表1:检查项目和质量分等(摘录JB/T10205-2000) 附表2:液压缸、气缸铭牌编号 附表3:螺栓和螺母最大紧固力矩(仅供参考) 附表4:螺纹的传动力和拧紧力矩 液压缸维修技术标准 1、总则 1.1 适用范围本维修技术标准规定了液压缸各组成部分的常用材料和技术要求、液压缸的检查、装配以及试验,适用于攀钢液压中心范围内液压缸的维修,维修用户单位按本标准执行。

1.2 密封选择密封件应选择攀钢液压中心指定生产厂家的标准产品,特殊情况需得到攀钢相关技术部门审核同意。 1.3 螺纹防松液压缸的螺纹连接在安装时应采用攀钢液压中心联接螺纹的防松结构型式,不能从结构上采取防松措施的,应涂上攀钢液压中心指定的螺纹紧固胶。 1.4 液压缸防腐修理好的液压缸,若在仓库或现场存放时间超过3个月时间,需采用适当的防腐措施。 1.5 螺栓选择一般采用8.8级、10.9级、1 2.9级的高强度螺栓(钉),应采用国内著名生产厂的产品。 1.6 气缸维修标准参照本标准执行。 1.7 本标准的解释权属攀钢液压中心。 2、引用标准 液压缸的维修应执行下列国家标准,允许采用要求更高的标准。

机械机电毕业设计_液压系统设计计算实例

液压系统设计计算实例 ——250克塑料注射祝液压系统设计计算 大型塑料注射机目前都是全液压控制。其基本工作原理是:粒状塑料通过料斗进入螺旋推进器中,螺杆转动,将料向前推进,同时,因螺杆外装有电加热器,而将料熔化成粘液状态,在此之前,合模机构已将模具闭合,当物料在螺旋推进器前端形成一定压力时,注射机构开始将液状料高压快速注射到模具型腔之中,经一定时间的保压冷却后,开模将成型的塑科制品顶出,便完成了一个动作循环。 现以250克塑料注射机为例,进行液压系统设计计算。 塑料注射机的工作循环为: 合模→注射→保压→冷却→开模→顶出 │→螺杆预塑进料 其中合模的动作又分为:快速合模、慢速合模、锁模。锁模的时间较长,直到开模前这段时间都是锁模阶段。 1.250克塑料注射机液压系统设计要求及有关设计参数 1.1对液压系统的要求 ⑴合模运动要平稳,两片模具闭合时不应有冲击; ⑵当模具闭合后,合模机构应保持闭合压力,防止注射时将模具冲开。注射后,注射机构应保持注射压力,使塑料充满型腔; ⑶预塑进料时,螺杆转动,料被推到螺杆前端,这时,螺杆同注射机构一起向后退,为使螺杆前端的塑料有一定的密度,注射机构必需有一定的后退阻力; ⑷为保证安全生产,系统应设有安全联锁装置。 1.2液压系统设计参数 250克塑料注射机液压系统设计参数如下: 螺杆直径40mm 螺杆行程200mm 最大注射压力153MPa 螺杆驱动功率5kW 螺杆转速60r/min 注射座行程230mm 注射座最大推力27kN 最大合模力(锁模力) 900kN 开模力49kN 动模板最大行程350mm 快速闭模速度0.1m/s 慢速闭模速度0.02m/s 快速开模速度0.13m/s 慢速开模速度0.03m/s 注射速度0.07m/s 注射座前进速度0.06m/s 注射座后移速度0.08m/s 2.液压执行元件载荷力和载荷转矩计算 2.1各液压缸的载荷力计算 ⑴合模缸的载荷力 合模缸在模具闭合过程中是轻载,其外载荷主要是动模及其连动部件的起动惯

液压密封基础知识及油缸设计

液压密封基础知识及油缸设计 一、液压密封系统: 液压传动是靠密封油腔的容积变化来传递力和速度。密封不良可造成油液泄漏,从而使得机构运动不稳定,降低容积效率,污染环境,严重时会建立不起压力,系统不能工作。 二、常用的轴用、孔用(往复运动用)密封方法: 1. 间隙密封:(图1) 优点:简单,不用任何密封件,摩擦力小。 缺点:不能完全阻止泄漏,且密封性不能随压力升高而提高。 应用:直径较小,压力较低,速度较快,密封性能不是很高的环境,如换向阀、液压泵(柱塞泵)、液压马达等。在油缸中几乎不采用。 2.O形圈密封:(图2)

一般用橡胶制成。 优点:结构简单,密封性能良好,摩擦力小。 缺点:磨损后不能补偿,寿命短。 应用:可用于直线往复和回转运动,但更多的是用于固定密封,如管路、油缸盖和缸套间的密封。或适用于低等级、非关键器件。 3.U形密封件密封(即:常用的UN圈或Yx圈):(图3为孔轴通用) 分类:轴用、孔用、孔轴通用三种。一般选孔轴通用,即UN圈。 特点:两侧唇口对称。 优点:结构简单,安装相当简单,使用压力较高(最高可达40Mpa),密封性能良好,密封性能随压力升高而提高,并能自动补偿磨损量,摩擦力小,成本低,对油缸的表面要求也不高。 缺点: 密封圈质量容易材质影响,国产件一般寿命在1-2年。进口件则寿命较长。

使用温度一般<100℃ 往复速度:≤0.5m/s 应用:相当广泛。 4.挤压式密封件密封(即:常见的格来圈及斯特封):(图4) 格来圈(图4) 斯特封(图5) 优点:结构简单,使用压力高(最高可达70Mpa),密封性能良好,密封性能随压力升高而提高,并能自动补偿磨损量,摩擦力小,成本低,使用温度可达120℃,往复速度:≤15m/s,寿命长。 缺点: 对油缸的表面要求较高。

安装液压缸密封圈的方法

安装液压缸密封圈的方法 Prepared on 22 November 2020

安装液压缸密封圈的方法 孔用组合密封圈由O形圈和耐磨环组成(见图1)。由于O形圈弹性较大,安装比较容易;而耐磨环弹性较差,如果直接安装则活塞的各台阶、沟槽容易划伤其密封表面,影响密封效果。为保证耐磨环安装时不被损坏,应采取一定的安装措施。耐磨环主要由填充聚四氟乙烯(PTFE)材料制成,具有耐腐蚀的特性,热膨胀系数较大,故安装前先将其在100℃的油液中浸泡20min,使其逐渐变软,然后用图2所示工装将其装人活塞的沟槽中。 图2所示工装由定位套和涨套组成。定位套头部有5o倒角,用于引导O形圈和耐磨环装人活塞端部沟槽。涨套由弹性较好的65Mn钢经热处理制成,加工成均匀对称的8瓣结构。需要注意的是,加工各瓣底部的小孔时,分度要均匀,铣开各瓣时应使锯口对准小孔的中心,以保证涨套各瓣能均匀涨开。同时各部位都应进行(光滑)倒角,以免损坏密封圈。 每一种规格的密封圈都应有一套对应的工装来保证其装配要求。安装完成后不允许密封圈有折皱、扭曲、划伤和装反的现象存在。 图3所示为液压缸缸筒,缸筒上的螺纹孔常安排在焊接工序之后加工,这样就不可避免地要在螺纹孔出口与缸筒内壁的交界处产生毛刺。为清除毛刺,必须设计制做专用刀具对其进行加工,达到

光滑过渡的目的。专用刀具的结构见图4。使用时,先将刀杆从螺纹孔中插人,然后从侧面将刀头安装在刀杆上,旋转刀杆即可将毛刺除掉并加工出光滑完整的表面。 另一类密封件是聚氨酯材质的Y形密封圈因其具有高硬度、高弹性、耐油、耐磨和耐低温等优点,广泛用于液压油缸中。它的内、外唇根据轴用或孔用可制成不等高形状,以起到密封和自身保护的作用。不等高唇Y形圈,其短唇与密封面接触,滑动摩擦阻力小,耐磨性好,寿命长;长唇与非相对运动表面有较大的预压缩量,工作时不易窜动。 由于聚氨酯材质的Y形圈硬度高、预压缩量大,在安装、更换时常常会造成被挤破、翻卷和咬边等损坏现象,从而起不到应有的密封效果,甚至失效。装配时,我们曾用螺丝刀将密封唇沿缸径往里压;或用细铁丝将密封圈的外唇捆紧,使其外径小于缸的内径,然后将密封圈送入缸内,再将细铁丝抽出。但这两种装法都容易将密封圈划伤,导致密封失效,增加维修时间。针对这种情况,我们用厚的冷轧钢带或铜皮将其剪成长方形,其长度等于Y形圈外径的周长,然后用它将密封圈裹紧,再一点一点地送入液压缸缸筒中,待外唇口全部进入缸筒后再将其抽出,安装效果较好。

液压缸常用的密封方法

液压缸常用的密封方法 液压缸中需要密封的部位有:活塞、活塞杆和端盖等处。今天来介绍一下最常用的密封方法有哪几种: (一)间隙密封 这是依靠两运动件配合面间保持一很小的间隙,使其产生液体摩擦阻力来防止泄漏的一种密封方法。用该方法密封,只适于直径较小、压力较低的液压缸与活塞间密封。为了提高间隙密封的效果,在活塞上开几条环形槽,这些环形槽的作用有两方面,一是提高间隙密封的效果,当油液从高压腔向低压腔泄漏时,由于油路截面突然改变,在小槽内形成旋涡而产生阻力,于是使油液的泄漏量减少;另一是阻止活塞轴线的偏移,从而有利于保持配合间隙,保证润滑效果,减少活塞与缸壁的磨损,增加间隙密封性能。 (二)橡胶密封圈密封 按密封圈的结构形式不同有O型、Y型、Yx型和V型密封圈,O形密封圈密封原理是依靠O形密封圈的预压缩,消除间隙而实现密封。Y型、Yx型和V型密封圈是依靠密封圈的唇口受液压力作用变形,使唇口贴紧密封面而进行密封,液压力越高,唇边贴得越紧,并具有磨损后自动补偿的能力。 (三)橡塑组合密封装置 由O型密封圈和聚四氟乙烯做成的格来圈或斯特圈组合而成。这种组合密封装置是利用O型密封圈的良好弹性变形性能,通过预压缩所产生的预压力将格来圈或斯特圈紧贴在密封面上起密封作用。O型密封圈不与密封面直接接触,不存在磨损、扭转、啃伤等问题,而与密封面接触的格来圈或斯特圈为聚四氟乙烯塑料,不仅具有极低的摩擦因素(0.02~0.04,仅为橡胶的1/10),而且动、静摩擦因素相当接近。此外因具有自润滑性,与金属组成摩擦付时不易粘着;启动摩擦力小,不存在橡胶密封低速时的爬行现象。此种密封不紧密封可靠、摩擦力低而稳定,而且使用寿命比普通橡胶密封高百倍,应用日益广泛。

美国PARKER柱塞泵的主要分类

美国PARKER柱塞泵的主要分类 柱塞泵一般分为单柱塞泵、卧式柱塞泵、轴向柱塞泵和径向柱塞泵。 单柱塞泵 结构组成主要有偏心轮、柱塞、弹簧、缸体、两个单向阀。柱塞与缸体孔之间形成密闭容积。偏心轮旋转一转,柱塞上下往复运动一次,向下运动吸油,向上运动排油。泵每转一转排出的油液体积称为排量,排量只与泵的结构参数有关。 卧式柱塞泵 卧式柱塞泵是由几个柱塞(一般为3个或6个)并列安装,用1根曲轴通过连杆滑块或由偏心轴直接推动柱塞做往复运动,实现吸、排液体的液压泵。它们也都采用阀式配流装置,而且大多为定量泵。煤矿液压支架系统中的乳化液泵一般都是卧式柱塞泵。 乳化液泵用于采煤工作面,为液压支架提供乳化液,工作原理靠曲轴的旋转带动活塞做往复运动,实现吸液和排液。 轴向式 轴向柱塞泵(英文名:Piston pump)是活塞或柱塞的往复运动方向与缸体中心轴平行的柱塞泵。轴向柱塞泵利用与传动轴平行的柱塞在柱塞孔内往复运动所产生的容积变化来进行工作的。由于柱塞和柱塞孔都是圆形零件,加工时可以达到很高的精度配合,因此容积效率高。 直轴斜盘式 直轴斜盘式柱塞泵分为压力供油型和自吸油型两种。压力供油型液压泵大都是采用有气压的油箱,靠气压供油的液压油箱,在每次启动机器之后,必须等液压渍箱达到使用气压后,才能操作机械。如液压油箱的气压不足时就启动机器,会对液压泵内的与滑靴造成拉脱现象,出会造成泵体内回程板与压板的非正常磨损。 径向式 径向柱塞泵可分为阀配流与轴配流两大类。阀配流径向柱塞泵存在故障率高、效率 柱塞泵 低等缺点。国际上70、80年代发展的轴配流径向柱塞泵克服了阀配流径向柱塞泵的不足。由于径向泵结构上的特点,固定了轴配流径向柱塞泵比轴向柱塞泵耐冲击、寿命长、控制精度高。变量行程短泵的变量是在变量柱塞和限位柱塞作用下,改变定子的偏心距实现的,而定于的最大偏心距为5—9mm(根据排量大小不同),变量行程很短。且变量机构设计为高压操纵,由控制阀进行控制。故该泵的响应速度快。径向结构设计克服了如轴向柱塞泵滑靴偏磨的问题。使其抗冲击能力大幅度提高。

液压密封件基本类型及特征

机械用液压密封件特征 ①UN系列:UN型聚氨酯油封是液压缸中最常用的油封,是一种典型的唇口密封件,无 论用于活塞或是活塞杆均可获得良好的密封性能。U型圈在低压的情况下,只靠唇部的过盈变形产生密封,随着压力升高,唇口弹性变形量增加,拉伸,压缩及弯曲应力增加,U型圈径向压力自动变大,与密封面接触的长度不断增加直到U型圈整个轴向长度与密封面接触,从而保证高压状态下具有良好的密封性。UN是孔轴通用的,它的形状为两侧唇口对称,能够承受21mpa到35mpa的工作压力,可以耐温到-35℃到100℃。由M-90 材料制成。 ②DH型聚氨酯油封双向作用的防压密封圈,一方面刮除向里面运动的活塞杆表面脏污, 另一方面阻止腔体内液压油泄漏。无骨架/双作用防压圈,材料为M-90,硬度为90±2, 温度为-35到100℃。 ③D-1型:D-1型孔用密封件,它的形状为外侧唇口短而粗,也属于U型圈的一种,耐压 程度可以到40Mpa,常用于液压缸中,是一种典型的唇口密封件,安装于活塞杆都能够获得良好的密封效果。能够承受40Mpa的工作压力,使用温度可达到-35到100℃,运动速度为0.03-0.5m/s,由M-95材质制成。 ④D-2型:D-2型聚氨酯油封,是轴用的密封件。它的形状为内侧唇口短而粗,也属于U 型圈的一种,耐压程度到40Mpa。能够承受-35到100℃。运动速度为0.03-0.5m/s,由 M-95材质制成。 ⑤ME-1系列:是骨架/双作用油封,材料结构为M-90加铁壳,它具有防压作用,重载加

辅助密封,适用于环境条件较差(如在室外等)的场合。ME-1的运动速度为0.03-1.0m/s, 耐温范围为-35到100℃。 ⑥ME-2系列:ME-2型聚氨酯油封,是骨架/反向唇口油封,它的材质为M-90加铁壳, 具有防压作用,重载刮压能力强,适用于环境恶劣(如泥浆/灰渣等)的场合。ME-2的速度达到0.03-1.0m/s,工作温度是-35到100℃。 ⑦UPH系列:油缸往复用液压油封,可适用于活塞和活塞杆密封。此密封件有很大的截 面,可用于大范围的操作。使用的丁腈橡胶和氟橡胶材质保证有广泛的工作温度范围, 使用的规格广泛。 ⑧LBH系列:往复用密封件,这是一种防止粉尘进入,保护设备并保持密封性能的密封件, 这是一种防刮油双唇口全橡胶防压密封件。用丁腈橡胶和氟橡胶作材料的密封件适用于广泛的工作温度。

液压缸密封形式研究

液压缸密封形式研究 王旭 (铜陵有色股份铜冠黄铜棒材有限公司) 液压缸是液压系统中的执行元件,它是一种把液体的压力能转换成机械能以实现直线往复运动的能量转换装置。液压缸结构简单、紧凑,工作可靠,加工、装配和维修方便。因此被广泛的应用于各种液压机械设备中。液压缸种类繁多,有柱塞、活塞和摆动缸等,但其基本组件均为缸体、活塞、活塞杆、缸盖、密封件等,其中液压缸的密封件是液压缸中的最重要元件,密封不良可造成油液泄漏,从而使得机构运动不稳定,降低容积效率,污染环境,严重时会建立不起压力,系统不能工作。往往个别密封件的失效所造成的损失可能是密封件本身价值的千万倍。下面就液压缸的密封件及密封形式进行探讨。 液压缸密封件是防止工作介质的泄漏(内泄和外泄)和防止外界异物(如空气、灰尘和水等)进入液压元件和液压系统的机构。液压缸的密封大致有四处:一是缸盖与缸体处静密封,活塞与活塞杆处静密封;二是活塞和缸体的动密封;三是活塞杆与缸盖的动密封;四是缸盖外端面处的防尘密封。 一,盖与缸体处静密封、活塞与活塞杆处静密封 图1为安装在端盖外圆与液压缸内壁接触位置的是端盖静密封圈;安装在活塞与活塞杆之间的是活塞静密封圈。它们都是液压缸内的静密封圈,端盖静密封是防止液压油从端盖和缸筒间的间隙漏出,单面承压,要求防挤出能力强,密封效果好等;活塞静密封是双向承压,防止液压油从活塞和活塞杆之间漏出,要求防挤出能力强,密封效果好等。常见的静密封圈为O型密封圈加挡圈,O形封圈是一种截面为圆形的橡胶圈,其材料主要为丁腈橡胶或氟橡胶,是液压传动系统中使用最广泛的一种密封件。它主要用于静密封和往复运动密封,O形密封圈装入密封槽后,其界面承受接触压缩应力而产生变形,当没有介质压力时,密封圈在自身的弹性力作用下,对接触面产生一个预接触应力p0,如图2a)所示。而当容腔内充入有压力的介质后,则在介质压力p的作用下,O形密封圈发生位移,移向低压侧,且其弹性变形进一步加大,填充和封闭了密封间隙a此时,作

典型液压传动系统实例分析

第四章典型液压传动系统实例分析 第一节液压系统的型式及其评价 一、液压系统的型式 通常可以把液压系统分成以下几种不同的型式。 1.按油液循环方式的不同分 按油液循环方式的不同,可将液压系统分为开式系统和闭式系统。 (1)开式系统 如图4.1所示,开式系统是指液压泵1从油 箱5吸油,通过换向阀2给液压缸3(或液压马 达)供油以驱动工作机构,液压缸3(或液压马 达)的回油再经换向阀回油箱。在泵出口处装溢 流阀4。这种系统结构较为简单。由于系统工作 完的油液回油箱,因此可以发挥油箱的散热、沉 淀杂质的作用。但因油液常与空气接触,使空气 易于渗入系统,导致工作机构运动的不平稳及其 它不良后果。为了保证工作机构运动的平稳性, 在系统的回油路上可设置背压阀,这将引起附加 的能量损失,使油温升高。 在开式系统中,采用的液压泵为定量泵或单 向变量泵,考虑到泵的自吸能力和避免产生吸空 现象,对自吸能力差的液压泵,通常将其工作转 速限制在额定转速的75%以内,或增设一个辅助 泵进行灌注。工作机构的换向则借助于换向阀。 换向阀换向时,除了产生液压冲击外,运动部件 的惯性能将转变为热能,而使液压油的温度升高。 图4.1 开式系统 但由于开式系统结构简单,因此仍为大多数工程 机械所采用。 (2)闭式系统 如图4.2所示。在闭式系统中,液压泵的进油管直接与执行元件的回油管相联,工作液体在系统的管路中进行封闭循环。闭式直系统结构较为紧凑,和空气接触机会较少,空气不易渗入系统,故传动的平稳性好。工作机构的变速和换向靠调节泵或马达的变量机构实现,避免了在开式系统换向过程中所出现的液压冲击和能量损失。但闭式系统较开式系统复杂,由于闭式系统工作完的油液不回油箱,油液的散热和过滤的条件较开式系统差。为了补偿系统中的泄漏,通常需要一个小容量的补油泵进行补油和散热,因此这种系统实际上是一个半

(完整版)液压系统泄漏原因及解决方法

液压系统泄漏原因及解决方法 液压系统中,泄漏影响产品的质量,是必须要考虑的问题。例如液压缸,严重的泄漏不仅会使设备周围的环境受到污染,还会导致液压缸工 作腔的压力降低,使液压缸无法正常工作。采取比较先进的方法,有效地防止泄漏,使液压系统实现“零泄漏”是液压行业多年来始终追求的目标。另外,准确地分析液压系统泄漏产生的最初原因,可以帮助我们及时排除液压系统的泄漏故障。作为机械专业的学生,我们通过对《液压与气压传动》课程的学习以及查阅相关资料,结合自己专业实习、工程训练和日常生活中的所见和所想,就常见泄漏故障问题,分析了液压传动的泄漏形式及原因,提出控制泄漏的措施。 相对于机械传动,液压传动是一门新的技术,起源于1654年帕斯卡提出的静压传动原理。它是以液体为工作介质,通过能量转换装置来进行能量传递的一种传动形式。液压传动具有如下优点: ●工作液体可以用管道输送到任何位置; ●执行元件的布置不受方位限制,借助油管的连接可以方便灵活 地布置传动机构; ●液压传动能将原动机的旋转运动变为直线运动; ●可以方便地实现无级调速; ●载荷控制、速度控制以及方向控制容易实现,也容易进行集中控 制、摇控和自动控制; ●⑥液压传动平稳无振动;

●具有良好的润滑条件可提高液压元件工作的可靠性和使用寿命; 液压元件有利于实现标准化、系列化和通用化。因此,液压传动在国民经济各部门中得到了广泛的应用。 但液压传动也存在着一些缺点: ●存在液体流动的阻力损失、油液的泄漏以及机械摩擦,故效率 较低; ●对控制工作温度要求较高; ●由于工作液体的泄漏和可压缩性,液压系统的刚性较差使液 压系统无法保证严格的传动比; ●对工作液体的使用维护要求十分严格; ●液压元件成本较高; ●液压系统的故障判断和处理较难,要求工作人员技术水平和 专业知识较高。其中工作液体的泄漏一直是不可避免的问 题,其解决方法也是各行各业研究的重点之一。 ●泄漏形式 泄漏按流向可分为内泄漏和外泄漏。外泄漏主要是指液压 油从系统泄漏到环境中,产生在液压系统的液压管路、液压阀、液压缸和液压泵(液压马达)的外部;内泄漏是指由于高 低压侧的压力差的存在以及密封件失效等原因,使液压油在系统内部由高压侧流向低压侧,如液压传动中油液从高压腔

液压缸密封件的正确使用

液压缸密封件的正确使用 润滑与密封中阖彀给z程2006.01 文章编号:l67l一07ll(2006)0l一0058—02 液压缸密封件的正确使用 李锦平 (珠江啤酒股份公司,广东广州510315) 摘要:本文以活塞缸为例,分析,液压装置中影响密封什使用性能和寿命的因素,指出了使用密封什应 沣意的事项. 关键词:液压缸;活塞缸;密封件;使用 中图分类号:TH136文献标识码:B 液压缸可将液压能转换成机械能,其结构种类 繁多,有柱塞,活塞和摆动缸等,但其基本组件均 为缸体,活塞,活塞杆,缸盖,密封件等.下面以 活塞缸为例淡谈影响密封件使用性能和寿命的因 素,以及使用应注意的事项. 一 ,影响密封件使用性能及寿命的因素 1.表面粗糙度.活塞和活塞杆表面粗糙度? 般.8,密封什安装槽的粗糙度,侧面1.6,底 面R3.2.活塞杆淬火硬度为HRC55-60,镀铬层 厚30~501~m,活塞杆电镀后进行无向研磨消除磨 削加工螺旋线痕迹. 2.问隙.主要是指密封安装槽或密封件滑合 面在低压一侧的配合间隙.密封件在汕乐作用下, 将产生变形和塑性流动,密封件根部有被挤入配合 间隙的趋向.为保证液压缸的性能,精度及寿命,

密封结构常设置导向元件.密封摩擦副前,后的间 隙因压力,上况,密封什种类及材料而异. 3.速度.油膜厚度与往复运动速度相关.速 度过高油膜增厚,容易产牛泄漏;速度过低(小丁 0.05m/s,)则油膜过薄,摩擦增大,易产生"爬行". 4.温度.油温的变化影响油的黏度,油膜厚 度和密封性能.为保证密封的良好性能,液压系统 的工作温度应稳定住40~80.C. 5.压力.液压缸油压使密封件的变形可达到 密封效果,但也增加了滑动面的磨损,引起发热, 促使系统温升及进一步增大滑动阻力.所以在实际 使用中要严格控制压力.这也是保证密封使用寿命 的需要.如16MPa的密封件在16MPa液压系统中 的使用寿命为两年;如果用于21MPa液压系统中 则缩短为两个月:使用于31.5MPa的液』玉系统中使0 用寿命仅为两天. 6.接触压力.接触压力必须适中,以便形成 一 层极薄的连续油膜.如果接触压力过小,则油膜 厚,易泄漏;接触压力过大,油膜过薄,易造成干 摩擦,缩短密封件的使用寿命. 7.摩擦阻力.密封与运动件的摩擦阻力是变 化的.启动时摩擦阻力最大(干摩擦),当达到适 当速度时,摩擦副间形成了连续油膜,摩擦阻力下降,摩擦副运动速度过高时,油膜变厚,摩擦阻力 反增大. 8.介质.为满足各种要求,液压油中添加了不 同的添加剂.添加剂对密封材料的相容性及使用寿

液压系统中的密封装置

浅谈液压系统中の密封装置 密封是解决液压系统泄露问题最重要、最有效の手段。液压系统如果密封不良,可能出现不允许の外泄露,外漏の油液将会污染环境;可能使空气进入吸油腔,影响液压泵の工作性能和液压执行元件の平稳性(爬行),泄露严重时,系统容积效率过低,甚至工作压力达不到要求值;若密封过度,虽可防止泄露,但会造成密封部分の剧烈磨损,缩短密封件の使用寿命,增大液压元件内の运动摩擦阻力,降低系统の机械效率。因此,合理の选用和设计密封装置在液压系统の设计中是很重要の。 一、对密封装置の要求 1)在工作压力和一定の温度范围内,应具有良好の密封性能,并随着 压力の增加能自动提高密封性能。 2)密封装置和运动件之间の摩擦力要小,摩擦系数稳定。 3)抗腐蚀能力强,不易老化,工作寿命长,耐磨性好,磨损后在一定 程度上能自动补偿。 4)结构简单,使用、维护方便,价格低廉。 二、密封装置の类型和特点 密封按其工作原理可分为非接触式密封和接触式密封。前者主要指间隙 密封,后者指密封件密封。 1.间隙密封 间隙密封是靠相对运动件配合面之间の微小间隙来进行密封の,常用于柱塞、活塞或阀の圆柱配合副中,一般在阀芯の外表面开有 几条等距离の均压槽,它の主要作用是使径向压力分布均匀,减少 液压卡紧力,同时使阀芯在孔中对中性好,以减小间隙の方法来减 少泄露。同时,槽所形成の阻力,对减少泄露也有一定の作用。均 压槽一般宽0.3-0.5mm,深为0.5-1.0mm。圆柱面配合の间隙与直径 大小有关,对于阀芯和阀孔一般取0.005-0.017mm。这种密封の优 点是摩擦力小,缺点是磨损后不能自动补偿,主要用于直径较小の 圆柱面之间,如液压泵内の柱塞和缸体之间,滑阀の阀芯与阀孔之 间の配合。 2.O形密封圈 O形密封圈一般用耐油橡胶制成,其横截面呈圆形,它具有良好の密封性能,内外侧和端面都能起密封作用,结构紧凑,运动件 の摩擦阻力小,制造容易,装拆方便,成本低,在液压系统中得到 广泛の应用。 图1所示为O形密封圈の结构和工作情况。图1.a为其外形图;图 1.b为装入密封沟槽の情况,Q1 、Q2 为O形圈装配后の预压缩量, 通常用压缩率W表示,即,对于固定密封、往 复运动密封和回转运动密封,压缩率应分别达到15%-20%、10%-20% 和5%-10%,才能取得满意の密封效果。当油液工作压力超过10MPa 时O形圈在往复运动中容易被油液压力挤入间隙而提早损坏(图 1.c),为此要在它の侧面安防1.2-1.5mm厚の聚四氟乙烯挡圈,单 向受力时在受力侧の对面安放一个挡圈(图1.d);双向受力时则在

PARKER液压马达F11-010-MB-CV-K-000-000-0

PARKER液压马达F11-010-MB-CV-K-000-000-0 联系:郑-工15 260 822 709 Q 72 827 45 85 KINSSON 同步分流马达*421004313568 JXT-012K-VR-N KINSSON 同步分流马达*421004313099 JXT-014K-VR-N KINSSON 同步分流马达*421004313569 JXT-024E-VR-N KINSSON 同步分流马达*421004313566 JXT-025E-VR-N KINSSON 同步分流马达*421004313199 JXT-026E-VR-NNet 克朗普顿的计时器计时表242-1576-BUZH-DC-2T-SM MOOG D634-341C R40K02 MONSS2

派克Parker F11-010-HU-CV-K-000 TOPWORX开关DXP-M2CGNES0000N6217 VOITH DSG-B07212 丹尼斯克探头PT460E-35MPA-6-T80,2个 罗斯蒙特2051TG4A2B21AB4M5 压力变送器 GOLDAMMER传感器WN1-L100-220V AC 西门子 7ML5423-1LE01-2CA0 雷达液位计 6DR5020-ONG00-OAAO 电气阀门定位器 7ML5423-1LE01-2CA0 6DR5020-0NG00-0AA0

诺蒂菲儿JTWB-BCD-5451EIS 停产替代型号 JTWB-BCD-5151EIS 型感温(防爆型)火灾探测器3781359 F11-010-HL-XH-K-212 parker油压马达3781988 F11-010-HL-XH-K-283 美国派克马达3781878 F11-010-HR-CE-K-000 美国派克液压马达3785435 F11-010-HR-CH-D-000 parker液压马达3797736 F11-010-HR-CH-K-000 parker 液压马达3798634 F11-010-HR-CH-K-208 parker 马达 3799376 F11-010-HR-CH-K-213 派克马达 3785142 F11-010-HR-CH-K-308 派克液压马达3797735 F11-010-HR-WH-K-000 parker派克马达3799599 F11-010-HR-XH-K-216 parker派克液压马达3781990 F11-010-HR-XH-K-286 派克液压马达3707475 F11-010-HU-CE-K-000 parker柱塞马达3709816 F11-010-HU-CH-D-000 parker马达 3707310 F11-010-HU-CH-K-000 parker油压马达3785478 F11-010-HU-CH-K-201 美国派克马达3785558 F11-010-HU-CH-K-209-000-0 美国派克液压马达3783489 F11-010-HU-CN-K-000 parker液压马达3782650 F11-010-HU-CN-K-201 parker 液压马达3785244 F11-010-HU-SE-S-000-000-0 parker 马达3785725 F11-010-HU-SV-K-000-000-0 派克马达

液压系统中的密封技术

液压系统中的密封技术 摘要: 液压传动是以有压流体为工作介质,进行能量传递与控制的一种传动型式,并成为传动与自动控制系统中的一个重要组成部分,这门技术在各个领域得到了迅速的发展和广泛应用。 1.泄露与密封的功用 液压传动是以油液为工作介质来传递能量,传递动力,具有传递动力大,运动平稳,控制方便等特点,在现代工作的各个领域应用十分普遍。随着现代技术的不断发展,对液压元件的结构和性能提出了更高的要求。提高液压元件质量的着重点是在高压.大流量.微型化.集成化.低噪音情况下延长液压元件的使用寿命。要实现高压,大流量,必须保证具有密封工作腔,因此密封装置的作用对液压元件与系统的正常工作至关重要。密封装置不良会引起液压的泄露,使设备失效,甚至造成环境污染。密封装置的设计与密封装置的选择直接影响液压系统的多项性能,尤其是现代精密液压控制,其低速性能、响应、精度均与密封性能有密切关系。 液压技术的发展是与密封技术的进步密不可分的。密封理论、密封装置也随着相关技术的要求而发展。现代液压控制技术对密封的要求有下列特点: (1) 液压系统的高压化一直是液压技术的一个发展方向。可以说,提高系统压力的关键在于解决高压元件与系统的密封问题。 (2) 液压控制系统,如伺服控制、比例控制系统,要求对输出力、输出位移、速度等控制有高进度、大范围的控制与调节性能。这不仅要求密封装置有优良的密封性,而且要求降低摩擦力,以减小机械摩擦造成的死区非线性,提高系统的反应速度;另外密封摩擦力,特别

是动、静摩擦系数(动、静摩擦因数)之差是低速运动液压缸产生爬行现象的主要原因。 (3) 世界性的环保与资源问题要求对控制液压传动工作介质的泄漏提出了更高要求。液压传动工作介质的泄漏不仅污染了环境,而且是一笔很大的资源损失。 在液压系统中,密封装置是用来防止液体工作介质泄漏及外界气体、灰尘等侵入的装置。泄漏是指在液压元件及系统的容腔内流动或暂存的流体,少量越过容腔边界,由高压侧向低压侧流出的现象。泄漏分内泄漏与外泄漏,内泄漏是工作介质从高腔向低腔的泄漏;外泄漏是工作介质从工作腔向元件和系统外部的泄漏。工作介质的泄漏会引起液压系统容腔效率急剧下降,达不到所需的工作动力,使设备无法正常运作;外泄漏还会造成工作介质浪费和环境污染,油液泄漏有可能造成火灾。产生泄漏的主要原因是组成液压密封工作腔的各零件间有间隙,且间隙两侧存在压差。即间隙是主要的泄漏通道。密封的作用就是封住结合面间隙,切断泄漏通道或增加泄漏通道中的阻力,以阻力泄漏,正确设计和使用密封件是液压设备正常运转的重要保证。以锁紧回路(如图)为例说明系统中密封不良产生的泄漏对液压工作系统的影响。

液压密封件的选用

液压密封件的选用 液压密封件的使用性能 泄漏量极小 要求液压密封件的泄漏量极小,具有良好的密封作用,并随液压油的压力增高而自动提高其密封作用,即使在高压及高温等恶劣工作环境下,液压密封件的泄漏量也无明显的增加。 良好的相容性 因液压密封件长期浸泡在液压油中,极易溶胀、溶解或脆化变硬等,使之丧失密封作用,因此要求液压密封件对液压油具有良好的相容性。 摩擦阻力小 为避免或减少液压设备产生低压爬行等不良现象,要求液压密封件具有较低的静摩擦阻力和动摩擦阻力,并且其摩擦系数应非常稳定。 使用寿命长 液压密封件应具有良好的弹性、耐热性、耐寒性、耐压性、耐磨性及一定的物理机械强度等,并且使用寿命长。 价格低廉 液压密封件应易于制造和安装,其相应的密封槽又易于加工制造,对密封表面的加工精度等要求又较低,并且低格低廉。 液压密封件的结构形式及密封机理

常用的自封式压紧型液压密封件主要是○形密封圈,圆形密封圈和方形密封圈等,它们具有结构简单、易于制造、成本低廉等优点,因此它们是液压传动系统中广泛应用的动密封元件和静密封元件。它们安装在密封槽内通常产生10—25%的径向压缩变形,并对密封表面产生较高地初始接触应力,从而阻止无压力液体的泄漏。 液压缸工作时,压力液体挤压自封式压紧型液压密封件,使之进一步变形,并对密封表面产生较大的随压力液体的压力,严格地说应为压强。增高而增高的附加接触应力,并与初始接触应力一起共同阻止压力液体的泄漏。但当工作压力大于10Mpa时,为了避免合成橡胶质自封式压紧型液压密封件的一部分被挤入密封间隙而在液压缸往复运动中被切掉而造成泄漏,须在合成橡胶质自封式压紧型液压密封件的受压侧各设置一合成树脂挡圈,如尼龙挡圈、聚甲醛挡圈和填充聚四氟乙烯挡圈。 由于合成橡胶质自封式压紧型液压密封件工作时具有较大的压缩变形,因此其静摩擦阻力特别大,通常为其动摩擦阻力的两倍多。如此大的静摩擦阻力在一些低压液压传动系统中势必造成低压爬行及操作困难等不良现象,这正是自封式压紧型液压密封件很小单独用作动密封件的原因。 唇型密封件

帕克液压气动样本

, , , .,, . , . ,*Tube OD ID *: 5*3,6*4,8*6,10*8,12*10,15*12.5mm Connections M G G G G :5,1/8,1/4,3/8,1/2 R R R R 1/8,1/4,3/8,1/2 :. Fluid Compressed Air Low Pressure Fluids :. working pressure 15Bar RPCF RPL RPCS RPLS RPLF RPD RPDS RPT RPTS RPUC RPM RPUL RPUT RPZA RPN RPC Rapid Fittings For Plastic Tubes

RPN Nut RP CS Swivelling Stud Taper male ,RP C Taper Stud male ,RP L Taper Elbow male ,L L CH 12RPCS 6*4R 1/8317.5116*4R 1/434.511148*6R 1/8327.5118*6 R 1/435.5111410*8R 1/438.5111410*8R 3/83911.51712*10R 3/84011.51712*10 R 1/2 44 14 22 PART NO .Info Thread Tube 1L CH RPN 4*2.5M 6*0.75 875*3M 7*0.758.586*4M 8*0.75996*4M 10*110.5128*6M 12*110.51410*8M 14*111.51612*10 M 16*1 131815*12.5M 20*1 15.5 22 PART NO .Info Thread Tube L L L CH 123RPL 4*2.5 R 1/820177.575*3R 1/821.517886*4R 1/822.5178126*4R 1/422.52011126*4R 3/823.522.511.5128*6R 1/822.5178148*6R 1/422.52011148*6 R 3/82422.511.51410*8R 1/825.518.581610*8R 1/425.521.5111615*2.5 R 1/2 34 28 14 22 PART NO .Info Thread 10*8 R 3/825.522.511.51612*10R 3/83024.511.51812*10R 1/230.5281418Tube PART NO .Info Thread RPC 4*2.5 R 1/823.57.5115*3R 1/8258126*4R 1/827.58126*4R 1/43111146*4R 3/831.511.5178*6R 1/827.58128*6R 1/43111148*6R 3/831.511.51710*8R 1/829.581410*8R 1/432.5111410*8R 3/83311.51710*8R 1/236142212*10R 3/834.511.51712*10R 1/237.5142215*2.5 R 1/2 39.5 14 22 L L CH 12Tube RP CF Parallel Stud Female ,PART NO .Info Thread L L CH 12RPCF 5*3 G 1/822.58146*4G 1/8258146*4G 1/42911178*6G 1/8258148*6G 1/42911178*6G 3/829.511.52010*8G 1/430.5111710*8G 3/83111.52012*10 G 3/8 32.5 11.5 20 Tube Rapid Fittings For Plastic Tubes G G Optional BSPP threads

相关主题
文本预览
相关文档 最新文档