当前位置:文档之家› 过程装备制造工艺简答题

过程装备制造工艺简答题

过程装备制造工艺简答题
过程装备制造工艺简答题

过程装备制造工艺简答题

1、为什么焊接接头的“余高”称为“加强高”是错误的?

答:加强高(焊缝)通常用来定义较深的熔池,常用于称呼长周期焊钉的熔池。因为焊接时间较长,长周期焊钉的熔池不仅有较深的下陷,熔池周围还有一圈均匀的包边,这就是加强高,或称为焊缝加强高或者直接称为焊缝余高指的是鼓出母材表面的部分或角焊末端连接线以上部分的熔敷金属余高和加强高是两个基本点概念。

2、什么是焊后热处理?其目的是什么?

答:焊后热处理是将焊接装备的整体或局部均匀加热至金属材料的相变点以下的温

度范围内,保持一定的时间,然后均匀冷却的过程。

目的是:1松弛焊接残余应力2稳定结构形状和尺寸3改善母材、焊接接头和结构件的性能

3、钢板热卷成型过程中的过烧和脱碳现象及影响。

答:过烧是由于晶界的低熔点杂质或共晶物开始有熔化现象,氧气沿晶界渗入,晶界发生氧化变脆,使钢的强度和塑性大大下降。

影响是:过烧后的钢材不能再通过热处理恢复其性能,钢的强度和塑性大大下降。

脱碳:钢在加热时,由于H2O、CO2、O2、H2等气体与钢中的碳化合生成CO、和CH4等气体,从而使钢板表面碳化物遭到破坏,

这种现象称为脱碳。

影响是:脱碳使钢的硬度和耐磨性、疲劳强度降低。

4、图示并说明管子弯曲的应力状态及易产生的缺陷。

答:管子在弯矩作用下发生纯弯曲变形时,中性轴外侧管壁受拉应力的作用,随着变形率的增大,拉应力逐渐增大,管壁可能减薄,严重时可产生微裂纹;

内侧管壁受压应力的作用,管壁可能增厚,严重时可使管壁失稳产生折皱;同时在合力与作用下,使管子横截面变形,

若管子自由弯曲,变形将近似为椭圆形,若管子是利用具有半圆槽的弯管模进行弯曲,则内侧基本上保持半圆形,而外侧变扁。

5、胀接及其特点。

答:胀接:利用胀管器将管子端部胀大变形直至管子端部产生塑性变形,管板孔产生弹性变形,在管板孔弹性变形恢复的作用下,使管子与管板孔接触表面上产生很大的挤压力并紧密结合,达到密封又能抗拉脱力。

特点:1胀接适用于直径不大、管壁不厚的管子;2胀接的管板材料的力学性能比管子材料的高,相同材料不宜胀接;3 胀接有利于管端的耐腐蚀性提高;4胀接时要求环境温度不低于-10度;5胀接表面要求清洁.

6、过程设备主要包括哪些典型的设备机器?

答:两类:以焊接为主要制造手段的过程设备部分,如换热器、塔器反应器、储存容器及锅炉等;以机械加工为主要制造手段的过程机器部分,如泵、压缩机、离心机等;另外,过程装备也包含由于各种特殊生产工艺要求,如吸附、离子交换、膜分离技术等以综合制造手段,生产的各种工艺装置。

7、单层卷焊式压力容器壳体制造工艺流程。

答:选择材料—复检材料—净化处理—矫行—划线(包括零件展开计算、留余量、排料)—切割—成型(包括筒节的卷制封头的加工成型、管子的弯曲等)—组队装配—焊接—热处理—检验(无损检测、耐压试验等)

8、冷卷、热卷筒节的特点.

答:冷卷:①冷卷成形通常是指在室温下的弯卷成形,不需要加热设备,不产生氧化皮,操作工艺简单且方便操作,费用低。②钢板弯卷的变形率与最小冷半径。热卷:①钢板在再结晶温度以上的弯卷称为热卷;在再结晶温度以下的弯卷成为冷卷。②应控制合适的加热温度;

③应控制适当的加热速度;④热卷需要加热设备,费用较大,在高温下加工,操作麻烦,钢板减薄严重;⑤对于厚板或小直筒通常采用热卷。

9、封头旋压成形特点。

答:优点:①适合制造尺寸大,薄壁的大型封头;②旋压机比水压机轻巧,制造相同尺寸的封头,比水压约轻2.5倍。③旋压模具比冲压模简单尺寸小、成本低。

10、设计、选择焊接坡口时主要应考虑哪些问题?

答:1设计或选择不同形式坡口的主要目的是保证焊接接头全焊透2设计或选择坡口首先要考虑的问题是被焊接材料的厚度3要注意坡口的加工方法4在相同条件下,不同形式的坡口,其焊接变形是不同的5焊接坡口的设计或选择要注意施焊时的可焊到性6要注意焊接材料的消耗量,应使焊缝的填充金属尽量少7复合钢板的坡口应有利于减少过渡层焊缝金属的稀释率

11、简述磁粉检测基本原理

答:当被磁化工件表面和近表面存在缺陷时缺陷的导磁率远小于工件材料磁阻大阻碍磁力线顺利通过造成磁力线弯曲磁力线在缺陷处会逸出表面进入空气中形成漏磁场,此时若在工件表面撒上导磁率很高的磁性铁粉在漏磁场处就会有磁粉被吸附聚集形成磁痕通过对磁痕的分析即可评价缺陷

12、预防焊接热裂纹的措施

答1严格限制焊缝中硫磷等元素的含量;2控制焊缝的成分使其形成由奥氏体与铁素体组成的双相组织并控制铁素体的含量不宜过高可参考预防晶间腐蚀的双组织法;3选用碱性焊接材料低线能量快焊快冷预防过热;4尽量减少焊接残余应力注意正确的焊接结构选择减少焊接金属充填量的坡口形式

13、低碳钢焊接时应注意的事项有

答:1被焊材料和焊接材料的质量是否合格;2焊接线能量不宜过大;3刚性大的焊接结构在温度较低的情况下焊接时可能产生裂纹尤其在北方冬季露天施工时更要注意可以适当考虑预热

14、焊后热处理的目的

答:1松弛焊接残余应力;2稳定结构形状和尺寸;3改善母材、焊接接头和结构件的性能。

过程装备制造技术主要考点及答案

1、加工经济精度:通常说的某种加工方法所能达到的精度是指在正常操作情况下所能达到的精度,也称为经济精度。正常操作情况指:完好的机床设备、必要的工艺装备、标准的工人技术等级、标准的耗用时间和生产费用 2、零件加工精度包括:尺寸精度、形状精度和位置精度 3、获得尺寸、形状、位置精度的方法 获得尺寸精度的方法:试切法、定尺寸刀具法、调整法、自动控制法 获得形状精度的方法:轨迹法、成形法、展成法 获得位置精度的方法:按照工件加工过的表面进行找正的方法;用夹具安装工件;用划线法来获得。 4、机械加工工艺系统:在机械加工时,机床、夹具、刀具和工件构成的一个完整的系统。 5、加工过程中可能出现的原始误差 原始误差:加工原理误差、工件装夹误差、工艺系统的静误差、调整误差、工艺系统的动误差、测量误差 6、机床误差对加工精度影响重要的三点:导轨误差、主轴误差、传动链误差 7、误差的敏感方向:原始误差所引起的刀刃与工件间的相对位移,如果产生在加工表面的法线方向,则对加 工误差有直接的影响;如果产生在加工表面的切线方向,就可以忽略不计。把加工表面的法向称之为误差的敏 感方向。 8、传动链误差的概念:传动链始末两端传动兀件间相对运动的误差。一般用传动链末端兀件的转角误差来衡量。 9、提高传动链的传动精度的措施:a)减少传动元件的数目,减少误差的来源;b)提高传动元件的制造精度(特别是末端元件)和装配精度;c)尽可能使末端传动副采用大的降速比;d)减小齿轮副或旋转副存在的 间隙;e)采用矫正装置,预先人为地加入一个等值反向的误差。 10、工艺系统刚度:工艺系统抵抗变形的能力可用工艺系统刚度kxt来描述。垂直作用于工件加工表面的径向 切削分力Fy与工艺系统在该方向上的变形yxt之间的比值,称为工艺系统刚度kxt kxt= Fy / yxt 11、影响机床部件刚度的因素:① 结合面接触变形② 低刚度零件本身的变形③连接表面间的间隙④接触表面间的摩擦及变形滞后现象⑤受力方向及作用力综合结果 12、工艺系统的变形与刚度的关系:垂直作用于工件加工表面的径向切削力Fy与工艺系统在该方向上的变形yxt 之间的比值,称为工艺系统刚度kxt, kst=Fy/yxt 13、工艺系统受力变形对加工精度的影响:①切削力位置的变化对加工精度的影响②切削力大小变化对加工 精度的影响③ 夹紧变形对加工精度的影响④机床部件、工件重量对加工精度的影响 14、误差复映:上式表示了加工误差与毛坯误差之间的比例关系,说明了“误差复映”的规律,定量地反映 了毛坯误差经加工所减小的程度,称之为“误差复映系数”;可以看出:工艺系统刚度越高,e越小,也即是复映在工件上的误差越小。当加工过程分成几次走刀进行时,每次走刀的复映系数为: e 1、e 2、e 3 ,则总的 复映系数1 23 e = eee……总复映系数总是小于1,经过几次走刀后,降到很小的数值,加工误差也就降 到允许的范围以内。 当工件毛坯有形状误差、位置误差,以及毛坯硬度不均匀时,加工后出现的加工误差。误差的方向是一致的。 减小误差复映的方法:1?减小进给量。2?提高工艺系统刚度。3?增加走刀次数。 15、减少工艺系统受力变形的途径:提高工艺系统中零件间的配合表面质量,以提高接触刚度、设置辅助支 承提高部件刚度、当工件刚度成为产生加工误差的薄弱环节时,缩短切削力作用点和支承点的距离也可以提 高工件的刚度; 16、减少工艺系统热变形的措施:1)减少发热和采取隔热;2)强制冷却,均衡温度场;3)从结构上采取措施减少热变形;4 )控制环境温度。 17、提高机械加工精度的途径:(1)听其自然,因势利导,直接消除或减小柔性工件受力变形的方法(2)人为设误,相反相成,抵消受力变形和传动误差的方法(3)缩小范围,分别处理,分组控制定位误差的方法(4)确保验收,把好最后一道关,“就地加工”达到终精度的方法(5)有比较,才有鉴别,误差平均的方法(6)实时检 测,动态补偿,积极控制的方法 18、机械加工表面质量的概念:表面层金属的力学物理性能 19、粗糙度、波度:指加工表面上具有的较小距离的峰谷所组成的表面微观几何形状特性,表面粗糙度一微观 几何形状误差:S / H < 50 (GB/T131-93)波距/波高 波度一一介于加工精度(宏观)和表面粗糙度之间的周期性几何形状误差(50~1000) 20、冷作硬化产生原因、影响因素产生原因:表面层金属由于塑性变形使晶体间产生剪切滑移,使晶格拉长、 扭曲和破碎,从而得到强化。 影响因素:刀具的几何参数、切削用量、被加工材料

机械制造工艺学课程设计目的

机械制造工艺学课程设计目得、内容与要求 1 课程设计得目得 学生通过设计能获得综合运用过去所学过得全部课程进行机械制造工艺及结构设计得基本能力,为以后做好毕业设计、走上工作岗位进行一次综合训练与准备。它要求学生全面地综合运用本课程及有关选修课程得理论与实践知识,进行零件加工工艺规程得设计与机床夹具得设计。其目得就是: (1)培养学生综合运用机械制造工程原理课程及专业课程得理论知识,结合金工实习、生产实习中学到得实践知识,独立地分析与解决机械加工工艺问题,初步具备设计中等复杂程度零件工艺规程得能力。 (2)培养学生能根据被加工零件得技术要求,运用夹具设计得基本原理与方法,学会拟订夹具设计方案,完成夹具结构设计,进一步提高结构设计能力。 (3)培养学生熟悉并运用有关手册、图表、规范等有关技术资料得能力。 (4)进一步培养学生识图、制图、运算与编写技术文件得基本技能。 (5)培养学生独立思考与独立工作得能力,为毕业后走向社会从事相关技术工作打下良好得基础。 2课程设计得内容与要求 2、1课程设计得内容 课程设计题目通常定为:设计××零件得机械加工工艺规程及相关工序得专用夹具。零件图样、生产纲领与生产条件就是设计得主要原始资料,由指导教师提供给学生。零件复杂程度以中等为宜,生产类型为成批生产。 学生根据教师设计任务书中规定得设计题目,分组进行设计,按照所给零件编写出相应得加工工艺规程,设计出其中由教师指定得一道重要工序(如:工艺规程中所要求得车、铣、钻夹具中得一种)得专用夹具,并撰写说明书。学生在指导教师得指导下,参考设计指导书,认真地、有计划地、独立按时完成设计任务. 具体设计内容如下: 1。对零件进行工艺分析,拟定工艺方案,绘制零件工作图1张。 2.确定毛坯种类及制造方法,绘制毛坯图1张。 3。拟定零件得机械加工工艺过程,选择各工序加工设备及工艺装备(刀具、夹具、量具、辅具),确定某一代表工序得切削用量及工序尺寸.编制机械加工工艺规程卡片(工艺过程卡片与工序卡片)1套。 4.设计重要工序中得一种专用夹具,绘制夹具装配总图与大件零件图(通常为夹具体)各1张。 5.撰写设计说明书1份. 2、2课程设计中对学生得要求

过程装备制造与检测 邹广华 刘强 课后习题答案

过程装备制造与检测 0-1过程装备主要包括哪些典型的设备和机器。 过程装备主要是指化工、石油、制药、轻工、能源、环保和视频等行业生产工艺过程中所涉及的关键典型备。 0-3压力容器按设计压力分为几个等级,是如何划分的。 按设计压力分为低压中压高压超高压四个等级,划分如下:低压(L)0.1-1.6中压(M)1.6-10高压(H)10-100超高压(U)>100 0-4为有利于安全、监督和管理,压力容器按工作条件分为几类,是怎样划分的。 a.第三类压力容器(下列情况之一) 毒性程度为极度和高度危害介质的中压容器和力P*V≥0.2MPa·m3的低压容器;易燃或毒性程度为中度危害介质且P*V≥0.5MPa·m3的中压反应容器和力P*V≥10MPa·m3的中压储存容器。;高压、中压管壳式余热锅炉;高压容器。b.第二类压力容器(下列情况之一) 中压容器[第a条规定除外];易燃介质或毒性程度为中度危害介质的低压反应容器和储存容器;毒性程度为极度和高度危害介质的低压容器;低压管壳式余热锅炉;搪玻璃压力容器。 c.第一类压力容器 除第a、b条规定外,为第一类压力容器。 0-7按压力容器的制造方法划分,压力容器的种类。

单层容器:锻造法卷焊法电渣重溶法全焊肉法多层容器:热套法层板包扎法绕代法绕板法 1-3常规检测包括哪些检测容。 包括宏观检测、理化检测、无损检测(射线超声波表面) 2-1简述射线检测之前应做的准备工作。 在射线检测之前,首先要了解被检工件的检测要求、验收标准,了解其结构特点、材质、制造工艺过程等,结合实际条件选组合式的射线检测设备、附件,为制定必要的检测工艺、方法做好准备工作。 2-2说明射线照相的质量等级要求(象质等级)。 一般情况下选AB级(较高级)的照相方法,重要部位可考虑B级(高级),不重要部位选A级(普通级)。 2-3射线检测焊接接头时,对接接头透照缺陷等级评定的焊缝质量级别是怎样划分的。 Ⅰ级焊缝不允许有裂纹、未熔合、未焊透和条状夹渣存在;Ⅱ级焊缝不允许有裂纹、未熔合、未焊透存在;Ⅲ级焊缝不允许有裂纹、未熔合以及双面焊或者相当于双面焊的全焊头对接焊缝和家电板的单面焊中的未焊透。不家电板的单面焊中的;焊缝缺陷超过Ⅲ级者为Ⅳ级。

集成电路制造工艺流程之详细解答

集成电路制造工艺流程之详细解答 1.晶圆制造( 晶体生长-切片-边缘研磨-抛光-包裹-运输 ) 晶体生长(Crystal Growth) 晶体生长需要高精度的自动化拉晶系统。 将石英矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.99999999999。 采用精炼石英矿而获得的多晶硅,加入少量的电活性“掺杂剂”,如砷、硼、磷或锑,一同放入位于高温炉中融解。 多晶硅块及掺杂剂融化以后,用一根长晶线缆作为籽晶,插入到融化的多晶硅中直至底部。然后,旋转线缆并慢慢拉出,最后,再将其冷却结晶,就形成圆柱状的单晶硅晶棒,即硅棒。 此过程称为“长晶”。 硅棒一般长3英尺,直径有6英寸、8英寸、12英寸等不同尺寸。 硅晶棒再经过研磨、抛光和切片后,即成为制造集成电路的基本原料——晶圆。 切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) 切片是利用特殊的内圆刀片,将硅棒切成具有精确几何尺寸的薄晶圆。 然后,对晶圆表面和边缘进行抛光、研磨并清洗,将刚切割的晶圆的锐利边缘整成圆弧形,去除粗糙的划痕和杂质,就获得近乎完美的硅晶圆。 包裹(Wrapping)/运输(Shipping) 晶圆制造完成以后,还需要专业的设备对这些近乎完美的硅晶圆进行包裹和运输。 晶圆输送载体可为半导体制造商提供快速一致和可靠的晶圆取放,并提高生产力。 2.沉积 外延沉积 Epitaxial Deposition 在晶圆使用过程中,外延层是在半导体晶圆上沉积的第一层。 现代大多数外延生长沉积是在硅底层上利用低压化学气相沉积(LPCVD)方法生长硅薄膜。外延层由超纯硅形成,是作为缓冲层阻止有害杂质进入硅衬底的。 过去一般是双极工艺需要使用外延层,CMOS技术不使用。 由于外延层可能会使有少量缺陷的晶圆能够被使用,所以今后可能会在300mm晶圆上更多

过程装备制造工艺复习

1.准备工序(预加工):净化、矫形和涂底漆。 2.净化的方法和设备:喷砂法(机械净化法、物理净化法)(喷沙装置)、抛丸法(抛丸机)、化学清洗法(包括有机溶剂洗涤、碱洗、酸洗)。 3.净化的原因、目的:①消除焊缝两边缘的油污和锈蚀物,保证焊接质量;②为下一道工序做准备,满足下一道工序的工艺要求;如:喷镀,搪瓷,衬里设备,多层包扎容器,热套容器等;③为保持设备的耐腐蚀性; 4.喷砂法原理:利用压缩空气将均匀石英砂粒喷射到需净化表面。 5.抛丸法原理: 利用高速旋转的叶轮将磨料抛向钢铁表面来达到除锈目的 6.矫形的实质:就是调整弯曲件“中性层”两侧的纤维长度,使纤维等长。或者以中性层为基准,长的变短,短的变长;或者以长纤维为基准,让短纤维拉长。 7.矫形的方法:弯曲法、张力变形法、火焰加热法等 8.矫形设备:1.弯曲法:钢板的矫平:辊式矫板机;型钢的矫形:各种压力机、型钢矫直机,矫管机。2.张力变形法矫形:拉伸机3.火焰加热矫形:可燃气体的火焰。 9.划线:划线工序是包括展开、放样、打标号等一系列操作过程的总称。 10.可展与不可展:空间曲面分为直线曲面和曲线曲面。所有的曲线曲面是不可展开的。在直线曲面中,相邻两素线位于同一平面内的才是可展开曲面。 球形、椭圆形、折边锥形封头等零件的表面是曲线曲面,属于不可展开曲面,在生产中用近似方法展开或用经验公式计算 11.注意事项(放样):划线要准确、考虑各工序的加工余量、合理排料(提高材料利用率和合理配置焊缝)。 12.排版原则(三个):a.充分利用原材料、边角余料、使材料利用率达到90%以上,b.零件排料要考虑到切割方便、可行,c.筒节下料时要注意保证筒节的卷制方向应与钢板的轧制方向(轧制纤维方向)一致,d.认真设计焊缝位置。 P141(合理排料) 13.切割及边缘加工(设备一致):按所划的切割线从原料上切割下零件的毛坯称切割工序(俗称落料)。切割的要求:尺寸精确;切口光洁;切割后的坯料无明显、较大变形 14.机械切割:1.锯切(设备:普通锯床,砂轮锯)(对象:圆钢,管子);2.剪切(设备:闸门式、圆盘式剪板机,振动剪床,联合剪切机)(对象:板料) 适用范围:A.闸门式剪板机:有斜口和平口两种,以斜口式用得最多.用于板材的直线剪切。其剪切厚度为6-40mm B. 圆盘式剪切机则用于20mm以下板料的直线和曲线剪切,用途不广。 15.热切割:氧气切割、等离子弧切割 16.氧气切割的过程:a.金属预热 b.金属元素燃烧 c.氧化物被吹走 17.氧气切割必须满足以下条件: ①金属的燃点必须低于其熔点(基本条件)。铸铁、铜的燃点都高于其熔点,不能用氧切割 ②金属氧化物的熔点必须低于金属本身的熔点。铝和含铬较高的合金钢不能气割 ③金属燃烧时放出的热量应足以维持切割过程连续进行。 ④金属的导热性不能过高;⑤生成氧化物的流动性要好。 18.等离子弧切割是利用温度达18000-30000K的等离子焰流,将工件局部熔化并冲刷掉而形成割缝 19.等离子弧及其产生:完全电离的气体就是第四种物态——等离子态 自由电弧→机械压缩、热压缩、磁压缩→等离子弧 20.边缘加工有两个目的:a.按划线要求切除余量,以消除切割时边缘可能产生的冷加工硬化、裂纹、渗碳、淬火硬化等缺陷;b.根据设备的焊接要求,加工出各种形式的坡口 方法是机械切割(刨削,磨削)和热切削(火焰切割、等离子弧切割、碳弧气刨)

过程装备制造与检测试题

过程装备制造与检测考试复习题 一、填空题(每空1.5分,总分30分) 1、按压力容器在生产工艺过程中的作用原理,将压力容器分为反应压力容器、换热压力容器、分离压力容器和储存压力容器。 2、对于压力容器的定期检测根据其检测项目、范围和期限可分为外部检测、内外部检测和全面检测。 3、在焊接热循环中对焊接接头组织、性能的影响,主要取决于加热速度、加热最高温度、高温停留时间和冷却速度。 4、在腐蚀介质的作用下,腐蚀由金属表面沿晶界深入金属内部的腐蚀称为晶间腐蚀。 5、焊后热处理是将焊接装备的整体或局部均匀加热至金属材料相变点以下的温度范围内,保持一定的时间,然后均匀冷却的过程。 6、焊后热处理的作用松弛焊接残余应力、稳定结构形状和尺寸、改善母材、焊接接头和结构件的性能。 7、尺寸精度及其获得方法:试切法、定尺寸刀具法、调整法、自动控制法。 二、选择题(每题2分,总分20分) 1、应用最广的无损检验方法是(B) A、射线探伤 B、超声波探伤 C、表面探伤 D、声发射 2、焊接就是通过加压或加热,或者两者并用,并且用或者不用填充材料,使焊件达到( A )结合的一种方法。 A、原子 B、分子 C、中子 D、电子 3、焊接接头中最薄弱的区域是(C) A、焊缝区 B、熔合面 C、热影响区 D、基本母材 4、焊接结构不具有的优点(B) A、节省金属材料,减轻结构重量 B、劳动强度低,劳动条件好 C、较好的密封性 D、容易实现机械化和自动化 5、下列不是焊后热处理的目的的是(D) A、松弛焊接残余应力 B、稳定结构形状和尺寸 C、改善母材焊接接头和结构件的性能 D、提高断裂韧性 6、磁粉探伤有很多优点,下列对其描述错误的有(C ) A、适用于能被磁化的材料 B、可以检测形状复杂的工件 C、检测灵敏度较低 D、检测工艺简单,效率高 7、采用结构钢焊接时必须预热,一般预热温度为(A )以上 A、250—350℃ B、200—300℃ C、300—450℃ D、400—550℃ 8、对于常温下塑性较好的材料,可采用(B);对于热塑性较好的材料,可以采用(B) A、冷冲压,退火处理 B、冷冲压、热冲压 C、回火处理、热冲压 D、热冲压、淬火处理 9、评定金属材料的焊接性的方法有三种,下列不是焊接性的评定方法的是(C ) A、实际焊接法 B、模拟焊接法 C、数值模拟法 D、理论估算法 10、壳体部分的环向焊缝接头,锥形封头小端与接管连接的接头,长颈法兰与接管连接的接头属于哪一类焊接接头( B )

集成电路制造工艺流程

集成电路制造工艺流程 1.晶圆制造( 晶体生长-切片-边缘研磨-抛光-包裹-运输 ) 晶体生长(Crystal Growth) 晶体生长需要高精度的自动化拉晶系统。 将石英矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.。 采用精炼石英矿而获得的多晶硅,加入少量的电活性“掺杂剂”,如砷、硼、磷或锑,一同放入位于高温炉中融解。 多晶硅块及掺杂剂融化以后,用一根长晶线缆作为籽晶,插入到融化的多晶硅中直至底部。然后,旋转线缆并慢慢拉出,最后,再将其冷却结晶,就形成圆柱状的单晶硅晶棒,即硅棒。 此过程称为“长晶”。 硅棒一般长3英尺,直径有6英寸、8英寸、12英寸等不同尺寸。 硅晶棒再经过研磨、抛光和切片后,即成为制造集成电路的基本原料——晶圆。 切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) 切片是利用特殊的内圆刀片,将硅棒切成具有精确几何尺寸的薄晶圆。 然后,对晶圆表面和边缘进行抛光、研磨并清洗,将刚切割的晶圆的锐利边缘整成圆弧形,去除粗糙的划痕和杂质,就获得近乎完美的硅晶圆。 包裹(Wrapping)/运输(Shipping) 晶圆制造完成以后,还需要专业的设备对这些近乎完美的硅晶圆进行包裹和运输。 晶圆输送载体可为半导体制造商提供快速一致和可靠的晶圆取放,并提高生产力。 2.沉积 外延沉积 Epitaxial Deposition 在晶圆使用过程中,外延层是在半导体晶圆上沉积的第一层。 现代大多数外延生长沉积是在硅底层上利用低压化学气相沉积(LPCVD)方法生长硅薄膜。外延层由超纯硅形成,是作为缓冲层阻止有害杂质进入硅衬底的。 过去一般是双极工艺需要使用外延层,CMOS技术不使用。 由于外延层可能会使有少量缺陷的晶圆能够被使用,所以今后可能会在300mm晶圆上更多

机械制造工艺学课程设计实例

~ 机械制造工艺学课程设计任务书 设计题目:拨叉(二)(CA6140) 机械加工工艺规程编制及工装设计(年产量:4,000件) 设计内容: 1.编制机械加工工艺规程,填写工艺文献1套,绘 制零件毛坯图1张 2.设计夹具1套,绘制夹具装配图和主要结构零 件 图各1张 " 3.撰写课程设计说明书1份 设计时间: [

前言 机械制造工艺学课程设计是在我们完成了大学的全部基础课程、技术基础课以及大部分专业课之后进行的。通过机床加工工艺及夹具设计,汇总所学专业知识如一体(如《机械零件设计》、《金属切削机熟悉与理解,并为以后的实际工作奠定坚实的基础!床》、《机械制造工艺》等)。让我们对所学的专业课得以巩固、复习及实用,在理论与实践上有机结合;使我们对各科的作用更加深刻的 设计目的: 机械制造工艺学课程设计,是在学完机械制造工艺学及夹具设计原理课程,经过生产实习取得感性知识后进行的一项教学环节;在老师的指导下,要求在设计中能初步学会综合运用以前所学过的全部课程,并且独立完成的一项工程基本训练。同时,也为以后搞好毕业设计打下良好基础。通过课程设计达到以下目的: ; 1、能熟练的运用机械制造工艺学的基本理论和夹具设计原理的知识,正确地解决一个零件在加工中的定位,夹紧以及合理制订工艺规程等问题的方法,培养学生分析问题和解决问题的能力。 2、通过对零件某道工序的夹具设计,学会工艺装备设计的一般方法。通过学生亲手设计夹具的训练,提高结构设计的能力。

3、课程设计过程也是理论联系实际的过程,并学会使用手册、查询相关资料等,增强学生解决工程实际问题的独立工作能力。 一.零件的分析 (一)、零件的作用: 题目给定的拨叉(CA6140)位于车床变速机构中,主要起换挡使主轴回转运动按照工作者的要求进行工作。工作过程:拨叉零件是在传动系统中拨动滑移齿轮,以实现系统调速。转向。其花键孔?25与轴的配合来传递凸轮曲线槽传来的运动。零件的2个交叉头补位与滑移齿轮相配合。 — (二)、零件的工艺分析 CA6140车床拨叉(二)共有两个加工表面,它们之间有一定的位置

产业结构调整指导目录(落后生产工艺装备)

产业结构调整指导目录(2011年本) 一、落后生产工艺装备 (一)农林业 1、湿法纤维板生产工艺 2、滴水法松香生产工艺 3、农村传统老式炉灶炕 4、以木材、伐根为主要原料的活性炭生产以及氯化锌法活性炭生产工艺 5、超过生态承载力的旅游活动和药材等林产品采集 6、严重缺水地区建设灌溉型造纸原料林基地 7、种植前溴甲烷土壤熏蒸工艺 (二)煤炭 1、国有煤矿矿区范围(国有煤矿采矿登记确认的范围)内的各类小煤矿 2、单井井型低于3万吨/年规模的矿井 3、既无降硫措施,又无达标排放用户的高硫煤炭(含硫高于3%)生产矿井 4、不能就地使用的高灰煤炭(灰分高于40%)生产矿井 5、6AM、φM—2.5、PA—3型煤用浮选机 6、PB2、PB3、PB4型矿用隔爆高压开关 7、PG—27型真空过滤机 8、X—1型箱式压滤机 9、ZYZ、ZY3型液压支架 10、木支架 11、不能实现洗煤废水闭路循环的选煤工艺、不能实现粉尘达标排放的干法选煤设备 (三)电力 1、大电网覆盖范围内,单机容量在10万千瓦以下的常规燃煤火电机组 2、单机容量5万千瓦及以下的常规小火电机组 3、以发电为主的燃油锅炉及发电机组(5万千瓦及以下) 4、大电网覆盖范围内,设计寿命期满的单机容量20万千瓦以下的常规燃煤火电机组 (四)石化化工 1、200万吨/年及以下常减压装置(2013年,青海格尔木、新疆泽普装置除外),废旧橡胶和塑料土法炼油工艺,焦油间歇法生产沥青 2、10万吨/年以下的硫铁矿制酸和硫磺制酸(边远地区除外),平炉氧化法高锰酸钾,隔膜法烧碱(2015年)生产装置,平炉法和大锅蒸发法硫化碱生产工艺,芒硝法硅酸钠(泡花碱)生产工艺 3、单台产能5000吨/年以下和不符合准入条件的黄磷生产装置,有钙焙烧铬化合物生产装置(2013年),单线产能3000吨/年以下普通级硫酸钡、氢氧化钡、氯化钡、硝酸钡生产装置,产能1万吨/年以下氯酸钠生产装置,单台炉容量小于12500千伏安的电石炉及开放式电石炉,高汞催化剂(氯化汞含量6.5%以上)和使用高汞催化剂的乙炔法聚氯乙烯生产装置,氨钠法及氰熔体氰化钠生产工艺 4、单线产能1万吨/年以下三聚磷酸钠、0.5万吨/年以下六偏磷酸钠、0.5万吨/年以下三氯化磷、3万吨/年以下饲料磷酸氢钙、5000吨/年以下工艺技术落后和污染严重的氢氟酸、5000吨/年以下湿法氟化铝及敞开式结晶氟盐生产装置 5、单线产能0.3万吨/年以下氰化钠(100%氰化钠)、1万吨/年以下氢氧化钾、1.5万吨/年以下普通级白炭黑、2万吨/年以下普通级碳酸钙、10万吨/年以下普通级无水硫酸钠(盐

机械制造工艺学课程设计实例

机械制造工艺学课程设计任务书 设计题目:拨叉(二)(CA6140) 机械加工工艺规程编制及工装设计(年产量:4,000件) 设计内容: 1、编制机械加工工艺规程,填写工艺文献1套,绘制零件毛坯图1张 2、设计夹具1套,绘制夹具装配图与主要结构零 件 图各1张 3、撰写课程设计说明书1份 设计时间: 前言

机械制造工艺学课程设计就是在我们完成了大学的全部基础课程、技术基础课以及大部分专业课之后进行的。通过机床加工工艺及夹具设计,汇总所学专业知识如一体(如《机械零件设计》、《金属切削机熟悉与理解,并为以后的实际工作奠定坚实的基础!床》、《机械制造工艺》等)。让我们对所学的专业课得以巩固、复习及实用,在理论与实践上有机结合;使我们对各科的作用更加深刻的 设计目的: 机械制造工艺学课程设计,就是在学完机械制造工艺学及夹具设计原理课程,经过生产实习取得感性知识后进行的一项教学环节;在老师的指导下,要求在设计中能初步学会综合运用以前所学过的全部课程,并且独立完成的一项工程基本训练。同时,也为以后搞好毕业设计打下良好基础。通过课程设计达到以下目的: 1、能熟练的运用机械制造工艺学的基本理论与夹具设计原理的知识,正确地解决一个零件在加工中的定位,夹紧以及合理制订工艺规程等问题的方法,培养学生分析问题与解决问题的能力。 2、通过对零件某道工序的夹具设计,学会工艺装备设计的一般方法。通过学生亲手设计夹具的训练,提高结构设计的能力。 3、课程设计过程也就是理论联系实际的过程,并学会使用手册、查询相关资料等,增强学生解决工程实际问题的独立工作能力。 一.零件的分析

(一)、零件的作用: 题目给定的拨叉(CA6140)位于车床变速机构中,主要起换挡使主轴回转运动按照工作者的要求进行工作。工作过程:拨叉零件就是在传动系统中拨动滑移齿轮,以实现系统调速。转向。其花键孔?25与轴的配合来传递凸轮曲线槽传来的运动。零件的2个交叉头补位与滑移齿轮相配合。 (二)、零件的工艺分析 CA6140车床拨叉(二)共有两个加工表面,它们之间有一定的位置要求。 1、一花键孔的中心线为基准的加工面 这一组面包括?25H7的六齿方花键孔、?22H2的花键低空及两

CMOS集成电路制造工艺流程

C M O S集成电路制造工艺 流程 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

陕西国防工业职业技术学院课程报告 课程微电子产品开发与应用 论文题目CMOS集成电路制造工艺流程 班级电子3141 姓名及学号王京(24#) 任课教师张喜凤 目录

CMOS集成电路制造工艺流程 摘要:本文介绍了CMOS集成电路的制造工艺流程,主要制造工艺及各工艺步骤中的核心要素,及CMOS器件的应用。 引言:集成电路的设计与测试是当代计算机技术研究的主要问题之一。硅双极工艺面世后约3年时间,于1962年又开发出硅平面MOS工艺技术,并制成了MOS集成电路。与双极集成电路相比,MOS集成电路的功耗低、结构简单、集成度和成品率高,但工作速度较慢。由于它们各具优劣势,且各自有适合的应用场合,双极集成工艺和MOS集成工艺便齐头平行发展。 关键词:工艺技术,CMOS制造工艺流程 1.CMOS器件 CMOS器件,是NMOS和PMOS晶体管形成的互补结构,电流小,功耗低,早期的CMOS电路速度较慢,后来不断得到改进,现已大大提高了速度。 分类 CMOS器件也有不同的结构,如铝栅和硅栅CMOS、以及p阱、n阱和双阱CMOS。铝栅CMOS和硅栅CMOS的主要差别,是器件的栅极结构所用材料的不同。P阱CMOS,则是在n型硅衬底上制造p沟管,在p阱中制造n沟管,其阱可采用外延法、扩散法或离子注入方法形成。该工艺应用得最早,也是应用得最广的工艺,适用于标准CMOS电路及CMOS与双极npn兼容的电路。N阱CMOS,是在p型硅衬底上制造n沟晶体管,在n阱中制造p沟晶体管,其阱一般采用离子注入方法形成。该工艺可使NMOS晶体管的性能最优化,适用于制造以NMOS为主的CMOS以及E/D-NMOS和p沟MOS兼容的CMOS电路。双阱CMOS,是在低阻n+衬底上再外延一层中高阻n――硅层,然后在外延层中制造n 阱和p阱,并分别在n、p阱中制造p沟和n沟晶体管,从而使PMOS和NMOS晶体管都在高阻、低浓度的阱中形成,有利于降低寄生电容,增加跨导,增强p沟和n沟晶体管的平衡性,适用于高性能电路的制造。

制造工艺学课程设计.doc

设计输出轴零件的机械加工工艺规程 一、初步分析 1.零件图样分析 1)两个mm 024 .0011.060++φ的同轴度公差为mm 02.0φ 2)mm 05.004.54+φ与mm 024 .0011.060++φ同轴度公差为mm 02.0φ 3)mm 021.0002.080++φ与mm 024 .0011.060++φ同轴度公差为mm 02.0φ 4)保留两端中心孔 5)调质处理28—32HRC 6)材料45 2.输出轴机械加工工艺过程卡片 3.工艺分析 1)该铀的结构比较典型,代表了一般传动轴的结构形式, 其加工工艺过程具有普遍性。 在加工工艺流程中,也可以采用粗车加工后进行调质处理 2)图样小键槽未标注对称度要求.但在实际加工小应保证 mm 025.0±的对称度。这样便于与齿轮的装配,键槽对称度的 检查,可采用偏摆仪及量块配合完成,也可采用专用对称度检具 进行检查。 3)输出轴各部向轴度的检查,可采用偏摆仪和百分表综合 进行检查。

二、工艺设计 该步骤主要拟定工艺路线,并对加工设备与工艺装备进行选择,以及填写工艺过程卡片 1、定位基准的选择 ①粗基准的选择 粗基准的选择有如下四点要求,保证相互位置要求的原则,保证加工表面加工余量合理分配的原则,便于工件装夹原则,一般不得重复使用原则。 该轴选取左端为粗基准,便于装夹。 ②精基准的选择 精基准的选择有如下五条原则,基准重合原则,统一基准原则,互为基准原则,自为基准原则,便于装夹原则。 该轴在精车加工中选取两端和与其对应的中心孔为精基准,采用互为基准原则,提高轴的同轴度,在磨削加工过程中,采用两顶尖为精基准,保证该轴各轴段的同轴度要求。 2、加工方法的选择 加工方法的选择根据加工表面、零件材料和加工精度以及生产率的要求,考虑现有工艺

最新过程装备制造与检测期末考试试题

3、 焊接接头中最薄弱的区域是( A 、焊缝区 B 、熔合面 4、 焊接结构不具有的优点( A 、节省金属材料,减轻结构重量 C 、 较好的密封性 5、 下列不是焊后热处理的目的的是 A 、松弛焊接残余应力 C 、改善母材焊接接头和结构件的性能 6、 磁粉探伤有很多优点,下 A 、适用于能被磁化的材料 C ) C 、热影响区 D 、基本母材 B ) B 、劳动强度低,劳动条件好 D 、容易实现机械化和自动化 (D ) B 、稳定结构形状和尺寸 D 、提高断裂韧性 F 列对其描述错误的有 (C ) B 、可以检测形状复杂的工件 C 、检测灵敏度较低 D 、检测工艺简单,效率高 过程装备制造与检测复习题(五) 一、 填空题(每空 1?5分,总分30分) 1按压力容器在生产工艺过程中的作用原理,将压力容器分为 器、分离压力容器和储存压力容器。 2、对于压力容器的定期检测根据其检测项目、范围和期限可分为 全面检测。 3、在焊接热循环中对焊接接头组织、性能的影响,主要取决于 高温停留时间和冷却速度。 4、 在腐蚀介质的作用下,腐蚀由金属表面沿晶界深入金属内部的腐蚀称为 晶间腐蚀。 5、 焊后热处理是将焊接装备的整体或局部均匀加热至金属材料 相变点以下的温度范围内, 保持 一定的时间,然后均匀冷却的过程。 6、焊后热处理的作用 松弛焊接残余应力、稳定结构形状和尺寸、改善母材、焊接接头和结 构件的性能。 7、 尺寸精度及其获得方法: 试切法、定尺寸刀具法、调整法、自动控制法。 二、 判断题(每个1分,总分5分) 1在相同的焊接电流下,若改变焊丝直径,即改变了电流的密度,焊缝的形状和尺寸也将 随着改变(对) 2、多层容器比单层容器的抗脆裂性好, 导热性比单层容器大的多, 高温工作时热应力大(错) 3、胀接的密封性和强度不如焊接,胀接不适于管程和壳程温差较大的场合,否则影响胀接 质量(对) 4、传播介质是影响超声波衰减的主要因素,在固体介质中超声波衰减最严重,在液体介质 次之,在气体介质中最小( 错) 5、 管子材质低碳钢、低合金钢可以冷弯和热弯;合金钢、高合金钢应选择热弯。 (对) 三、 选择题(每题2分,总分20分) 1应用最广的无损检验方法是( B ) A 、射线探伤 B 、超声波探伤 C 、表面探伤 D 、声发射 2、焊接就是通过加压或加热,或者两者并用,并且用或者不用填充材料,使焊件达到 A )结合的一种 方法。 A 、原子 B 、分子 C 、中子 D 、电子 反应压力容器、换热压力容 外部检测、内外部检测和 加热速度、加热最高温度、

超大规模集成电路及其生产工艺流程

超大规模集成电路及其生产工艺流程 现今世界上超大规模集成电路厂(Integrated Circuit, 简称IC,台湾称之为晶圆厂)主要集中分布于美国、日本、西欧、新加坡及台湾等少数发达国家和地区,其中台湾地区占有举足轻重的地位。但由于近年来台湾地区历经地震、金融危机、政府更迭等一系列事件影响,使得本来就存在资源匮乏、市场狭小、人心浮动的台湾岛更加动荡不安,于是就引发了一场晶圆厂外迁的风潮。而具有幅员辽阔、资源充足、巨大潜在市场、充沛的人力资源供给等方面优势的祖国大陆当然顺理成章地成为了其首选的迁往地。 晶圆厂所生产的产品实际上包括两大部分:晶圆切片(也简称为晶圆)和超大规模集成电路芯片(可简称为芯片)。前者只是一片像镜子一样的光滑圆形薄片,从严格的意义上来讲,并没有什么实际应用价值,只不过是供其后芯片生产工序深加工的原材料。而后者才是直接应用在应在计算机、电子、通讯等许多行业上的最终产品,它可以包括CPU、内存单元和其它各种专业应用芯片。 一、晶圆 所谓晶圆实际上就是我国以往习惯上所称的单晶硅,在六、七十年代我国就已研制出了单晶硅,并被列为当年的十天新闻之一。但由于其后续的集成电路制造工序繁多(从原料开始融炼到最终产品包装大约需400多道工序)、工艺复杂且技术难度非常高,以后多年我国一直末能完全掌握其一系列关键技术。所以至今仅能很小规模地生产其部分产品,不能形成规模经济生产,在质量和数量上与一些已形成完整晶圆制造业的发达国家和地区相比存在着巨大的差距。 二、晶圆的生产工艺流程: 从大的方面来讲,晶圆生产包括晶棒制造和晶片制造两面大步骤,它又可细分为以下几道主要工序(其中晶棒制造只包括下面的第一道工序,其余的全部属晶片制造,所以有时又统称它们为晶柱切片后处理工序): 多晶硅——单晶硅——晶棒成长——晶棒裁切与检测——外径研磨——切片——圆边——表层研磨——蚀刻——去疵——抛光—(外延——蚀刻——去疵)—清洗——检验——包装 1、晶棒成长工序:它又可细分为: 1)、融化(Melt Down):将块状的高纯度多晶硅置石英坩锅内,加热到其熔点1420℃以上,使其完全融化。2)、颈部成长(Neck Growth):待硅融浆的温度稳定之后,将,〈1.0.0〉方向的晶种慢慢插入其中,接着将晶种慢慢往上提升,使其直径缩小到一定尺寸(一般约6mm左右),维持此真径并拉长100---200mm,以消除晶种内的晶粒排列取向差异。 3)、晶冠成长(Crown Growth):颈部成长完成后,慢慢降低提升速度和温度,使颈直径逐渐加响应到所需尺寸(如5、6、8、12时等)。 4)、晶体成长(Body Growth):不断调整提升速度和融炼温度,维持固定的晶棒直径,只到晶棒长度达到预定值。 5、)尾部成长(Tail Growth):当晶棒长度达到预定值后再逐渐加快提升速度并提高融炼温度,使晶棒直径逐渐变小,以避免因热应力造成排差和滑移等现象产生,最终使晶棒与液面完全分离。到此即得到一根完整的晶棒。 2、晶棒裁切与检测(Cutting & Inspection):将长成的晶棒去掉直径偏小的头、尾部分,并对尺寸进行检测,以决定下步加工的工艺参数。 3、外径研磨(Surface Grinding & Shaping):由于在晶棒成长过程中,其外径尺寸和圆度均有一定偏差,其外园柱面也凹凸不平,所以必须对外径进行修整、研磨,使其尺寸、形状误差均小于允许偏差。 4、切片(Wire Saw Slicing):由于硅的硬度非常大,所以在本序里,采用环状、其内径边缘嵌有钻石颗粒的薄锯片将晶棒切割成一片片薄片。 5、圆边(Edge profiling):由于刚切下来的晶片外边缘很锋利,单晶硅又是脆性材料,为避免边角崩裂影响晶片强度、破坏晶片表面光洁和对后工序带来污染颗粒,必须用专用的电脑控制设备自动修整晶片边缘形状和外径尺寸。 6、研磨(Lapping):研磨的目的在于去掉切割时在晶片表面产生的锯痕和破损,使晶片表面达到所要求的光洁度。

机械制造工艺学课程设计目的

机械制造工艺学课程设计目的、内容与要求 1 课程设计的目的 学生通过设计能获得综合运用过去所学过的全部课程进行机械制造工艺及结构设计的基本能力,为以后做好毕业设计、走上工作岗位进行一次综合训练与准备。它要求学生全面地综合运用本课程及有关选修课程的理论与实践知识,进行零件加工工艺规程的设计与机床夹具的设计。其目的就是: (1)培养学生综合运用机械制造工程原理课程及专业课程的理论知识,结合金工实习、生产实习中学到的实践知识,独立地分析与解决机械加工工艺问题,初步具备设计中等复杂程度零件工艺规程的能力。 (2)培养学生能根据被加工零件的技术要求,运用夹具设计的基本原理与方法,学会拟订夹具设计方案,完成夹具结构设计,进一步提高结构设计能力。 (3)培养学生熟悉并运用有关手册、图表、规范等有关技术资料的能力。 (4)进一步培养学生识图、制图、运算与编写技术文件的基本技能。 (5)培养学生独立思考与独立工作的能力,为毕业后走向社会从事相关技术工作 打下良好的基础。 2 课程设计的内容与要求 2、1课程设计的内容 课程设计题目通常定为:设计××零件的机械加工工艺规程及相关工序的专用夹具。零件图样、生产纲领与生产条件就是设计的主要原始资料,由指导教师提供给学生。零件复杂程度以中等为宜,生产类型为成批生产。 学生根据教师设计任务书中规定的设计题目,分组进行设计,按照所给零件编写出相应的加工工艺规程,设计出其中由教师指定的一道重要工序(如:工艺规程中所要求的车、铣、钻夹具中的一种)的专用夹具,并撰写说明书。学生在指导教师的指导下,参考设计指导书,认真地、有计划地、独立按时完成设计任务。 具体设计内容如下: 1.对零件进行工艺分析,拟定工艺方案,绘制零件工作图1张。 2. 确定毛坯种类及制造方法,绘制毛坯图1张。 3. 拟定零件的机械加工工艺过程,选择各工序加工设备及工艺装备(刀具、夹具、量具、辅具),确定某一代表工序的切削用量及工序尺寸。编制机械加工工艺规程卡片(工艺过程卡片与工序卡片)1套。 4.设计重要工序中的一种专用夹具,绘制夹具装配总图与大件零件图(通常为夹具体)各1张。 5.撰写设计说明书1份。 2、2课程设计中对学生的要求

(工艺技术)集成电路的基本制造工艺

第1章 集成电路的基本制造工艺 1.6 一般TTL 集成电路与集成运算放大器电路在选择外延层电阻率上有何区别?为什么? 答:集成运算放大器电路的外延层电阻率比一般TTL 集成电路的外延层电阻率高。 第2章 集成电路中的晶体管及其寄生效应 复 习 思 考 题 2.2 利用截锥体电阻公式,计算TTL “与非”门输出管的CS r ,其图形如图题2.2 所示。 提示:先求截锥体的高度 up BL epi mc jc epi T x x T T -----= 然后利用公式: b a a b WL T r c -? = /ln 1ρ , 2 1 2?? =--BL C E BL S C W L R r b a a b WL T r c -? = /ln 3ρ 321C C C CS r r r r ++= 注意:在计算W 、L 时, 应考虑横向扩散。 2.3 伴随一个横向PNP 器件产生两个寄生的PNP 晶体管,试问当横向PNP 器件在4种可能的偏置情况下,哪一种偏置会使得寄生晶体管的影响最大? 答:当横向PNP 管处于饱和状态时,会使得寄生晶体管的影响最大。 2.8 试设计一个单基极、单发射极和单集电极的输出晶体管,要求其在20mA 的电流负载下 ,OL V ≤0.4V ,请在坐标纸上放大500倍画出其版图。给出设计条件如下: 答: 解题思路 ⑴由0I 、α求有效发射区周长Eeff L ; ⑵由设计条件画图 ①先画发射区引线孔; ②由孔四边各距A D 画出发射区扩散孔; ③由A D 先画出基区扩散孔的三边; ④由B E D -画出基区引线孔; ⑤由A D 画出基区扩散孔的另一边;

过程装备制造工艺习题库A

二、填空题 1、拉;压;折皱; 2、有直边;压力机预弯(模压直边);卷板机预弯(滚弯直边);预留直边。 3、RT;超声波检测;渗透检测。 4、热套式高压容器;扁平钢带倾角错绕式高压容器;层板包扎式高压容器。 5、机械矫形;火焰矫形。(或冷矫形、热矫形) 6、焊接变形;残余应力。 7、冲压成型;旋压成型;爆炸成型。 四、简答题 1、净化的目的是什么? 答:目的:①消除焊缝两边缘的油污和锈蚀物,保证焊接质量;(1分) ②为下道工序作准备,满足下一道工序的工艺要求;(1分) ③保持设备的耐腐蚀性。(1分) 方法:手工法;喷砂法;抛丸法;化学净化法; 2、简述氧气切割过程及切割条件。 答:过程:火焰切割又叫氧气切割。氧气切割时,火焰的高温先将金属预热,然后金属元素温度逐渐升高,进而燃烧,燃烧后的氧化物被源源不断的氧气流吹走,而达 到切割的目的。 (答出预热、燃烧、吹走3分) 必备条件:①金属的燃点必须低于其熔点。 ②金属氧化物的熔点必须低于金属本身的熔点。 ③金属燃烧时放出的热量应足以维持切割过程连续进行。 ④金属的导热性不能过高。 ⑤金属氧化物的流动性要好。 3、请结合图示从力学上来说明无模旋压封头成型法。 答:成形辊与板坯的接触点为顶点,旋压辊与板料的接触点为压点,从板坯中心看到项点和压点不在同一圆周上,这样就形成了力矩,使顶点和压点之间在经向形成一小条金属塑性变形。 由于主轴和成形辊驱动动力的作用使圆形板坯旋转,从而在项点和压点之间沿圆周方向形成一个环形区域,由于2点之间中的任意各点都产生同一方向的塑性变形那么这个环形区域则以螺旋形的方式从中心向边缘“流动”,终使板坯产生连续不断的塑性弯曲变形,形成所期望的封头形状和尺寸精度要求。(答出第一段或意义相近得3分,答出第二段或意义相近得3分) 4、简述固定管板式换热器的装配工艺过程。 答:要点(1)竖一管板;(2)固接拉杆; (3)穿定距管、折流板;(4)固定定距管、折流板; (5)穿入换热管;(6)套入筒体;

集成电路制造工艺

摘要 集成电路广泛应用于生活生产中,对其深入了解很有必要,在此完论文中整的阐述集成电路原理及其制造工艺本报告从集成电路的最初设计制造开始讲起全面讲述了集成电路的整个发展过程制造工艺以及集成电路未来的发展前途。集成电路广泛应用于生活的各个领域,特别是超大规模集成电路应用之后,使我们的生活方式有了翻天覆地的变化。各种电器小型化智能化给我们生活带来了各种方便。所以对于电子专业了解集成电路的是发展及其制造非常有必要的。关键词集成电路半导体晶体管激光蚀刻 集成电路的前世今生 说起集成电路就必须要提到它的组成最小单位晶体管。1947 年在美国的贝尔实验室威廉·邵克雷、约翰·巴顿和沃特·布拉顿成功地制造出第一个晶体管。晶体管的出现使电子元件由原来的电子管慢慢地向晶体管转变,是电器小型化低功耗化成为了可能。20 世纪最初的10 年,通信系统已开始应用半导体材料。开始出现了由半导体材料进行检波的矿石收音机。1945 年贝尔实验室布拉顿、巴丁等人组成的半导体研究小组经过一系列的实验和观察,逐步认识到半导体中电流放大效应产生的原因。布拉顿发现,在锗片的底面接上电极,在另一面插上细针并通上电流,然后让另一根细针尽量靠近它,并通上微弱的电流,这样就会使原来的电流产生很大的变化。微弱电流少量的变化,会对另外的电流产生很大的影响,这就是“放大”作用。第一次在实验室实际验证的半导体的电流放大作用。不久之后他们制造出了能把音频信号放大100 倍的晶体管。晶体管最终被用到了集成电路上面。晶体管相对于电子管着它本身固有的优点: 1.构件没有消耗:无论多么优良的电子管,都将因阴极原子的变化和慢性漏气而逐渐老化。由于技术上的原因,晶体管制作之初也存在同样的问题。随着材料制作上的进步以及多方面的改善,晶体管的寿命一般比电子管长100 到1000 倍。2.消耗电能极少:耗电量仅为电子管的几十分之一。它不像电子管那样需要加热灯丝以产生自由电子。一台晶体管的收音机只要几节干电池就可以半年。 3.不需预热:一开机就工作。用晶体管做的收音机一开就响,晶体管电视机一开就很快出现画面。电子管设备就做不到这一点。4.结实可靠:比电子管可靠100 倍,耐冲击、耐振动,这都是电子管所无法比拟的。晶体管的体积只有电子管的十分之一到百分之一,放热很少,可用于设计小型、复杂、可靠的电路。晶体管的制造工艺虽然精密,但工序简便,有利于提高元器件的安装密度。光有了晶体管还是不够,因为要把晶体管集成到一片半导体硅片上才能便于把电路集成把电子产品小型化。那怎么把晶体管集成呢,这便是后来出现的集成芯片。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗和高可靠性化。集成电路经过30 多年的发展由开始的小规模集成电路到到大规模集成电路再到现在的超大规模乃至巨大规模的集成电路,集成电路有了飞跃式的发展集成度也越来越高,从微米级别到现在的纳米级别。模拟集成电路主要是指由电容、电阻、晶体管等组成的模拟电路集成在一起用来处理模拟信号的集成电路。有许多的模拟集成电路,如运算放大器、模拟乘法器、锁相环、电源管理芯片等。模拟集成电路的主要构成电路有:放大器、滤波器、反馈 电路、基准源电路、开关电容电路等。数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路或系统。用来产生、放大和处理各种数字信号(指在时间上和幅度上离散取值的信号)。而集成电路的普及离不开因特尔公司。1968 年:罗伯特·诺

相关主题
文本预览
相关文档 最新文档