当前位置:文档之家› 小型凝汽式汽轮发电机组低真空供热(苍松参考)

小型凝汽式汽轮发电机组低真空供热(苍松参考)

小型凝汽式汽轮发电机组低真空供热(苍松参考)
小型凝汽式汽轮发电机组低真空供热(苍松参考)

论文二零一零年十二月七日

小型凝汽式汽轮发电机组低真空供热技术研究

王方明1李雪松2王磊3

(1.包钢(集团)公司设计研究院,内蒙古包头014010;

2.西安建筑科技大学环境学院建环专业,西安710055;

3.内蒙古包头市建委市政工程管理处监理所,内蒙古包头014030 )【摘要】本文介绍了小型凝汽式汽轮发电机组低真空供热工艺改造的基本方法,即通过降低机组真空度提高排汽温度,加热循环水用于采暖。并以包钢4#发电机为例进行了经济效益和环境效益分析。针对系统改造时应注意问题提出了相应的对策,为同类机组低真空供热改造提供了借鉴和参考。该技术具有良好的发展空间和推广前景。

【关键词】小型纯凝式汽轮机;低真空;供热

Small Condensing Steam Turbine for low vacuum heating

Wang Fangming

(Baogang Group Designing & Institute.CO,LTD Baotou,Inner Mongolia,014010,China)【Abstract】This paper introduces the basic method of improved process of small steam turbine generator unit for low vacuum heating, through reducing unit vacuum and raising exhaust temperature to heating circulating water be used to heating. Combine with the engineering case, analyses are conducted on the environmental and economic benefits of Baogang No. 4 generator. This paper puts forward some relevant suggestions on the problems to be noted in the reformation, and has provided the model and the reference for the heat in lower vacuum of similar units. The technology has good development space and expending prospects.

【Key words】small steam turbine generator;low vacuum;heating

1概述

节能减排是当今能源工作的重要指导方针,为了提高中小型热电企业的能源综合利用效率,许多小型电厂都在走热电联产的道路。在利用现有条件,将凝汽式机组改为供热机组后,热电联产所带来的经济效益和环境效益远远的超过了换热站及供热锅炉房的单纯供热。

2 凝汽式汽轮机低真空供热的工艺

所谓凝汽式汽轮机低真空供热就是降低汽轮机运行的排汽真空度,相应提高汽轮机的排汽温度,从而使汽轮机的循环冷却水温度提高。将提高温度后的循环冷却水输入供热系统,代替供热系统的热网循环水,具体做法就是:如果汽轮机的排汽真空度在正常发电时是93kPa(排汽压力8kPa),在采暖期就可以将汽轮机的真空度降低到供热所需的61.3kPa(排汽压力40kPa),从而使凝汽器的乏汽温度由40℃提高到70℃,与此相适应汽轮机的循环冷却水温度也由30℃提高到60℃将提高温度后的循环冷却水在非最冷月时直接送入热网系统代替热网系统的供热循环水。这样一来汽轮机的冷凝器就变成了供热系统的热交换器,发电系统的循环冷却水变成了热网系统的循环水,而热网就代替了发电系统冷却水的冷却塔。原来从冷却塔散失到空气中的热量(即发电时的冷源损失),通过散热器进入室内达到了取暖的目的。

3.低真空供热的节能效益

以包钢热电厂4#纯凝式汽轮发电机为例,热电厂4#汽轮发电机(AKB-12)机组是1987年生产的上海汽轮机厂产品,机组额定参数如下:额定功率:12000kw,额定进汽压力:3.43MPa,额定进汽温度:435℃额定排汽压力:0.00715MPa额定排汽温度:40℃,循环水温度:30℃;改造后机组参数:排汽压力:0.031MPa,排汽温度:65℃,循环水温度:55℃。机组总循环水量3300t/h,为了尽可能利用现有设施减少改造投资;维持原有的采暖热水系统管网参数不变;保证机组安全运行,就近利用炼钢换热站现有的供热系统与鼓风机站内改造后的4#发电机组凝汽器的循环冷却水系统组成了一个新的联合供热系统。即由炼钢换热站内采暖循环水泵入口前的回水总管引1根DN700管道送至4#发电机组凝汽器的循环冷却水泵入口前,进凝汽器吸热后,由1根DN700管道送回换热站采暖回水总管循环水泵入口前,如果吸热后的水温能够满足采暖水供水要求,由循环水泵直接送入外网,如果水温供各采暖不能够满足采暖水供水要求,则进汽-水换热器组二次加热后送入外网。通常每年在最冷月1.5个月使用换热器,其它采暖时间均可由低真空供热机组直接满足采暖要求。

3.1经济效益分析

一个采暖期,如果发电机全进行发电按额定发电量12MW计算,采暖期5个月发电收益12000×24×150×(0.45-0.31)=604.80万元,在改为热电联产供热机组后收益为9000(由于降低真空度后会影响发电量,4500kW 是在改造完成以后的发电量)×24×90×(0.45-0.31)+12000×24×60×(0.45-0.31)+30t/h(换热站用器汽量) ×24×30×3.5×3×26元/GJ(公司最新内部蒸汽价格)+280kw×0.8×24×90×0.45元/kw﹒h+3300t/h×0.02×24×90×0.3=993.73万元(发电收益+节省蒸汽收益+停运鼓风机循环泵节约电费+减少循环水蒸发量),可见热电联产较纯发电每个采暖期多创造302.66万元纯利润【1】。

3.2环境效益

在完成4#发电机机低真空供热改造后,每个采暖期节约蒸汽量378000t,如果按照普通供热锅炉房作为参照,以煤质的低位发热量11302kj/kg计算,相当于少耗用原煤33445t,如果按照原煤含矸率42%计算,则每个采暖期可减少排渣量14000多吨。并且会相应的减少烟气排放量约480×106m3,减少二氧化硫排放量约2000t,减少粉尘排放量约2960t。

4.低真空供热存在的问题及解决措施

汽轮机本体凝汽式汽轮机组改造成低真空循环水供暖主要有两种方式。一种是对汽轮机本体不做任何改动,直接将凝汽机组用于低真空供暖。这种改造方式,其运行参数严重偏离设计工况,汽轮机各级焓降发生变化,末级和次末级焓降变小,不做功甚至起阻滞作用而消耗功。同时会由于振动、推力轴承损坏,如果采用这种方式对运行要求比较高。另一种改造方式是对汽轮机组的某些静止部分进行结构改造。对冬季为低真空供暖,而夏季又要恢复为凝汽运行的机组,最好的办法是根据汽轮机厂家针对新工况的计算结果,控制参数运行。这样在提高机组的安全性和经济性的同时,也可以收到较理想的改造效果。

4.1 背压的选择

从热网运行的经济性来看,采用越高的供热水温经济性越好。但是由于汽轮机排汽压力过高不但使机组的发电出力降低,还可能导致凝汽器钢管膨胀过大而产生泄漏,以及排汽缸上的后轴承温度升高而引起的冷却困难和机组振动等问题,因此针对于各

种小机组,最大排汽压力只能提高到30~60Kpa,对应的饱和温度为69.1~85.45℃,在实际运行中为了保证机组的长期安全运行,排汽温度控制在65℃以下比较合适。由于凝汽器存在传热端差,实际运行中冷凝器循环水的出口温度为55℃左右,可以满足非最冷月的供热要求。为了保证机组的安全运行,排汽压力不能过高,以达到供热要求为宜。还可以增大后轴承进油缩孔直径,增加进油量,以保证后轴承的冷却。若由于某种原因致使排汽缸温度过高时,可考虑在末级后加装喷水装置,沿轴向方向向后喷水,以降低排汽过热度。

4.2 轴向推力的变化

汽轮机在低真空运行过程中轴向推力要发生变化,通常认为其轴向推力会增加。有些电厂未经过正确的热力计算,就盲目的对汽轮机原轴封进行了改造,将汽轮机前汽封漏汽由原送入高压加热器改送至低压加热器,以便平衡因汽轮机低真空供热所造成的轴向推力的增加。但与汽轮机厂家结合后,由汽轮机厂家利用改进的变工况势力计算方法及反动度解析式对汽轮机低真空供热时的轴向推力和最末级的反动度进行了计算,结果表明只要背压在0.03Mpa 以下,汽轮机的轴向推力不但不增加反而会减小,即使增加也不大,仍然在机组推力轴承安全运行的范围内,并且也得到了实际运行结果证明。因此,在具体应用中,不宜盲目的对汽轮机组进行改造,就根据机组的具体情况采取相应的措施【2】。

4.3 汽轮机发电功率

凝汽式汽轮机组发电功率同蒸汽流量和理想焓降成正比。低真空运行时,由于真空降低,背压升高使得理想焓降减少。在汽轮机进汽量和机械效率不变的情况下,发电机的发电功率会减小。对冲动式汽轮机而言,真空降低将引起中间各级的级前压力提高。对于复速级,由于级后压力提高,使该级焓降减少相对内效率下降,对于中间各级,虽然级前、级后压力匀发生改变,但压比和焓比却变化不大,因而相对内效率变化不大,功率变化也不太大;对于末级和次末级,真空降低使焓降大幅降低,甚至变为负值,以致造成蒸汽流速急剧降低,蒸汽不但不做功,反而有可能对转子旋转产生阻尼作用,使发电机功率降低。因此,汽轮机改为低真空运行后,在进汽量不变的前提下,必须以损失发电量做为低真空供热的前提。而通过包钢4#发电机的经济效益分析可以看出,这种通过损失发电量供热的方式是一种更为经济的运行方式。

4.4 负荷调节

机组在低真空供热方式运行时,汽轮机处于以热定电的运行状态。当热用户的供暖负荷发生变化时,应采取相应措施来调节机组热负荷的大小,汽轮机组的发电功率也随之改变.在循环水量和供热面积的一定的条件下,当需要较低的供热水温时,可以减少汽轮机的电负荷,从而减少汽轮机的进汽量,也就减少了排汽量,真空也相应升高,循环水温度降低;当循环水达到一定温度要求而保持不变时,保持电负荷不变,真空保持不变。当需要较高的供热水温时,在保证排汽温度低于70℃时,可适当增加汽轮机的电负荷,真空相应降低。为了满足尖峰期最冷月供热负荷的需要,可以在系统中设置尖峰加热器,在尖峰负荷时通过尖峰加热器对循环水进行二次加热,以满足尖峰期最冷月供热负荷的要求。在电力供应紧张的地区,也有可能出现供热需求不变,而用电量发生变化的情况。这样,就不能再以热定电,而应在供热量不变的情况下,对电负荷进行调节。当需要较大的电负荷时,可增大汽轮机进汽量,发电

功率变大。此时排汽潜热增大,热网供水温度升高,如果仅一部分循环水就可满足供热需求时,可将剩下的循环水引至冷却塔冷却;当需要较低的电负荷时,可减少汽轮机进汽量,发电功率变少。此时热网水温降低,可用尖峰加热器对其进行二次加热,以满足供热需求。

5 结论

汽轮机低真空循环水供暖技术可以实现能源的梯级利用,明显提高电厂能源的综合利用效率,具有显著的节能和环保效益。经过多年的工程实践和实际运行表明,低真空循环水供暖技术已比较成熟。该技术为提高我国广大的中小型热电企业的综合利用效率和和水平开辟了新途径,具有良好的推广应用价值和发展前景。

【参考文献】

[1] 杨谢军. 汽轮发电机低真空循环水供暖系统的改造冶金动力2009,第4期69~71

[2]杨卫华.浅谈小型凝汽式汽轮机低真空供热节能,2001,第2期31~32

汽轮发电机结构及原理

第四节汽轮发电机 汽轮发电机是同步发电机的一种,它是由汽轮机作原动机拖动转子旋转,利用电磁感应原理把机械能转换成电能的设备。 汽轮发电机包括发电机本体、励磁系统及其冷却系统等。 一、汽轮发电机的工作原理 按照电磁感应定律,导线切割磁力线感应出电动势,这是发电机的基本工作原理。汽轮发电机转子与汽轮机转子高速旋转时,发电机转子随着转动。发电机转子绕组内通入直流电流后,便建立一个磁场,这个磁场称主磁极,它随着汽轮发电机转子旋转。其磁通自转子的一个极出来,经过空气隙、定子铁芯、空气隙、进入转子另一个极构成回路。 根据电磁感应定律,发电机磁极旋转一周,主磁极的磁力线北装在定子铁芯内的U、V、W三相绕组(导线)依次切割,在定子绕组内感应的电动势正好变化一次,亦即感应电动势每秒钟变化的次数,恰好等于磁极每秒钟的旋转次数。 汽轮发电机转子具有一对磁极(即1个N极、一个S极),转子旋转一周,定子绕组中的感应电动势正好交变一次(假如发电机转子为P对磁极时,转子旋转一周,定子绕组中感应电动势交变P次)。当汽轮机以每分钟3000转旋转时,发电机转子每秒钟要旋转50周,磁极也要变化50次,那么在发电机定子绕组内感应电动势也变化50次,这样发电机转子以每秒钟50周的恒速旋转,在定子三相绕组内感应出相位不同的三相交变电动势,即频率为50Hz的三相交变电动势。这时若将发电机定子三相绕组引出线的末端(即中性点)连在一起。绕组的首端引出线与用电设备连接,就会有电流流过,这个过程即为汽轮机转子输入的机械能转换为电能的过程。 二、汽轮发电机的结构 火力发电厂的汽轮机发电机皆采用二极、转速为3000r/min的卧式结构。发电机与汽轮机、励磁机等配套组成同轴运转的汽轮发电机组。 发电机最基本的组成部件是定子和转子。 为监视发电机定子绕组、铁芯、轴承及冷却器等各重要部位的运行温度,在这些部位埋置了多只测温元件,通过导线连接到温度巡检装置,在运行中进行监控,并通过微机进行显示和打印。

背压式、抽背式及凝汽式汽轮机的区别

背压式、抽背式及凝汽式汽轮机的区别 1、背压式汽轮机 背压式汽轮机是将汽轮机的排汽供热用户运用的汽轮机。其排汽压力(背压)高于大气压力。背压式汽轮机排汽压力高,通流局部的级数少,构造简略,同时不用要巨大的凝汽器和冷却水编制,机组轻小,造价低。当它的排汽用于供热时,热能可得到充足使用,但这时汽轮机的功率与供热所需蒸汽量直接联系,因此不或许同时餍足热负荷和电(或动力)负荷变更的必要,这是背压式汽轮机用于供热时的部分性。这种机组的主要特点是打算工况下的经济性好,节能结果昭着。其它,它的构造简略,投资省,运行可靠。主要缺点是发电量取决于供热量,不克独立调理来同时餍足热用户和电用户的必要。因此,背压式汽轮机多用于热负荷整年安稳的企业自备电厂或有安稳的根本热负荷的地区性热电厂。 2、抽汽背压式汽轮机 抽汽背压式汽轮机是从汽轮机的中间级抽取局部蒸汽,供必要较高压力品级的热用户,同时保留必定背压的排汽,供必要较低压力品级的热用户运用的汽轮机。这种机组的经济性与背压式机组相似,打算工况下的经济性较好,但对负荷改变的合适性差。 3、抽汽凝汽式汽轮机 抽汽凝汽式汽轮机是从汽轮机中间抽出局部蒸汽,供热用户运用的凝汽式汽轮机。抽汽凝汽式汽轮机从汽轮机中间级抽出具有必定压力的蒸汽提供热用户,平常又分为单抽汽和双抽汽两种。此中双抽汽汽轮机可提供热用户两种分别压力的蒸汽。 这种机组的主要特点是当热用户所需的蒸汽负荷猛然下降时,多余蒸汽可以通过汽轮机抽汽点以后的级持续扩张发电。这种机组

的长处是灵敏性较大,也许在较大范畴内同时餍足热负荷和电负荷的必要。因此选用于负荷改变幅度较大,改变屡次的地区性热电厂中。它的缺点是热经济性比背压式机组的差,并且辅机较多,价钱较贵,编制也较庞杂。 背压式机组没有凝固器,凝气式汽轮机平常在复速机后设有抽气管道,用于产业用户运用。另一局部蒸汽持续做工,最后劳动完的乏汽排入凝固器、被冷却凝固成水然后使用凝固水泵把凝固水打到除氧器,除氧后提供汽锅用水。两者区别很大啊!凝气式的由于尚有真空,因此监盘时还要注意真空的境况。背压式的排气高于大气压。趁便简略说一下凝固器设置的作用:成立并维持汽轮机排气口的高度真空,使蒸汽在汽轮机内扩张到很低的压力,增大蒸汽的可用热焓降,从而使汽轮机有更多的热能转换为机械功,抬高热效果,收回汽轮机排气凝固水 4、小结 背压式汽轮机的排汽全部用于供热,固然发电少了,但是机组总的能量使用效果可以到达70~85,因此背压式是能量使用最好的机组。凝汽式汽轮机编制现在能量使用率最多只有45%。背压式汽轮机平常只适当50MW以下机组,主要因为是受排汽热力管网制约,由于热力管网的运送间隔蒸汽平常在4km,开水平常10km,因此无法采取大机组。看待季候性采暖机组平常采取抽汽凝汽式。现在的国度物业政策是300MW以下不上全凝汽式汽轮机(除了煤矸石电厂或循环流化床),上纯凝汽式汽机平常都是600MW以上机组。

汽轮机凝汽器系统真空查漏

汽轮机凝汽器系统真空查漏 机组真空是火力发电厂重要的监视参数之一,真空变化对汽轮机安全、经济运行都有影响,运行经验表明,凝汽器真空降低直接影响循环效率,每降低1KPa真空会使汽轮机热耗增加0.94%,机组煤耗增加 3.2g/kwh。真空下降使循环效率下同时会造成汽轮机排汽温度的升高,引起汽轮机转子上移,轴承中心偏离,严重时会引起汽轮机的振动。此外,凝汽器真空降低时为保证机组出力不变,必须增加蒸汽流量,导致轴向推力增大,变化严重时会影响汽轮机安全运行。另一方面,空气漏入凝结水中会使凝结水溶氧超标,腐蚀汽轮机、锅炉设备,影响机组的安全运行。因此在汽轮机运行中必须严格控制机组真空下降。机组运行中真空主要与循环水量水温及系统严密性有关。如果出现真空下降,排除比较常见的故障外,真空系统的泄漏是造成下降的主要原因。其现象主要表现为真空数值下降、排汽温度升高、主汽流量增加及凝汽器端差增大等,直接影响到机组运行的安全经济性。 我厂凝汽器是由东方汽轮机厂生产制造N17660型表面式换热器,水室采用对分制,便于运行中对凝汽器进行半面清洗,凝汽器、凝结水泵、射水抽汽器、循环水泵及这些部件之间所连接的管道称为凝汽设备,凝汽器真空的高低对汽轮机运行的经济性有着直接的关系,所以要求真空系统(包括凝汽器本体)要有高度的严密性。一般是通过定期进行真空严密性试验来检验真空系统的严密程度。通过试

验,可掌握真空系统严密性的变化情况,鉴定凝汽器工作的好坏,以便采取对策查找及消除漏点,防止空气漏入影响传热效果及真空,不同机组对真空严密性有不同的要求,真空严密性用每分钟真空下降值表示。 凝汽器真空系统的密封点很多,包括与凝汽器连接的负压管道的焊口、膨胀节、疏水扩容器、减温水管道、多级水封、水位计等涉及汽机、热控等多个专业,检修工艺要求严格,检修工艺要求严格,涉及范围广,要求责任心强。真空系统严密性应在机组检修期间得以保证,如果由于密封不严、检修工艺不合理及查漏不全面等在机组运行一段时间后发生泄漏,仍应该采取各种措施,积极进行真空严密泄漏查找工作。为保证汽轮机真空系统查漏工作的顺利进行,确保机组的安全经济运行,特制定如下措施: 一组织措施 1、本工作的开展需要运行、点检、检修及热力试验组协调完成。 2、准备好查漏工作所需要的氦质谱检漏仪、氦气瓶、便携式气袋、喷射用铜管及连接用胶管、对讲机等工器具,保证合格足量的氦气。 3 、査漏工作要确定一个工作负责人,负责査漏工作中各部门的协调联系工作以及査漏工作的分工安排。 4、查漏工作由设备部组织进行,发电部专工、热试组人员、汽机车间检修班组人员配合,运行当值人员保证机组稳定运行并配合进行各阶段严密性试验。

余热汽轮发电机组可行性报告

一、企业简介 淄博建龙化工有限公司位于205国道东侧,交通运输便利,通讯设施发达,地理位置优越。她与母公司淄博龙耀化工有限公司紧密相连,项目建成后可实现子母公司供电网络一体化,具有得天独厚的区位优势,公司占地86亩,现有干部职工210人,其中高、中级职称人员68人,是一家新兴的股份制化工企业。 公司主产品为93%、98%、105%工业硫酸。一套硫铁矿及新上硫磺制酸项目上马后,年生产能力达15万吨左右。公司凭借一流人才、一流的设备、一流的信誉、严格的管理、先进的工艺、以过硬的产品质量赢得了市场。 二、建设理由 硫酸是化工行业的基础原料,市场用量越来越大,目前市场属供不应求状态,而硫酸生产是大量的放热反应,其中焚硫工段每吨酸的反应热达301万KJ。转化工段每吨酸的反应热为100万KJ,如此大量的热量对制酸生产来说必须要进行降温,如果不予回收,势必产生巨大浪费,故特具以下基本理由: 1、在硫磺制酸的基础上无需任何附加原料,热能充足。充分利用反应热回收余热; 2、符合国家电力部扶持余热发电政策; 3、符合国家新政策—竟价上网,余热发电成本在0.15元左右。(详细分析如下) 4、基本实现无污染。我们充分考虑到发电用除盐水采用树脂交换需要大量盐酸和烧碱再生对环境造成污染的实际情况,决定新上一套

具有国际先进技术水平的二级反渗透除盐技术,末级附加一树脂型混床。由于采用了反渗透技术作为前置预处理,使混床再生频率大大降低,月平均再生一次左右。年用盐酸在2.2吨以下,用碱量在3.7砘以下,即使酸、碱用量如此小,我们仍设置了一套中和池对所产生的酸、碱废液进行中和处理后回收利用,同时无火力发电厂的烟囱排烟,原料煤中的硫污染及水膜除尘等污染源。 5、提高企业参与市场竟争的能力。由于余热发电的成本较低,相应的使硫酸单位成本降低,有利于企业的减本增效。 6、扩大就业机会。减轻国家就业负担。 7、汽轮发电机组采用国际先进的DCS控制系流,全套设备绝大多部分均为进口名牌产品自动化程度高、安全系数高、故障率极低、动作灵敏、反应及时,确保上网后对电力系统没有影响。 8、投资小、见效快、回收投资周期短。该余热发电项目总投资在870万元左右。投产后日发量为6.0万度(其中抽部分蒸汽供化工生产,否则发电更多),发电成本只有0.15元/度,电力公司0.5元/度,一度电就可节约0.35元,一年利润693万元,约2.24年可全部回收投资(按年运行11个月计算,发电负荷按2500KW计算。) 9、可充分利用硫铁矿制酸老系统的剩余价值。我们在新建硫磺制酸的基础上,积极对老系统进行改造,将沸腾炉出口的高温炉气进行余热回收(原采用散热。片直接散热,浪费很大),产生蒸汽用于新系统化工生产,节约出的蒸汽用于发电,这样发电效益将更为可观,同时老系统也充分发挥潜在余力。 10、技术力量雄厚,工艺设备属国家一流,为长期优质、安全、

凝汽式汽轮机汽耗率高的

凝汽式汽轮机汽耗率高的 原因分析及处理措施 动力厂汽机车间发电站 周光军 【摘要】动力厂汽机车间 1#、2#、4#汽轮发电机自1999年1月份以来出现排汽温度高,汽轮机汽耗率大幅度增加、轴承润滑油乳化严重等现象,通过调整了汽轮机通流间隙,改造轴封结构并完善循环水水质处理工作,从而较好地解决上述问题。 【关键词】汽轮发电机、汽耗率、润滑油乳化 1、概述 动力厂汽机车间共有4台汽轮发电机组,其中3#为背压式,1、2、4#为凝汽式。1机1979年、2机1992年、4机1993年投产以来,运行状况一直比较稳定,各项技术指标良好。但自1999年1月初开始,该机组出现了排汽温度高、汽耗率、轴承润滑油乳化严重等问题。凝汽机组纯凝汽工况下,发电负荷6000时,耗汽量28时,排汽温度达63,汽耗率增加12,润滑油月消耗增加30,滤油工作量很大。 2、问题原因分析 2.1机组真空、循环水系统参数变化较大 2.1.1首先对1997年至2003年来每年5至8月份,真空系统的有

关数据进行比较,见表1 年份循环水入 口温度 (℃) 循环水出 口温度 (℃) 真空值 (MPa) 端差值 (℃) 汽耗率 不抽汽抽汽 1997 28.4 34.6 0.06 6.7 5.28 7.43 1998 27.5 35.3 0.061 8.2 5.32 7.55 1999 26.8 37.9 0.062 10.6 5.41 7.78 2000 27.2 39.8 0.063 14.3 5.56 8.01 2001 27.5 41.7 0.06 20.1 5.88 8.36 2002 27 39 0.058 20.3 5.89 8.33 2003 27 40 0.06 21 5.78 8.35 (表1) 从表1可以发现,机组平均温升为13℃,由此所造成的汽耗率增加是显而易见的。 2.1.2通过统计数据发现,机组凝汽器的疏通周期自1995年以来基本为半年左右,至2000年基本根据机组负荷变化的情况进行清扫,没有固定的疏通周期,时间较长,主要原因有: 发电循环水的补充水源由水电厂3、4干线工业水供给,水质较差;由于机组采用的是如图1所示的供汽方式,对于轴封供汽的温度和压力难以准确把握,运行中往往由于供汽压力较大,温度较高,造

核电厂汽轮发电机组调试技术导则 征求意见稿编制说明

核电厂汽轮发电机组调试技术导则 编制说明 (征求意见稿) 2012年4月8日

一.任务来源及计划要求 任务来源: 本标准是根据国家能源局印发的《国家能源局关于核电标准制修定计划的通知》(国能科技【2011】48号)的任务安排对《核电厂汽轮发电机组调试导则》进行编制的。能源局常规岛标准体系表总编号117,计划号“能源2011H077”。 计划要求: 本标准各阶段草案的完成时间安排为:2011年 12 月,完成编制组讨论稿, 2012 年 03 月完成征求意见稿, 2012 年 05 月完成送审稿, 2012 年 08 月完成报批稿。 二.编制过程 主要起草人及工作分工: 由中广核工程公司调试中心组成标准编制小组,小组成员有秦世刚、李响、霍雷、牛月套、刘勇等,其中秦世刚为编制组组长。 编制原则: 本标准的编制按照GB/T1.1-2009 “标准化工作导则第1部分:标准的结构和编写”进行编制;本标准作为压水堆核电厂常规岛及BOP标准体系中调试类的标准,主要规定常规岛汽轮发电机组调试过程中应进行的试验项目以及各试验的主要内容,本标准适用于指导我国新建压水堆核电厂常规岛汽轮发电机组调试。 编制组内部讨论情况: 本标准于2011 年11月25日进行了标准组内部讨论,讨论了5个问题,最后达成一致意见,并形成《编制组讨论稿》。 2012年2月在溧阳召开了行业标准初稿评审会,通过了专家的评审。会后编制组依据专家提出的评审意见对该初稿进行了修改,并于2012年3月《编制组讨论稿》上报公司总师办标准信息处审查,根据审查意见形成《征求意见稿》。 三.调研和分析工作的情况 标准编制过程中,编写组调研了岭澳一期核电站、岭澳二期核电站、宁德核电站、红沿河核电站、阳江核电站,另外还参考了秦山二期、三期核电站的相关调试过程。编制组认真研究了上述核电厂常规岛汽轮发电机组的设计、调试文件等,总结得出了调试过程需要进行的试验项目。 四.主要技术内容的说明 本标准主要规定本标准规定了新建核电厂汽轮发电机组及常规岛相关系统单体调试、分系统调试及整套启动调试过程中的主要试验内容和试验要求。 本标准适用于新建核电厂汽轮发电机组相关的常规岛系统调试试验。。五.验证试验的情况和结果 编制组成功组织实施了岭澳二期核电站2台机组常规岛汽轮发电机组调试工作,获得了大量的第一手资料。 六.采用国和国外先进标准情况

凝汽器真空查漏

凝汽器真空查漏 1 凝汽器真空的成因 凝汽器中形成真空的成因是汽轮机的排汽被冷却成凝结水,其比容急剧缩小。如蒸汽在绝对压力4KPa时,蒸汽的体积比水容积大3万多倍。 当排汽凝结成水后,体积就大为缩小,使凝汽器汽侧形成高度真空,它是汽水系统完成循环的必要条件。 正是因为凝汽器内部为极高的真空,所以所有与之相连接的设备都有可能因为不严而往凝汽器内部漏入空气,加上汽轮机排汽中的不凝结气体,如果不及时抽出,将会逐渐升高凝汽器内的压力值,真空下降,导致蒸汽的排汽焓值上升,有效焓降降低,汽轮机蒸汽循环的效率下降。 有资料显示,真空每下降1KPa,机组的热耗将增加70kj/kw,热效率降低%。射水抽气器或水环真空泵的作用就是抽出凝汽器的不凝结气体,以维持凝器的真空。 2 真空严密性差的危害 汽轮机真空严密性差的危害主要表现在以下三个方面: 一是真空严密性差时,漏入真空系统的空气较多,射水抽气器或水环真空泵不能够将漏入的空气及时抽走,机组的排汽压力和排汽温度就会上升,这无疑要降低汽轮机组的效率,增加供电煤耗,并可能威胁汽轮机的安全运行,另一方面,由于空气的存在,蒸汽与冷却水的换热系数降低,导致排汽与冷却水出水温差增大。 二是当漏入真空系统的空气虽然能够被及时地抽出,但需增加射水抽气器的负荷,浪费厂用电及循环水。

三是由于漏入了空气,导致凝汽器过冷度过大,系统热经济性降低,凝结水溶氧增加,可造成低压设备氧腐蚀。 3 真空查漏的方法 1.通常用灌水法查找真空系统不严密的方法的优缺点 真空系统包含大量的设备及系统,连接的动静密封点多,在轻微漏空气的情况下很难发现漏点,因为空气往里吸,不够直观,传统的运行中用火焰检查法较繁琐且效果不好,多数情况下使用的方法是在机组停机后对真空系统进行灌水找漏。这种方法比较直观,漏点极易被发现,缺点是由于设备的原因,灌水高度最高只能到汽缸的最低轴封洼窝处,高于轴封洼窝的地方因为水上不去而不易发现,特别是与汽轮机汽缸相连接的管道系统。 2.使用氦质谱查找真空系统不严密的方法的优缺点 使用氦质谱方法通常是在可疑点喷氦气,然后在真空泵端检测,看是否能检测到氦气,如果检测到氦气则说明此可疑点泄漏。此方法能确定泄漏大体位置,并有一个相对值数据。但设备使用较费力,需要三到四人操作;氦质谱法受环境影响较大,空气流动性适度都对确定漏点造成麻烦;另外,空冷岛上使用氦质谱检漏难度较大。在管道较多的位置基本难以确定漏点。 3.使用超声波查找真空系统不严密的方法的优缺点 超声波检漏法是一种方便快捷的方法,首先操作简单,一人即可操作;而且能准确确定漏点的位置,使堵漏较方便;应用在空冷岛上更是方便、快捷、准确。缺点是使用时需要一定的操作经验。 火烛法,涂抹肥皂泡,卤素检测等方法较为原始,在此不多描述。

中、小型汽轮发电机组安装工法

中、小型汽轮发电机组 安装工法

目录 1、前言 (1) 2、特点 (1) 3、适用范围 (2) 4、工艺原理 (2) 5、工艺流程及操作要点 (4) 6、材料 (18) 7、机具设备 (19) 8、安全措施 (20) 9、质量控制 (21) 10、环保措施 (22) 11、效益分析 (23) 12、应用实例 (23) 附:工程竣工报告 交工验收证明书 工程应用证明 经济效益证明

1、前言 汽轮发电机组是将热能转换成电能的机器,目前常用的汽轮发电机组有背压式、抽凝式和抽汽式等多种类型。背压式汽轮发电机组主要用于发电,抽凝式汽轮发电机组主要用于热电联产。中小型汽轮发电机组有3000KW、6000KW、9000KW、12000 KW等。 我国配套生产中小型汽轮发电机组的厂家主要有杭州汽轮机厂、南京汽轮机厂等。 作为安装施工企业,总结先进的施工经验,在汽轮发电机组安装行业里占领一席之地。这也是本工法编制的目的之一。 2、特点 2.1本工法比较先进、操作简便。汽轮发电机组的安装是一项复杂的工作,部件多、程序复杂、安装精度要求高,该工法对施工程序有最佳的安排,避免了重复工作造成的浪费。 2.2节约工期。以厦门国能新阳热电厂设备安装工程6000KW抽凝式汽轮发电机组安装为例,定额工期为90天,在该工法的指导下实际工期仅为60天,节约工期30余天。 2.3成本低、效益好。该工法提供了最佳的施工措施,节约了工期及人工费;同时节约了施工机械等费用。 2.4适用性广。适用于不同厂家生产的中小型汽轮发电机组的安装。 2.5施工质量高。该工法详细阐述汽轮发电机组的施工方法、操作要点,

_汽轮机凝汽器真空度下降原因分析

汽轮机凝汽器真空度下降原因分析在现代大型电站凝汽式汽轮机组的热力循环中,凝汽设备是凝汽式汽轮机组的一个重要组成部分,它的工作性能直接影响整个汽轮机组的安全性、可靠性、稳定性和经济性。汽轮机的真空下降会使汽轮机的可用热焓降减少器综合性.凝汽器的真空水平对汽轮发电机组的经济性有着直接影响,如机组真空下降1%,机组热耗将要上升0.6%~1%。因此保持凝汽器良好的运行工况,保证凝汽器的最有利真空;是每个发电厂节能的重要内容。而凝汽器内所形成的真空受凝汽器传热情况、真空系统严密性状况、冷却水的温度、流量、机组的排汽量及抽气器的工作状况等因素制约。因此有必要分析机组凝汽器真空度下降的原因,找出预防真空度下降的措施,提高凝汽器性能,维持机组经济真空运行,直接提高整个汽轮机组的热经济性。 引起汽轮机凝汽器真空度下降的原因主要有循环水量中断或不足、循环水温升高、后轴封供汽中断、抽气器或真空泵故障、凝汽器满水(或水位升高)、凝汽器结垢或腐蚀,传热恶化、凝汽器水侧泄漏、凝汽器真空系统不严密,汽侧泄漏导致空气涌入等。就这些问题我将分别做出分析、阐述: 一、循环水量中断或不足 ⑴循环水中断 循环水中断引起真空急剧下降的主要特征是:真空表指示回零;凝汽器前循环水泵出口侧压力急剧下降;冷却塔无水喷出。循环水中断的原因可能是:循环水泵或其驱动电机故障;循环水吸水口滤网堵塞,吸入水位过低;循环水泵轴封或吸水管不严密或破裂,使空气漏人泵内等。循环水中断时,应迅速卸掉汽轮机负荷,并注意真空降到允许低限值时进行故障停机。 ⑵循环水量不足 循环水量不足的主要特征是:真空逐步下降;循环水出口和人口温差增大。由于引起循环水量不足的原因不同,因此有其不同的特点,所以可根据这些特征去分析判断故障所在,并加以解决: ①若此时凝汽器中流体阻力增大,表现为循环水进出口压差增大,循环水泵出口和凝汽器进口的循环水压均增高,冷却塔布水量减少,可断定是凝汽器内管板堵塞,此时可采用反冲洗、凝汽器半面清洗或停机清理的办法进行处理。

大型汽轮发电机振动故障诊断与分析

大型汽轮发电机振动故障诊断与分析 发表时间:2016-04-28T09:09:26.410Z 来源:《电力设备》2015年第12期供稿作者:陈嘉峰[导读] (哈尔滨电机厂有限责任公司汽轮发电机是电力系统的重要设备之一,其安全可靠运行对整个电力系统的稳定有着重要的意义。 (哈尔滨电机厂有限责任公司黑龙江哈尔滨 150040)摘要:汽轮发电机是电力系统的重要设备之一,其安全可靠运行对整个电力系统的稳定有着重要的意义。发电机振动状态是评价机组能否持续可靠运行的重要指标。本文介绍了大型汽轮发电机振动故障的类型及产生原因,阐述了振动故障诊断和分析的方法。关键词:大型汽轮发电机;振动故障;故障诊断方法 振动故障是大型汽轮发电机组最常见的故障之一,由于大型汽轮发电机组一般自动化程度较高,而且机组主要机构在运行过程中由于旋转作用使得产生振动,这在日常工作中往往是不可避免的,再加上大型汽轮发电机本身结构的复杂性,就更增加了其振动故障诊断的复杂性。发电机振动超过允许值会引起动、静部分摩擦,加速部件的磨损、产生偏磨、电刷冒火;使机组轴系不能正常工作;严重时将会导致机组密封系统遭到破坏;定子铁心松弛片间绝缘损坏,导致短路故障等。因此研究大型汽轮发电机振动故障的产生原因,并采取有效的振动故障诊断措施使故障被及时发现、及时消除具有十分重要的意义。 1 大型汽轮发电机振动故障分类及原因分析 1.1 大型汽轮发电机组振动的分类 大型汽轮发电机组的振动根据振动的性质不同可分为强迫振动和自激振动两大类,其中强迫振动分为普通强迫振动、电磁激振、高次谐波共振、分谐波共振、撞击震动、拍振、随机振动;自激振动包括轴瓦自激振动、参数振动、汽流激振、摩擦涡动等,在我国当前投入运行的大型汽轮发电机中,气流激振和摩擦涡动这两种振动形式一般不作考虑。而根据产生的原因不同大型汽轮发电机振动又可分为机械振动和电磁振动两大类。因此,在分析大型汽轮发电机振动故障时要先弄清楚其振动的原因是机械方面的还是电磁方面的,从而制定有针对性的消振措施。 1.2 大型汽轮发电机组振动故障的类型及原因分析汽轮发电机组常见的十二种机械振动故障有:动静碰摩、汽流激振、转子质量不平衡、汽轮机转子热弯曲、发电机转子热弯曲、转子部件脱落、转子不对中、油膜涡动、油膜振荡、参数振动、转子横向裂纹、支承松动。 汽轮发电机组的电磁故障主要发生在发电机上,也能通过轴系传到机组的其他部常见的部位,电磁故障有:转子绕组匝间短路、定转子之间气隙不均、定子绕组端部振转子中心位置偏移、不对称负荷和电磁谐振等。 在上述诸多振动故障中,动静碰磨与气流激振是最常见的两种振动故障,因此本文将这两种振动故障作为典型分析其产生的原因。 1.2.1 动静碰磨 动静碰磨指的是在大型汽轮发电机中转子与定子之间发生碰撞、摩擦从而产生振动的现象,动静碰磨是机械振动故障里最常见也是危害最大的,产生动静碰磨的原因有很多,究其内在来说,主要是由于转子与定子之间的间隙过小,同时由于安装、检修等过程中导致了动静间隙沿圆周方向不均匀,或者由于气缸、轴承座受热变形跑偏造成的动静摩擦、碰撞等导致的振动。图1为动静碰磨原理图,当转子旋转中心O′偏离了原本的中心O,在转子以角速度w旋转时与定子碰撞时就会产生径向冲击力N以及反向摩擦力f。 1.2.2 气流激振 在大容量汽轮发电机组中,尤其是超临界或超超临界机组,当运行负荷增大,导致作用在转子上的气流激振力也随之增大,当增大到一定程度时,就会在汽轮机转子上会诱发产生振动现象,这种振动一般具有突发性的特点。 2 大型汽轮发电机组振动故障诊断与分析方法 2.1 传统方法 传统振动故障诊断方法就是利用工作人员、专家的听觉、触觉或使用频谱仪、声压计等设备来确定振动故障的原因及发生故障的部位,更多的是依靠专家的主观经验和业务能力,综合频谱分析、概率统计等学科的知识,是一种常用的故障诊断方法,对线性特征明显的振动故障实用性很强,而对相对复杂、非线性的振动故障效果较差。 2.2 专家系统故障诊断分析法 在传统振动故障检测诊断技术中,由于每个专家的水平差异很大,并且本领域国内顶尖的专家不可能及时到达故障现场,因此传统的依靠专家的诊断方法有一定的局限性。随着人工智能技术的发展,将本行业专家的经验、理论等录入数据库,结合计算机、数据库、仿生学等知识,使系统可以模拟专家的思维对大型汽轮发电机组的振动故障进行诊断,有利于提高振动故障检测诊断的准确性和效率。 2.3 模糊故障诊断分析法

小型汽轮机操作要点

1、远方自动复位/挂闸 当所有ETS 要求遮断信号恢复正常运行参数后,通过点击ETS 复位按钮使ETS 逻辑复位。点击汽轮机复位按钮,给危机遮断装置复位。此时点击挂闸按钮,使挂闸电磁阀带电5s,当DEH 系统接收到汽机已挂闸信号即安全油压建立信号后,挂闸电磁阀失电,远方挂闸成功。如若不成功,查明原因重复以上操作。如下图操作:

需要注意的是如果危机遮断装置并没有动作,汽轮机复位电磁阀带电后,不会有相应危机遮断行程开关的变化。挂闸后即可点击启动按钮如下: 当启动条件全部满足后操作员即可点击机组启动按钮,机组启动后,即可进入转速控制。 在挂闸前,危急遮断装置若未复位,请点击汽轮机复位按钮,如下图: 若需要复位按钮变为绿色,提示操作员操作。复位后,挂闸,如果复位成功按钮恢复为灰色状态,反之一直为绿色,挂闸也是同样道理,按钮指示绿色提示操作人员,进行相应操作。挂闸成功后启动按钮变为绿色如图: 此时点击启动会弹出如下图所示,进行机组启动,启动后转速控制按钮变为绿色,操作人员可以进行转速控制。

2、转速控制 在汽轮机并网前,DEH 设置转速为闭环无差调节回路。其设定点为给定转速。给定转速与实际转速之差,经PID 调节器运算后输出指令,通过伺服系统控制油动机开度,使实际转速跟随给定转速。 点击转速控制按钮,弹出画面如下图,ATC 模式和自动升速模式两种方式选择:

2.1 控制方式 机组转速有两种控制方式:操作员自动控制(主要控制方式)和全自动控制(简易ATC,不带有应力、强度和寿命等计算)方式。 (1)操作员自动控制方式: 操作员可以通过直接设定转速控制画面上的“目标转速”和“升速率”进行升降转速控制,也可以通过“增”和“减”按钮(每次增减1 r)来调整“目标转速”来进行转速控制。默认的非临界区升速率为0.001r/min,临界转速区的升速率为500r/min,接近3000 r/min 的升速率为50 r/min。在升速过程中,可以通过“保持”和“继续”按钮来保持当前转速(临界转速区除外)和继续升速控制。建议操作上先设定升速率,再设定目标值。另外目标值如果设定在临界转速区,DEH 系统会认为设定无效,同时将目标值设置为临界区外最靠近所设目标的值。 (2)全自动控制方式:此模式下严格按照厂家提供的资料,依照冲转升速、带负荷时间表进行全自动升速。 2.2 自动过临界 为避免汽轮机在临界转速区停留,系统设置了临界转速区(1883~2283),当汽机转速进入此临界区时,DEH 自动以较高速率(500r/min/min)冲过。此时操作员点击保持按钮,是失效的。转速在临界区时画面过临界指示绿色,升速率变为500RPM/MIN 升速率,此时操作员无法改变升速率,直至快速通过临界后升速率变为之前设置的升速率。 2.3 自动同期 汽机到达同步转速(2950~3050r/min)后,DEH 接受到电气同期请求信号后,操作员方可选择“自动同期控制”,同时发给电气同期允许信号。此时DEH 系统可根据电气同期装置来的同期增减信号自动调整汽机转速,在此方式下,建议操作员不要进行转速控制(除非手动同期)。另外在做假并网试验时,需把进入DEH 系统的发电机油开关信号解除。 3、负荷控制 3.1 并网带初负荷

1×30MW抽凝式汽轮发电机组生物质热电联产P投资建设项目可行性研究报告-广州中撰咨询

1×30MW抽凝式汽轮发电机组生物质热电联产P投资建设项目 可行性研究报告 (典型案例·仅供参考) 广州中撰企业投资咨询有限公司 中国·广州

目录 第一章1×30MW抽凝式汽轮发电机组生物质热电联产P项目概论 1 一、1×30MW抽凝式汽轮发电机组生物质热电联产P项目名称及承办单位 (1) 二、1×30MW抽凝式汽轮发电机组生物质热电联产P项目可行性研究报告委托编制单位 (1) 三、可行性研究的目的 (1) 四、可行性研究报告编制依据原则和范围 (2) (一)项目可行性报告编制依据 (2) (二)可行性研究报告编制原则 (2) (三)可行性研究报告编制范围 (4) 五、研究的主要过程 (5) 六、1×30MW抽凝式汽轮发电机组生物质热电联产P产品方案及建设规模 (6) 七、1×30MW抽凝式汽轮发电机组生物质热电联产P项目总投资估算 (6) 八、工艺技术装备方案的选择 (6) 九、项目实施进度建议 (6) 十、研究结论 (7) 十一、1×30MW抽凝式汽轮发电机组生物质热电联产P项目主要经济技术指标 (9) 项目主要经济技术指标一览表 (9) 第二章1×30MW抽凝式汽轮发电机组生物质热电联产P产品说明 (15) 第三章1×30MW抽凝式汽轮发电机组生物质热电联产P项目市场分析预测 (16)

第四章项目选址科学性分析 (16) 一、厂址的选择原则 (16) 二、厂址选择方案 (17) 四、选址用地权属性质类别及占地面积 (17) 五、项目用地利用指标 (17) 项目占地及建筑工程投资一览表 (18) 六、项目选址综合评价 (19) 第五章项目建设内容与建设规模 (20) 一、建设内容 (20) (一)土建工程 (20) (二)设备购置 (21) 二、建设规模 (21) 第六章原辅材料供应及基本生产条件 (21) 一、原辅材料供应条件 (21) (一)主要原辅材料供应 (21) (二)原辅材料来源 (22) 原辅材料及能源供应情况一览表 (22) 二、基本生产条件 (23) 第七章工程技术方案 (24) 一、工艺技术方案的选用原则 (24) 二、工艺技术方案 (25) (一)工艺技术来源及特点 (25) (二)技术保障措施 (26) (三)产品生产工艺流程 (26) 1×30MW抽凝式汽轮发电机组生物质热电联产P生产工艺流程示意简图 (26) 三、设备的选择 (27)

凝汽器真空度对汽轮机效率的影响分析

凝汽系统及凝汽器真空影响因素 摘要 凝汽设备是汽轮机组的重要辅机之一,是朗肯循环中的重要一节。对整个电厂的建设和安全、经济运行都有着决定性的影响。 从循环效率看,凝汽器真空的好坏,即汽轮机组最终参数的高低,对循环效率所产生的影响是和机组初参数的影响同等重要的。虽然提高凝汽器真空可以使汽轮机的理想焓降增大,电功率增加,但不是真空越高越好。影响凝汽器真空的原因是多方面的,主要有:汽轮机排气量、循环水流量、循环水入口温度等。 关键词:朗肯循环;汽轮机;凝汽器;真空

2凝汽器性能计算及真空度影响因素分析 提高朗肯循环热效率的途径 ①提高平均吸热温度的直接方法是提高初压和初温。在相同的初温和背压下, 提高初压可使热效率增大,但提高初压也产生了一些新的问题,如设备的强度问题。在相同的初压及背压下,提高新汽的温度也可使热效率增大,但温度的提高受到金属材料耐热性的限制。。 ②降低排汽温度在相同的初压、初温下降低排汽温度也能使效率提高,这是 由于循环温差加大的缘故。但其温度下降受到环境温度的限制。

2.2 凝汽系统的工作原理 图6.1是汽轮机凝汽系统示意图,系统由凝汽器5、抽气设备1、循环水泵4、凝结水泵6以及相连的管道、阀门等组成。 图6.1 汽轮机凝汽系统示意图 1-抽气设备;2-汽轮机;3-发电机;4-循环水泵;5-凝汽器;6-凝结水泵 凝汽设备的作用主要有以下四点[9]: (1)凝结作用凝汽器通过冷却水与乏汽的热交换,带走乏汽的汽化潜热而使其凝结成水,凝结水经回热加热而作为锅炉给水重复使用。 (2)建立并维持一定的真空这是降低机组终参数、提高电厂循环效率所必需的。 (3)除氧作用现代凝汽器,特别是不单设除氧器的燃气蒸汽联合循环的装置中的凝汽器和沸水堆核电机组的凝汽器,都要求有除氧的作用,以适应机组的防腐要求。 (4)蓄水作用凝汽器的蓄水作用既是汇集和贮存凝结水、热力系统中的各种疏水、排汽和化学补给水的需要,也是缓冲运行中机组流量急剧变化、增加系统调节稳定性的需求,同时还是确保凝结水泵必要的吸水压头的需要。 为了达到上述作用,仅有凝汽器是不够的。要保证凝汽器的正常工作,必须随时维持三个平衡:○1热量平衡,汽轮机排汽放出的热量等于循环水带走的热量,故在凝汽系统中设置循环水泵。○2质量平衡,汽轮机排汽流量等于抽出的凝结水流量,所以在凝汽系统中必须设置凝结水泵。○3空气平衡,在凝汽器和汽轮机低压部分漏入的空气量等于抽出的空气量,因此必须设置抽气设备[14]。 凝汽器内的真空是通过蒸汽凝结过程形成的。当汽轮机末级排汽进入凝汽器后,受到循环水的冷却而凝结成凝结水,放出汽化潜热。由于蒸汽凝结成水的过

完整word版,2×300MW,凝汽式机组火电厂电气部分设计 开题报告

2×300MW 凝汽式机组火电厂电气部分设计 一、本课题的来源及研究的目的和意义: 我国电力工业的技术水平和管理水平正在逐步提高,现在已有许多电厂实现了集中控制 和采用计算机监控.电力系统也实现了分级集中调度,所有电力企业都在努力增产节约,降 低成本,确保安全远行。随着我国国民经济的发展,电力工业将逐步跨入世界先进水平的行列。火力发电厂是生产工艺系统严密、土建结构复杂、施工难度较大的工业建筑。电力工业 的发展,单机容量的增大、总容量在百万千瓦以上火电厂的建立促使火电厂建筑结构和设计 不断地改进和发展。电厂结构的改进、新型建材的采用、施工装备的更新、施工方法的改进、代管理的运用、队伍素质的提高、使火电厂土建施工技术及施工组织水平也相应地随之不断 提高。 1949年全国仅有发电设备容量为185万KW,其中火电169万KW,年发电且仅43.1亿度。发电厂大部分集中在东北和沿海几个大城市,设备陈旧、效率低,而且类型庞杂,电能 的规格也不统一。新中国诞生后,国家大力发展电力工业,到1978年底装机容量为解放时 的40余倍平均每年增长14%。年发电量为解放时的59.5倍,平均每年增长15.7%,由 世界第二十三位跃居到第七位。各省、区都建立了一定规模的电网,容量在一百万千瓦以上 的电网有16个。110千伏及以上的输电线已达七万余公里,到1988年全国发电设备容量已 达11000万KW,其中火电占75%,与1949年相比增长了58倍。 设设计本课题,是对已学知识的整理和进一步的理解、认识,学习和掌握发电厂(变电所)电气部分计的基本方法培养独立分析和解决问题的工作能力及实际工程设计的基本技能。电力工业的迅速发展,对发电厂(变电所)的设计提出了更高的要求,更需要我们提高 知识理解应用水平,认真对待。 二、本课题所涉及的问题在国内(外)研究现状及分析 在电力行业快速发展的今天,积极发展清洁、高效的发电技术是国内外共同关注的问题,对于能源紧缺的我国更显得必要和紧迫。在国家有关部、委的积极支持和推动下,我国大型 火电机组的国产化及高效大型火电机组的应用逐步提高。我国现代化、高参数、大容量火电 机组在不断投运和筹建,其气发电技术对我国社会经济发展具有非常重要的意义。因此,提 高发电效率、节约能源、减少污染,是新建火电机组、改造在运发电机组的头等大事。 我国凝汽式汽轮机制造业从20世纪50年代试制第一台6MW凝汽式汽轮机起步,经历了 一个不断奋斗发展的历程,先后自行设计制造了12、25、100、125、200MW和300MW容量凝 汽式汽轮机。到目前为止我国电厂大容量凝汽式汽轮机已经形成了300、600、1000MW凝汽 式汽轮机系列;参数有亚临界、超临界、超超临界;汽轮机冷却方式有湿冷和空冷(包括间 接空冷和直接空冷);供热形式有单抽、双抽。这样,容量、参数、冷却和供热方式的不同 组合,形成了形成了种类繁多的汽轮机产品。凝汽式汽轮机产品制造基地主要集中在哈尔滨、上海和四川。 哈尔滨凝汽式汽轮机厂有限责任公司300MW等级汽轮机的品种众多,其中包括不同的 功率(300、315、320、330、350MW),不同的参数(亚临界、超临界),不同的用途(纯发 电凝汽式、一次或两次抽气热电联供式),不同的结构形式(高压调节阀6个或4个、再热 调节阀2个),不同的末级动叶片长度(620、680、858、900、1000、1029mm),不同的转 速(3000、3600r/min)及不同的冷却方式(湿冷、空冷),品种多、覆盖面广,品种全、市 场适应性强,品种光、派生能力高,形成了一个产品的系列。 三、对课题所涉及的任务要求及实现预期目标的可行性分析 根据设计的要求,在设计的过程中,根据发电厂的地理环境,容量和各回路数确定发电厂电气主接线和厂用电接线,并选择各变压器的型号;进行参数计算,画等值网络图,并计算各电压等

3000 KW凝汽式汽轮机发电机组技术方案

3000 KW凝汽式汽轮发电机组技术方案 一技术要求 1.1 汽轮机本体技术参数 汽轮机型号:N3-2.35 进汽压力:2.35±0.1Mpa (绝压) ℃ 进汽温度:390+10 -20 额定功率:3000 KW 最大功率:3000 KW 额定转速:5600-3000 r/min(暂定,如频率60HZ,输出3600r/min)临界转速:3690 r/min 额定进汽量:17 t/h 排汽压力:0.0103 Mpa (绝) 1.2汽轮机结构参数 布置形式:单层布置 转子结构:1个复速级+8个压力级叶轮 主汽门进/出口通径:125×2 mm 抽汽口通径:80 mm 排汽口通径:850 mm 汽轮机转子重(t):1.1 最大起吊件重(检修):3.5 t 运行层标高:0 m 汽机中心距运行层高度:1050mm

汽轮机盘车装置:手动盘车 汽轮机与减速箱联接形式:平面齿式联轴器减速箱与发电机联接形式:刚性联轴器 1.3调节保安系统技术数据 调节方式:全液压 调节汽阀数量:5个 转速不等率:5% 迟缓率:≤0.5% 同步器在空负荷时转速变化范围%:-4~+6 危急遮断器动作转速r/min:6104~6216 转子轴向位移许可值:0.7 mm 主油泵进口油压:0.1 Mpa 主油泵出口油压:0.7 Mpa 脉冲油压:0.4 Mpa 1.4辅机技术数据 1.4.1冷凝器 数量:1台 式样:双流程表面式 冷却水温度:正常27℃最高33℃ 冷却面积:280㎡ 无水重量:6.1t 1.4.2油系统

底盘油箱:1个 容量:2000 L 无油重量:3.348 t 冷油器数量:1台 冷却水侧面积:20㎡ 冷却水量:57.4t/h 无油无水重量:402 kg 主油泵:钻孔离心式 电动油泵:1个 手摇油泵:1个 二产品执行标准 JB/T7025-1993 25MW以下转子体和主轴锻件技术条件 JB/T7028-1993 25MW以下汽轮机轮盘及叶轮锻件技术条件JB/T9628-1993 汽轮机叶片磁粉探伤方法 JB/T9629-1999 汽轮机承压件、水压实验技术条件 JB/T9631-1999 汽轮机铸铁件技术条件 JB/T9637-1999 汽轮机总装技术条件 JB/T9638-1999 汽轮机用联轴器等重要锻件技术条件 JB/T2901-1992 汽轮机防锈技术条件 JB/T4058-1999 汽轮机清洁度 三供应项目清单

汽轮发电机组和水轮发电机组的区别

汽轮发电机组和水轮发电机组的区别 导读:万贯五金机电网小编为大家介绍汽轮发电机组和水轮发电机组的区别。水轮发电机组起动、并网所需时间较短,运行调度灵活,它除了一般发电以外,特别适宜于作为调峰机组和事故备用机组。水轮发电机组的最大容量已达70万千瓦。为了得到较高的效率,汽轮机一般做成高速的,通常为3000转/分(频率为50赫)或3600转/分(频率为60赫)。核电站中汽轮机转速较低,但也在1500转/分以上。 发电机组是指能将机械能或其它可再生能源转变成电能的一种小型发电设备。 汽轮发电机组与汽轮机配套的发电机组。 为了得到较高的效率,汽轮机一般做成高速的,通常为3000转/分(频率为50赫)或3600转/分(频率为60赫)。核电站中汽轮机转速较低,但也在1500转/分以上。 高速汽轮发电机为了减少因离心力而产生的机械应力以及降低风摩耗,转子直径一般做得比较小,长度比较大,即采用细长的转子。特别是在3000转/分以上的大容量高速机组,由于材料强度的关系,转子直径受到严格的限制,一般不能超过1.2米。 而转子本体的长度又受到临界速度的限制。当本体长度达到直径的6倍以上时,转子的第二临界速度将接近于电机的运转速度,运行中可能发生较大的振动。所以大型高速汽轮发电机转子的尺寸受到严格的限制。 10万千瓦左右的空冷电机其转子尺寸已达到上述的极限尺寸,要再增大电机容量,只有靠增加电机的电磁负荷来实现。为此必须加强电机的冷却。所以5~10万千瓦以上的汽轮发

电机组都采用了冷却效果较好的氢冷或水冷技术。 70年代以来,汽轮发电机组的最大容量已达到130~150万千瓦。从1986年以来,在高临界温度超导电材料研究方面取得了重大突破。超导技术可望在汽轮发电机中得到应用,这将在汽轮发电机组发展史上产生一个新的飞跃。 水轮发电机组 由水轮机驱动的发电机组。由于水电站自然条件的不同,水轮发电机组的容量和转速的变化范围很大。 通常小型水轮发电机和冲击式水轮机驱动的高速水轮发电机多采用卧式结构,而大、中型代速发电机多采用立式结构。 由于水电站多数处在远离城市的地方,通常需要经过较长输电线路向负载供电,因此,电力系统对水轮发电机的运行稳定性提出了较高的要求:电机参数需要仔细选择;对转子的转动惯量要求较大。所以,水轮发电机的外型与汽轮发电机不同,它的转子直径大而长度短。 水轮发电机组起动、并网所需时间较短,运行调度灵活,它除了一般发电以外,特别适宜于作为调峰机组和事故备用机组。水轮发电机组的最大容量已达70万千瓦。 一般我们常见的发电机组通常由汽轮机、水轮机或内燃机(汽油机、柴油机等发动机)驱动,而近年来所说的可再生新能源包括核能、风能、太阳能、生物质能、海洋能等。 以上资料由成都常发物资贸易有限公司提供。。。

相关主题
文本预览
相关文档 最新文档