当前位置:文档之家› 最新硝化反应详解

最新硝化反应详解

最新硝化反应详解
最新硝化反应详解

硝化反应详解

1 、简介

硝化反应,硝化是向有机化合物分子中引入硝基(-NO2)的过程,硝基就是硝酸失去一个羟基形成的一价的基团。芳香族化合物硝化的反应机理为:硝酸的-OH基被质子化,接着被脱水剂脱去一分子的水形成硝酰正离子(nitronium ion,NO2)中间体,最后和苯环行亲电芳香取代反应,并脱去一分子的氢离子。在此种的硝化反应中芳香环的电子密度会决定硝化的反应速率,当芳香环的电子密度越高,反应速率就越快。由于硝基本身为一个亲电体,所以当进行一次硝化之后往往会因为芳香环电子密度下降而抑制第二次以后的硝化反应。必须要在更剧烈的反应条件(例如:高温)或是更强的硝化剂下进行。

常用的硝化剂主要有浓硝酸、发烟硝酸、浓硝酸和浓硫酸的混酸或是脱水剂配合硝化剂。

脱水剂:浓硫酸、冰醋酸、乙酐、五氧化二磷

硝化剂:硝酸、五氧化二氮(N2O5)

Ar─H+HNO3→Ar─NO2+H2O

2 、反应机理

硝化反应的机理主要分为两种,对于脂肪族化合物的硝化一般是通过自由基历程来实现的,其具体反映比较复杂,在不同体系中均有所不同,很难有可以总结的共性,故这里不予列举。而对于芳香族化合物来说,其反应历程基本相同,是典型的亲电取代反应。

3 、主要方法

硝化过程在液相中进行,通常采用釜式反应器。根据硝化剂和介质的不同,可采用搪瓷釜、钢釜、铸铁釜或不锈钢釜。用混酸硝化时为了尽快地移去反应热以保持适宜的反应温度,除利用夹套冷却外,还在釜内安装冷却蛇管。产量小的硝化过程大多采用间歇操作。产量大的硝化过程可连续操作,采用釜式连续硝化反应器或环型连续硝化反应器,实行多台串联完成硝化反应。环型连续硝化反应器的优点是传热面积大,搅拌良好,生产能力大,副产的多硝基物和硝基酚少。

硝化方法主要有:稀硝酸硝化、浓硝酸硝化、在浓硫酸中用硝酸硝化、在有机溶剂中用硝酸硝化和非均相混酸硝化等。

硝化方法主要有以下几种:

(1)稀硝酸硝化一般用于含有强的第一类定位基的芳香族化合物的硝化,反应在不锈钢或搪瓷设备中进行,硝酸约过量10~65%。

(2)浓硝酸硝化这种硝化往往要用过量很多倍的硝酸,过量的硝酸必需设法利用或回收,因而使它的实际应用受到限制。

(3)浓硫酸介质中的均相硝化当被硝化物或硝化产物在反应温度下为固体时,常常将被硝化物溶解于大量浓硫酸中,然后加入硫酸和硝酸的混合物进行硝化。这种方法只需要使用过量很少的硝酸,一般产率较高,缺点是硫酸用量大。(4)非均相混酸硝化当被硝化物或硝化产物在反应温度下都是液体时,常常采用非均相混酸硝化的方法,通过强烈的搅拌,使有机相被分散到酸相中而完成硝化反应。

(5)有机溶剂中硝化这种方法的优点是采用不同的溶剂,常常可以改变所得到的硝基异构产物的比例,避免使用大量硫酸作溶剂,以及使用接近理论量的硝酸。常用的有机溶剂有乙酸、乙酸酐、二氯乙烷等。

硝基生产

将苯、混酸和循环废酸分别经过转子流量计连续地送入第一硝化反应器,反应物流经第二和第三硝化反应器后进入连续分离器。分出的硝基苯经水洗、碱洗、水洗、蒸馏即得工业品硝基苯。分出的废酸一部分作为循环废酸送回第一硝化反应器,以吸收硝化反应释放的部分热量并使混酸稀释,以减少多硝基物的生成。大部分废酸要另外浓缩成浓硫酸,再用于配制混酸。

烷烃生产

烷烃硝化采用气相反应,将预热后的丙烷与液体硝酸同时送入反应器,在370~450°C和0.8~1.2MPa条件下反应,反应在绝热反应器中进行。利用过

量的丙烷和酸的汽化移走反应热。硝化产物经冷凝,液相产物先经化学处理再精制得四种硝基烷烃成品,气相产物分别送丙烷和氧化氮回收系统。

4 、过程特点

有机化学中最重要的硝化反应是芳烃的硝化,向芳环上引入硝基的最主要的作用是作为制备氨基化合物的一条重要途径,进而制备酚、氟化物等化合物。

硝化是强放热反应,其放热集中,因而热量的移除是控制硝化反应的突出问题之一。

硝化要求保持适当的反应温度,以避免生成多硝基物和氧化等副反应。硝化是放热反应,而且反应速率快,控制不好会引起爆炸。为了保持一定的硝化温度,通常要求硝化反应器具有良好的传热装置。

混酸硝化法还具有以下特点:①被硝化物或硝化产物在反应温度下是液态的,而且不溶于废硫酸中,因此,硝化后可用分层法回收废酸;②硝酸用量接近于理论量或过量不多,废硫酸经浓缩后可再用于配制混酸,即硫酸的消耗量很小;③混酸硝化是非均相过程,要求硝化反应器装有良好的搅拌装置,使酸相与有机相充分接触;④混酸组成是影响硝化能力的重要因素,混酸的硝化能力用硫酸脱水值(DVS)或硝化活性因数(FNA)表示。DVS是混酸中的硝酸完全硝化生成水后,废硫酸中硫酸和水的计算质量比。FNA是混酸中硝酸完全硝化生成水后,废酸中硫酸的计算质量百分浓度。DVS高或FNA高表示硝化能力强。对于每个具体硝化过程,其混酸组成、DVS或FNA都要通过实验来确定它们的适

宜范围。例如苯硝化制硝基苯时,混酸组成(%)为:H2SO4 46~49.5,HNO3 44~47,其余是水,DVS 2.33~2.58,FNA 70~72。

5、产品用途

硝基烷烃为优良的溶剂,对纤维素化合物、聚氯乙烯、聚酰胺、环氧树脂等均有良好的溶解能力,并可作为溶剂添加剂和燃料添加剂。它们也是有机合成的原料,如用于合成羟胺、三羟甲基硝基甲烷、炸药、医药、农药和表面活性剂等。各种芳香族硝基化合物,如硝基苯、硝基甲苯和硝基氯苯等是染料中间体。有些硝基化合物是单质炸药,如2,4,6-三硝基甲苯(即梯恩梯)。芳香族硝基化合物还原可制得各种芳伯胺,如苯胺等。

6 、注意事项

主要危险

(1)、硝化反应是放热反应,温度越高,硝化反应的速度越快,放出的热量越多,越极易造成温度失控而爆炸。

(2)、被硝化的物质大多为易燃物质,有的兼具毒性,如苯、甲苯、脱脂棉等,使用或储存不当时,易造成火灾。

(3)、混酸具有强烈的氧化性和腐蚀性,与有机物特别是不饱和有机物接触即能引起燃烧。硝化反应的腐蚀性很强,会导致设备的强烈腐蚀。混酸在制备时,若温度过高或落入少量水,会促使硝酸的大量分解,引起突沸冲料或爆炸。

(4)、硝化产品大都具有火灾、爆炸危险性,尤其是多硝基化合物和硝酸酯,受热、摩擦、撞击或接触点火源,极易爆炸或着火。

安全措施

(1)、制备混酸时,应严格控制温度和酸的配比,并保证充分的搅拌和冷却条件,严防因温度猛升而造成的冲料或爆炸。不能把未经稀释的浓硫酸与硝酸混合。稀释浓硫酸时,不可将水注入酸中。

(2)、必须严格防止混酸与纸、棉、布、稻草等有机物接触,避免因强烈氧化而发生燃烧爆炸。

(3)、应仔细配制反应混合物并除去其中易氧化的组分,不得有油类、酐类、甘油、醇类等有机物杂质,含水也不能过高;否则,此类杂质与酸作用易引发爆炸事故。

(4)、硝化过程应严格控制加料速度,控制硝化反应温度。硝化反应器应有良好的搅拌和冷却装置,不得中途停水断电及搅拌系统发生故障。硝化器应安装严格的温度自动调节、报警及自动连锁装置,当超温或搅拌故障时,能自动报警并停止加料。硝化器应设有泄爆管和紧急排放系统,一旦温度失控,紧急排放到安全地点。

(5)、处理硝化产物时,应格外小心,避免摩擦、撞击、高温、日晒,不能接触明火、酸、碱等。管道堵塞时,应用蒸气加温疏通,不得用金属棒敲打或明火加热。

(6)、要注意设备和管道的防腐,确保严密不漏。

生物硝化过程的主要影响因素

影响生物硝化过程的环境因素主要有基质浓度、温度、溶解氧浓度、pH值、以及抑制物质的含量等。

⑴碳氮比

对于硝化过程,碳氮比影响活性污泥中硝化细菌所占的比例,过高的碳氮比将降低污泥中硝化细菌的比例。

⑵温度

温度不但影响硝化菌的比增长速率,而且影响硝化菌的活性,亚硝化菌最佳的生长温度为35℃,硝化菌的最佳生长温度为35~42℃。生物硝化反应的最佳温度范围为20~30℃,15℃以下硝化反应速率下降,5℃时反应基本停止。反硝化适宜的温度范围为20~40℃,15℃以下反硝化反应速率下降。

⑶溶解氧

硝化反应必须在好氧条件下进行,所以溶解氧的浓度也会影响硝化反应速率,一般建议硝化反应中溶解氧的质量浓度大于2mg/L.

⑷pH值

在硝化反应中,每氧化1g氨氮需要7.14g碱度(以碳酸钙计),如果不补充碱度,就会使pH值下降。硝化菌对pH值的变化十分明显,硝化反应的最佳pH

硝化反应和反硝化反应

硝化反应和反硝化反应 Prepared on 22 November 2020

一、硝化反应 在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。 硝化反应包括亚硝化和硝化两个步骤: NH4+++H 2 O+2H+ NO 2 -+ 硝化反应总方程式: NH 3 ++若不考虑硝化过程硝化菌的增殖,其反应式可简化为 NH4++2O 2NO 3 -+H 2 O+2H+ 从以上反应可知: 1)1gNH 4+-N氧化为NO 3 -需要消耗2*50/14=碱(以CaCO 3 计) 2)将1gNH 4+-N氧化为NO 2 --N需要,氧化1gNO 2 --N需要,所以氧化1gNH 4 +-N需 要。 硝化细菌所需的环境条件主要包括以下几方面: a.DO:DO应保持在2-3mg/L。当溶解氧的浓度低于L时,硝化反应过程将受 到限制。 b.PH和碱度:,其中亚硝化菌,硝化菌。最适合PH为。碱度维持在70mg/L 以上。碱度不够时,应补充碱 c.温度:亚硝酸菌最佳生长温度为35℃,硝酸菌的最佳生长温度为35~ 42℃。15℃以下时,硝化反应速度急剧下降;5℃时完全停止。 d.污泥龄:硝化菌的增殖速度很小,其最大比生长速率为~(温度20℃,~。 为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。对于实际应用中,活性污泥法脱氮,污泥龄一般11~23d。 e.污泥负荷:负荷不应过高,负荷宜。因为硝化菌是自养菌,有机物浓度 高,将使异养菌成为优势菌种。总氮负荷应≤(m3硝化段·d),当负荷>(m3硝化段·d)时,硝化效率急剧下降。 f.C/N:BOD/TKN应<3,比值越小,硝化菌所占比例越大。 g.抑制物浓度:NH 4+-N≤200mg/L,NO 2 --N10-150mg/L,L。 h.ORP:好氧段ORP值一般在+180mV左右。 二、反硝化反应 在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO 2--N和NO 3 --N还 原成N 2 的过程,称为反硝化。 反硝化反应方程式为: NO 2-+3H(电子供给体-有机物)+H 2 O+OH- NO 3-+5H(电子供给体-有机物)+2H 2 O+OH- 由以上反应可知: 1)还原1gNO 2--N或NO 3 --N,分别需要有机物(其O/H=16/2=8)3*8/14=和 5*8/14=,同时还产生50/14=碱(以CaCO 3 计) 2)如果废水中含有DO,它会使部分有机物用于好氧分解,则完成反硝化反应 所需要的有机物总量Cm=[NO 3--N]+[NO 3 --N]+DO 反硝化细菌所需的环境条件主要包括以下几方面: a.DO:DO应保持低于L(活性污泥法)或1mg/L(生物膜法)。

高考有机合成题目方法总结

一中杨小过高考化学有机合成专项 高考有机合成大题小结 一中杨小过 高考有机合成复习方向:高考化学试题中对有机化学基础的考查题型比较固定,通常是以生产、生活的陌生有机物的合成工艺流程为载体考查有机化学的核心知识,涉及常见有机物官能团的结构、性质及相互转化关系,涉及有机物结构简式的确定、反应类型的判断、化学方程式的书写、同分异构体的识别和书写等知识的考查。 1.要求学生能够通过题给情境中适当迁移,运用所学知识分析、解决实际问题,这是高考有机化学复习备考的方向。 2.有机物的考查主要是围绕官能团的性质进行,常见的官能团:醇羟基、酚羟基、醛基、羧基、酯基、卤素原子等。这些官能团的性质以及它们之间的转化要掌握好,这是解决有机化学题的基础。 3.有机合成的设计路线是先要对比原料的结构和最终产物的结构,官能团发生什么改变,碳原子个数是否发生变化,再根据官能团的性质进行设计。 4.同分异构体类型通常有:碳链异构、官能团异构、位置异构等,有时还存在空间异构(这个考得比较少),要充分利用题目提供的信息来书写符合题意的同分异构体。注意结合题目中已知的进行分析,找出不同之处,这些地方是断键或生成键,一般整个过程中碳原子数和碳的连接方式不变,从而确定结构简式,特别注意书写,如键的连接方向。 要充分利用题目提供的信息判断同分异构体中含有结构或官能团,写出最容易想到或最简单的那一种,然后根据类似烷烃同分异构体的书写规律展开去书写其余的同分异构体; 5.物质的合成路线不同于反应过程,只需写出关键的物质及反应条件、使用的物质原料,然后进行逐步推断,从已知反应物到目标产物。 6.通常根据反应条件推断反应类型的方法有: (1)在NaOH的水溶液中发生水解反应,可能是酯的水解反应或卤代烃的水解反应。 (2)在NaOH的乙醇溶液中加热,发生卤代烃的消去反应。 (3)在浓H2SO4存在的条件下加热,可能发生醇的消去反应、酯化反应、成醚反应或硝化反应等。 (4)能与溴水或溴的CCl4溶液反应,可能为烯烃、炔烃的加成反应。 (5)能与H2在Ni作用下发生反应,则为烯烃、炔烃、芳香烃、醛的加成反应或还原反应。 (6)在O2、Cu(或Ag)、加热(或CuO、加热)条件下,发生醇的氧化反应。 (7)与O2或新制的Cu(OH)2悬浊液或银氨溶液反应,则该物质发生的是—CHO的氧化反应。(如果连续两次出现O2,则为醇→醛→羧酸的过程)。 (8)在稀H2SO4加热条件下发生酯、低聚糖、多糖等的水解反应。 (9)在光照、X2(表示卤素单质)条件下发生烷基上的取代反应;在Fe粉、X2条件下发生苯环上的取代。 (10)卤代烃在氢氧化钠水溶液中发生取代反应生成醇,在氢氧化钠的醇溶液中发生消去反应生成烯烃。

A2O水处理工艺详解

A2O水处理工艺详解 污水进入厂区后先后经过粗格栅→细格栅→进水泵房→旋流沉砂池等设备去除污水中的固体悬浮物及沙粒完成一级污水处理(预处理),之后经过A2O 氧化沟厌氧-缺氧-好氧处理工艺去除污水中的COD、BOD、氮和磷等污染物,氧化沟出水在二沉池,经过絮凝沉淀完成二级污水处理(生化处理),二沉池上清液先后经过连续活性砂滤池过滤和紫外消毒渠消毒完成三级污水处理(深度处理),出水水质达到一级A排放标准,处理工艺中二沉池沉积的活性污泥一部分会流至厌氧池配水井与污水混合循环处理污水中的污染物,剩余污泥经过污泥深度脱水车间处理将含水率降低至50%左右后外运处置。 A2O水处理工艺介绍 A2O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧-缺氧-好氧生物脱氮除磷工艺的简称。A2O生物脱氮除磷工艺是传统活性污泥工艺、生物硝化及反硝化工艺和生物除磷工艺的综合。 该工艺处理效率一般能达到:BOD5和SS为90%~95%,总氮为70%以上,磷为90%左右,一般适用于要求脱氮除磷的大中型污水厂。但A2O工艺的基建费和运行费均高于普通活性污泥法,运行管理要求高,所以对目前我国国情来说,当处

理后的污水排入封闭性水体或缓流水体引起富营养化,从而影响给水水源时,才采用该工艺。 A2O生物脱氮除磷系统的活性污泥中,菌群主要由硝化菌和反硝化菌、聚磷菌组成。在好氧段,硝化细菌将入流中的氨氮及有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入到大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷除去。 工艺流程及工艺特点: A2O 工艺于70年代由美国专家在厌氧一好氧磷工艺(A/O)的基础上开发出来的,该工艺同时具有脱氮除磷的功能。 该工艺在好氧磷工艺(A/O)中加一缺氧池,将好氧池流出的一部分混合液回流至缺氧池前端,该工艺同时具有脱氮除磷的目的。 工艺特点: (1)污染物去除效率高,运行稳定,有较好的耐冲击负荷。 (2)污泥沉降性能好。 (3)厌氧、缺氧、好氧三种不同的环境条件和不同种类微生物菌群的有机配合,能同时具有去除有机物、脱氮除磷的功能。 (4)脱氮效果受混合液回流比大小的影响,除磷效果则受回流污泥中夹带DO 和硝酸态氧的影响,因而脱氮除磷效率不可能很高。 (5)在同时脱氧除磷去除有机物的工艺中,该工艺流程最为简单,总的水力停留时间也少于同类其他工艺。 (6)在厌氧一缺氧一好氧交替运行下,丝状菌不会大量繁殖,SVI一般小于100,不会发生污泥膨胀。 (7)污泥中磷含量高,一般为2.5%以上。 影响A2O工艺出水效果的因素 影响A2O工艺出水效果的因素有很多,一般有以下几个方面的因素: 1、污水中生物降解有机物对脱氮除磷的影响 可生物降解有机物对脱氮除磷有着十分重要的影响,它对A2O工艺中的三种生化过程的影响是复杂的、相互制约甚至是相互矛盾的。

硝化反硝化

硝化反硝化 一、硝化反应 在好氧条件下,通过自养型微生物亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。 硝化反应包括亚硝化和硝化两个步骤: 二、反硝化反应 在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N还原成N2的过程,称为反硝化。反硝化菌为异养型微生物,在缺氧状态时,反硝化菌利用硝酸盐中的氧作为电子受体,以有机物作为电子供体提供能量并被氧化稳定。 反硝化反应方程式为: NO2-+3H(电子供给体-有机物) →0.5 N2+H2O+OH- NO3-+5H(电子供给体-有机物) →0.5 N2+2H2O+OH- 三、短程硝化反硝化 短程硝化是指NH3生成亚硝酸根,不再生产硝酸根;而由亚硝酸根直接生成N2,称为短程反硝化。短程硝化反硝化是指NH3---NO2----N2,即可以从水中氨氮去除的一种工艺。 影响因素: 1、pH 硝化反应的适宜的pH值为7.0~8.0之间,其中亚硝化菌7.0~7.8时,活性最好;硝化菌在7.7~8.1时活性最好。当pH降到5.5以下,硝化反应几乎停止。反硝化细菌最适宜的pH值为7.0~7.5之间。考虑到硝化和反硝化两过程中碱度消耗与产生的相互性,同步硝化与反硝化的最适的pH值应为7.5左右。 2、溶解氧(DO) 硝化过程的DO应保持在2~3mg/L,反硝化过程的DO应保持0.2~0.5mg/L。 反应池内溶解氧的高低,必将影响硝化反应的进程,溶解氧质量浓度一般维持在2~3mg/L,不得低于1mg/L,当溶解氧质量浓度低于0.5~0.7mg/L时,氨的硝态反应将受到抑制。反硝化通常需在缺氧条件下进行,溶解氧对反硝化有抑制作用,主要是由于氧会与硝酸盐竞争电子供体,同时分子态氧也会抑制硝酸盐还原酶的合成及其活性。 3、温度 生物硝化反应适宜的温度在20~30℃,反硝化适宜温度在30℃左右。 亚硝酸菌最佳生长温度为35℃,硝酸菌的适宜温度为20~40℃。15℃以下时,硝化反应速度急剧下降。温度对反硝化速率的影响很大,低于5℃或高于40℃,反硝化的作用几乎停止。 4、碱度 一般污水处理厂碱度应维持在200mg/L左右。 NH4++1.83O2+1.98HCO3-→0.021C5H7O2N+0.98NO3-+1.04H2O+1.884H2CO3

硝化与反硝化

3.7 硝化与反硝化 废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。一、硝化与反硝化 (一) 硝化 在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。 反应过程如下: 亚硝酸盐菌 NH4++3/2O2 NO2-+2H++H O-△E △E=278.42KJ 第二步亚硝酸盐转化为硝酸盐: 硝酸盐菌 NO-+1/2O2 NO3--△E △E=278.42KJ 这两个反应式都是释放能量的过程,氨氮转化为硝态氮并不是去除氮而是减少它的需氧量。上诉两式合起来写成: NH4++2O2 NO3-+2H++H2O-△E △E=351KJ 综合氨氧化和细胞体合成反应方程式如下: NH4+1.83O2+1.98HCO3- 0.02C5H7O2N+0.98 NO3-+1.04 H2O+1.88H2CO3 由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg 氨氮,将消耗碱度(以CaCO3计) 7.lg。 影响硝化过程的主要因素有: (1)pH值当pH值为8.0~8.4时(20℃),硝化作用速度最快。

由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上; (2)温度温度高时,硝化速度快。亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜; (3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~0.5d-1(温度20℃,pH8.0~8.4)。为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。在实际运行中,一般应取>2 ; (4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上; (5)BOD负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。所以为要充分进行硝化,BOD5负荷应维持在0.3kg(BOD5)/kg(SS).d以下。 (二) 反硝化 在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N还原成N2的过程,称为反硝化。反硝化过程中的电子供体(氢供体)是各种各样的有机底物(碳源)。以甲醇作碳源为例,其反应式为: 6NO3-十2CH3OH→6NO2-十2CO2十4H2O 6NO2-十3CH3OH→3N2十3CO2十3H2O十60H-

活性污泥法运行中的常见问题及对策

活性污泥法运行中的常见问题及对策 活性污泥法是常用的好氧法,所以能够做好其运营管理非常重要,本文总结了活性污泥法运行过程中的5大常见问题以及对策,具有很强的实用价值。 01污泥膨胀的概念及其解决办法有哪些? 污泥膨胀的原因: ①丝状菌膨胀 活性污泥絮体中的丝状菌过度繁殖,导致膨胀,促成条件包括进水有机物少,F/M太低,微生物食料不足;进水氮、磷不足;pH值低;混合液溶解氧太低,不能满足需要;进水波动太大,对微生物造成冲击。 ②非丝状菌膨胀 由于进水中含有大量的溶解性有机物,使污泥负荷太高,而进水中又缺乏足够的N、P,或者DO(溶氧)不足。细菌很快把大量有机物吸入体内,又不能代谢分解,向外分泌出过量的多糖类物质。这些物质分子中含羟基而具有较强的亲水性,使活性污泥的结合水高达400%(正常为100%左右),呈黏性的凝胶状,无法在二沉池分离。另一种非丝状菌膨胀是进水中含有较多毒物,导致细菌中毒,不能分泌出足够量的黏性物质,形不成絮体,也无法分离。 解决办法: 组成废水的各种成分由于比例失调,也可引起污泥膨胀,如废水中C/N 比失调,若由于碳水化合物的含量过高,可适当的投加尿素、碳酸铵或氯化铵。如系统进水浓度太高,可减低进水量。至于曝气池的环境(如pH、温度溶解氧等)对活性污泥的性质也有一定的影响。其他如废水中含有大量的有机物或石油,以及含有大量的腐败物质都可以引起膨胀。在曝气池中过多或过少地充氧或搅动不充分,都可引起膨胀。由此可知,为防止污

泥膨胀,首先应加强管理操作,经常检测污水水质、曝气池内溶解氧、污泥沉降比、污泥指数和进行显微镜观察,如发现异常情况应及时采取措施,如加大空气量、及时排泥、在有可能时采取分段进水,以减轻二沉池的负荷。 02污泥上浮的概念及其解决办法有哪些? 污泥上浮:主要是指污泥脱氮上浮。污水在二沉池中经过长时间停留会造成缺氧(DO在0.5mg/L以下),则反硝化菌会使硝酸盐转化成氨和氮气,在氨和氮气逸出时,污泥吸附氨和氮气而上浮使污泥沉降性降低。 解决办法: 污泥上浮现象和活性污泥的性质无关,只因污泥中产生气泡,使污泥密度低于水,因此污泥上浮不应与污泥膨胀混为一谈。具体解决办法有: ①降低进水盐浓度,控制高负荷COD的冲击。 ②准确地控制曝气池内的COD负荷。因此,在运行操作上要控制曝气池进水量。通过准确地控制MLSS(建议6~8g/L)和曝气池进水量,将COD负荷控制在0.2~0.4kg/(m3·d)的适当范围,以减少污水的冲击,如果该污水经过均质池后的COD浓度仍然超过设计标准,应将该股污水引入事故池以待日后处理。 ③完善新建污水预处理工艺,控制污水厌氧与兼氧酸化水解池是保障后续曝气池正常运转的关键步骤,污水中的难降解有机物在此得到降解后,可以保证曝气池污水的出水要求,也改善了二沉池的沉降性能。应采取以下措施:完成潜水搅拌机配电系统的改造,尽快泵污泥至酸化池,进行酸化池的调试和酸化污泥的驯化。一次投加剩余污泥约为池容的1/5,投加量约为100m3,使池内混合液浓度在4~6g/L。 ④控制氧曝池的溶解氧浓度,适当降低氧曝池MLSS,基本控制在10g/L以内,与之相应的溶解氧浓度控制应根据进水有机负荷及时调整。⑤增加污泥回流量,及时排除剩余污泥,降低混合液污泥浓度,缩短污泥龄,降低溶解氧浓度,但不能进入消化阶段。

污水处理A2O工艺调试详解

污水处理A2O工艺调试详解 1、培养与驯化 由于调试阶段进水量较少,进水变化幅度较大。为确保污泥培养效果,缩短调试周期,一般采用外接碳源方式接种培养活性污泥。外接菌种首选进水质相近,运行较好的同类型工艺污水厂重力浓缩后污泥或脱水污泥。 1、污泥接种驯化时间表 在污泥接种期间,每天间歇进水四次,为污泥增生殖提供营养物质;同时减少排泥甚至不排泥。污泥培养与驯化具体周期安排见下表:说明:以上运行方式均按设计参数确定,在实际操作中,生物池的污泥浓度可根据沉降比实时跟踪监测,不能出现大幅度的波动。 2、接种及间歇进水闷曝阶段 一次性投加外接干泥45吨(含水率80%)于生物池好养段,充满污水后(为提高初期营养物浓度,可投加一些浓质粪便或米泔水等)闷曝(即曝气而不进污水)数小时,潜水搅拌机运行保持连续性,确保污泥处于悬浮状态,闷曝数小时之后停止曝气并沉淀换水,每天重复操作,该阶段周期时间初定为7天左右。由于污泥尚未大量形成,产生的污泥也处于离散状态,因而曝气量一定不能太大,控制在设计正常曝气量的1/2,否则污泥絮体不易形成。此时污泥结构虽然松散,但若菌胶团开始形成,镜检开始出现较多游离细菌,例如鞭毛虫和变形虫,则认为初期培养效果满意。期间作SV30量筒沉淀物的观察和DO测定,作报表记录。

时间:七天左右。 运行方式:接种、进水、闷曝、间歇进水、沉淀、换水。 注意:当预处理区域设立的24小时水质监视记录数据发现进水水质突然变化(酸水侵袭造成PH偏低、进水水质浓度、毒性及色度等)对活性污泥培养有很大的冲击,此时应该考虑启动应急预案,对污水实施旁通排放,减小对活性污泥的冲击。 3、连续进水培养与驯化阶段 进入连续进水培养阶段后,活性污泥工艺的正常运行模式已初步呈现,此时应根据正常运行工艺参数调整处理流程,水量和空气量的平衡依据DO值的变化作适时调整,开启外回流泵,控制在100%。监测污泥及水质各项指标,包括污泥浓度,污泥指数,沉降性能,BOD,COD,通过显微镜观察污泥活性。至MLSS超过3000mg/L时,当SV30达到30%以上时,活性污泥培养即告成功,此时镜检污泥中原生生物应以鞭毛虫和游动性纤毛虫为主。 培养达到设计浓度后,开始对硝化菌的驯化阶段。硝化菌种的培养和驯化实质既是通过控制微生物的生长环境,配合目标菌种的生长周期对生物群落的发展进行外部干预,使得硝化菌成为活性污泥生物群落中的优势种群。一般来讲,硝化菌种的培养周期为其泥龄的3倍左右。 时间:共60天左右。 运行方式:生物池和二沉池,污泥回流系统连续运行。 注:按照气水比值来确定投用风机的组合数量,但是就单台的风

硝化-反硝化-碱度-DO与pH值关系

硝化系统与pH值关系(2007-05-19 22:51:41) 分类:七彩水质专题发生硝化反应,那么必须控制污泥龄大于硝化细菌的世代时间方可。按照污水处理的理论,硝化细菌世代周期5~8天,反硝化细菌世代周期15天左右。 碱度是为硝化细菌提供生长所需营养物质,氧化1mg NH4-N需要碱度7.14 mg。硝化过程只有在污泥负荷<0.15kgBOD/(kgSS·d)时才会发生。在反应过程中氧化1kg氨氮约消耗4.6kg氧,同时消耗约7.14kg碳酸钙碱度。为保证硝化作用的彻底进行,一般来说出水中应有剩余碱度。合适的pH是微生物发挥最佳活性必须的,一般微生物要在pH6-9范围内比较合适。实际上,因为水质的差异,相同pH的水,碱度可以相差很多。对于A/O工艺。其中硝化液回流进行反硝化,这样可以利用原污水中的有机物做为反硝化的电子供体,同时可提供部分碱度,抵消硝化段的部分碱度消耗。该工艺脱氮率的提高要靠增加回流比实现,但回流比不宜太高,否则回流混合液中夹带的DO会影响到反硝化段的缺氧状态,另外回流比增大,运行费用也会增加。 水的碱度是指水中含有能接受氢离子的物质的量,例如氢氧根,碳酸盐,重碳酸盐,磷酸盐,磷酸氢盐,硅酸盐,硅酸氢盐,亚硫酸盐,腐植酸盐和氨等,都是水中常见的碱性物质,它们都能与酸进行反应。因此,选用适宜的指示剂,以酸的标准溶液对它们进行滴定,便可测出水中碱度的含量.。碱度可分为酚酞碱度和全碱度两种。酚酞碱度是以酚

酞作指示剂时所测出的量,其终点的pH值为8.3;全碱度是以甲基橙作指示剂时测出的量,终点的pH值为4.2.若碱度很小时,全碱度宜以甲基红-亚甲基蓝作指示剂,终点的pH值为5.0。碱度以CaCO3(碳酸钙)浓度表示,单位为mg/l。PH的值是H离子浓度的体现,当PH=7是,说明H离子浓度为10的-7次幂,所以OH离子的浓度也是10的-7次幂,为中型,当PH=8时,H离子浓度为10的-8次幂,OH离子浓度是10的-6次幂,这都是H离子的浓度小于1mol/L时的计算方法,当H离子浓度大于1时,就不用了。严格的说来,pH值和碱度没有必然的关系,也就是pH值为某个值时,溶液的组成不同,碱度值会不同的。消化反应会消耗碱度,PH值会下降,反硝化阶段会产生碱度PH会上升,平时检测只用观察PH值的变化就可以了。亚硝酸菌和硝酸菌在PH为7.0-7.8,7.7-8.1是最活跃,反硝化最适ph值为7.0-7.5。好氧池出水DO一般在2左右啊。校探头拿到空气中是8左右~。看情况,如果不要进行脱氮除磷好氧池出水口溶解氧不小于2mg/L,如果要回水进行反硝化,出水溶解氧小于1.5mg/L 一、前言 水族缸中的「氮循环」会直接影响pH的变化。氮循环是指有机氮化合物在自然界中的物质循环过程,它由微生物的固氮作用、氨化作用、硝化作用及脱氮作用所构成,惟在水族缸中,通常仅发生氨化作用及硝化作用,所以氮循环并不具完整性,必有中间产物遗留于水中,并

关于污水处理技术的相关答疑

污水处理技术答疑300题 1.问:采用CAST工艺,污泥脱水后的混合液直接排入进水泵房,导致进水COD,SS偏高,并影响选择池的反硝化反应,应该如何解决? 答:这是一个目前污水处理厂普遍被忽视的问题,即污泥脱水后的滤液回流至生化池后对生化处理的影响问题。由于污泥脱水前要加调质药剂,如PAC 和PAM,有些药剂有一定的毒性,污泥脱水时可随滤液回流至生化反应池。处理这些滤液在技术上没问题,只是成本问题,如果选用合适的污泥调质药剂,并控制好加药量以及脱水机的进泥量等,对前面的生化处理就不会造成大的影响。还是强调的是,污泥脱水效果取决于污泥处理工序的全过程管理,包括污泥浓缩池的管理。 2.问:“污泥泥龄”是怎样确定的?如何来控制?究竟是用排泥量确定它,还是用其它来确定排泥量? 答:泥龄、F/M、等与其说是运行的控制参数,不如说是设计方面的参数,在工艺控制中的只是参考参数。实际运行中排泥量通常是根据MLSS值加上经验来控制的,在SVI相对稳定的情况下,也可用SV30来参考。 3.问:本厂用的是卡罗塞尔氧化沟工艺。有时装置的出水氨氮比进水还高,进水TP2.5mg/L 左右,出水只有 0.2mg/L右,曝气机 3台满负荷运行。一直查不出什么原因,这是怎么回事? 答:只能根据你提供的情况来初步分析,可能是污水含氮有机物较多,反应时间不够,有机氮的氨化速率大于氨氮的硝化速率,此外,也可能是磷不够,影响氨氮通过同化途径去除的效果。 4.问:在运行过程中,氧化沟表面有一层厚厚的污泥堆积,粒径约1mm左右的污泥颗粒泛黄色,时常会造成二沉池大量飘泥,污泥返白,有絮体随出水一同流出,SV30迅速下降,处理效果丧失,堆积污泥减薄消除,周而复始,请问其成因和控制措施。 答:说明污泥已失去活性,使ESS增加。有二种可能:一是污泥自身氧化;二是污泥中毒。从你所描述的现象看,前者的可能性大,可测定一下污泥耗氧速率,以便针对性采取措施。5.问:AB 法A段如何控制?是从一沉池以等同的流量给 A段连续回流吗?SV30应控制在多少?控制在 5%-10%可以吗? 答:A段的回流比应该大一些,但也不能使污泥在一沉池的停留时间太短,虽然A段主要是吸附为主,但也有一定的生物降解作用的,生物降解大多在沉淀池内进行,只有将吸附在污泥表面的有机物降解,才能恢复吸附能力。应该用MLSS来控制,在污泥沉降性能稳定时也可用SV30,要根据实际情况定,沉降比5%-10%太低。 6.问:如果一家污水厂运行一两年处理效果没达到较佳状态,那是不是应该考虑重新培菌(换泥)?换泥跟开始时的培菌有什么不一样呢? 答:不用换!如果运行条件不变,换了也会一样的,即使你用优势菌种投加也没用,只能维持一段时间,重要的是控制好运行条件,如果是设计上的的问题要及时整改。 7.问:我调试的是工业废水。工艺为:水解+厌氧+好氧池 1+好氧池2+沉淀。由于安装问题,曝气池布气不均匀(圆形曝气头曝气),每个曝气器处,均有一个类似喷泉上下翻滚(直径 1m左右),曝气不均,对处理效果有多大影响?还发现曝气区填料挂膜较少,镜检有大的后生动物,没有发现其它生物,填料生物膜表面为淡黄色,曝气区外的生物膜厚达3cm,能给我解示一下吗? 答:你所说的情况不能说是曝气不均,是正常现象。还有你说生物膜不多,不知是多少?如生物膜把填料基本覆盖就很好了,至于说曝气区外的生物膜厚达3cm 就是严重结球了,要

短程硝化反硝化的研究详解

短程硝化反硝化的研究进展 摘要短程硝化反硝化技术主要用于处理高氨氮质量浓度和低C/N比的污水。成功实现短程硝化反硝化技术的关键是将硝化反应控制并维持在亚硝酸盐阶段,不进行亚硝酸盐至硝酸盐的转化。本文探讨了短程硝化反硝化的机理并对氨氧化菌的分子生物学研究进行了分析,同时探讨了A/SBR工艺的应用。 关键词短程硝化反硝化氨氧化菌A/SBR 1 引言 近年来,随着工业化和城市化进程的不断提高,大量氮、磷等营养物质进入水体,水体富营养化的现象日益严重,由于常规的活性污泥工艺硝化作用不完全,反硝化作用则几乎不发生,总氮的去除率仅在10%~30%之间,出水中还含有大量的氮和磷[1]。因此,只有对常规的活性污泥法进行改进,加强其生物脱氮功能,才能解决日益突出的受纳水体“富营养化”问题。目前,各城市污水处理厂均应用新的运行方法和控制策略进行脱氮除磷。随着新的微生物处理技术的介入,污水处理设施的功效得到显著提高。短程硝化反硝化技术对于处理这种污水在经济和技术上均具有较高的可行性。 短程硝化反硝化技术已成为脱氮领域研究的热点。其研究内容主要集中在实现氨氧化菌在反应器的优势积累、构造适于氨氧化菌长期稳定生长并抑制亚硝酸氧化菌的最佳环境因素、优化过程控制模式实现持续稳定的短程硝化等。 2 短程硝化反硝化的机理 生物脱氮包括硝化和反硝化两个反应过程。第一步是由氨氧化菌( ammonium oxidition bacteria,AOB) 将NH4-N氧化NO-2-N的亚硝化过程;第二步是由亚硝酸氧化菌( nitrite oxidition bacteria,NOB) 将NO-2-N氧化为NO-3-N的过程。然后通过反硝化作用将产生的NO-3-N经由NO-2-N、NO或N2O转化为N2,NO-2-N 是硝化和反硝化两个过程的中间产物。V oets等(1975)在处理高浓度氨氮废水的研究中,发现了硝化过程NO-2-N积累的现象,首次提出了短程硝化反硝化生物

化学教师面试教案第三章 本章重难点专题突破 5

5常见的“五大”有机反应类型 有机物化学反应的类型主要决定于有机物分子里的官能团(如碳碳双键、羟基、羧基等),此外还受反应条件的影响。 1.取代反应 有机物分子里的某些原子或原子团被其他的原子或原子团所替代的反应。主要有: (1)卤代反应:如烷烃的卤代反应、苯的卤代反应。 (2)硝化反应:如苯的硝化反应。 (3)酯化反应:如乙酸与乙醇的酯化反应。 (4)水解反应:如酯的水解反应,油脂的水解反应,淀粉、纤维素、蛋白质的水解反应等。【典例10】下列反应(反应条件略)属于取代反应的是() A.(NH4)2SO4+BaCl2===BaSO4↓+2NH4Cl B.CH3—OH+HCl―→CH3—Cl+H2O C.CH2===CH2+Br2―→CH2Br—CH2Br D.H—CH2—CH2—OH―→CH2===CH2+H2O 解析判断一个反应是否是取代反应,一要看是否是有机反应,二要看是否符合取代反应的特点“断一下一上一”。A的反应不是有机反应,故不是取代反应;在B反应中CH3—OH 中的C—O键断裂,下来一个—OH,上去一个Cl原子,下来的—OH与HCl中的H原子结合生成H—OH即H2O,所以符合取代反应的“断一下一上一”的特点,是取代反应;C反应是“只上不下”,D反应是“只下不上”,它们都不属于取代反应。 答案B 2.加成反应 有机物分子里以不饱和键相结合的不饱和原子与其他的原子或原子团直接结合生成新物质的反应。 如乙烯与氢气、氯气、氯化氢、水等的加成反应,苯与氢气的加成反应等,都属于加成反应。3.加聚反应 不饱和的小分子有机物通过加成反应的形式相互结合生成高分子化合物的反应。 如乙烯生成聚乙烯、氯乙烯生成聚氯乙烯等,都属于加聚反应。 4.氧化反应

硝化与反硝化

硝化:在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。反应过程如下: 亚硝酸盐菌: 向左转|向右转 接着亚硝酸盐转化为硝酸盐: 向左转|向右转 这两个反应式都是释放能量的过程,氨氮转化为硝态氮并不是去除氮而是减少它的需氧量。上诉两式合起来写成: 向左转|向右转 综合氨氧化和细胞体合成反应方程式如下: 向左转|向右转

上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg氨氮,将消耗碱度(以CaCO3计) 7.lg。 影响硝化过程的主要因素有: (1)pH值当pH值为8.0~8.4时(20℃),硝化作用速度最快。由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上; (2)温度温度高时,硝化速度快。亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜; (3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~ 0.5d-1(温度20℃,pH8.0~8.4)。为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。在实际运行中,一般应取>2 ; (4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上; (5)BOD负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。所以为要充分进行硝化,BOD5负荷应维持在0.3kg(BOD5)/kg(SS).d以下。

关于总氮的基础知识

关于氨氮、总氮、硝态氮、凯氏氮的基础知识 凯氏氮是指以基耶达(Kjeldahl)法测得的含氮量。它包括氨氮和在此条件下能转化为铵盐而被测定的有机氮化合物。此类有机氮化合物主要有蛋白质、氨基酸、肽、胨、核酸、尿素以及合成的氮为负三价形态的有机氮化合物,但不包括叠氮化合物,硝基化合物等。 总氮包括溶液中所有含氮化合物,即亚硝酸盐氮、硝酸盐氮、无机盐氮、溶解态氮及大部分有机含氮化合物中的氮的总和 氮的氧化态虽然有7种,总氮包含总凯氏氮及氮氧化物,总凯氏氮又可分为有机氮及氨氮而氮氧化物包括硝酸氮及亚硝酸氮,其中有机氮又可分为粒状有机氮及溶解性有机氮,其馀皆属溶解性含氮化物. 为能更详细了解含氮化合物在不同环境下之相互转变及传送现象,可再将溶解性有机物,分为不能生物分解性溶解性有机氮及生物可分解性有机氮.粒状有机氮也可分为生物可分解性有机氮及生物不能分解性之粒状有机氮. 总凯氏氮主要表示废水中氨氮及有机氮之总合 总氮表示水中含氮总量 先提供教科书对此的说明。 污水中的氮,有四种形态,氨氮,有机氮,亚硝酸盐氮,硝酸盐氮,四者合称总氮TN。 其中,氨氮与有机氮合称为凯氏氮TKN,这是衡量污水进行生化处理时氮营养是否充足的依据。 在常规生活污水中,基本不含亚硝酸盐氮和硝酸盐氮,因此一般情况下,对于常规生活污水的TN=TKN=40mg/L,其中氨氮约25mg/L,有机氮约15mg/L,亚硝酸盐氮,硝酸盐氮可视为0。 在我们实际的污水处理厂设计的实践中,发现各地污水总氮及氨氮差异较大,不过常规生活污水的总氮及氨氮大概是: 总氮:40-60ppm 氨氮:15-50ppm 一般的,如果氨氮数值与总氮很接近,说明该地污水在管网逗留时间较长,导致有机氮已经分解。 在没有实测数据的情况下,教科书的数据可以作为参考。 生活污水的氨氮含量一般在20~30mg/L之间 通过A/O法,在好氧段进行消化反应,使氨氮转化为硝态氮,通过污泥回流,在缺氧段进行反硝化反应,使在好氧段形成的硝态氮转化为氮气,排入大气。 A/O法生物去除氨氮原理:污水中的氨氮,在充氧的条件下(O段),被硝化菌硝化为硝态氮,大量硝态氮回流至A段,在缺氧条件下,通过兼性厌氧反硝化菌作用,以污水中有机物作为电子供体,硝态氮作为电子受体,使硝态氮波还原为无污染的氮气,逸入大气从而达到最终脱氮的自的。 硝化反应:NH4++2O2→NO3-+2H++H2O 反消化反应:6NO3—+5CH3OH(有机物)→5CO2↑+7H2O+6OH—+3N2↑

高考化学乙醇与乙酸的推断题综合复习附答案

高考化学乙醇与乙酸的推断题综合复习附答案 一、乙醇与乙酸练习题(含详细答案解析) 1.根据如下一系列转化关系,回答问题。已知:H是具有水果香味的液体,I的产量作为 衡量一个国家的石油化学工业发展水平的标志,J为高分子化合物。 (1)A、B的名称分别是___、_____; D、F 的化学式为___________;I的结构简式 ______; (2)写出化学方程式并指出反应类型: C→E _____________,反应类型:____________。 G→H _______,反应类型:_______。 I→J _________________,反应类型:_______。 【答案】纤维素葡萄糖 C2H4O、C2H4O2 CH2=CH2 2CH3CH2OH+O22CH3CHO + 2H2O 氧化反应 CH3COOH+CH3CH2OH CH3COOCH2CH3+H2O 取代反应 nCH2 = CH2CH2-CH2加聚反应 【解析】 【分析】 甘蔗渣处理后得到纤维素A,A在催化剂作用下水解生成的B为葡萄糖,葡萄糖再在酒化 酶的作用下生成的C为乙醇;乙醇催化氧化生成的E为乙醛,乙醛与新制氢氧化铜在加热 条件下氧化生成的G为乙酸,乙醇再与乙酸在浓硫酸催化作用下加热生成的H为乙酸乙酯,具有水果香味;I的产量作为衡量一个国家的石油化学工业发展水平的标志,则I为乙烯,乙烯在引发剂的作用下生成聚乙烯,乙烯与水催化加成能生成乙醇,再结合酒精存放 过程中最终有酯香味,可知乙醇缓慢氧化能生成CH3CHO和CH3COOH。 【详解】 (1)由分析知:A、B的名称分别是纤维素、葡萄糖;乙醇缓慢氧化能生成CH3CHO和 CH3COOH,则D、F 的化学式分别为C2H4O、C2H4O2;I的结构简式为CH2=CH2; (2)C→E为乙醇催化氧化,发生反应方程式为2CH3CH2OH+O22CH3CHO + 2H2O,反应类型氧化反应; G→H 为乙醇与乙酸在浓硫酸催化作用下加热生成乙酸乙酯,发生反应方程式为 CH3COOH+CH3CH2OH CH3COOCH2CH3+H2O,反应类型取代反应或酯化反应; I→J为乙烯在引发剂的作用下生成聚乙烯,发生反应方程式为nCH2 = CH2CH2- CH2,反应类型为加聚反应。

硝化与反硝化

硝化与反硝化 利用好氧颗粒污泥实现同步硝化反硝化 1 生物脱氮与同步硝化反硝化 在生物脱氮过程中,废水中的氨氮首先被硝化菌在好氧条件下氧化为NO-X,然后NO-X 在缺氧条件下被反硝化菌还原为N2(反硝化)。硝化和反硝化既可在活性污泥反应器中进行,又可在生物膜反应器中进行,目前应用最多的还是活性污泥法。硝化菌和反硝化菌处在同一活性污泥中,由于硝化菌的好氧和自养特性与反硝化菌的缺氧和异养特性明显不同,脱氮过程通常需在两个反应器中独立进行(如Bardenpho、UCT、双沟式氧化沟工艺等)或在一个反应器中顺次进行(如SBR)。当混合污泥进入缺氧池(或处于缺氧状态)时,反硝化菌工作,硝化菌处于抑制状态;当混合污泥进入好氧池(或处于好氧状态)时情况则相反。显然,如果能在同一反应器中使同一污泥中的两类不同性质的菌群(硝化菌和反硝化菌)同时工作,形成同步硝化反硝化(Simultaneous Nitrification Denitrification简称SND),则活性污泥法的脱氮工艺将更加简化而效能却大为提高。此外从工程的角度看,硝化和反硝化在两个反应器中独立进行或在同一个反应器中顺次进行时,硝化过程的产碱会导致OH-积累而引起pH值升高,将影响上述两阶段反应过程的反应速度,这在高氨氮废水脱氮时表现得更为明显。但对SND工艺而言,反硝化产生的OH-可就地中和硝化产生的H+,减少了pH值的波动,从而使两个生物反应过程同时受益,提高了反应效率。 2 实现同步硝化反硝化的途径 由于硝化菌的好氧特性,有可能在曝气池中实现SND。实际上,很早以前人们就发现了曝气池中氮的非同化损失(其损失量随控制条件的不同约在10%~20%左右),对SND的研究也主要围绕着氮的损失途径来进行,希望在不影响硝化效果的情况下提高曝气池的脱氮效率。

中国海水养殖带来的问题

中国海水养殖带来的环境问题 -------------以黄渤海为例 在生活水平日益提高的情况下,环境问题也日益增多,我们作为一个环境学习者,既窃喜又担忧,喜的是我们自己的专业可以派上用场,自己的找工作越来越容易,但忧愁总比窃喜多一点,因为我们生活在这样一个污染严重的环境中,呼吸着含pm2.5超标的空气,抬头仰望着灰蒙蒙的天空,吃着含重金属的蔬菜、大米等各种各样的食品,喝着变色的水,这样的生活不是我们所担忧将要到来的,而是我们已经在经受的,看看国外留学回来的人拍的这个地方的照片,他们的天空是那么蓝,空气质量是那么好,吃得健康有益,我们的国民为了经济的发展,不惜以国民的健康,居住的环境为代价,大肆的发展经济,以至于现在的好多问题都触目惊心,有道德的缺失带来的地沟油、鼠肉充当牛羊肉等现象,有为利益而导致的污水未处理就进行排放的问题。诸如此类的问题还有很多。因为自己是北方的孩子,虽然对海了解不多,但还是喜欢吃海产品的,所以,想了解一下海水的水产养殖会带来什么环境问题,什么原因导致了海水水产养殖带来了这些问题,因此就阅读了关于水产养殖方面的文章,有刘晴的促进水产养殖增长方式转变全面提升水产养殖发展质量;杨宇峰等人的海水养殖发展与渔业环境管理研究进展;宋志文等人的海水养殖废水的生物处理技术研究进展;余江等人海水养殖环境污染及控制对策;崔毅等人黄渤海海水养殖自身污染的评估,了解了水产养殖业发展自身存在的问题的问题,海水养殖在迅猛发展的同时带来了诸多环境问题,如养殖水域环境恶化,自身污染加剧,富营养化趋势日趋严重,赤潮频发,渔药滥用导致药物残留和水产品质量安全等一系列环境问题。 黄渤海地区地处东北亚中心地带,包括辽东半岛、山东半岛、渤海湾沿岸和辽东湾沿岸地域及其附近海域、空域,是联结中原地区与东北亚地区,乃至日本群岛和俄罗斯远东的纽带。海水养殖的主要种类有鱼类( 遮目鱼、比目鱼、大菱鲆、鲷、鰤、鲑鳟鱼、石斑鱼、鲆鲽、罗非鱼、海鲈等) ,虾类( 日本对虾、斑节对虾和凡纳滨对虾等) ,贝类( 牡蛎、贻贝、扇贝、蛤、鲍鱼等) 和大型海藻、红藻( 紫菜、江蓠) 、褐藻( 海带、裙带菜) 、绿藻等。美洲和欧洲仅有少量海藻养殖。黄渤海主要以对虾的养殖为主,还会养殖一些贝类。而以上的这些文章可以帮我找到关于我所质疑的问题。有些文章指出了水产养殖业发展自身存在的问题的问题,有些文章指出了投饵和非投饵两种养殖方式自身污染对海洋环境的影响,还有一些是关于海水养殖所带来的饵料污染、化学污染、生物污染及其环境效应等方面进行了综述等方面的内容进行了研究和说明。 关于海水养殖所带来的这中污染方面的控制对策有物理和化学方法,物理和化学方法一般

(完整版)有机推断题解题方法详解

有机推断题解题过程详解 一、有机推断题的解题思路 解有机推断题,主要是确定官能团的种类和数目,从而得出是什么物质。首先必须全面地掌握有机物的性质以及有机物间相互转化的网络,在熟练掌握基础知识的前提下,要把握以下三个推断的关键: 1、审清题意(分析题意、弄清题目的来龙去脉,掌握意图)——有什么? 2、用足信息(准确获取信息,并迁移应用)——有什么联系?怎么用? 3、积极思考(判断合理,综合推断) 根据以上的思维判断,从中抓住问题的突破口,即抓住特征条件(特殊性质或特征反应 。但有机物的特征条件并非都有,因此还应抓住题给的关系条件和类别条件。关系条件提示有机物间的联系,类别条件可给出物质的范围和类别。关系条件和类别条件不但为解题缩小了推断的物质范围,形成了解题的知识结构,而且几个关系条件和类别条件的组合就相当于特征条件。然后再从突破口向外发散,通过正推法、逆推法、正逆综合法、假设法、知识迁移法等得出结论。最后作全面的检查,验证结论是否符合题意。 二、机推断题的突破口 解题的突破口也叫做题眼,题眼可以是一种特殊的现象、反应、性质、用途或反应条件,或在框图推断试题中,有几条线同时经过一种物质,往往这就是题眼。 【课前例题展示】 1.(2013年四川高考真题、17分) 有机化合物G是合成维生素类药物的中间体,其结构简式为: G的合成路线如下: 其中A~F分别代表一种有机化合物,合成路线中部分产物及反应条件已略去。 已知: 请回答下列问题: (1)G的分子式是;G中官能团的名称是。 (2)第①步反应的化学方程式是。 (3)B的名称(系统命名)是。 (4)第②~⑥步反应中属于取代反应的有(填步骤编号)。 (5)第④步反应的化学方程式是。

硝化反应和反硝化反应

一、硝化反应 在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。 硝化反应包括亚硝化和硝化两个步骤: NH4++1.5O 2 NO 2 -+H 2 O+2H+ NO 2-+0.5O 2 NO 3 - 硝化反应总方程式: NH 3+1.86O 2 +1.98HCO 3 - 0.02C 5 H 7 NO 2 +1.04H 2 O+0.98NO 3 --+1.88H 2 CO 3 若不考虑硝化过程硝化菌的增殖,其反应式可简化为 NH4++2O 2 NO 3 -+H 2 O+2H+ 从以上反应可知: 1)1gNH 4+-N氧化为NO 3 - 需要消耗2*50/14=7.14g碱(以CaCO 3 计) 2)将1gNH 4+-N氧化为NO 2 --N需要3.43gO 2 ,氧化1gNO 2 --N需要1.14gO 2 ,所以氧 化1gNH 4+-N需要4.57gO 2 。 硝化细菌所需的环境条件主要包括以下几方面: a.DO:DO应保持在2-3mg/L。当溶解氧的浓度低于0.5mg/L时,硝化反应过程 将受到限制。 b.PH和碱度:PH7.0-8.0,其中亚硝化菌6.0-7.5,硝化菌7.0-8.5。最适合 PH为8.0-8.4。碱度维持在70mg/L以上。碱度不够时,应补充碱 c.温度:亚硝酸菌最佳生长温度为35℃,硝酸菌的最佳生长温度为35~42℃。 15℃以下时,硝化反应速度急剧下降;5℃时完全停止。 d.污泥龄:硝化菌的增殖速度很小,其最大比生长速率为 0.3~0.5d-1(温度 20℃,pH8.0~8.4)。为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。对于实际应用中,活性污泥法脱氮,污泥龄一般11~23d。 e.污泥负荷:负荷不应过高,负荷宜0.05-0.15kgBOD/(kgMLSS·d)。因为硝化 菌是自养菌,有机物浓度高,将使异养菌成为优势菌种。总氮负荷应≤ 0.35kgTN/(m3硝化段·d),当负荷>0.43kg/(m3硝化段·d)时,硝化效率急剧 下降。

相关主题
文本预览
相关文档 最新文档