当前位置:文档之家› 短程硝化反硝化生物脱氮技术

短程硝化反硝化生物脱氮技术

短程硝化反硝化生物脱氮技术
短程硝化反硝化生物脱氮技术

短程硝化反硝化的研究详解

短程硝化反硝化的研究进展 摘要短程硝化反硝化技术主要用于处理高氨氮质量浓度和低C/N比的污水。成功实现短程硝化反硝化技术的关键是将硝化反应控制并维持在亚硝酸盐阶段,不进行亚硝酸盐至硝酸盐的转化。本文探讨了短程硝化反硝化的机理并对氨氧化菌的分子生物学研究进行了分析,同时探讨了A/SBR工艺的应用。 关键词短程硝化反硝化氨氧化菌A/SBR 1 引言 近年来,随着工业化和城市化进程的不断提高,大量氮、磷等营养物质进入水体,水体富营养化的现象日益严重,由于常规的活性污泥工艺硝化作用不完全,反硝化作用则几乎不发生,总氮的去除率仅在10%~30%之间,出水中还含有大量的氮和磷[1]。因此,只有对常规的活性污泥法进行改进,加强其生物脱氮功能,才能解决日益突出的受纳水体“富营养化”问题。目前,各城市污水处理厂均应用新的运行方法和控制策略进行脱氮除磷。随着新的微生物处理技术的介入,污水处理设施的功效得到显著提高。短程硝化反硝化技术对于处理这种污水在经济和技术上均具有较高的可行性。 短程硝化反硝化技术已成为脱氮领域研究的热点。其研究内容主要集中在实现氨氧化菌在反应器的优势积累、构造适于氨氧化菌长期稳定生长并抑制亚硝酸氧化菌的最佳环境因素、优化过程控制模式实现持续稳定的短程硝化等。 2 短程硝化反硝化的机理 生物脱氮包括硝化和反硝化两个反应过程。第一步是由氨氧化菌( ammonium oxidition bacteria,AOB) 将NH4-N氧化NO-2-N的亚硝化过程;第二步是由亚硝酸氧化菌( nitrite oxidition bacteria,NOB) 将NO-2-N氧化为NO-3-N的过程。然后通过反硝化作用将产生的NO-3-N经由NO-2-N、NO或N2O转化为N2,NO-2-N 是硝化和反硝化两个过程的中间产物。V oets等(1975)在处理高浓度氨氮废水的研究中,发现了硝化过程NO-2-N积累的现象,首次提出了短程硝化反硝化生物

新型生物脱氮工艺

新型生物脱氮工艺 摘要介绍六种新型生物脱氮工艺的基本原理和研究现状。随后介绍新型生物脱氮工艺 的原理和特征及工艺的发展前景。 关键词SHARON工艺;ANAMMOX工艺;SHARON-ANAMMOX组合工艺;OLAND 工艺;CANON工艺; 随着现代工业的不断发展、化肥的普遍应用及大量生活污水的排放,废水中的氮污染日益严重。各种水体富营养污染事件频繁爆发,破坏了水体原有的生态平衡,严重污染了周围环境。我国作为水资源十分短缺的国家,严格控制脱氮污水的超标排放是十分必要的。对于氮素污染的治理,国内外常见的工程技术有空气吹脱法、选择性离子交换法、折点氯化法、磷酸铵镁沉淀法、生物脱氮法等。其中,生物脱氮法使用范围广,投资及运转成本低,操作简单,无二次污染,处理后的废水易达标排放,已成为脱氮常用处理方法。 1 传统生物脱氮工艺 传统生物脱氮一般包括硝化和反硝化两个阶段,分别由硝化菌和反硝化菌完成。硝化反应是由一类化能自养好样的硝化细菌完成,主要包括两个步骤:第1步称为亚硝化过程,由亚硝酸菌将氨态氮转化为亚硝酸盐;第2步称为硝化过程,由硝酸菌将亚硝酸盐进一步氧化为硝酸盐。 反硝化作用是在厌氧或缺氧条件下反硝化菌把硝酸盐转化为氮气排除。该转化过程有许多中间产物,如HNO2、NO2和N2O。反硝化菌多数是兼性厌氧菌,在无分子态氮存在 的环境下,利用硝酸盐作为电子受体,有机物作为碳源和电子供体提供能量并被转化为CO2、H2O。 传统生物脱氮工艺在废水脱氮方面起到了一定的作用,但任存在以下问题[1]: (1)在低温冬季硝化菌群增殖速度慢且难以维持较高的生物浓度。造成系统总水力停留时间(HRT)长,有机负荷较低,增加了基建投资和运行费用。 (2)硝化过程是在有氧条件下完成的,需要大量的能耗; (3)反硝化过程需要一定的有机物,废水中的COD经过曝气有一大部分被去除,因此反硝化时往往要另外加入碳源; (4)系统为维持较高生物浓度及获得良好的脱氮效果,必须同时进行污泥回流和硝化液回流,增加了动力消耗及运行费用; (5)抗冲击能力弱,高浓度氨氮和亚硝酸盐进水会抑制硝化菌的生长;

常温下AO工艺的短程硝化反硝化

常温下A/O工艺的短程硝化反硝化 1 试验装置与设备 1.1 试验流程及设备 A/O工艺模型主要由合建式缺氧—好氧反应器和竖流沉淀池组成,如图1所示。 合建式反应器分为3个廊道,总有效容积为85L;沿池长方向设置若干成对的竖向插槽,配以相应大小的插板,可以将整个反应器沿池长方向分成若干个小格,在每个插板上开一个25mm的圆孔,安放时使相邻圆孔上下交错以防止发生短流;在反应器顶部布置环状曝气干管,并设置若干个小阀门,由橡胶管连接烧结砂头作为微孔曝气器,气量由转子流量计测量;根据缺氧段所占比例,选择安放若干搅拌器用于保持泥水混合均匀;在距池底20cm的高度上设置若干取样口。进水、污泥回流和内循环流量分别用3台蠕动泵控制。沉淀池的沉淀区呈圆柱形,直径为30cm;污泥斗为截头倒锥体,倾角为60°;采用中心管进水、周边三角堰出水方式。 1.2 原水 采用由黄豆粉、葡萄糖、NH4Cl、KH2PO4和NaHCO3与自来水配制的模拟生活污水。 1.3 分析项目与方法 COD:重铬酸钾法;MLSS:滤纸称重法;DO、温度:WTWDO测定仪及探头;pH值:WTWi nolab pH level2和NTC30电极;NO2--N,:N-(1-萘基)-乙二胺光度法;NO3--N,:麝香草酚分光光度法;NH3-N:纳氏试剂分光光度法。 2 结果及分析 2.1 对NH3-N的去除率和NO2--N的积累率 试验期间测得进水平均NH3-N浓度为40.21mg/L,对NH3-N的平均去除率为90.78%,出水中NO2--N,占TN的比例平均为75.29%。 在前51天,出水中NO2--N,含量占TN的50%以上(平均为87.36%),维持了稳定的NO2--N积累。第50~53天配制原水时以Na2CO3代替NaHCO3来提供碱度,使硝化类型发生显著变化,转化为全程硝化反硝化。从第54天开始配制原水时仍然以NaHCO3提供碱度,又出现了NO2--N,积累现象,但是在其后的试验中NO2--N,

短程硝化反硝化生物脱氮技术概述

短程硝化反硝化生物脱氮技术概述 [摘要] 首先阐述了传统硝化反硝化脱氮过程;其次重点介绍了短程硝化反硝化生物脱氮机理,过程实现的控制因素;最后提出了短程硝化反硝化脱氮的研究前景。 [关键词] 短程硝化反硝化;生物脱氮 随着水体受到氮素污染越来越严重,废水脱氮日益受到人们的重视。其中生物脱氮技术将有机氮和氨氮通过硝化反硝化过程去除具有无可比拟的发展前景。其中传统的生物脱氮技术认为要完全去除水中的氨态氮就必须要经过完整的硝化与反硝化过程,即以硝酸盐作为硝化的终点和反硝化的起点,这主要是基于要防止对环境危害较大的亚硝酸盐的积累以及对好氧硝化菌和兼性厌氧反硝化菌不能在同一个反应器里同时大量存在的认识导致的。而现在的大量研究表明,好氧硝化菌和兼性厌氧反硝化菌是可以在同一个反应器里共同起作用的。因为在整体和每一单元填料表面所附着的生物膜上都存在基质和溶解氧的浓度梯度分布,这就为各种生态类型的微生物在生物膜内不同部位占据优势生态位提供了条件。由于短程硝化反硝化脱氮比传统的脱氮技术具有很多的优点,因此引起了国内外研究者的广泛关注,对影响短程硝化反硝化的因素以及实现和维持短程硝化反硝化的工艺控制进行了大量的研究。 1.传统硝化反硝化脱氮机理 1.1 硝化反应 硝化反应是由一类自养耗氧微生物完成的,包括两个步骤:第一步为亚硝化过程,是由亚硝酸菌将氨氮转化为亚硝酸盐;第二步为硝化过程,由硝酸菌将亚硝酸盐进一步氧化为硝酸盐,亚硝酸菌和硝酸菌统称为硝化菌,都利用无机碳化合物如CO32-、HCO3-和CO2作为碳源,从NH3、NH4+或NO2-的氧化反应中获取能量。 亚硝酸菌和硝酸菌的特性大致相似,但前者的世代期较短,生长率较快,因此较能适应冲击负荷和不利的环境条件,当硝酸菌受到抑制时,有可能出现NO2-积累的情况。 1.2反硝化反应 反硝化反应是由一群异养性微生物完成的生物化学过程,它的主要过程是在缺氧的条件下,将硝化过程中产生的亚硝酸盐和硝酸盐还原成气态氮。反硝化细菌多数是兼性细菌,有分子态氧存在时,反硝化氧化分解有机物,利用分子氧作为最终电子受体。在无分子态氧条件下,反硝化菌利用硝酸盐和亚硝酸盐中的N5+和N3-作为电子受体,O2-作为受氢体生成H2O和OH-碱度,有机物则作为碳源和电子供体提供能量,并得到氧化稳定。 反硝化过程中亚硝酸盐和硝酸盐的转化时通过反硝化细菌的同化作用和异化作用来完成的。异化作用就是将NO2-和NO3-还原为NO、N2O、N2等气体物质,主要是N2。而同化作用是反硝化菌将NO2-和NO3-还原成为NH3-N,供新细胞合成使用,使氮成为细胞质的成分,此过程可成为同化反硝化。 反硝化反应一般以有机物为碳源和电子供体。当环境中缺乏有机物时,微生物还可以消耗自身的原生质,进行所谓的内源反硝化。反应式如下:C5H7O2N+4NO3-→5CO2+NH3+2N2+4OH- 可见内源反硝化的结果是细胞原生质的减少,并会有NH3的生成,因此废

废水生物处理基本原理—生物脱氮原理

废水生物处理基本原理 ——废水生物脱氮原理 1.1.1 废水中氮的存在形式 氮在废水中有以下几种形式 无机氮 N anorgan .: ? 氨氮 NH 4-N ? 亚硝氮 NO 2-N ? 硝氮 NO 3-N 有机氮 N organ . 总氮 N total = N anorgan . + N organ . 总凯氏氮 TKN = N organ . + NH 4-N 以氮的形式氮化合物的换算关系如下: NH NH N NH NO NO N NO NO NO N NO 4128541285 4 2328523285 2 3442834428 3 ++ -- -- ?→??-?→???→??-?→???→??-?→??/,*,/,*,/,*, 1.1.2 废水生物脱氮的基本过程 ①氨化(Ammonificaton ):废水中的含氮有机物,在生物处理过程中被好氧或厌氧异养型微生物氧化分解为氨氮的过程; ②硝化(Nitrification ):废水中的氨氮在好氧自养型微生物(统称为硝化菌)的作用下被转化为NO 2- 和NO 3-的过程; ③反硝化(Denitrification ):废水中的NO 2- 和/或NO 3-在缺氧条件下在反硝化菌(异养型细菌)的作用下被还原为N 2的过程。

1.1.3 氨化作用基本原理 在废水中部分氮以无机物的形式存在。蛋白质被生化降解为氨氮 的作用成为氨化作用。尿素在酶的催化下降解也属于该作用。 举例: COOH O ∣∣ R - C - H + H2O + 1/2 O2 ----> R - C + NH4+ + OH-∣∣ NH2COOH NH2 ∣ C=0 + 3 H2O 尿素酶> 2 NH4++ 2 OH-+ CO2 ∣ NH2

生物脱氮新技术研究进展_周少奇

第1卷第6期2000年12月   环境污染治理技术与设备 T echniques and Equipment fo r Enviro nmental Pollutio n Co ntrol   V ol.1,N o.6 Dec.,2000生物脱氮新技术研究进展① 周少奇 周吉林 (华南理工大学环境科学与工程系,广州510640) 摘 要 本文对短程硝化反硝化、同时硝化反硝化及厌氧氨氧化等生物脱氮新技术的研究和开发 进展进行了简单的综述和讨论,并指出了这些新技术的特点和研究开发应用的前景。 关键词:生物脱氮 短程硝化反硝化 同时硝化反硝化 厌氧氨氧化 脱氮处理是废水处理中的重要环节之一。废水中氮的去除方法有物理法、化学法和生物法三种,而生物法脱氮又被公认为是一种经济、有效和最有发展前途的方法之一。目前,废水的脱氮处理大多采用生物法。废水生物脱氮技术经过几十年的发展,无论是在理论认识上还是在工程实践方面,都取得了很大的进步。 传统生物脱氮途径一般包括硝化和反硝化两个阶段,硝化和反硝化反应分别由硝化菌和反硝化菌作用完成,由于对环境条件的要求不同,这两个过程不能同时发生,而只能序列式进行,即硝化反应发生在好氧条件下,反硝化反应发生在缺氧或厌氧条件下。由此而发展起来的生物脱氮工艺大多将缺氧区与好氧区分开,形成分级硝化反硝化工艺,以便硝化与反硝化能够独立地进行。1932年,Wuhrmann利用内源反硝化建立了后置反硝化工艺(post-denitrification),Ludzack和Ettinger于1962年提出了前置反硝化工艺(pre-denitrificatio n),1973年Barnard结合前面两种工艺又提出了A/O工艺,以及后又出现了各种改进工艺如Bardenpho、Phoredox(A2/O)、UC T、JBH、AAA工艺等,这些都是典型的传统硝化反硝化工艺[1]。 然而,生物脱氮技术的新发展却突破了传统理论的认识。近年来的许多研究表明[2~12]:硝化反应不仅由自养菌完成,某些异养菌也可以进行硝化作用;反硝化不只在厌氧条件下进行,某些细菌也可在好氧条件下进行反硝化;而且,许多好氧反硝化菌同时也是异养硝化菌(如Thiosphaera pantotropha菌),并能把NH4+氧化成NO2-后直接进行反硝化反应。生物脱氮技术在概念和工艺上的新发展主要有:短程(或简捷)硝化反硝化(shortcut nitrification-denitrification)、同时硝化反硝化(simultaneous nitrification-denitrifi-cation-SND)和厌氧氨氧化(Anaerobic Ammonium Oxidation-ANAMMOX)。 ①广东省重点科技攻关项目、广东省自然科学基金项目(980598)、广州市重点科技攻关项目资助

污水生物脱氮工艺研究

污水生物脱氮工艺研究 短程硝化是将传统的硝化反应控制在亚硝化阶段,与传统工艺相比,短程硝化反硝化需氧量减少25% ,碳源需求减少40% ,具有节省曝气能耗、缩短反应时间、减少污泥生成量、减少反应器有效容积和节约基建费用等优点 ,因此如何实现与维持稳定的短程硝化成为目前污水生物脱氮领域的研究热点。 硝化菌是一种自养菌,生长缓慢,对环境因子变化十分敏感,采用微生物固定化技术可解决硝化菌流失问题,提高系统中硝化菌浓度,已得到广泛的研究和应用。但是大部分实验还都停留在传统的以包埋材料为载体的“滴下造粒法”和“成型切断法”阶断,由于载体材料自身(微球和包埋块)的限制,活性填料在机械强度、传质、稳定性和处理效率等方面都存在一定的问题,更为主要的缺陷是这些填料不具有较好的水力学特征,无法充分发挥填料的硝化活性。因此,开发出稳定性好、处理效率高、传质效果好的固定化生物活性填料对氨氮废水的处理具有十分重要意义。 本研究从污水处理厂获取的剩余污泥经筛选富集培养得到的硝化菌群(混合菌)为菌源,采用包埋法制备的固定化填料为载体,重点研究了溶解氧(dissolved oxygen,DO) 对活性填料发生短程硝化的影响,利用高游离氨(free ammonia,FA)对亚硝酸盐氧化菌(nitrite oxidizing bacteria,NOB)产生抑制作用使氨氧化细菌(ammonia oxidizing bacteria,AOB)成为优势菌群(混合菌),实现了在高氨氮负荷下序批次反应器(SBR)短程硝化的快速启动及稳定运行,填料中的实验还考察该新型活性填料的抗冲击负荷能力。 1 材料与方法 1. 1实验用水 实验用水采用人工模拟配水,按氨氮浓度为100 mg·L - 1 时各基质组分质量浓度为:NH4 Cl 382. 81mg·L - 1 ,NaHCO3 1 272. 02 mg·L - 1 ,KH2 PO4 112 mg·L - 1 ,CaCl2 ·2H2 O 111 mg·L - 1 ,MgSO4 15 mg·L - 1 ,FeSO4 ·7H2 O 11. 1 mg·L - 1 ,NaCl 500 mg·L - 1 ,进水投加的微量元素:H3 BO3 14 mg·L - 1 ,MnCl2 ·4H2 O 990 mg·L - 1 ,CuSO4 ·5H2 O 250 mg·L - 1 ,CoCl2 ·6H2 O 240 mg·L - 1 ,ZnSO4 ·7H2 O 430 mg·L - 1 ,NiCl2 ·6H2 O 190 mg·L - 1 ,NaMoO4 ·2H2 O 220 mg·L - 1 (每1 L 进水投加1 mL 微量元素溶液,以满足微生物生长需求),进水氨氮浓度发生变动时,其他组分按比例增减。 1. 2 分析项目及测试方法 NH 4+ -N:纳氏试剂分光光度法;NO2- -N:N-(1-萘基)-乙二胺分光光度法;NO3- -N:紫外分光光度法;pH值:PHS-2C 实验室pH 计;DO:德国WTW inoLab Oxi 7310 实验室台式溶氧仪; 1. 3 菌种的来源及活性填料的制备 本实验包埋所用菌源来自于北京市某污水处理厂二沉池剩余污泥,经筛选富集培养后的硝化菌群。具体做法如下:首先将剩余污泥过度曝气,利用气体扰动作用和异氧菌的内源呼吸代谢使污泥絮体解体;然后将解体污泥用纱布进行过滤去除无机颗粒杂质,保留滤液;最后对

废水生物脱氮基本原理

废水生物脱氮基本原理 关于氨氮消耗碱度的理论计算问题书上写的理论上降解1克氨氮要消耗7.14克碱度(以碳酸钙计算),这里是不是说就是消耗7.14克碳酸钙啊? 果换算成纯碱又如何计算?换算成小苏打又怎么计算呢?

消耗的是碳酸氢根。碳酸钙分子量100,纯碱106。以碳酸钙计算的量乘以1.06就是需要的纯碱量。 在不考虑细菌增值硝化消耗的碱度为1g氨氮7.14g碱度(碳酸钙),在考虑细菌增值的情况下是8.62g碱度(碳酸钙)。 碱度与硝化的比例系数为7.1 即每氧化1mg氨氮为硝酸根需消耗7.1mg碱度而发生反硝化反应时每反应掉1mg硝酸根可以产生3.57mg碱度所以,脱氮反应时为了取得好的效果必须不断补充碱度积磷菌、反硝化菌和硝化细菌生长的最佳pH值在中性或弱碱性范围,当 pH 值偏离最佳值时,反应速度逐渐下降,碱度起着缓冲作用。污水厂生产实践表明,为使好氧池的pH值维持在中性附近,池中剩余总碱度宜大于 70mg/L。每克氨氮氧化成硝态氮需消耗 7.14g 碱度,大大消耗了混合液的碱度。反硝化时,还原 1g 硝态氮成氮气,理论上可回收 3.57g 碱度,此外,去除1g五日生化需氧量可以产生0.3g 碱度。出水剩余总碱度可按下式计算,剩余总碱度=进水总碱度+0.3×五日生化需氧量去除量+3×反硝化脱氮量一7.14×硝化氮量,式中 3 为美国 EPA(美国环境保护署)推荐的还原1g硝态氮可回收3g碱度。 由硝化方程式可知,随着NH3-N被转化成NO3—-N,会产生部分矿化酸度H+,这部分酸度将消耗部分碱度,每克NH3-N转化成NO3—-N 约消耗7.14g碱度(以CaC03计)。因而当污水中的碱度不足而TKN负荷又较高时,便会耗尽污水中的碱度,使混合液中的pH值降低至7.0

A_O生物脱氮工艺处理生活污水中试_一_短程硝化反硝化的研究

第26卷第5期 2006年5月 环 境 科 学 学 报 Acta Scientiae Circu m stantiae Vol .26,No .5May,2006 基金项目:国家自然科学基金-国际(地区)重大合作项目(No .50521140075);国家自然科学基金(No .20377003);北京市重点实验室开放基金 Supported by the Nati onal Natural Science Foundati on of China (No .20377003);The Key I nternati onal Cooperative Pr oject of NSFC (No .50521140075);The Open Pr oject of Key Laborat ory of Beijing 作者简介:马 勇(1976—),男,博士;3通讯作者(责任作者),E 2mail:pyz@bjut .edu .cn B i ography:MA Yong (1976—),male,Ph . D.;3Correspond i n g author ,E 2mail:pyz@bjut .edu .cn 马 勇,王淑莹,曾 薇,等.2006.A /O 生物脱氮工艺处理生活污水中试(一)短程硝化反硝化的研究[J ].环境科学学报,26(5):703-709 Ma Y,W ang S Y,ZengW ,et al .2006.A /O p il ot 2scale nitr ogen re moval p r ocess treating domestic wastewater Ⅰ.The study of short 2cut nitrificati on and denitrificati on[J ].Acta Scientiae Circum stantiae,26(5):703-709 A /O 生物脱氮工艺处理生活污水中试(一)短程硝化 反硝化的研究 马 勇1 ,王淑莹2 ,曾 薇2 ,彭永臻 1,2,3 ,周 利 3 1.哈尔滨工业大学,市政与环境工程学院,哈尔滨150090 2.北京工业大学,北京市水质科学与水环境恢复工程重点实验室,北京10002231青岛理工大学环境与市政学院,青岛266033 收稿日期:2005208219 修回日期:2006203221 录用日期:2006203221 摘要:应用A /O 生物脱氮中试试验装置处理实际生活污水,从pH 、污泥浓度(MLSS )、自由氨(F A )、温度、污泥龄(SRT )、溶解氧(DO )和水力停留时间(HRT )等方面系统的分析了A /O 工艺实现短程硝化反硝化的主要影响因素。结果表明,DO 浓度是A /O 工艺实现短程硝化反硝化的主要因素,由F I SH 检测发现长期控制低DO 浓度(0.3~0.7mg ?L -1)可以导致亚硝酸盐氧化菌(NOB )的淘洗,从而实现稳定的亚硝酸盐积累率,试验获得平均亚硝酸氮积累率为85%,有时甚至超过95%。提高DO 浓度,1周内亚硝酸氮积累率从85%降到10%,继续维持低DO 浓度,大约需要2个污泥龄时间才可重新恢复到较高的亚硝酸氮积累率(>75%)。低DO 浓度下,试验初期污泥沉淀性能随着亚硝酸氮积累率的增加而变差,而在试验后期,无论亚硝酸氮积累率多高,污泥沉淀性能一直很好,S V I 值处于80~120mL ?g -1关键词:A /O 中试装置;生活污水;短程硝化反硝化;低DO,亚硝酸氮积累;F I SH 文章编号:025322468(2006)0520703207 中图分类号:X70311 文献标识码:A A /O p ilot 2sca le n itrogen re m ova l process trea ti n g do m esti c wa stewa ter Ⅰ.The study of short 2cut n itr i f i ca ti on and den itr i f i ca ti on MA Yong 1 ,ZENG W ei 2 ,WANG Shuying 2 ,PENG Yongzhen 1,2,3 1.School of Munici pal and Envir onmental Engineering,Harbin institute of Technol ogy,Harbin 150090 2.Key Laborat ory of Beijing f orW ater Envir onmental Recovery Engineering,Beijing University of Technol ogy,Beijing 100022 3.I nstitute of Envir onment &Munici pal Engineering,Q ingdao technol ogical University,Q ingdao 266033Rece i ved 19August 2005; rece i ved in revised for m 21March 2006; accepted 21March 2006 Abstract:The effect of main fact ors,such as pH,MLSS,F A,T,SRT,DO and HRT,on short 2cut nitrificati on and denitrificati on was syste matically analyzed in a p il ot 2scale A /O nitr ogen re moval p lant treating domestic waste water .The experi m ental results de monstrated that DO is the main fact or t o achieve short 2cut nitrificati on in the study .Fish analysis p resented that a l ong 2ter m operati on at l ow DO (0.3~0.7mg ?L -1)concentrati on lead t o the eli m inati on of a mmonia oxidizing bacteria (AOB ),s o as t o realize nitrite accumulati on .The average nitrite accumulati on rati o could reach 85%;s ometi m es the nitrite accumulati on rati o was higher than 95%.The short 2cut nitrificati on and denitrificati on was da maged with the nitrite accumulati on rati o decreasing fr om 85%t o 10%when DO was increased above 1.5mg ?L -1.The nitrite accumulati on rati o was resumed t o 75%after about t w o sludge ages with the DO kep t in l ow level .The S V I increased with the increase of nitrite accumulati on rati o in the initial peri od,but the S V I maintained at a p r oper level of 80~120mL ?g -1in the after ti m e no matter how high or l ow the nitrite accumulati on rati o was .Keywords:A /O p il ot p lant;domestic waste water;short 2cut nitrificati on and denitrificati on;DO;nitrite accumulati on 生物脱氮包括硝化和反硝化两个反应过程.第 一步是由亚硝化菌(N itroso m onas )将NH + 42N 氧化为

污水生物脱氮技术原理

污水生物脱氮技术原理、影响因素和3大关键菌种 本篇主要讲解污水生物脱氮原理,包括污水脱氮方法简介、生物脱氮技术原理、污水生物脱氮影响因素、生物脱氮作用中的三类关键菌种。 01、污水脱氮方法简介 目前含氮污水脱氮,常用的方法有生物法、物理法、化学法、电化学法等四种方法,其中物理法大多采用加碱吹脱,化学法最常用的是折点加氯法,电化学法通过外加直流电,在阳极产生强氧化剂,在阴极产生强还原环境和碱性环境,相互作用脱氮。不过物理法和化学法、电化学法都不是咱们注册考试考察重点内容,《排水工程》考察重点脱氮方法为生物脱氮方法。 02、生物脱氮技术原理 说到生物脱氮,就离不开缺氧的概念,一定要注意缺氧和厌氧的区别,其中缺氧是没有分子氧但是有硝酸根、亚硝酸根,而厌氧则是既没有分子氧也没有氮的氧化物,要求要比缺氧更加严格。 水体中的总氮=硝酸盐氮+亚硝酸盐氮+有机氮+氨氮,其中有机氮+氨氮=凯氏氮,硝酸盐氮+亚硝酸盐氮=硝态氮,所以总氮=凯氏氮+硝态氮。这是一个知识常考点,需要大家弄清楚这几个氮的相互包含关系。 生物脱氮的原理,大致可以分为以下4步骤描述: 1.有机氮在氨化细菌的作用下,发生氨化作用生成氨氮,注意氨化作用在厌氧环境、好氧环境均能进行,且氨化作用能够产生碱度。 2.水中氨氮再亚硝酸菌的亚硝化作用下,生成亚硝酸根,亚硝化过程消耗碱度,且在好氧条件下进行。 3.亚硝酸菌在硝酸菌的作用下,发生硝化作用,继续生成硝酸根,这个过程也是在好氧条件下进行的,这个过程也消耗碱度,但是消耗量要比亚硝化过程少。 4.生成的硝酸根在缺氧条件下,由反硝化细菌发生反硝化作用,生成氮气排入大气,这个过程能够大大增加碱度,可以适当弥补前面阶段消耗的碱度。 对于最常规的生物脱氮,就是以上4步骤,但是目前研究最多的还有短程反硝化脱氮,也就是进行到第2步,生成亚硝酸根时,就在缺氧条件下由反硝化细菌把亚硝酸根转变为氮气排除进入大气中,省略了第3步骤,从而提高了脱氮

短程与同步硝化反硝化

新型脱氮工艺研究 一、短程硝化反硝化 1、简介 生物脱氮包括硝化和反硝化两个反应过程,第一步是由亚硝化菌将NH4+-N 氧化为NO2--N的亚硝化过程;第二步是由硝化菌将NO2--N氧化为氧化为NO3--N 的过程;然后通过反硝化作用将产生的NO3—N经由NO2--N转化为N2,NO2--N 是硝化和反硝化过程的中间产物。1975年V oets等在处理高浓度氨氮废水的研究中,发现了硝化过程中NO2--N积累的现象,首次提出了短程硝化反硝化脱氮的概念。如图1所示。 NH4+ NO2-NO3-NO2-N2 传统生物脱氮途径 NH+NO-N2 短程硝化-反硝化生物脱氮途径 图1 传统生物脱氮途径和短程 硝化-反硝化生物脱氮途径 比较两种途径,很明显,短程硝化反硝化比全程硝化反硝化减少了NO2- NO3-和NO3-NO2-两步反应,这使得短程硝化反硝化生物脱氮具有以下优点: ⑴可节约供氧量25%。节省了NO2-氧化为NO3-的好氧量。 ⑵在反硝化阶段可以节省碳源40%。在C/N比一定的情况下提高了TN的去除 率。并可以节省投碱量。 ⑶由于亚硝化菌世代周期比硝化菌短,控制在亚硝化阶段可以提高硝化反应速 度和微生物的浓度,缩短硝化反应的时间,而由于水力停留时间比较短,可以减少反应器的容积,节省基建投资,一般情况下可以使反应器的容积减少30%~40%。

⑷短程硝化反硝化反应过程在硝化过程中可以减少产泥25%~34%,在反硝化过 程中可以减少产泥约50%。 由于以上的优点,使得短程硝化-反硝化反应尤其适应于低C/N比的废水,即高氨氮低COD,既节省动力费用又可以节省补充的碳源的费用,所以该工艺在煤化工废水方面非常可行。 2、影响短程硝化反硝化的因素 2.1温度的影响 温度对微生物影响很大。亚硝酸菌和硝酸菌的最适宜温度不相同,可以通过调节温度抑制硝酸菌的生长而不抑制亚硝酸菌的方法,来实现短程硝化反硝化过程。国内的高大文研究表明:只有当反应器温度超过28℃时,短程硝化反硝化过程才能较稳定地进行。 2.2 pH值的影响 pH较低时,水中较多的是氨离子和亚硝酸,这有利于硝化过程的进行,此时无亚硝酸盐的积累;而当pH较高时,可以积累亚硝酸盐。因此合适的pH环境有利于亚硝化菌的生长。pH对游离氨浓度也产生影响,进而也会影响亚硝酸菌的活性,研究表明:亚硝化菌的适宜pH值在8.0附近,硝化菌的pH值在7.0附近。因此,实现亚硝化菌的积累的pH值最好在8.0左右。 2.3溶解氧(DO)的影响 DO对控制亚硝酸盐的积累起着至关重要的作用。亚硝化反应和硝化反应均是好氧过程,而亚硝酸菌和硝酸菌又存在动力学特征的差异:低DO条件下亚硝酸菌对DO的亲和力比硝酸菌强。可以通过控制DO使硝化过程只进行到氨氮氧化为亚硝态氮阶段,从而淘汰硝酸菌,达到短程硝化的目的。 2.4泥龄的影响 氨氮的硝化速率比亚硝态氮的氧化速率快,而亚硝酸菌的世代周期比硝化菌的世代周期短,因此可以通过控制HRT使泥龄在亚硝酸菌和硝酸菌的最小停留时间之间,使亚硝酸菌成为优势菌种,逐步淘汰硝酸菌。 2.5其它因素的影响

水处理生物脱氮除磷工艺

生物脱氮除磷工艺 第一节 概述 一、营养元素的危害 氮素物质对水体环境和人类都具有很大的危害,主要表现在以下几个方面: 氨氮会消耗水体中的溶解氧; 氨氮会与氯反应生成氯胺或氮气,增加氯的用量; 含氮化合物对人和其它生物有毒害作用:① 氨氮对鱼类有毒害作用;② NO 3- 和NO 2-可被转化为亚硝胺——一种“三致”物质;③ 水中NO 3-高,可导致婴儿患变性血色蛋白症——“Bluebaby ”; 加速水体的“富营养化”过程;所谓“富营养化”就是指水中的藻类大量繁殖而引起水质恶化,其主要因子是N 和P (尤其是P );解决的办法主要就是要严格控制污染源,降低排入水环境的废水中的N 、P 含量;对于城市废水来说,利用传统的活性污泥法进行处理,对N 的去除率一般只有40%左右,对磷的去除率一般只有20~30%。 二、脱氮的物化法 1、氨氮的吹脱法: -++?+OH NH O H NH 423 2 2每 3 采用斜发沸石作为除氨的离子交换体。 出水 折点加氯法脱氯工艺流程

1、铝盐除磷 4343AlPO PO Al →++ + 一般用Al 2(SO 4)3,聚氯化铝(PAC )和铝酸钠(NaAlO 2) 2、铁盐除磷:FePO 4 Fe(OH)3 一般用FeCl 2、FeSO 4 或 FeCl 3 Fe 2(SO 4)3 3、石灰混凝除磷 O H PO OH Ca HPO OH Ca 23452423))((345+→++--+ 向含磷的废水中投加石灰,由于形成OH -,污水的pH 值上升,磷与Ca 2+反应,生成羟磷灰石。 第二节 生物脱氮工艺与技术 一、活性污泥法脱氮传统工艺 1、Barth 提出的三级活性污泥法流程: 第一级曝气池的功能:① 碳化——去除BOD 5、COD ;② 氨化——使有机氮转化为氨氮; 第二级是硝化曝气池,投碱以维持pH 值; 第三级为反硝化反应器,可投加甲醇作为外加碳源或引入原废水。 该工艺流程的优点是氨化、硝化、反硝化分别在各自的反应器中进行,反应速率较快且较彻底;但七缺点是处理设备多,造价高,运行管理较为复杂。 2、两级活性污泥法脱氮工艺 与前一工艺相比,该工艺是将其中的前两级曝气池合并成一个曝气池,使废水在其中同时实现碳化、氨化和硝化反应,因此只是在形式上减少了一个曝气池,并无本质上的改变。 二、缺氧——好氧活性污泥法脱氮系统(A —O 工艺)

短程硝化反硝化工艺

短程硝化反硝化工艺 Final approval draft on November 22, 2020

短程硝化反硝化工艺简析 广东石油化工学院化工与环境工程学院环境08-1冼真文 摘要:指出短程硝化反硝化工艺是目前国内外生物脱氮技术研究应用的热点,通过介绍短程硝化反硝化工艺原理,分析了不同工艺稳定亚硝态氮积累实现短程硝化的工艺控制措施,对短程硝化反硝化工艺今后的研究和应用进行了展望。 关键词:短程硝化反硝化;氨氧化细菌;硝化;反硝化 短程硝化反硝化工艺是目前国内外生物脱氮技术研究应用的热点。在生物脱氮硝化过程中,氨氧化细菌将氨氮氧化为亚硝态氮,亚硝酸盐氧化细菌将亚硝态氮氧化为硝态氮。控制硝化反应条件,使硝化反应只进行到亚硝态氮阶段并实现稳定的亚硝态氮积累,是各种短程硝化反硝化工艺稳定运行的关键。短程硝化反硝化工艺主要包括SHARON,OLAND和CANON工艺,同时国内外专家学者也对SBR,A/O,MBR,曝气生物滤池等工艺的短程硝化反硝化进行了深入研究。 1短程硝化反硝化原理 传统的脱氮工艺是将NH 4+氧化成NO 2 -,再氧化成NO 3 -;起作用的分别是亚硝酸菌和硝酸菌,统 称为硝化菌,可得如下结论:亚硝化过程产生的能量比硝化过程产生的能量多,因而前者反应速率较后者快;亚硝化过程中产生大量的H+,使系统pH值降低,而硝化过程对系统的pH值无影响;亚硝化过程和硝化过程好氧比为3:1;亚硝酸菌和硝酸菌的生理特性大致相似,但前者的时代周期短,生长较快,因此较能适应冲击负荷和不利的环境条件。当硝酸菌受到抑制的时候,将会出现NO 2 -的积累。 很显然,在传统的硝化-反硝化脱氮过程中,在反硝化菌的作用下,反硝化过程既可从硝酸盐 开始,也可以从亚硝酸盐开始。但由NO 2-转化为NO 3 -,然后由NO 3 -再转化为NO 2 -的重复转化过程 中,要消耗更多的溶解氧和有机碳源。如果在实际过程中,控制这一转化过程,使NH 4 +全部或绝 大部分转化为NO 2-而不是NO 3 -,由NO 2 -直接进行反硝化,称此过程为短程硝化-反硝化,经过环境 工作者的不懈努力,短程硝化-反硝化过程在许多反应器都得以实现。与传统脱氮工艺过程相比,短程硝化-反硝化体现出以下优势。节能:硝化阶段,供氧量节省近25%,降低能耗;节约外加碳 源:从NO 2-到N 2 要比从NO 3 -到N 2 的反硝化过程中,减少40%的有机碳源;可以缩短水力停留时间: 在高氨环境下,NH 4+的硝化速率和NO 2 -的反硝化速率均比NO 2 -的氧化速率和NO 3 -的反硝化速率快, 因此水力停留时间可以缩短,反应器的容积也相应减小;可减少剩余污泥产量:亚硝酸菌表观产 率系数为0.04~0.13gVSS/gN,硝酸菌的表观产率系数为0.02~0.07gVSS/gN,NO 2-反硝化菌和NO 3 -反 硝化菌的表观产率系数分别为0.345gVSS/gN和0.765gVSS/gN,因此短程硝化反硝化过程中可以减少产泥24~33%,在反硝化过程中可少产泥50%。 2影响亚硝酸盐积累的因素 由于废水生物处理反应器均未开放的非纯种培养系统,如何控制硝化停止亚硝化阶段是实现短程生物脱氮的关键。传统硝化过程是由亚硝酸菌和硝酸菌协同完成的,由于这两类细菌在开放的生态系统中形成较为紧密的互生关系,将氨氧化为硝酸,因此完全的亚硝酸化是不可能的。短

污水处理AO工艺脱氮

污水处理A/O工艺脱氮除磷一般的活性污泥法以去除污水中可降解有机物和悬浮物为主要目的,对污水中氮、磷的去除有限。随着对水体环境质量要求的提高,对污水处理厂出水的氮、磷有控制也越来越严格,因此有必要采取脱氮除磷的措施。一般来说,对污水中氮、磷的处理有物化法和生物法,而生物法脱氮除磷具有高效低成本的优势,目前出现了许多采用生物脱氮除磷的新工艺。 一、生物脱氮除磷工艺的选择 按生物脱氮除磷的要求不同,生物脱氮除磷分为以下五个层次: (1)去除有机氮和氨氮; (2)去除总氮; (3)去除磷; (4)去除氨氮和磷; (5)去除总氮和磷。 对于不同的脱氮除磷要求,需要不同的处理工艺来完成,下表列出了生物脱氮除磷5个层次对工艺的选择。 生物脱氮除磷5个层次对工艺的选择 对于不同的TN出水水质要求,需要选择不同的脱氮工艺,不同的TN出水水质要求与脱氮工艺的选择见下表。 不同TN出水水质要求对脱氮工艺的选择 生物除磷工艺所需B0D5或COD与TP之间有一定的比例要求,生物除磷工艺所需BOD5或COD与T比例P的要求见下表。 生物除磷工艺所需BOD5或COD与TP的比例要求 二、A/O工艺生物脱氮工艺 (一)工艺流程 A/0工艺以除氮为主时,基本工艺流程如下图1。

图1 缺氧/好氧工艺流程 A/O工艺有分建式和合建式工艺两种,分别见图2、图3。分建式即硝化、反硝化与BOD 的去除分别在两座不同的反应器内进行;合建式则在同一座反应器内进行。更多污水处理技术文章参考易净水网https://www.doczj.com/doc/895747873.html, 合建式反应器节省了基建和运行费用以及容易满足处理工程对碳源和碱度等条件的要求,但受以下闲素影响:溶解氧(0.5~1.5mg/L)、污泥负荷[0. 1~ 0. 15kgBOD5/ (kgMLVSS?d)]、C/N 比(6 -7)、pH值( 7. 5~8.0) ,而不易控制。 对于pH值,分建式A/O工艺中,硝化液一部分回流至反硝化池,池内的反硝化脱氮菌以原污水中的有机物作碳源,以硝化液中NOx-N中的氧作为电子受体,将NOz-N还原成N2 ,不需外加碳源。反硝化池还原1gNOx -N 产生3.57g碱度,可补偿硝化池中氧化1gNH3-N所需碱度(7. 14g)的一半,所以对含N浓度不高的废水,不必另行投碱调pH 值,反硝化池残留的有机物可在好氧硝化池中进一步去除。 一般来说分建式反应器(A/O工艺)硝化、反硝化的影响因素控制范围可以相应增大,更为有效地发挥和提高活性污泥中某些微生物(如硝化菌、反硝化菌等)所特有的处理能力,从而达到脱、处理难降解有机物的目的,减少了生化池的容积,提高了生化处理效率,同时也节省了环保投资及运行费用;而合建式A/O 工艺便于对现有推流式曝气池进行改造。 图2 分建式缺氧一好氧活性污泥脱氮系统

短程硝化反硝化工艺

短程硝化反硝化工艺简析 广东石油化工学院化工与环境工程学院环境08-1 冼真文 摘要 :指出短程硝化反硝化工艺是目前国内外生物脱氮技术研究应用的热点 ,通过介绍短程硝化反硝化工艺原理 ,分析了不同工艺稳定亚硝态氮积累实现短程硝化的工艺控制措施 ,对短程硝化反硝化工艺今后的研究和应用进行了展望。 关键词 :短程硝化反硝化;氨氧化细菌;硝化;反硝化 短程硝化反硝化工艺是目前国内外生物脱氮技术研究应用的热点。在生物脱氮硝化过程中,氨氧化细菌将氨氮氧化为亚硝态氮,亚硝酸盐氧化细菌将亚硝态氮氧化为硝态氮。控制硝化反应条件 ,使硝化反应只进行到亚硝态氮阶段并实现稳定的亚硝态氮积累,是各种短程硝化反硝化工艺稳定运行的关键。短程硝化反硝化工艺主要包括SHARON,OLAND 和CANON工艺 ,同时国内外专家学者也对SBR ,A/ O,MBR,曝气生物滤池等工艺的短程硝化反硝化进行了深入研究。 1 短程硝化反硝化原理 传统的脱氮工艺是将NH4+氧化成NO2-,再氧化成NO3-;起作用的分别是亚硝酸菌和硝酸菌,统称为硝化菌,可得如下结论:亚硝化过程产生的能量比硝化过程产生的能量多,因而前者反应速率较后者快;亚硝化过程中产生大量的H+,使系统pH值降低,而硝化过程对系统的pH值无影响;亚硝化过程和硝化过程好氧比为3:1;亚硝酸菌和硝酸菌的生理特性大致相似,但前者的时代周期短,生长较快,因此较能适应冲击负荷和不利的环境条件。当硝酸菌受到抑制的时候,将会出现NO2-的积累。 很显然,在传统的硝化-反硝化脱氮过程中,在反硝化菌的作用下,反硝化过程既可从硝酸盐开始,也可以从亚硝酸盐开始。但由NO2-转化为NO3-,然后由NO3-再转化为NO2-的重复转化过程中,要消耗更多的溶解氧和有机碳源。如果在实际过程中,控制这一转化过程,使NH4+全部或绝大部分转化为NO2-而不是NO3-,由NO2-直接进行反硝化,称此过程为短程硝化-反硝化,经过环境工作者的不懈努力,短程硝化-反硝化过程在许多反应器都得以实现。与传统脱氮工艺过程相比,短程硝化-反硝化体现出以下优势。节能:硝化阶段,供氧量节省近25%,降低能耗;节约外加碳源:从NO2-到N2要比从NO3-到N2的反硝化过程中,减少40%的有机碳源;可以缩短水力停留时间:在高氨环境下,NH4+的硝化速率和NO2-的反硝化速率均比NO2-的氧化速率和NO3-的反硝化速率快,因此水力停留时间可以缩短,反应器的容积也相应减小;可减少剩余污泥产量:亚硝酸菌表观产率系数为0.04~0.13gVSS/gN,硝酸菌的表观产率系数为0.02~0.07 g VSS/g N,NO2-反硝化菌和NO3-反硝化菌的表观产率系数分别为0.345 g VSS/g N和0.765 g VSS/g N,因此短程硝化反硝化过程中可以减少产泥24~33%,在反硝化过程中可少产

相关主题
文本预览
相关文档 最新文档