当前位置:文档之家› 高效液相色谱与手性分离

高效液相色谱与手性分离

高效液相色谱与手性分离
高效液相色谱与手性分离

对含有多个手性中心的药物使用含多糖类手性固定

相的高效液相色谱法进行手性拆分

摘要

对含有多个手性中心的药物进行手性分离是一项具有挑战性的工作。这篇文章介绍了用多糖类手性固定相对含有多个手性中心的药物进

行分离。并且,柱转换技术在这种化合物得分离中也被应用。

关键词: 回顾;对映体分离; 手性固定相, LC;多糖; 纳多洛尔; 吲多洛尔; 奈必洛尔;地尔硫卓

目录

1.介绍

2.含两个手性中心的药物的手性分离实例

3. 含多个手性中心(多于两个)的药物的手性分离实例

4. 结论

5. 参考文献

1. 介绍

手性是一个显著的生物学过程,一个生物活性分子的对映体通常具有不同的生物学特性。生物学作用中的对映体选择性现象并不局限于药物学,它是所有生物活性试剂(杀虫剂、除草剂、香精香料、食物添加剂等)的一个共同特征。

来源于自然物质的药物通常是光学活性或纯形式的单一异构体。然而,那些用化学方法合成的药物通常是根据不对称中心的数目由两个,四个或者更多异构体混合而成。因此,立体选择性在手性药物的

生物利用度、分配、与受体的相互作用、异构体活动中的代谢和消除过程中所产生的差异从不期望的毒性到毫无意义增大活性。

在过去的30年中,通过高效液相色谱法(HPLC)进行手性分离已经显得越来越重要。这可以通过以下两个方面得出:

(a)间接进行手性分离的方法,包括在色谱分析法中通过一个非手性柱用一个手性衍生物试剂合成非对映异构体;

(b)直接进行手性分离的方法,包括用手性固定相(CSPs)将外消旋药物拆分成相应的对映体。

基于手性固定相(CSPs)的直接分离方法因其可以快速、合适的用于分离外消旋酸盐而深受分析和制备行业的喜爱。自然形成和合成的手性固定相(CSPs)存在着广泛的多样性,绝大多数是用于商业(超过120种)。这些手性固定相(CSPs)中的很多在应用方面具有局限性。因此,多糖类固定相和其它固定相,如:化学键合的蛋白质、环糊精及其衍生物、Π-型和大环抗生素已经被证明是在高效液相色谱法进行手性药物的分离中最有用的固定相。

多糖类手性固定相是由Okamoto和他的课题组于1984年提出的,它可以通过纤维素涂料和直链淀粉衍生物在预处理二氧化硅上来制备。利用多糖型手性固定相(其结构如表1所示)时,对映体的拆分可以在正相和反相条件下完成,后者可以使用Chiralcel OD-R、Chiracel OJ-R 及最近提出的Chiralpack AD-R型手性柱。尽管多糖类固定相之间的手性差异机理还没有被圆满鉴定,但我们确信对映体结合产生的差异是由各种引力,如氢键、疏水相互作用、偶极相互作用和电荷传递

复合形式(Π-Π),之间的相互作用而造成的。纤维素和直连淀粉衍生物中的主要手性吸附点被认为是极性酯和氨基甲酸盐基团。这些衍生物含有的苯基基团上的所引进的取代基也会影响它们的分解能力。另外,手性识别似乎成为适应在手性空穴或固定相通道中所溶解物质的非对称部分的一项功能。

大量含有一个手性中心的药物已经通过这些固定相进行了拆分。经研究发现,84%的小分子外消旋体可以通过使用下列色谱柱进行成功拆分:Chiracel OD, Chiralcel OJ, Chiralpak AD and Chiralpak AS。这些先前提到过的四种固定相对很多含有各种不同化学结构的外消旋体

已经表现出了很好的分辨能力。

这个回顾总结了多糖类手性固定相(CSPs)在对一些含有多手性中心的药物进行对映体选择性分离时的效能。在所有可能的对映体的手性分离中对这些药物的分离已经变得更加困难和具有挑战性。

2.含两个手性中心的药物的手性分离实例

下面是用一种多糖类手性固定相(CSPs)成功拆分含有两个手性中心的药物的实例。

纳多洛尔(SQ11725) 是含有两个手性中心的β-肾上腺素阻滞剂。有趣的是纳多诺尔有三个手性中心,但是其中的两个手性中心(在四氢环2-位和3-位的羟基基团)都位于顺式位置,因此将它们看做一个手性中心。另一个手性中心是位于侧链的羟基基团。这导致出现了两个外消旋体既外消旋体A (SQ12181) 和外消旋体B (SQ12182),四个对映体。

这些对映体的结构如图1所示。一种简单的等度高效液相色谱法(HPLC)被Aboul-Enein and Abou-Basha提出来拆分纳多洛尔。将外消旋体A (SQ12181)拆分成其相应的对映体RSR-纳多洛尔(SQ12148)和SRS-纳多洛尔(SQ12150),并将外消旋体B (SQ12182)拆分成其相应的对映体RRS-纳多洛尔(SQ12149)和SSR-纳多洛尔(SQ12151),分别如图2和图3所示。

色谱柱Chiralcel OD常被用来从相应的纳多洛尔外消旋体中分离出每一个对映体,然而,将全部四种对映体从大量纳多洛尔(SQ11725)中完全分离出来是不可能的,因为对映体SQ12148 和SQ12149将被同时洗脱出来(如图4所示)。据McCarthy报道,使用色谱柱Chiralpak AD在正相或反相条件下(用乙醇水溶液和二乙胺做流动相)均可以将纳多洛尔的四种对映体拆分开来。在这个例子中,我们可以很清晰的看出直链淀粉衍生物的螺旋结构对于纳多洛尔的四个对映体的拆

分起到了显著促进作用,与其相反,拥有刚性和线性结构的直链淀粉衍生物伴由于相互作用力而导致其无法分解为四个对映体。

Aboul-Enein and Serignese报道称:通过高效液相色谱法(HPLC)利用色谱柱Chiralcel OD可以将外消旋的吲多洛尔拆分成单独的对映体。吲多洛尔包含两个位置性的异构体,给出总共四个对映体(如图5所示)。需要采用梯度洗脱法来分离全部四种对映体,如图6所示。

由于含有两个手性中心的化合物与含有两个独立单手性中心的化合物在大部分条件下本质上是相同的。含有两个手性中心的化合物,其中一个中心在一个手性固定相(CSP)条件下会很好的被分离,而

同一个基团的另一个中心将会更有可能被另一个手性固定相(CSP)所分离。因此,高效液相色谱法(HPLC)中柱转换技术的应用被大力推荐以完全分离出四种对映体。柱转换技术的优点在于:(a)消除干扰组分及相关物质,(b)浓缩组分以提高其灵敏度(通过合适的传递柱),(c)确保峰的同质性。

两个手性柱耦合在一起是柱转换技术的一种方法。然而,这种方法有一些弊端,例如:(a)所有洗脱出的峰的保留时间为两个柱保留时间的平均值,(b)对每个柱来说,流动相并不都是最佳的,(c)背压经常有点高。

表7显示了使用柱转换技术分离一个含有两个手性中心的化合物的分离结果,将其完全拆分为四个对映体。然而,在使用两个柱中的任何一个来进行拆分时,都不能将其完全分离。所使用的色谱柱为Chiralpack AD 和Chiralcel OA。

其它有趣的例子是将多糖类手性固定相(CSPs)成功用于分离含有两个手性中心的药物,包括:

(i)使用色谱柱Chiralcel OD对α-羟基美托洛尔(一种人尿代谢物β-肾上腺素受体阻滞药物)的四个对映体结构进行

拆分。

(ii)在子色谱法和(或)超临界流体色谱法中使用色谱柱Chiralcel OD将苯并硫氮型钙离子拮抗药地尔硫卓的四个

对映体进行分离。有趣的是地尔硫卓的四个对映体可以

被涂有纤维素三(4-氯代苯氨基甲酸酯)的色谱柱

Chiralcel OF 拆分出来,尽管分离效率较差。此外,Yaku et

al研究了在色谱柱Chiralcel OF条件下拆分地尔硫卓对映

体的拆分机理及其热力学。研究显示顺式地尔硫卓对映

体的分离是焓控制的,而在考察的温度范围内用填充柱

超临界流体色谱法对反式地尔硫卓对映体进行拆分是熵

控制的。然而,在高效液相色谱法进行拆分时,无论顺

式还是反式对映体均为焓控制过程。

3. 含多个手性中心(多于两个)的药物的手性分离实例

奈必洛尔,化学式为2 ,2′- [亚氨基二 (亚甲基 ) ]双 [6-氟 - 3,4-二氢 - 2 H - 1 -苯并吡喃 -2 -甲醇 ],它是一个含有四个手性中心的β-受体阻滞剂(24=16 个立体异构体)。由于存在一个对称面,这些异构体中一些是完全相同的,还有一些是内消旋体。因此,只存在十个立体异构体。

对于这个药物的拆分是手性拆分中一个比较有挑战性的工作,它在使用色谱柱Chiralpack AD的条件下被成功拆分。奈洛必尔的十个立体异构体在等度条件下被全部分离,如图8所示。柱温度对所有可能的立体异构体的拆分有很大影响。在室温时,全部分析时间接近120分钟。温度对K‘值得影响如图9所示。在所研究的温度范围内,一些异构体的K’值减少45%,而其它异构体的保留时间在全部温度范围(25—458℃)内实际上保持不变。有趣的是,通常在基线分离的RSRR 和RRRR异构体在这些温度下基本上是同时被洗脱出来的。根据这些数据,我们可以得出结论:对于奈洛必尔异构体的完全分离,我们推

荐在458℃的柱温条件下进行,因为(a)这样可以大幅度减少分析时间,(b)在最大K‘值是所洗脱出来的对映体具有较好的质量。

4. 结论

多糖类手性固定相即纤维素和直链淀粉衍生物在分离含有两个或者多个手性中心的药物方面已经显示出了较高的效能。使用不同的纤维素和直链淀粉衍生物做固定相从其它分子中分离出纳多洛尔、吲多洛尔和奈落必尔的立体异构体已经取得成功。在高效液相色谱法中使用柱转换技术被大力推荐,已经成为完全拆分所有可能的对映体的一个有用方法。

手性高效液相色谱法检测恩替卡韦中光学异构体杂质的含量

手性高效液相色谱法检测恩替卡韦中光学异构体杂质的含量 王文娜 邓桂凤 张玲娣 姚彤炜 3 (浙江大学药学院药物分析和药物代谢研究室,杭州310031) 摘 要 采用Chiral pak AD 2H 手性柱(250mm ×416mm,5μm ),建立了正相高效液相色谱(NP 2HP LC )法直接拆分恩替卡韦与其光学异构体的方法。考察了流动相组成、酸碱性对柱效、分离度、保留时间等参数的影响。经优化,以正己烷2异丙醇2乙醇2三氟乙酸2三乙胺(70∶12∶18∶0105∶0105,V /V )为流动相,流速 015mL /m in;检测波长261n m 。在此条件下,恩替卡韦与光学异构体分离度>412;光学异构体的检出限为0112mg/L ,在0125~410mg/L 浓度范围内有良好的线性关系;日内与日间精密度RS D <410%;按标准加入 法计算,加样回收率在8710%~10018%之间;RS D <310%;按外标法计算,加样回收率在9812%~11014%之间;RS D <310%。本方法可作为恩替卡韦原料药中光学异构体杂质限量的控制方法。关键词 恩替卡韦,光学异构体,高效液相色谱法,手性拆分  2008212229收稿;2009204229接受3E 2mail:rethe m@https://www.doczj.com/doc/db17320820.html, 1 引 言 慢性乙肝病毒感染一直是全球公共卫生的难题,开发抗乙肝病毒药物也一直是个热点。目前,我国临床上应用的抗病毒治疗药物主要有两类:α2干扰素和核苷或核苷酸类似物,主要包括拉米夫定、阿德 福韦和阿昔洛韦[1,2] 。2005年3月美国F DA 批准了新一代抗HBV 核苷类似物恩替卡韦(entecavir,  图1 恩替卡韦及其光学异构体的化学结构 Fig .1 Structures of entecavir and its op tical is omer ET V,商品名Baraclude )上市[3] 。恩替卡韦是一种鸟嘌呤核苷类似物(图1),在磷酸激酶的作用下在体内形成活性三磷酸化合物,拮抗HBV 所需天然底物脱氧鸟苷三磷(dGTP ),抑制HBV 2DNA 聚合酶和逆转录酶,阻断HBV 复制。细胞内作用 半衰期为15h,在人体内不被肝细胞代谢,主要从 肾脏排出体外。同时,其耐药性好,可有效治疗慢 性乙型肝炎,临床应用前景良好[4,5] 。 由于手性药物在合成过程中可能引入光学异构体杂质,故采用手性分离方法检查合成产品中光学异构体含量。恩替卡韦及其光学异构体手性分离方法未见报道。本研究采用直接手性HP LC 法拆分两光学异构体,建立恩替卡韦中光学异构体杂质限量检查方法。 2 实验部分 211 仪器、试剂及材料 LC 210A 型高效液相色谱仪、SP D 210A 型紫外可见光检测器(日本岛津公司);Chiral pak AD 2H 手性 柱(250mm ×416mm ,5μm ,日本D iacel 公司)。乙醇(TE D I A )、正己烷(Burdick &Jacks on )及异丙醇(TE D I A )均为色谱纯;三氟乙酸(国药集团化学试剂有限公司);三乙胺(分析纯,上海化学试剂采购供应五联化工厂);恩替卡韦及其光学异构体(99187%,浙江医药股份有限公司新昌制药厂)。212 色谱条件 色谱柱:Chiral pakAD 2H 手性柱;流动相:正己烷2异丙醇2乙醇2三氟乙酸2三乙胺(70∶12∶18∶0105∶0105,V /V );流速015mL /m in;检测波长261nm;柱温:室温;灵敏度:01005AUFS;进样量20μL 。 第37卷 2009年8月 分析化学(FE NX I HUAXUE ) 研究简报Chinese Journal of Analytical Chem istry 第8期 1206~1210

手性色谱分析..

1 手手性性高高效效液液相相色色谱谱法法 **手手性性药药物物分分析析的的概概念念 **常常用用手手性性高高效效液液相相色色谱谱法法 手手性性衍衍生生化化试试剂剂法法 手手性性固固定定相相法法 手手性性流流动动相相添添加加法法 2 手手性性的的概概念念::一一种种镜镜像像反反射射的的对对称称性性

3 手性分子:组成相同但空间结构上互成镜像的分子,称之为对映异构体。 分子结构中含有不对称碳原子是最常见的手性结构。 根据对偏振光的作用不同可分为R、S体,两者的等量混合物称之为消旋体。 OH COOH H CH 3 OH COOH H CH 3 4 Mirror Mirror

手手性性异异构构体体在在药药理理学学效效应应上上的的差差异异 ● Pfeiffer 规则: ● 对映异构体之间的生物活性存在着差异; ● 不同的对映体之间活性的差异是不同的; 当手性药物的有效剂量越低,即药效强度越高时,则对映体之间的药理作用的差别越大。 外消旋体和其两种单一对映体是不同的3种实体! 5 对对映映体体与与生生物物大大分分子子的的三三点点作作用用 c a b d a b d c α γβ α β γ 手性分子的a 、b 、c 结合,是高活性对映体(优映体)。 手性分子的a 、b 、c 三个基团中只有a 和b 与受体分子的活性作用点 6 在未研究清楚两种单一对映体之间的生物学差异时,以消旋体给

药往往会影响药物质量,甚至会严重损害人体健康。 “反应停”(Thalidomide)作为人工合成药,当时投入使用时是两种 对映体的混合物。 7 反应停:五十年恩怨 发展趋势: 劣映体本身或其代谢物产生毒副作用,不再使用外消旋体。外消旋体转换成单一对映体,不仅提高质量,还延长药物寿命。 如:氧氟沙星的左旋异构体活性更强,左旋氧氟沙星临床使用剂量是消旋体的一半。

手性色谱柱知识介绍

手性色谱柱知识介绍 手性色谱柱(Chiral HPLC Columns)是由具有光学活性的单体,固定在硅胶或其它聚合物上制成手性固定相(Chiral Stationary Phases)。通过引入手性环境使对映异构体间呈现物理特征的差异,从而达到光学异构体拆分的目的。要实现手性识别,手性化合物分子与手性固定相之间至少存在三种相互作用。这种相互作用包括氢键、偶级-偶级作用、π-π作用、静电作用、疏水作用或空间作用。手性分离效果是多种相互作用共同作用的结果。这些相互作用通过影响包埋复合物的形成,特殊位点与分析物的键合等而改变手性分离结果。由于这种作用力较微弱,因此需要仔细调节、优化流动相和温度以达到最佳分离效果。。在手性拆分中,温度的影响是很显著的。低温增加手性识别能力,但可能引起色谱峰变宽而导致分离变差。因此确定手性分析方法过程中要考虑柱温的影响,确定最优柱温。迄今为止,尚没有一种类似十八烷基键合硅胶(ODS)柱的普遍适用的手性柱。不同化学性质的异构体不得不采用不同类型的手性柱,而市售的手性色谱柱通常价格昂贵,因此如何根据化合物的分子结构选择适用的手性色谱柱是非常重要的。 根据手性固定相和溶剂的相互作用机制,Irving Wainer首次提出了手性色谱柱的分类体系: 第1类:通过氢键、π-π作用、偶级-偶级作用形成复合物。 第2类:既有类型1中的相互作用,又存在包埋复合物。此类手性色谱柱中典型的是由纤维素及其衍生物制成的手性色谱柱。 第3类:基于溶剂进入手性空穴形成包埋复合物。这类手性色谱柱中最典型的是由Armstrong 教授开发的环糊精型手性柱[2],另外冠醚型手性柱和螺旋型聚合物,如聚(苯基甲基甲基丙烯酸酯)形成的手性色谱柱也属于此类。 第4类:基于形成非对映体的金属络合物,是由Davankov开发的手性分离技术,也称为手性配位交换色谱(CLEC)。 第5类:蛋白质型手性色谱柱。手性分离是基于疏水相互作用和极性相互作用实现。 但由于市场上可选择的手性色谱柱越来越多,此分类系统有时很难将一些手性柱归纳进去。因此参考Irving Wainer的分类方法,根据固定相的化学结构,将手性色谱柱分为以下几种: 刷(Brush)型或称为Prikle型 纤维素(Cellulose)型 环糊精(Cyclodextrin)型 大环抗生素(Macrocyclic antibiotics)型 蛋白质(Protein)型 配位交换(|Ligand exchange)型 冠醚(Crown ethers)型 刷型: 刷型手性色谱柱的出现和发展源于Bill Prikle及其同事的卓越工作。六十年代,Bill Prikle将手性核磁共振中的成果运用到手性HPLC固定相研究中,通过不断实践,发明了应

高效液相色谱手性固定相研究进展

收稿日期:2003-05-25 作者简介:寿崇琦(1963-),男,山东省济南市人,济南大学化学化工学院教授,硕士研究生导师,中国科学院兰州化学物理研究所博士研究生。 高效液相色谱手性固定相研究进展 寿崇琦1,张志良2,赵春宾2,邢希学2,李关宾1,陈立仁1 (11中国科学院兰州化学物理研究所,甘肃兰州 730000; 21济南大学化学化工学院,山东济南 250022) 摘要:对近年来高效液相色谱手性固定相的研究进行了综述。重点介绍了手性固定相的分类、拆分机理 和应用的新进展。讨论了各类手性固定相优缺点,提出了目前存在的问题、今后的研究方向和重点。 关键词:高效液相色谱;手性固定相;拆分机理中图分类号:O658 文献标识码:A 文章编号:1004-4280(2004)01-0069-05 随着生物工程和生物科学的发展,手性拆分和测定引起了人们的普遍关注。尽管对映体间物理化学性质几乎完全相同,但它们的生化和药理作用却往往不同。这是因为生物本身内部的核酸、蛋白质及多糖都具有与其功能相适应的结构,它们常常对扬长避短一化合物的两种对映体表现出不同的响应。例如具有镇静作用的反应停(thalidomide ,酞胺哌啶酮),其有效成分是R 构型,而S 构型则具有致畸作用[1]。据统计,常用的200种药物中,大约有120种至少含有一个手性中心。而这些手性药物中有80%~90%以外消旋体形式在市场销售,存在巨大的潜在危险性[2]。因此,对映体的拆分与识别对于生命科学和药物化学研究以及人类的健康具有十分重要的意义。 目前用于手性分离的方法主要有毛细管电泳法、薄层色谱法、亚临界及超临界流体色谱法、气相色谱法和液相色谱法[3]。近年来,高效液相色谱法取得了令人瞩目的进展,已成为对映体拆分强有力的手段之一。而其中所用的手性固定相的是能否进行手性分离的关键。1 手性固定相的分类 虽然液相色谱常被分为不同的分离模式,但实质上所有的分离模式都基于两个最基本的因素:即固定相的结构和组成,以及决定分离机理的固定相与流动相相互作用的性质。因而手性固定相(CSP )的制备则是手性分离的关键。目前所研究的HP LC -CSP 主要可分为下列几类[4]: 1.1 蛋白质手性亲和固定相 多数蛋白质CSP 的分离机理目前尚不十分清楚,但是蛋白质CSP 的手性识别能力可以归结为它们独特的空间立体结构特征[4]。尤其是在对映体的手性识别过程中,三级结构所造成 第18卷第1期 2004年3月山 东 轻 工 业 学 院 学 报JOURNA L OF SHANDONG INSTIT UTE OF LIGHT INDUSTRY Vol.18No.1Mar.2004

手性分子的拆分技术

手性分子的拆分技术 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

手性分子的拆分技术 郝婷玉 57 15级材料工程 摘要:对外消旋体实施拆分是获得手性物质的重要途径。本文综述了外消旋体的拆分方法,主要有直接结晶拆分法、化学拆分法、动力学拆分法、色谱拆分法( 含毛细管电泳法) 和手性膜拆分法等五大类。其中, 包括目前作为手性拆分主要方法的色谱技术在内的前 4 类方法, 由于批处理能力小、工业放大成本高 ,不适合大规模生产 ; 相反,膜分离技术具有能耗低、易于连续操作等优点 ,被普遍认为是进行大规模手性拆分非常有潜力的方法之一,具有良好的应用前景。 关键词:手性分子;拆分;对映体;外消旋化合物 手性是自然界存在的一种普遍现象, 在药物化学领域尤为突出 ,已知药物中有 30 %~ 40 %是手性的。手性是生物体系的一个基本特征, 很多内源性大分子物质,如酶、蛋白、核酸、糖, 以及各种载体、受体等都具有手性特征。此外,手性还在医药、食品添加剂、杀虫剂、昆虫性信息素、香料和材料等领域有着深刻影响。特别是在医药行业,手性药物对映体通过与体内大分子的立体选择性结合, 产生不同的吸收、分布、代谢和排泄过程, 可能具有不同的药理毒理作用。随着医药行业对手性单体需求量的增加和对药理的探究,如何获得高纯度手性单体已成为一个令人困扰的问题。因此 ,手性药物的分离分析就显得尤为重要。随着对手性分子认识的不断深入,人们对单一手性物质的需求量越来越大,对其纯度的要求也越来越高。 单一手性物质的获得方法大致有以下三种:(1)手性源合成法:是以手性物质为原料合成其它手性化合物,这是最常用的方法。但由于天然手性物质的种类有限,要合成多种多样的目的产物会遇到很大困难,而且合成路线步骤繁多,也使得产物成本十分高昂。(2)不对称合成法:是在催化剂或酶的作用下合成得到过量的单一对映体化合物的方法。化学不对称合成高旋光收率的反应仍然有限,即使如此,所得产物的旋光纯度对于多

手性色谱柱

手性色谱柱是由具有光学活性的单体,固定在硅胶或其它聚合物上制成手性固定相。通过引入手性环境使对映异构体间呈现物理特征的差异,从而达到光学异构体拆分的目的。 要实现手性识别,手性化合物分子与手性固定相之间至少存在三种相互作用。这种相互作用包括氢键、偶级-偶级作用、π-π作用、静电作用、疏水作用或空间作用。手性分离效果是多种相互作用共同作用的结果。这些相互作用通过影响包埋复合物的形成,特殊位点与分析物的键合等而改变手性分离结果。由于这种作用力较微弱,因此需要仔细调节、优化流动相和温度以达到最佳分离效果。 对于新的实验室要开展手性方面的研究,但不知怎么配置手性柱才能最好的,最大范围的对目标化合物取得较好的分析结果,下面我们来给您一些建议吧。 (加个表情或者箭头) 我把常用手性柱分成了五类,具体情况如下,建议每一类选择其中一种。

第一类:AD-H和IG,两个型号分离范围都比较广,区别是AD-H是涂敷型的,只能用于正相体系,IG是键合型的,正反相体系都适用。相对而言,AD-H这个型号是所有手性柱中的明星柱,所以建议选择AD-H型号。 AD-H IG 第二类:OD-H和IC,同理,OD-H是涂敷型的,只能用于正相体系,IC是键合型的,正反相体系都适用。其中IC对于含有羧基的酸性手性化合物分离性能更优异一些,并且第一类选择了涂敷型,所以这个建议选择键合型IC型号。 OD-H IC 第三类:IBN-5和AS-H,AS-H是四大金刚柱之一,比较经典,IBN-5是最近两年上市的,他跟其他型号互补性较强,当然这样也造成其应用范围比较窄的缺点,比如:有100种消旋体,AS-H或者AD-H能分离其中的85种,但对于剩下的15种分离效果不是很好,IBN-5可能对剩下的15种分离效果不错。所以这一类如果整体考虑,可以选择IBN-5,如果单独考

高效液相色谱法在生命科学中的应用

高效液相色谱法在生命科学中的应用 高效液相色谱在生命科学中的应用范围越来越广,高效液相色谱由于具有高选择性、高灵敏度,并可同时用于有关物质检查与含量测定的特点,已成为医药研究的有力工具。如在中草药有效成分的分离和纯度测定、人工合成药物成分的定性和定量测定、新型高效手性药物中手性对映体含量的测定以及药物代谢物的测定等方面都需要用到HPLC的不同测定方法予以解决。而目前高效液相色谱的蒸发现了它在生命科学中的重要地位。光散射检测器的应用更体现了它在生命科学中的重要地位。1天然药物分析 天然药物的来源有动物、植物和矿物之分,其中以植物类为主。由于天然药物的化学成分复杂,其有效成分,可能有一个,也可以有多个,这对于控制药品质量,建立质量标准来说比较困难,HPLC可通过对天然药物的有效成分进行分离鉴定,再测定有效成分的含量;通过指纹图谱建立识别模式,可以判定药材的质量高低。 2 天然药物及复方成药分析 复方制剂、杂质或辅料干扰因素多的品种多采用高效液相色谱法。增免扶正片系由当归、党参、黄芪(图3)等十几味天然药物精制而成,具有益气生津、活血养血、滋补肝肾、健脾开胃之功效,主要用于抗缺氧、抗疲劳、抗衰老,长期服用可扶正祛邪,提高机体免疫功能,健身强体,益寿延年。该药对心、肝、脾、肾虚、纳差、心脑血管疾病、神经衰弱、

慢性肝炎、脂肪肝等都有较好的防治作用。 由于化学药品的开发费用昂贵,而且毒副作用大,近年来人们已把目光转向自然、民族传统医药、草药、植物药等天然药物,据世界卫生组织统计,当前全世界60多亿人口中80%的人使用过天然医药。在全世界药品市场中,天然物质制成的药品已占30%,国际上植物药市场份额已达300亿美元,且每年以20%以上的速度增长。HPLC分析必定能为我国传统中医药实现现代化,走向世界提供强有力的技术支持。 3 抗生素分析 抗生素是由微生物或其他方法产生的化学物质,在高度稀释的情况下仍具有抑制或杀灭其他微生物的性能。抗生素的分离、分析和定量测定是药物分析中较困难的领域。采用较多的方法是微生物法、分光光度法和化学方法,但所需时间较长、专一性较差。 HPLC分析技术近年来在抗生素的质量控制中已广泛应用。对结构、组分等较清楚的药物,HPLC分析将逐步取代传统的生物测定。目前,各国药典中应用HPLC技术对抗生素进行质量控制的项目包括鉴别、组分分析、含量测定和相关物质测定等。 4 在鉴别中的应用 在HPLC法中,保留时间与组分的结构和性质有关,是定性的参数,可用于药物的鉴别.如中国药典收载的药物头孢羟氨苄的鉴别项下规定:在含 量测定项下记录的色谱图中,供试品主峰的保留时间应与对照品主峰的保留时间一致.头抱拉定,头孢噻酚钠等头孢类药物以及地西泮注射液,曲安奈德注射液等多种药物均采用HPLC法进行鉴别.

大赛路手性柱Q&A及手性分离经验

优化手性化合物的分离方法时,如何增加分离选择性? 正相手性色谱柱上增加分离度的方法有:降低流动相中醇的含量、降低柱温、更换流动相中醇的种类、更换手性柱。 建立手性化合物的分离方法时,选定了正相手性柱之后,如何选择流动相? 流动相首选正己烷和异丙醇的混合溶液,根据样品的酸碱性决定是否添加酸碱性添加剂。如果是中性样品则不需要添加添加剂,如果是酸性样品需要添加三氟乙酸或乙酸,如果是碱性样品需要添加二乙胺,添加剂的量一般为0.1 %。流动相中醇的含量一开始可以使用30%,根据样品出峰的快慢和分离度再调整醇的含量。流动相中醇的种类一般使用异丙醇,也可以使用乙醇。 建立手性化合物的分离方法时,如何选择手性柱? 根据文献或者参考大赛璐公司的《应用指南》中结构类似物的分离方法,选择手性柱;另外可以寄少量消旋品,大赛璐公司能免费为您选择分离最佳的手性柱。 手性柱使用完了之后如何清洗保存? 正相手性色谱柱如果使用正己烷和醇类的混合流动相之后,只需要用正己烷/异丙醇=90/10(v/v)的保存溶液冲洗30 min即可。反相手性色谱柱如果使用了水溶液和乙腈的混合流动相之后,只需要用水/乙腈=70/30(v/v)的保存溶液冲洗30 min即可。 CROWNPAK? CR(+)柱流动相中甲醇含量有要求吗? CROWNPAK? CR(+)柱流动相中甲醇含量为0%-15%,甲醇的含量一旦超过15%,CROWNPAK? CR(+)柱会被损害。 正相手性柱进了水后,柱子会不会损坏? 正相手性色谱柱(例如AD-H、AS-H、OD-H、OJ-H)一旦进了水,柱压会升高,但是只要柱压不超过柱压上限,柱子就不会损坏。只需用无水乙醇低流速(0.1-0.2 ml/min)将水全部充分置换出来,再用正相流动相低流速(0.1-0.2 ml/min)将乙醇全部置换出来就能继续使用该正相手性色谱柱。 样品的保留时间漂移,可能是哪些原因,如何解决? 1、温度控制不好,解决方法是采用恒温装置,保持柱温恒定。 2、流动相发生变化,解决办法是防止流动相发生蒸发、反应等。 3、柱子未平衡好,需对柱子进行更长时间的平衡。该情况在MA(+)柱上出现较多。 4、酸碱性的样品,有时在中性条件下能分开,峰形尚可,但保留时间会漂移;加入相应的酸碱添加剂即可。 5、流动相污染。溶于流动相中的少量污染物可能慢慢富集到色谱柱上,从而造成保留时间的漂移。需清洗色谱柱,流动相和样品溶液尽量现用现配。 (小极性样品的溶解)正相方法分析布洛芬时,有时峰形难看甚至达不到基线分离,什么原因?如何解决? 该方法为Hexane/IPA=99/1,极性很小;若样品不是溶解在流动相中,则结果很可能达不到基线

高效液相色谱法-药典

高效液相色谱法 高效液相色谱法系采用高压输液泵将规定的流动相泵人装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。注人的供试品,由流动相带入色谱柱内,各组分在柱内被分离,并进入检测器检测,由积分仪或数据处理系统记录和处理色谱信号。 1. 对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。色谱柱内径一般为3.9?4.6 mm,填充剂粒径为3?10μm。超高效液相色谱仪是适应小粒径(约2μm) 填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。 (1) 色谱柱 反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常见的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反相色谱。 离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。 色谱柱的内径与长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提髙色谱柱的温度,但一般不宜超过60°C。残余硅羟基未封闭的硅胶色谱柱,流动相pH值一般应在2?8之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH值小于2或大于8的流动相。

【CN110013837A】一种用于手性化合物拆分的CCOFMPC液相色谱分离柱【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910351434.9 (22)申请日 2019.04.28 (71)申请人 云南师范大学 地址 650500 云南省昆明市一二一大街298 号 (72)发明人 谢生明 袁宝燕 余云艳  (74)专利代理机构 昆明协立知识产权代理事务 所(普通合伙) 53108 代理人 谢嘉 (51)Int.Cl. B01J 20/29(2006.01) B01J 20/30(2006.01) B01D 15/22(2006.01) B01D 15/38(2006.01) (54)发明名称一种用于手性化合物拆分的CCOF-MPC液相色谱分离柱(57)摘要本发明公开了一种用于手性化合物拆分的CCOF -MPC液相色谱分离柱。以S -(+)-2-甲基哌嗪作为手性源,通过S -(+)-2-甲基哌嗪和三聚氯氰反应合成得到一种二维手性COFs材料CCOF -MPC,再将合成的手性COFs材料与C18球形硅胶机械混合,作为高效液相色谱分离柱的固定相。该手性COFs材料具有较好的结晶性,并且在水、有机溶剂中有很高的稳定性。固定相制备方法简单,成本低廉。本发明首创将手性CCOF -MPC材料应用于手性化合物分离,制备的CCOF -MPC色谱柱对有机酸类、胺类、酮类、醇类等多种手性化合物具有良好的手性识别性能,能够在常温下对13种手性化合物进行快速、高效拆分。本发明具有较高的对映选择性、高柱效、高分辨率,制柱成本较低等多 种优点。权利要求书1页 说明书3页 附图4页CN 110013837 A 2019.07.16 C N 110013837 A

手性化合物色谱分析方法开发(一)

手性化合物色谱分析方法开发(一) 1、概述 首先,这里所说的手性化合物是指含有一个或多个不对称碳手性中心的对映或者非对映异构体,而不包含氮磷等含有孤电子对的手性中心化合物。不对称性碳原子,需要具有四个不同的取代基,空间上形成不对称四面体,对映异构体之间形成镜面对称,就像人的左右手一样,不能够完全重合,如下图1所示。 Fig.1Diagram for enantiomers 对映异构体具有不同的使偏振光旋转的能力,据此对映异构体可以分为左旋与右旋。在非手性环境下,对映异构体具有相同的化学性质(化学反应特性),相同的物理性质(如溶解度、熔点、沸点、熵焓等)以及同样的色谱保留行为等。但在手性环境中对映异构体之间的某些性质则表现出不同,这也是手性化合物进行拆分的基础。 对映异构体需要对内消旋体与外消旋体进行区分,如下图2所示。左右两个示意化合物结构的相同点在于均具有两个手性中心,不同点则在于左图的两个手性碳原子之间不存在对称平面或轴,而右图则存在对称平面。因此在左图中,1S,2R与1R,2S为外消旋体;右图中1S,2R与1R,2S为内消旋体。

Fig.2Name and distinguish between mesomer and racemate 对于手性化合物的拆分,规模比较大的时候,可使用其他手性试剂(如酒石酸钠)与待拆分的化合物形成非对映异构体,然后根据非对映异构体之间具有不同的物理化学性质,进行相应的分离单元操作。而在分析实验室中,一般是采用色谱法进行拆分,其中包括使用手性固定相法以及在流动相中添加手性流动相形成手性拆分环境的方式。其中手性固定相拆分法包括气相色谱以及液相色谱。 对于气相色谱拆分手性化合物,其拆分选择性主要取决于所使用的手性固定相的种类以及色谱分离的温度。一般气相用于低沸点的手性化合物的拆分,对于有机酸碱等极性手性化合物的拆分,一般需要先进行柱前衍生化处理,使之形成相应的酯或者酰胺。用于气相手性拆分的手性固定相均为环糊精衍生物类,包括β以及γ环糊精,α环糊精比较少;其最高耐受温度不会超过220℃,而且分离温度超过120℃的时候,固定相的手性选择性开始降低;超过200℃的时候,固定相的手性选择性几近与无。 对于液相色谱而言,起主要拆分选择性作用的既包括手性固定相也包括流动相的选择,而且液相色谱可以使用正相洗脱模式,反相洗脱模式,也可以使用极性洗脱以及极性离子洗脱模式;可以等度也可以梯度。最重要的是,色谱柱的类型要比气相色谱手性固定相多的多,其中就包括多糖类衍生物类手性固定相、环糊精及其衍生物类手性固定相、糖蛋白类手性固定相以及大环内酯抗生素类以及冠醚类手性固定相等。此外,液相色谱拆分法可以对样品进行回收而且也可以用于对映异构体的制备,气相色谱法则不能方便的对对映异构体进行制备。

手性分析之经验谈

手性分析经验谈 关于手性化合物、手性分析、手性填料和手性柱,现在的理论很多,讲的也比较复杂,我看了很多也不是特别明白,做分析三年多,分过的手性化合物最少也有几千种,拿到手里的消旋体几乎没有分不开的,没用到什么理论,主要都是经验,这里还是拣最实用的来讲。 手性分析可以使用普通的色谱柱,需要流动相中添加手性分离试剂,也可以直接用固定相为手性填料的手性色谱柱,前者使用较少,大家更多的是使用商品化的手性色谱柱。 手性分析包括气相和液相两种,这个主要和样品的物理性质有关系,现在的手性化合物绝大多数都不能做气相,所以气相手性色谱柱无论从数量还是质量上来讲都不能与液相手性色谱柱相提并论。 一、手性柱 手性分离最重要的是选择一根好的手性柱,说到手性柱就不得不提大赛璐,做手性分析的都知道,大赛璐的手性柱目前市场占有率最高,大家最熟悉的可能是OD- H,很多文献中都有报道。大赛璐公司最初有四种填料,结构类似,对应的色谱柱分别是OD、AD、OJ和AS,粒径10um,后来填料粒径变为5um,就是卖的最多、使用范围最广的柱子,号称四大金刚,分别是OD-H、AD-H、OJ-H和AS-H,在柱子名称后边加“-H”,意思应该是高效,这些柱子都只能做正相使用,为了在反相色谱中使用开发的柱子在相应的色谱柱名称中添加了一个“R”,上述色谱柱都属于涂覆型填料,不耐溶剂,使用起来受样品溶解性的限制,最近又开发了键合相手性柱,可以使用几乎所有的常见溶剂做流动相,新的溶剂还提供了新的选择性,进而提升了色谱柱的分离能力,主要是IA、I B和IC,其中IA对应AD-H,IB对应OD-H,IC是新开发的填料。和反相柱的发展趋势一样,大赛璐的手性柱也通过减小粒径来获得更高的柱效,最新的手性柱填料粒径是3um。另外大赛璐还有其它一些手性色谱柱,但是远不及上述几种。 关于大赛璐手性柱的详细资料官方网站上讲的很详细,大家有兴趣可以去看,这里主要讲我的使用经验。最近大赛璐公司的销售和技术曾经来过我们公司做讲座,因为我们先后买了他们三四十只手性柱,一直是自己摸索着使用,理论上的东西懂得很少,非常希望专家的能给我们提供指导,提升我们的技术水平,这个讲座的ppt网上流传的很多,对初学者来讲确实非常不错,但是专家的水平让我们实在不敢恭维。我们买了几十只手性色谱柱,但是型号相对很少,平时几乎只用两只色谱柱:AD-H和IC,但是拿到手里的手性化合物除去溶解性和紫外吸收的原因之外,几乎所有的样品都能用这两只色谱柱分开,我们主要的手段是在流动相上下功夫,通过流动相的调整来达到只用一两只柱子去解决遇到的所有手性分析问题,而大赛璐的专家讲座时给我们提供的思路是流动相变化相对较少,更多的是分不开就换柱子。细想一下也不难理解,厂家手里最不缺的就是柱子,为了分析一个样品他们可以试用所有型号的手性柱,但是对我们用户来说,一只柱子动辄一两万,相信没有哪个用户能有厂家那样的魄力和实力,一下子拿出那么多型号的手性柱来为一个样品的分离做筛选。 二、样品前处理 说到手性分析,样品的前处理非常重要。首先是消旋体样品的普通液相纯度问题,样品的纯度低了,看到手性柱上分离开的几个峰让人无从判断究竟对映异构体有没有分离开,分离开的几个峰哪个是杂质峰哪个是对映异构体的峰,所以样品的纯度要尽量的高,一般我们的要求是样品的纯度能达到90%以上,纯度低的样品需要做进一步的纯化。关于对映异构体峰的判断,现在比较好的手段是使用旋光检测器,在色谱图上可以直接看到分离开的两峰吸收一正一负,再有就是使用DAD检测器,通过看两峰的紫外吸收是否一致来做判断。 样品前处理的另外一项是稀释问题,这个问题最容易被忽视,处理不好会直接导致实验失败。我们都知道反

高效液相色谱与手性分离

对含有多个手性中心的药物使用含多糖类手性固定 相的高效液相色谱法进行手性拆分 摘要 对含有多个手性中心的药物进行手性分离是一项具有挑战性的工作。这篇文章介绍了用多糖类手性固定相对含有多个手性中心的药物进 行分离。并且,柱转换技术在这种化合物得分离中也被应用。 关键词: 回顾;对映体分离; 手性固定相, LC;多糖; 纳多洛尔; 吲多洛尔; 奈必洛尔;地尔硫卓 目录 1.介绍 2.含两个手性中心的药物的手性分离实例 3. 含多个手性中心(多于两个)的药物的手性分离实例 4. 结论 5. 参考文献 1. 介绍 手性是一个显著的生物学过程,一个生物活性分子的对映体通常具有不同的生物学特性。生物学作用中的对映体选择性现象并不局限于药物学,它是所有生物活性试剂(杀虫剂、除草剂、香精香料、食物添加剂等)的一个共同特征。 来源于自然物质的药物通常是光学活性或纯形式的单一异构体。然而,那些用化学方法合成的药物通常是根据不对称中心的数目由两个,四个或者更多异构体混合而成。因此,立体选择性在手性药物的

生物利用度、分配、与受体的相互作用、异构体活动中的代谢和消除过程中所产生的差异从不期望的毒性到毫无意义增大活性。 在过去的30年中,通过高效液相色谱法(HPLC)进行手性分离已经显得越来越重要。这可以通过以下两个方面得出: (a)间接进行手性分离的方法,包括在色谱分析法中通过一个非手性柱用一个手性衍生物试剂合成非对映异构体; (b)直接进行手性分离的方法,包括用手性固定相(CSPs)将外消旋药物拆分成相应的对映体。 基于手性固定相(CSPs)的直接分离方法因其可以快速、合适的用于分离外消旋酸盐而深受分析和制备行业的喜爱。自然形成和合成的手性固定相(CSPs)存在着广泛的多样性,绝大多数是用于商业(超过120种)。这些手性固定相(CSPs)中的很多在应用方面具有局限性。因此,多糖类固定相和其它固定相,如:化学键合的蛋白质、环糊精及其衍生物、Π-型和大环抗生素已经被证明是在高效液相色谱法进行手性药物的分离中最有用的固定相。 多糖类手性固定相是由Okamoto和他的课题组于1984年提出的,它可以通过纤维素涂料和直链淀粉衍生物在预处理二氧化硅上来制备。利用多糖型手性固定相(其结构如表1所示)时,对映体的拆分可以在正相和反相条件下完成,后者可以使用Chiralcel OD-R、Chiracel OJ-R 及最近提出的Chiralpack AD-R型手性柱。尽管多糖类固定相之间的手性差异机理还没有被圆满鉴定,但我们确信对映体结合产生的差异是由各种引力,如氢键、疏水相互作用、偶极相互作用和电荷传递

手性色谱柱的知识

手性色谱柱(Chiral HPLC Columns)是由具有光学活性的单体,固定在硅胶或其它聚合物上制成手性固定相(Chiral Stationary Phases)。通过引入手性环境使对映异构体间呈现物理特征的差异,从而达到光学异构体拆分的目的。要实现手性识别,手性化合物分子与手性固定相之间至少存在三种相互作用。 这种相互作用包括氢键、偶级-偶级作用、π-π作用、静电作用、疏水作用或空间作用。手性分离效果是多种相互作用共同作用的结果。这些相互作用通过影响包埋复合物的形成,特殊位点与分析物的键合等而改变手性分离结果。由于这种作用力较微弱,因此需要仔细调节、优化流动相和温度以达到最佳分离效果。 在手性拆分中,温度的影响是很显著的。低温增加手性识别能力,但可能引起色谱峰变宽而导致分离变差。因此确定手性分析方法过程中要考虑柱温的影响,确定最优柱温。 迄今为止,尚没有一种类似十八烷基键合硅胶(ODS)柱的普遍适用的手性柱。不同化学性质的异构体不得不采用不同类型的手性柱,而市售的手性色谱柱通常价格昂贵,因此如何根据化合物的分子结构选择适用的手性色谱柱是非常重要的。 根据手性固定相和溶剂的相互作用机制,Irving Wainer首次提出了手性色谱柱的分类体系: 第1类:通过氢键、π-π作用、偶级-偶级作用形成复合物。 第2类:既有类型1中的相互作用,又存在包埋复合物。此类手性色谱柱中典型的是由纤维素及其衍生物制成的手性色谱柱。 第3类:基于溶剂进入手性空穴形成包埋复合物。这类手性色谱柱中最典型的是由Armstrong教授开发的环糊精型手性柱[2],另外冠醚型手性柱和螺旋型聚合物,如聚(苯基甲基甲基丙烯酸酯)形成的手性色谱柱也属于此类。 第4类:基于形成非对映体的金属络合物,是由Davankov开发的手性分离技术,也称为手性配位交换色谱(CLEC)。

高效液相色谱法在手性药物拆分中的应用

高效液相色谱法在手性药物拆分中的应用 摘要:外消旋化合物的手性分离是获得单一对映体的方法之一。随着人们对纯光学药物的需求日益增加,各种手性分离技术得以快速发展。近几十年来,在这些手性分离技术中,高效液相色谱法( HPLC ) 被公认为是一种强大、快速、高效的分离技术,它已成功应用于对映体药物的分离分析和制备中。HPLC用于对手性药物分离的研究已取得很大进展,并且研发了大量可应用于手性小分子和聚合物分离的手性固定相,大大提高HPLC的手性识别能力。本文以HPLC的手性药物分离为焦点,介绍了近几年高效液相色谱法手性固定相的新发展和应用。关键词:高效液相色谱法手性药物手性拆分

Application of High Performance Liquid Chromatography in Chiral Separation of Pharmaceuticals Abstract:Resolution of racemic compounds is one of the potential ways of obtaining both enantiomers. The increasing demand for enantiopure drugs has led to the development of a variety of stereoselective separation technologies. Among several resolution techniques in the past few decades, high performance liquid chromatography ( HPLC ) is well recognized as a powerful, fast and efficient technique, which has been successfully employed for analysis and preparation of enantiomers of drugs. Enantioseparation by HPLC has significantly advanced, and a large number of chiral stationary phases ( CSPs ) for HPLC have been developed using both chiral small molecules and polymers with chiral recognition abilities. This review focuses on various HPLC methods for chiral separation of pharmaceuticals, many new developments and applications are introduced in chiral stationary phase of HPLC in recent years. Keywords:HPLC; Chiral drug; Chiral separation;

全球手性高效液相色谱柱市场研究报告2017目录—英文版

全球手性高效液相色谱柱市场研究报告2017目录—英文版 Published by QYResearch Mar. 2018

Global Chiral HPLC Column Market Research Report 2017 Hard Copy: 2900 USD PDF Copy (single user): 2900 USD Enterprise wide License: 5800 USD Pages: 167 Tables and Figures: 185 Published Date: Dec 2017 Publisher: QYR Equipment Research Center Summary This report studies the Chiral HPLC Column market status and outlook of global and major regions, from angles of manufacturers, regions, product types and end industries; this report analyzes the top manufacturers in global and major regions, and splits the Chiral HPLC Column market by product type and applications/end industries. Chiral HPLC columnis a concentrated market with Daicel Corporation holds a majority share of the market. The sole company takes sales volume share of global market with 68.02%. Advanced separation efficiency, Extensive product line, reasonable price, andafter-sales service are the key factors to its success. However, a growing number of analytical materials companies are participating in the market, with leading players as Merck (Sigma-Aldrich), YMC and Phenomenex. The major players in global Chiral HPLC Column market include Daicel Corporation Merck (Sigma-Aldrich) YMC Phenomenex Restek Corporation Avantor Performance Materials Shinwa Chemical Industries Guangzhou Research and Creativity Biotechnology Sumika Chemical Mitsubishi Chemical Osaka Soda (Shiseido) Geographically, this report is segmented into several key Regions, with production, consumption, revenue, market share and growth rate of Chiral HPLC Column in these regions, from 2012 to 2023 (forecast), covering Japan USA Europe China

1手性化合物拆分与鉴定

手性物质提取分离 手性药物的结晶拆分方法: 手性化合物的拆分是给外消旋混合物制造一个不对称的环境,使两个对映异构体能够分离开来。 从方法学上来讲,可以分为结晶拆分法(物理拆分方法、化学拆分方法)、动力学拆分方法、生物拆分方法(相当部分是生物催化的动力学拆分)及色谱拆分方法。 --手性药物的拆分方法— 1、结晶拆分法 --直接结晶法---在光学活性溶剂中的结晶拆分 --直接结晶法---外消旋体的不对称转化和结晶拆分 --直接结晶法---逆向结晶法逆向结晶法则是在外消旋体的饱和溶液中加入可溶性某一种构型的异构体[如(R)—异构体],添加的(R)—异构体就会吸附到外消旋体溶液中的同种构型异构体结晶体的表面,从而抑制了这种异构体结晶的继续生长,而外消旋体溶液中相反构型的(S)—异构体结晶速度就会加快,从而形成结晶析出。 --直接结晶法---优先结晶法优先结晶方法(preferential crystallization)是在饱和或过饱和的外消旋体溶液中加入一个对映异构体的晶种,使该对映异构体稍稍过量因而造成不对称环境,结晶就会按非稍的过程进行,这样旋光性与该晶种相同的异构体就会从溶液中结晶出来。 --直接结晶法---自发结晶拆分法自发结晶拆分(spontaneous resolution)是指当外消旋体在结晶的过程中,自发的形成聚集体。 --通过形成非对映异构体的结晶法--非对映异构体的形成和拆分原理 --通过形成非对映异构体的结晶法--用于碱拆分的拆分试剂(酸性拆分剂) 2、动力学拆分

--组合拆分拆分原理是采用一组同一结构类型的手性衍生物的拆分剂家族(resolving agent family)代替单一的手性拆分剂进行外消旋化合物的拆分。 --复合拆分方法---形成π电子复合物的拆分(通过形成π电子复合物或π电子转移复合物的拆分方法主要应用十含芳香环化合物的拆分,所用拆分剂是手性的含π电子的酸) --复合拆分方法---金属配合物的拆分方法:有机过渡金属化合物与被拆分物形成非对映异构体的配位物而被分离。 --包合拆分(inclusion resolution)方法--洞穴包合物拆分(拆分剂是手性的环状多元醚(冠醚)和环糊精) 3、色谱分离:气相色谱,液相色谱,薄层色谱、超临界色谱和电泳 -------气相色谱: 按照拆分机制 GC 手性固定相可分为三类:基于氢键的手性固定相;基于配位作用的手性金属配合物固定相;基于包含作用的环糊精衍生物固定相。 -----HPLC柱色谱法分离手性化合物: 直接法:手性固定相CSP拆分:手性流动相CMP拆分 间接法:手性试剂衍生化法CDF 直接法间接法 手性固定相拆分CSP 手性流动相拆分CMP 手性试剂衍生化法 CDF 定义将具有手性识别 作用的配基,通 过稳定的共价键 连接或以物理方 法涂敷于适当的 固相载体上,以 制备出手性固定 相。CMP手性流动相又称手 性添加剂法,这种拆分 法是在流动相中加入 手性试剂,利用手性试 剂与各对映体结合的 稳定常数不同,以及药 物与结合物在固定相 上分配系数的不同来 进行分离。有:配体交 换型手性添加剂、环糊 精添加剂、手性离子对 添加剂。 该法是药物对映体在 分离前与高光学纯度 衍生化试剂( C D A) 反应,形成非对映体, 再进行色谱分离测定。 优点分离时间短, 而手性选择性 和拆分能力 高,多数药物 在分离前都不 需要进行衍生此法不需昂贵的手性 柱,亦无须进行柱前衍 生,手性添加剂可视要 求而更换,使用比较方 便。 可使用已有的非 手性同定相,花费少, 通过选用具有强烈紫 外吸收或荧光吸收的 手性试剂,可提高检 测敏感度,而且多数

相关主题
文本预览
相关文档 最新文档