当前位置:文档之家› 手性高效液相色谱法分析测定缬沙坦对映体

手性高效液相色谱法分析测定缬沙坦对映体

手性高效液相色谱法分析测定缬沙坦对映体
手性高效液相色谱法分析测定缬沙坦对映体

手性药物的合成与拆分的研究进展

手性药物的合成与拆分的研究进展 手性是自然界的一种普遍现象,构成生物体的基本物质如氨基酸、糖类等都是手性分子。手性化合物具有两个异构体,它们如同实物和镜像的关系,通常叫做对映异构体。对映异构体很像人的左右手,它们看起来非常相似,但是不完全相同。 目前市场上销售的化学药物中,具有光学活性的手性药物约占全部化学药40% } 50%,药物的手性不同会表现出截然不同的生物、药理、毒理作用,服用对映体纯的手性药物不仅可以排除由于无效(不良)对映体所引起的毒副作用,还能减少药剂量和人体对无效对映体的代谢负担,对药物动力学及剂量有更好的控制,提高药物的专一性,因而具有十分广阔的市场前景和巨大的经济价值[Dl 1由天然产物中提取 天然产物的提取及半合成就是从天然存在的光活性化合物中获得,或以价廉易得的天然手性化合物氨基酸、菇烯、糖类、生物碱等为原料,经构型保留、构型转化或手性转换等反应,方便地合成新的手性化合物。如用乳酸可合成(R)一苯氧基丙酸类除草剂[}z}。天然存在的手性化合物通常只含一种对映体用它们作起始原料,经化学改造制备其它手性化合物,无需经过繁复的对映体拆分,利用其原有的手性中心,在分子的适当部位引进新的活性功能团,可以制成许多有用的手性化合物。 2手性合成 手性合成也叫不对称合成。一般是指在反应中生成的对映体或非对映体的量是不相等的。手J险合成是在催化剂和酶的作用下合成得到过量的单一对映体的方法。如利用氧化还原酶、合成酶、裂解酶等直接从前体化合物不对称合成各种结构复杂的手性醇、酮、醛、胺、酸、酉旨、酞胺等衍生物,以及各种含硫、磷、氮及金属的手性化合物和药物,其优点在于反应条件温和、选择性强、不良反应少、产率高、产品光学纯度高、无污染。 手性合成是获得手性药物最直接的方法。手J险合成包括从手性分子出发来合成目标手性产物或在手性底物的作用下将潜在手性化合物转变为含一个或多个手性中心的化合物,手性底物可以作为试剂、催化剂及助剂在不对称合成中使用。如Yamad等和Snamprogetti 等在微生物中发现了能催化产生N-氨甲酞基一D-氨基酸的海因酶( Hy-dantoinase)。海因酶用于工业生产D一苯甘氨酸和D一对轻基苯甘氨酸。D一苯甘氨酸和D一对轻基苯甘氨酸是生产重要的临床用药半合成内酞胺抗生素(氨节青霉素、轻氨节青霉素、氨节头炮霉素、轻氨节头炮霉素)的重要侧链,目前国际上每年的总产量接近SOOOto 3外消旋化合物的拆分 外消旋拆分法是在手性助剂的作用下,将外消旋体拆分为纯对映体。外消旋体拆分法是一种经典的分离方法,在工业生产中己有100多年的历史,目前仍是获得手性物质的有效方法之一。拆分是用物理化学或生物方法等将外消旋体分离成单一异构体,外消旋体拆分法又可分为结晶拆分法;化学拆分法;生物拆分法;色谱拆分法;膜拆分和泳技术。 3. 1结晶拆分法 3.1.1直接结晶法 结晶法是利用化合物的旋光异构体在一定的温度下,较外消旋体的溶解度小,易拆分的性质,在外消旋体的溶液中加入异构体中的一种(或两种)旋光异构体作为晶种,诱导与晶种相同的异构体优先(分别)析出,从而达到分离的目的。在。一甲基一L一多巴的工业生产中就是使两种对映体同时在溶液中结晶,而母液仍是外消旋的,把外消旋混合物的过饱和溶液通过含有各个对应晶种的两个结晶槽而达到拆分的目的[3]。结晶法的拆分效果一般都不太理想,但优点是不需要外加手性拆分试剂。若严格控制反应条件也能获得较纯的单一对应体。 3. 1. 2非对映体结晶法

手性药物

我报告的题目是手性技术与手性药物。 首先让我和大家一起来回忆一下药物给人类带来空前灾难的反应停事件。1953年,联邦德国Chemie制药公司研究了一种名为“沙利度胺”的新药,该药对孕妇的妊娠呕吐疗效极佳,Chemie公司在1957年将该药以商品名“反应停”正式推向市场。两年以后,欧洲的医生开始发现,本地区畸形婴儿的出生率明显上升,此后又陆续发现12000多名因母亲服用反应停而导致的海豹婴儿!这一事件成为医学史上的一大悲剧。 后来研究发现,反应停是一种手性药物,是由分子组成完全相同仅立体结构不同的左旋体和右旋体混合组成的,其中右旋体是很好的镇静剂,而左旋体则有强烈的致畸作用。 到底什么是手性药物?用什么技术或方法能够分别获得左旋体和右旋体来进行研究和安全有效地使用呢? 这就是今天我要报告的主题——手性技术和手性药物。 要阐明这一主题,首先我们要认识什么是手性药物。手性药物分子有一个共同的特点就是存在着互为实物和镜像关系两个立体异构体,一个叫左旋体,另一个叫右旋体。就好比人的左手和右手,相似而不相同,不能叠合。 目前临床上常用的1850多种药物中有1045多种是手性药物,高达62%。像大家所熟知的紫杉醇、青蒿素、沙丁胺醇和萘普生都是手性药物。 手性是宇宙的普遍特征。早在一百多年前,著名的微生物学家和化学家巴斯德就英明地预见“宇宙是非对称的……,所有生物体在其结构和外部形态上,究其本源都是宇宙非对称性的产物”。 因此,科学家推断,由于长期宇宙作用力的不对称性,使生物体中蕴藏着大量手性分子,如氨基酸、糖、DNA和蛋白质等。绝大多数的昆虫信息素都是手性分子,人们利用它来诱杀害虫。很多农药也是手性分子,比如除草剂Metolachlor,其左旋体具有非常高的除草性能,而右旋体不仅没有除草作用,而且具有致突变作用,每年有2000多万吨投放市场,其中1000多万吨是环境污染物。Metolachlor自1997年起以单旋体上市,10年间少向环境投放约1亿吨化学废物。研究还发现,单旋体手性材料可以作为隐形材料用于军事领域。 左旋体和右旋体在生物体内的作用为什么有这么大的差别呢?由于生物体内的酶和受体都是手性的,它们对药物具有精确的手性识别能力,只有匹配时才能发挥药效,误配就不能产生预期药效。正如“一把钥匙开一把锁!”因此,1992年美国FDA规定,新的手性药物上市之前必须分别对左旋体和右旋体进行药效和毒性试验,否则不允许上市。2006年1月,我国SFDA也出台了相应的政策法规。 怎样才能将非手性原料转变成手性单旋体呢?从化学角度而言,有手性拆分和手性合成两种方法。经典化学反应只能得到等量左旋体和右旋体的混合物,手性拆分是用手性拆分试剂将混旋体拆分成左旋体和右旋体,其中只有一半是目标产物,另一半是副产物,而且需要消耗大量昂贵的手性拆分试剂。化学家一直在探索,是否有更经济的方法,将非手性原料直接转化为手性单旋体呢? 上世纪60年代初,科学家们开始研究在极少量的手性催化剂作用下获得大量的单旋体,这就是手性合成

手性高效液相色谱法检测恩替卡韦中光学异构体杂质的含量

手性高效液相色谱法检测恩替卡韦中光学异构体杂质的含量 王文娜 邓桂凤 张玲娣 姚彤炜 3 (浙江大学药学院药物分析和药物代谢研究室,杭州310031) 摘 要 采用Chiral pak AD 2H 手性柱(250mm ×416mm,5μm ),建立了正相高效液相色谱(NP 2HP LC )法直接拆分恩替卡韦与其光学异构体的方法。考察了流动相组成、酸碱性对柱效、分离度、保留时间等参数的影响。经优化,以正己烷2异丙醇2乙醇2三氟乙酸2三乙胺(70∶12∶18∶0105∶0105,V /V )为流动相,流速 015mL /m in;检测波长261n m 。在此条件下,恩替卡韦与光学异构体分离度>412;光学异构体的检出限为0112mg/L ,在0125~410mg/L 浓度范围内有良好的线性关系;日内与日间精密度RS D <410%;按标准加入 法计算,加样回收率在8710%~10018%之间;RS D <310%;按外标法计算,加样回收率在9812%~11014%之间;RS D <310%。本方法可作为恩替卡韦原料药中光学异构体杂质限量的控制方法。关键词 恩替卡韦,光学异构体,高效液相色谱法,手性拆分  2008212229收稿;2009204229接受3E 2mail:rethe m@https://www.doczj.com/doc/9c2456417.html, 1 引 言 慢性乙肝病毒感染一直是全球公共卫生的难题,开发抗乙肝病毒药物也一直是个热点。目前,我国临床上应用的抗病毒治疗药物主要有两类:α2干扰素和核苷或核苷酸类似物,主要包括拉米夫定、阿德 福韦和阿昔洛韦[1,2] 。2005年3月美国F DA 批准了新一代抗HBV 核苷类似物恩替卡韦(entecavir,  图1 恩替卡韦及其光学异构体的化学结构 Fig .1 Structures of entecavir and its op tical is omer ET V,商品名Baraclude )上市[3] 。恩替卡韦是一种鸟嘌呤核苷类似物(图1),在磷酸激酶的作用下在体内形成活性三磷酸化合物,拮抗HBV 所需天然底物脱氧鸟苷三磷(dGTP ),抑制HBV 2DNA 聚合酶和逆转录酶,阻断HBV 复制。细胞内作用 半衰期为15h,在人体内不被肝细胞代谢,主要从 肾脏排出体外。同时,其耐药性好,可有效治疗慢 性乙型肝炎,临床应用前景良好[4,5] 。 由于手性药物在合成过程中可能引入光学异构体杂质,故采用手性分离方法检查合成产品中光学异构体含量。恩替卡韦及其光学异构体手性分离方法未见报道。本研究采用直接手性HP LC 法拆分两光学异构体,建立恩替卡韦中光学异构体杂质限量检查方法。 2 实验部分 211 仪器、试剂及材料 LC 210A 型高效液相色谱仪、SP D 210A 型紫外可见光检测器(日本岛津公司);Chiral pak AD 2H 手性 柱(250mm ×416mm ,5μm ,日本D iacel 公司)。乙醇(TE D I A )、正己烷(Burdick &Jacks on )及异丙醇(TE D I A )均为色谱纯;三氟乙酸(国药集团化学试剂有限公司);三乙胺(分析纯,上海化学试剂采购供应五联化工厂);恩替卡韦及其光学异构体(99187%,浙江医药股份有限公司新昌制药厂)。212 色谱条件 色谱柱:Chiral pakAD 2H 手性柱;流动相:正己烷2异丙醇2乙醇2三氟乙酸2三乙胺(70∶12∶18∶0105∶0105,V /V );流速015mL /m in;检测波长261nm;柱温:室温;灵敏度:01005AUFS;进样量20μL 。 第37卷 2009年8月 分析化学(FE NX I HUAXUE ) 研究简报Chinese Journal of Analytical Chem istry 第8期 1206~1210

高效液相色谱手性固定相研究进展

收稿日期:2003-05-25 作者简介:寿崇琦(1963-),男,山东省济南市人,济南大学化学化工学院教授,硕士研究生导师,中国科学院兰州化学物理研究所博士研究生。 高效液相色谱手性固定相研究进展 寿崇琦1,张志良2,赵春宾2,邢希学2,李关宾1,陈立仁1 (11中国科学院兰州化学物理研究所,甘肃兰州 730000; 21济南大学化学化工学院,山东济南 250022) 摘要:对近年来高效液相色谱手性固定相的研究进行了综述。重点介绍了手性固定相的分类、拆分机理 和应用的新进展。讨论了各类手性固定相优缺点,提出了目前存在的问题、今后的研究方向和重点。 关键词:高效液相色谱;手性固定相;拆分机理中图分类号:O658 文献标识码:A 文章编号:1004-4280(2004)01-0069-05 随着生物工程和生物科学的发展,手性拆分和测定引起了人们的普遍关注。尽管对映体间物理化学性质几乎完全相同,但它们的生化和药理作用却往往不同。这是因为生物本身内部的核酸、蛋白质及多糖都具有与其功能相适应的结构,它们常常对扬长避短一化合物的两种对映体表现出不同的响应。例如具有镇静作用的反应停(thalidomide ,酞胺哌啶酮),其有效成分是R 构型,而S 构型则具有致畸作用[1]。据统计,常用的200种药物中,大约有120种至少含有一个手性中心。而这些手性药物中有80%~90%以外消旋体形式在市场销售,存在巨大的潜在危险性[2]。因此,对映体的拆分与识别对于生命科学和药物化学研究以及人类的健康具有十分重要的意义。 目前用于手性分离的方法主要有毛细管电泳法、薄层色谱法、亚临界及超临界流体色谱法、气相色谱法和液相色谱法[3]。近年来,高效液相色谱法取得了令人瞩目的进展,已成为对映体拆分强有力的手段之一。而其中所用的手性固定相的是能否进行手性分离的关键。1 手性固定相的分类 虽然液相色谱常被分为不同的分离模式,但实质上所有的分离模式都基于两个最基本的因素:即固定相的结构和组成,以及决定分离机理的固定相与流动相相互作用的性质。因而手性固定相(CSP )的制备则是手性分离的关键。目前所研究的HP LC -CSP 主要可分为下列几类[4]: 1.1 蛋白质手性亲和固定相 多数蛋白质CSP 的分离机理目前尚不十分清楚,但是蛋白质CSP 的手性识别能力可以归结为它们独特的空间立体结构特征[4]。尤其是在对映体的手性识别过程中,三级结构所造成 第18卷第1期 2004年3月山 东 轻 工 业 学 院 学 报JOURNA L OF SHANDONG INSTIT UTE OF LIGHT INDUSTRY Vol.18No.1Mar.2004

浅谈手性化合物与现代医学

浅谈手性化合物与现代医学 一、手性化合物简介 手性化合物(chiral compounds)是指分子量、分子结构相同,但左右排列相反,如实物与其镜中的映体。人的左右手、结构相同,大姆至小指的次序也相同,但顺序不同,左手是由左向右,右手则是由右向左,所以叫做“手性”。也就是指一对分子。由于它们像人的两只手一样彼此不能重合,又称为手性化合物。判断分子有无手性的可靠方法是看有没有对称面和对称中心。 手性问题与我们的日常生活密切相关。天然存在的手性化合物品种很多,并且通常只含有一种对映体,手性问题还牵涉到农业化学、食品添加剂、饮料、药物、材料、催化剂等诸多领域。它的研究已经成为科学研究和很多高科技新产品开发的热点。在过去20年里,手性研究具有戏剧性的发展,已从过去的少数几个专家的学术研究发展到大面积科学研究的需要,在一些领域并已带来了巨大的经济效益。物质的手性已经变成越来越需要考虑的问题,其对我们的日常生活正在起到越来越重要的作用。 手性化合物主要从天然来源、不对称合成和外消旋体拆分3个方面得到。由天然来源获得手性化合物,原料丰富,价廉易得,生产过程简单,产品的纯度一般都较高,因此很多量大的产品都是从天然物中获得。在药物工业中由于对手性药物的要求不断增加,其大大激发了不对称有机合成的发展,使一些生物技术、生物催化剂也迅速扩展到该领域产生纯的的手性中间体和手性产品。 二、手性药物 由于自然界的生命体存在有手性,因而也就产生了手性药物。手性药物指分子结构中存在手性因素的药物。通常是指由具有药理活性的手性化合物组成的药物,或者是只含有效对映体或是以有效对映体为主的药物。按药效方面的简单划分,手性药物可能存在以下几种不同的情况:①只有一种对映体具有所要求的药理活性,而另一种对映体没有药理作用或活性很小。②一对对映体中的两个化合物具有等同或近乎等同的同一药理活性。③一对对映体具有完全不同的药理活性。 ④一对对映体之间一个有药理活性,另一个不但没有活性,甚至表现出一定的毒副作用。⑤一对对映体之间药理活性相近,但存在个体差异。⑥一对对映体中,一个有活性,另一个却发生拮抗作用。 三、手性药物未来展望 手性制药是医药行业的前沿领域,2001年诺贝尔化学奖就授予在分子不对称催化反应中做出杰出贡献的三位科学家。目前,世界单一对映体手性药物的销售额持续增长。1998年销售额已达到964亿美元。2000年的销售额为1330亿美元,并估计2008年达到2000亿美元。手性药物以其疗效高、毒副作用小、用药量少的优点满足了市场的需求,因而成为未来新药研发的方向。

高效液相色谱法在生命科学中的应用

高效液相色谱法在生命科学中的应用 高效液相色谱在生命科学中的应用范围越来越广,高效液相色谱由于具有高选择性、高灵敏度,并可同时用于有关物质检查与含量测定的特点,已成为医药研究的有力工具。如在中草药有效成分的分离和纯度测定、人工合成药物成分的定性和定量测定、新型高效手性药物中手性对映体含量的测定以及药物代谢物的测定等方面都需要用到HPLC的不同测定方法予以解决。而目前高效液相色谱的蒸发现了它在生命科学中的重要地位。光散射检测器的应用更体现了它在生命科学中的重要地位。1天然药物分析 天然药物的来源有动物、植物和矿物之分,其中以植物类为主。由于天然药物的化学成分复杂,其有效成分,可能有一个,也可以有多个,这对于控制药品质量,建立质量标准来说比较困难,HPLC可通过对天然药物的有效成分进行分离鉴定,再测定有效成分的含量;通过指纹图谱建立识别模式,可以判定药材的质量高低。 2 天然药物及复方成药分析 复方制剂、杂质或辅料干扰因素多的品种多采用高效液相色谱法。增免扶正片系由当归、党参、黄芪(图3)等十几味天然药物精制而成,具有益气生津、活血养血、滋补肝肾、健脾开胃之功效,主要用于抗缺氧、抗疲劳、抗衰老,长期服用可扶正祛邪,提高机体免疫功能,健身强体,益寿延年。该药对心、肝、脾、肾虚、纳差、心脑血管疾病、神经衰弱、

慢性肝炎、脂肪肝等都有较好的防治作用。 由于化学药品的开发费用昂贵,而且毒副作用大,近年来人们已把目光转向自然、民族传统医药、草药、植物药等天然药物,据世界卫生组织统计,当前全世界60多亿人口中80%的人使用过天然医药。在全世界药品市场中,天然物质制成的药品已占30%,国际上植物药市场份额已达300亿美元,且每年以20%以上的速度增长。HPLC分析必定能为我国传统中医药实现现代化,走向世界提供强有力的技术支持。 3 抗生素分析 抗生素是由微生物或其他方法产生的化学物质,在高度稀释的情况下仍具有抑制或杀灭其他微生物的性能。抗生素的分离、分析和定量测定是药物分析中较困难的领域。采用较多的方法是微生物法、分光光度法和化学方法,但所需时间较长、专一性较差。 HPLC分析技术近年来在抗生素的质量控制中已广泛应用。对结构、组分等较清楚的药物,HPLC分析将逐步取代传统的生物测定。目前,各国药典中应用HPLC技术对抗生素进行质量控制的项目包括鉴别、组分分析、含量测定和相关物质测定等。 4 在鉴别中的应用 在HPLC法中,保留时间与组分的结构和性质有关,是定性的参数,可用于药物的鉴别.如中国药典收载的药物头孢羟氨苄的鉴别项下规定:在含 量测定项下记录的色谱图中,供试品主峰的保留时间应与对照品主峰的保留时间一致.头抱拉定,头孢噻酚钠等头孢类药物以及地西泮注射液,曲安奈德注射液等多种药物均采用HPLC法进行鉴别.

手性色谱分析

1 手手性性高高效效液液相相色色谱谱法法 **手手性性药药物物分分析析的的概概念念 **常常用用手手性性高高效效液液相相色色谱谱法法 手手性性衍衍生生化化试试剂剂法法 手手性性固固定定相相法法 手手性性流流动动相相添添加加法法 2 手手性性的的概概念念::一一种种镜镜像像反反射射的的对对称称性性

3 手性分子:组成相同但空间结构上互成镜像的分子,称之为对映异构体。 分子结构中含有不对称碳原子是最常见的手性结构。 根据对偏振光的作用不同可分为R、S体,两者的等量混合物称之为消旋体。 OH COOH H CH 3 OH COOH H CH 3 4 Mirror Mirror

手手性性异异构构体体在在药药理理学学效效应应上上的的差差异异 ● Pfeiffer 规则: ● 对映异构体之间的生物活性存在着差异; ● 不同的对映体之间活性的差异是不同的; 当手性药物的有效剂量越低,即药效强度越高时,则对映体之间的药理作用的差别越大。 外消旋体和其两种单一对映体是不同的3种实体! 5 对对映映体体与与生生物物大大分分子子的的三三点点作作用用 c a b d a b d c α γβ α β γ 手性分子的a 、b 、c 结合,是高活性对映体(优映体)。 手性分子的a 、b 、c 三个基团中只有a 和b 与受体分子的活性作用点 6 在未研究清楚两种单一对映体之间的生物学差异时,以消旋体给

药往往会影响药物质量,甚至会严重损害人体健康。 “反应停”(Thalidomide)作为人工合成药,当时投入使用时是两种 对映体的混合物。 7 反应停:五十年恩怨 发展趋势: 劣映体本身或其代谢物产生毒副作用,不再使用外消旋体。外消旋体转换成单一对映体,不仅提高质量,还延长药物寿命。 如:氧氟沙星的左旋异构体活性更强,左旋氧氟沙星临床使用剂量是消旋体的一半。

高效液相色谱法-药典

高效液相色谱法 高效液相色谱法系采用高压输液泵将规定的流动相泵人装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。注人的供试品,由流动相带入色谱柱内,各组分在柱内被分离,并进入检测器检测,由积分仪或数据处理系统记录和处理色谱信号。 1. 对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。色谱柱内径一般为3.9?4.6 mm,填充剂粒径为3?10μm。超高效液相色谱仪是适应小粒径(约2μm) 填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。 (1) 色谱柱 反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常见的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反相色谱。 离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。 色谱柱的内径与长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提髙色谱柱的温度,但一般不宜超过60°C。残余硅羟基未封闭的硅胶色谱柱,流动相pH值一般应在2?8之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH值小于2或大于8的流动相。

手性药物研究技术指导原则

2 一、概述 三维结构的物体所具有的与其镜像的平面形状完全一致,但在三维空间中不能完 全重叠的性质,正如人的左右手之间的关系,称之为手性,具有手性的化合物即称 为手性化合物。手性是自然界的一种基本属性,组成生物体的很多基本结构单元都 具有手性,如组成蛋白质的手性氨基酸除少数例外,大都是L-氨基酸;组成多糖和 核酸的天然单糖也大都是D构型。作为调节人类的相关生命活动而起到治疗等作用 的药物,如果在参与体内生理过程时涉及到手性分子或手性环境,则不同的立体异 构体所产生的药理效应就可能不同。手性化合物除了通常所说的含手性中心的化合 物外,还包括含有手性轴、手性平面、螺旋手性等因素的化合物。在本指导原则中 所指的手性药物主要是指含手性中心的化合物,其它类型的手性药物研发也可参考 本指导原则的基本要求。 手性药物是指分子中含有手性中心(也叫不对称中心)的药物,它包括单一的立 体异构体、两个以上(含两个)立体异构体的不等量的混合物以及外消旋体。不同 构型的立体异构体的药理作用也可能不同,大致可分为以下几种情况【1】 : (1)药物的药理作用完全或主要由其中的一个对映体产生。如S-萘普生的镇 痛作用比其R 异构体强35倍。 (2)两个对映体具有完全相反的药理作用。如新型苯哌啶类镇痛药-哌西那朵 的右旋异构体为阿片受体的激动剂,而其左旋体则为阿片受体的拮抗剂。 (3)一个对映体有严重的毒副作用。如驱虫药四咪唑的呕吐副作用即由其右旋 体产生。 (4)两个对映体的药理作用不同,但合并用药有利。如降压药-萘必洛尔的右 旋体为β-受体阻滞剂,而左旋体能降低外周血管的阻力,并对心脏有保护作用;抗 高血压药物茚达立酮【2】 的R异构体具有利尿作用,但有增加血中尿酸的副作用,而S异构体却有促进尿酸排泄的作用,可有效降低R异构体的副作用,两者合用有利。进 一步的研究表明,S与R异构体的比例为1:4或1:8时治疗效果最好。 (5)两个对映体具有完全相同的药理作用【3】 。如普罗帕酮的两个对映体即具有 相同的抗心率失常作用。 正是由于手性药物的不同立体异构体在药效、药代及毒理等方面都可能存在差 异,美国FDA在其关于开发立体异构体新药的政策【4】 中要求在对手性药物进行药理毒 理研究时,应分别获得该药物的立体异构体,进行必要的比较研究,以确定拟进一 步开发的药物。所以手性药物药学研究的主要任务就是为药物的筛选与进一步研究 提供足够数量与纯度的立体异构体。本指导原则是在一般化学药物药学相关技术指 导原则的基础上,充分考虑手性药物的特殊性而起草的,其目的是为手性药物的药 学研究提供一般性的指导。本指导原则中所涉及的手性药物主要针对单一的立体异 构体、两个以上(含两个)立体异构体组成的不等量混合物。 由于手性药物的研发是一项探索性很强的工作,情况也比较复杂,所以在使用本 指导原则时,还应具体问题具体分析,在遵循药物研发的自身规律以及手性药物一 般要求的基础上,根据所研制药物的特点,进行针对性的研究。如采用本指导原则 以外的研究手段与方法,则该方法或手段的科学性和可行性必须经过必要的验证。

手性化合物

手性化合物 手性化合物是指分子量、分子结构相同,但左右排列相反,如实物与其镜中的映体。人的左右手、结构相同,大姆至小指的次序也相同,但顺序不同,左手是由左向右,右手则是由右向左,所以叫做“手性”。也就是指一对分子。由于它们像人的两只手一样彼此不能重合,又称为手性化合物 什么是手性? 当我们伸出双手,双手手心向上时,可以看出左右手是对称的,但是将双只手叠合,无论如何也不能全部重叠,总有一部分是不能重合在一起的;如果我们将左手置于一面平面镜前,手心对着镜子,可以看到镜子里的左手的像和右手手心对着自己一样,即左手的像和右手可以完全重叠。象这样左手和右手看来如同物与像,但又不能叠合在一起,互相成为“镜像”关系,就称之为“手性”。 有机化合物是含碳的化合物,一个碳原子的最外层上有四个电子,若以单键成键时,可以形成四个共价单键,共价键指向四面体的顶点,当碳原子连接的四个基团各不相同时,与这个碳原子相连接的四个基团有两种空间连接方式,这两种方式如同左右手,互为“镜像”,也是不能完全叠合在一起的,因此,这样的分子叫做“手性分子”。这种构成手性关系的分子之间,把一方叫做另一方的“对映异构体”。许多有机化合物分子都有“对映异构体”,即是具有“手性”。构成生物体的许多有机化合物都有“手性”。如α-氨基酸,在碳连接有一个羧基、一个氨基、一个烃基和一个氢原子(或一个不同于前边的烃基)*,这时你想将其中三个相同颜色的球重叠,但是余下的那个颜色的球总不能重叠。由这些手性氨基酸组成的蛋白质也就与“手性”有密切的关系,因此,生命生理活动中的许多现象与“手性”密不可分。 如何检验物质具有手性? 手性物质具有一特殊性质——旋光性,将纯净的手性物质的晶体,或是将纯净的手性物质配成一定浓度的溶液,用平面偏振光1照射,通过手性物质的偏振光平面会发生一定角度的旋转,这称为旋光性。这种偏振光的平面旋转可左可右,以顺时针方向旋转的对映体,称为右旋分子,用“+”或“d”表示;以逆时针方向旋转的对映体,称为左旋分子,用“-”或“l”;如果将互为对映体的手性物质等物质的量混合后,以偏振光照射,而偏振光不发生旋转,称为外消旋体或外消旋混合物,外消旋体是由于左旋分子和右旋分子发生的偏振光旋转

手性药物质量控制研究技术指导原则

手性药物质量控制研究技术指导原则 一、概述 三维结构的物体所具有的与其镜像的平面形状完全一致,但在三维空间中不能完全重叠的性质,正如人的左右手之间的关系,称之为手性。具有手性的化合物即称为手性化合物。手性是自然界的一种基本属性,组成生物体的很多基本结构单元都具有手性,如组成蛋白质的手性氨基酸除少数例外,大都是L-氨基酸;组成多糖和核酸的天然单糖也大都是D构型。作为调节人类的相关生命活动而起到治疗作用的药物,如果在参与体内生理过程时涉及到手性分子或手性环境,则不同的立体异构体所产生的生物活性就可能不同。手性化合物除了通常所说的含手性中心的化合物外,还包括含有手性轴、手性平面、手性螺旋等因素的化合物。在本指导原则中所指的手性药物主要是指含手性中心的药物,其它类型的手性药物也可参考本指导原则的基本要求。 手性药物是指分子结构中含有手性中心(也叫不对称中心)的药物,它包括单一的立体异构体、两个以上(含两个)立体异构体的不等量的混合物以及外消旋体。不同构型的立体异构体的生物活性也可能不同,大致可分为以下几种情况【1】: 1)药物的生物活性完全或主要由其中的一个对映体产生。如S -萘普生在体外试验的镇痛作用比其R异构体强35倍。 2)两个对映体具有完全相反的生物活性。如新型苯哌啶类镇痛药-哌西那朵的右旋异构体为阿片受体的激动剂,而其左旋体则为阿片受体的拮抗剂。

3)一个对映体有严重的毒副作用。如驱虫药四咪唑的呕吐副作用是由其右旋体产生的。 4)两个对映体的生物活性不同,但合并用药有利。如降压药-萘必洛尔的右旋体为β-受体阻滞剂,而左旋体能降低外周血管的阻力,并对心脏有保护作用;抗高血压药物茚达立酮【2】的R异构体具有利尿作用,但有增加血中尿酸的副作用,而S异构体却有促进尿酸排泄的作用,可有效降低R异构体的副作用,两者合用有利。进一步的研究表明,S与R异构体的比例为1:4或1:8时治疗效果最好。 5)两个对映体具有完全相同的生物活性【3】。如普罗帕酮的两个对映体都具有相同的抗心率失常作用。 正是由于手性药物的不同立体异构体在药效、药代及毒理等方面都可能存在差异,美国FDA在其关于开发立体异构体新药的政策【4】中要求在对手性药物进行药理毒理研究时,应分别获得该药物的各立体异构体,进行必要的比较研究,以确定拟进一步开发的药物。所以手性药物药学研究的主要任务就是为药物的筛选与进一步研究提供足够数量与纯度的立体异构体。本指导原则是在一般化学药物药学指导原则的基础上,并充分考虑手性药物的特殊性而起草的,其目的是为手性药物的药学研究提供一般性的指导。本指导原则中所说的手性药物主要针对单一的立体异构体、两个以上(含两个)立体异构体组成的不等量混合物。 由于手性药物的研发是一项探索性很强的工作,情况也比较复杂,所以在使用本指导原则时,还应具体问题具体分析:在遵循药品研发的自身规律以及手性药物一般要求的基础上,根据所研制药物的

高效液相色谱与手性分离

对含有多个手性中心的药物使用含多糖类手性固定 相的高效液相色谱法进行手性拆分 摘要 对含有多个手性中心的药物进行手性分离是一项具有挑战性的工作。这篇文章介绍了用多糖类手性固定相对含有多个手性中心的药物进 行分离。并且,柱转换技术在这种化合物得分离中也被应用。 关键词: 回顾;对映体分离; 手性固定相, LC;多糖; 纳多洛尔; 吲多洛尔; 奈必洛尔;地尔硫卓 目录 1.介绍 2.含两个手性中心的药物的手性分离实例 3. 含多个手性中心(多于两个)的药物的手性分离实例 4. 结论 5. 参考文献 1. 介绍 手性是一个显著的生物学过程,一个生物活性分子的对映体通常具有不同的生物学特性。生物学作用中的对映体选择性现象并不局限于药物学,它是所有生物活性试剂(杀虫剂、除草剂、香精香料、食物添加剂等)的一个共同特征。 来源于自然物质的药物通常是光学活性或纯形式的单一异构体。然而,那些用化学方法合成的药物通常是根据不对称中心的数目由两个,四个或者更多异构体混合而成。因此,立体选择性在手性药物的

生物利用度、分配、与受体的相互作用、异构体活动中的代谢和消除过程中所产生的差异从不期望的毒性到毫无意义增大活性。 在过去的30年中,通过高效液相色谱法(HPLC)进行手性分离已经显得越来越重要。这可以通过以下两个方面得出: (a)间接进行手性分离的方法,包括在色谱分析法中通过一个非手性柱用一个手性衍生物试剂合成非对映异构体; (b)直接进行手性分离的方法,包括用手性固定相(CSPs)将外消旋药物拆分成相应的对映体。 基于手性固定相(CSPs)的直接分离方法因其可以快速、合适的用于分离外消旋酸盐而深受分析和制备行业的喜爱。自然形成和合成的手性固定相(CSPs)存在着广泛的多样性,绝大多数是用于商业(超过120种)。这些手性固定相(CSPs)中的很多在应用方面具有局限性。因此,多糖类固定相和其它固定相,如:化学键合的蛋白质、环糊精及其衍生物、Π-型和大环抗生素已经被证明是在高效液相色谱法进行手性药物的分离中最有用的固定相。 多糖类手性固定相是由Okamoto和他的课题组于1984年提出的,它可以通过纤维素涂料和直链淀粉衍生物在预处理二氧化硅上来制备。利用多糖型手性固定相(其结构如表1所示)时,对映体的拆分可以在正相和反相条件下完成,后者可以使用Chiralcel OD-R、Chiracel OJ-R 及最近提出的Chiralpack AD-R型手性柱。尽管多糖类固定相之间的手性差异机理还没有被圆满鉴定,但我们确信对映体结合产生的差异是由各种引力,如氢键、疏水相互作用、偶极相互作用和电荷传递

手性合成手性识别手性拆分及在医药学中应用_张来新

收稿日期:2016-02-29 基金项目:陕西省重点实验室科学研究计划基金资助项目(2010JS067); 陕西省教育厅自然科学基金资助课题(04JK147);宝鸡文理学院自然科学基金资助课题(zk12014) 作者简介:张来新(1955-),男,汉族,陕西周至人,教授,硕士研究生 导师,主要从事大环化学研究及天然产物分离提取。 DOI :10.16247/https://www.doczj.com/doc/9c2456417.html,ki.23-1171/tq.20160753 Sum 250No.07 化学工程师 Chemical Engineer 2016年第07 期 手性是人类赖以生存的自然界的属性之一,也是生命体系中最重要的属性之一。作为生命体三大 物质基础的蛋白质、核酸及糖类均是由具有手性的结构单元组成的。如组成蛋白质的氨基酸除少数例外,大多是手性的L-氨基酸; 组成多糖和核酸的天然单糖大都是手性的D-构型。因此,生物体内所有的生化反应、生理反应无一不表现出高度的手性立体特异性,而外源性物质进入体内所发生的生理生化反应过程也具有高度的立体选择性。医药学所有的手性药物是指分子结构中含有手性中心或不对称中心的药物,它包括单一的立体异构体、两个或两个以上立体异构体的混合物。手性化合物除了通常所说的含手性中心的化合物外,还包括含手性轴、手性平面、螺旋手性等因素的化合物。由于药物作用的靶点(如受体、酶或通道)结构上的高度立体 特异性,手性药物的不同立体异构与靶点的相互作 用有所不同,从而产生不同的药理活性,故表现出立体专一性和立体选择性。同样,药物进入体内后与机体内具有高度立体特异性的代谢酶及血浆蛋白或转运蛋白等相互作用,手性药物的不同异构体在体内也将表现出不同的药代动力学特征,并具有 立体专一性和立体选择性。但值得注意的是,有些手性化合物在体内甚至可能发生构型变化而改变 其药效或产生毒副作用。 由于手性药物是医药行业的主体和前沿阵地,故2001年诺贝尔化学奖就授予了分子手性催化剂的主要贡献者。自然界中有众多手性化合物,这些不同构型的化合物具有一对对映异构体。当一个手性化合物进入生命时,它的两个对眏异构体通常会表现出不同的生物生理活性。对于手性药物,一个异构体可能是有效的,而另一个异构体可能是无效的甚至是有害的(如青霉素),这就需要对对眏体进行拆分。手性制药就是利用化合物的拆分原理,开发出药效高、副作用小的药物。在临床治疗方面,服用一对对眏体中的一种单一构型的纯手性药物可以排除由无效或不良对眏体的另一种而引起的毒副作用,不仅如此,还可以减少药剂用量和人体对 手性合成手性识别手性拆分 及在医药学中应用 * 张来新*,陈 琦 (宝鸡文理学院化学化工学院,陕西宝鸡721013) 摘要:简要介绍了手性物质的合成、手性识别、手性拆分及在医药学上的应用。详细综述了:(1)手性合成手性识别手性拆分及在医药学中的应用;(2)新型金属手性超分子配合物的合成及应用;(3)手性杯芳冠醚的合成分子识别及应用。并对手性化学的发展进行了展望。 关键词:手性合成;手性识别;手性拆分;应用中图分类号:O658 文献标识码:A Chiral synthesis,chiral recognition,chiral separation and their applications to medeicine * ZHANG Lai-xin ,CHEN Qi (Chemistry &Chemical Engineering Department,Baoji University of Arts and Sciences,Baoji 721013,China ) Abstract :This paper introduces synthesis of chiral materials,chiral recognition,chiral separation,and their applications to medicine.Emphases are put on three parts :(1)chiral synthesis,chiral recognition,chiral separa -tion,and their applications to medicine ;(2)synthesis and applications of new metal chiral supramolecular com -plexes ;(3)synthesis,molecular recognition,and applications of chiral calix crown ethers.Future developments of charal chemestry are prospected in the end. Key words :chiral synthesis ;chiral recognition ;chiral separation ;application

高效液相色谱法在手性药物拆分中的应用

高效液相色谱法在手性药物拆分中的应用 摘要:外消旋化合物的手性分离是获得单一对映体的方法之一。随着人们对纯光学药物的需求日益增加,各种手性分离技术得以快速发展。近几十年来,在这些手性分离技术中,高效液相色谱法( HPLC ) 被公认为是一种强大、快速、高效的分离技术,它已成功应用于对映体药物的分离分析和制备中。HPLC用于对手性药物分离的研究已取得很大进展,并且研发了大量可应用于手性小分子和聚合物分离的手性固定相,大大提高HPLC的手性识别能力。本文以HPLC的手性药物分离为焦点,介绍了近几年高效液相色谱法手性固定相的新发展和应用。关键词:高效液相色谱法手性药物手性拆分

Application of High Performance Liquid Chromatography in Chiral Separation of Pharmaceuticals Abstract:Resolution of racemic compounds is one of the potential ways of obtaining both enantiomers. The increasing demand for enantiopure drugs has led to the development of a variety of stereoselective separation technologies. Among several resolution techniques in the past few decades, high performance liquid chromatography ( HPLC ) is well recognized as a powerful, fast and efficient technique, which has been successfully employed for analysis and preparation of enantiomers of drugs. Enantioseparation by HPLC has significantly advanced, and a large number of chiral stationary phases ( CSPs ) for HPLC have been developed using both chiral small molecules and polymers with chiral recognition abilities. This review focuses on various HPLC methods for chiral separation of pharmaceuticals, many new developments and applications are introduced in chiral stationary phase of HPLC in recent years. Keywords:HPLC; Chiral drug; Chiral separation;

手性化合物合成方法

在有机合成中产生手性化合物的方法有4种: 1.使用手性的底物 2.使用手性助剂 3.采用手性试剂 4.使用不对称催化剂 常常需要使用天然产物,如:氨基酸、生物碱、羟基酸、萜、碳水化合物、蛋白质等。 1.使用手性的底物 这种方法局限于比较有限的天然底物 如图,该化合物的硼氢化反应中,由于羟基的作用产生另外新的立体中心(反应从分子的背后发生) 以下两个反应,第一个是由于羧基的控制得到相应的手性产物..另一个则是由于反应中间体烯醇阴离子的构象决定了构型 2.使用手性助剂 如图,在第一步使用LDA去质子化时,为了使得上边的醇锂和下边的烯醇锂相距最远,Z-异构体占优势,在下一步与EtI的反应中得以产生了立体中心。 类似地,用烯醇锆替代烯醇锂(使用LDA,ZrCp2Cl2)确保烯醇的构型,再和醛反应产生不对称中心。 这些反应多数通过手性助剂的金属原子和底物中已有手性的O、N等原子络合,之后再加入其他试剂实现不对称中心的形成。这其中手性唑啉环是一个非常不错的手性助剂,它水解后可以生成一个羧基(潜在官能团) 另外一个试剂是手性的3-烷基哌嗪-2,5-二酮(一个环状二肽,可由两个氨基酸环合生成),如图 在羰基的α位进行不对称烷基化使用的是以下两种试剂A和B(B称为SAMP),如图,对环己酮的反应中采用A得到S异构体而采用B得到R异构体.

在氨基的α位进行不对称烷基化使用的试剂如下二图,用胺和它们作用后再用LDA、MeI甲基化,最后用N2H4脱去助剂得到产物. 还有一些有趣的反应如脯氨酸的α烷基化,涉及到一个立体化学的"存储"问题,经历了一个消失和再产生的过程:: 手性亚砜的作用:分离得到手性亚砜试剂和卤代烷作用后在下一步反应中诱导手性基团的产生,Al/Hg可以方便地除去亚砜基团。 3.采用手性试剂 通过铝锂氢化物与手性二胺或氨基醇作用可以得到一个用于不对称还原的试剂。如图。 利用α-蒎烯和9-BBN作用得到的试剂是一个很好的不对称还原试剂.如图 不对称硼氢化反应也是一个很好的构造立体化学中心的反应。这里需要利用α-蒎烯(图中的反应是针对三取代烯烃的,对于双取代烯烃应采用条件温和的双取代硼烷)

相关主题
文本预览
相关文档 最新文档