当前位置:文档之家› 带阻频率选择表面的设计

带阻频率选择表面的设计

带阻频率选择表面的设计

带阻频率选择表面的设计

1 引言

频率选择表面(FSS)是二维周期阵列结构,它由周期性排列的金属贴片单元或在金属屏上周期性排列的孔径单元构成。这种表面可以在单元谐振频率

附近呈现全反射(贴片型)或全传输特性(孔径型), 分别称为带阻或带通FSS。实际的带阻段是由一层或多层被介质层分开的FSS 贴片层组成。为了FSS 的频率响应相对于入射角和极化的稳定性,金属贴片层通常镶嵌在多层介质层里。另外,两层或多层FSS 贴片层背靠背叠加在一起可以产生很好的通带特性(平坦

的通带,陡降的边带)。

2 带阻频率选择表面的设计

通常的带阻滤波器是由两层FSS 金属层和中间的介质层组成。中间的介质片决定了传输曲线通带的平坦性,FSS 金属层决定了传输曲线的带宽和谐振

频率。介质片的厚度和介电常数非常重要。介质片的厚度典型的被取在0.5

,

是阻带中心的波长。两个FSS 层之间的介质层提高了带阻滤波器相对于入射角的稳定性。尽管从稳定性的角度看,介电系数的值越高越好,但是高的值也

引入了高的传输损耗。这样,根据设计需要,必须对介电系数的取值做综合的考虑。

本文的目标是设计一个FSS 结构能够通过信号在GPS & DCS1800 移动通信频段并且拒绝在更高频段的信号。它包括两层被一片泡沫垫片隔开的FSS。圆形环状的单元块形状被选择因为它的好频带稳定性。FSS 金属层被嵌

在介电系数

为3.5 损耗因数为0.0026 的聚酰亚胺膜层上。泡沫垫片的厚度被取接近0.5

频率选择表面分析方法

频率选择表面的研究起始于上世纪60年代,国内外大批学者均为之投入了大量精力进行广泛深入的工作,提出了各种不同的数学分析与计算方法,如交分法,等效电路法,模式匹配法,谱方法等,这些计算方法主要可分为两大类,即标量分析方法与矢量分析方法。前者包括变分法,等效电路法等,其仅可通过计算获得关于反射透射系数的幅度信息,通用性差,但计算量小,耗时短;后者包括模式匹配法,谱方法等,其通过计算不仅可获得反射透射系数的幅度信息,还可以获得相关的相位与极化信息,通用性强,但计算量大且耗时长。 值得一提的是,国内研究目前普遍采用模式匹配法进行计算分析,该方法不仅适用于求解任意单元形 状及排列方式的无限大平面FSS 结构,还可应用于多层的FSS 以及均匀层状衬底等组合结构。但这种方法 依然存在不足,即处理复杂多层FSS 时计算量非常大,而且在数值求解过程中,选择适合复杂单元形状的 基函数非常困难,因而难以保证解的收敛速度,降低了有效性。 与一般模式匹配法相比,谱方法原理上也能分析任意单元形状的FSS 结构,在求解无限大FSS 问题时 与模式匹配法相当,该方法在求解过程中要求选取合适的基函数来保证收敛性,但可直接用于求解有耗FSS 的散射问题,与迭代技术相结合可以求解有限尺寸的FSS 散射问题。并且谱方法利用了场的周期性,注意 电流分布的周期性特征,所以求解模型简单,计算量小,是一种很好的方法。 谱展开法 在周期性结构的分析中,谱展开法是一种重要的分析方法。 Floquet 定理; 一维周期结构如图2.5所示。设入射平面波z TM ()0j wt z E E e ?-= 则空间沿x 方向相距为m 个周期的两点之间场为 cos ,(,,)x jm D x x mD y w x y w e βθ-ψ( +,) =ψ 式中ψ 为电磁场的某一分量。m 为一整数,β为传播常数,x D 为沿x 方向的周期长度,θ为入射角,上式即是Floquet 定理。 如果这个周期结构的单元是偶极子等贴片型类型,则入射场在单元上将感应出电压,并产生电流,如果我们将其中一个单元的电流作为基准单元电流(表示为0I ),则距它m 个周期的单元电流表示为m I 。根据Floquet 定理,两者的关系为 cos 0x j mD m I I e βθ-=

频率选择表面(学习笔记)

FSS--相关知识整理 一、基本概念 1、频率选择表面(Frequency Selective Surface ,FSS) 是一种二维周期阵列结构,就其本质而言是一个空间滤波器,与电磁波相互作用表现出明显的带通或带阻的滤波特性。FSS 具有特定的频率选择作用而被广泛地应用于微波、红外至可见光波段。 2、分类 频率选择表面有两种:贴片类型也叫介质类型,开槽类型也叫波导类型。 贴片类型是在介质表面周期性的标贴同样的金属单元,一般而言是作为带阻型滤波器的;低频透射,高频反射; 开槽类型是在金属板上周期性的开一些金属单元的槽孔,从频率特性相应上看是带通型频率选择表面;低频反射,高频透射。 3、频率选择表面的应用 雷达罩:通过安装频率选择表面减少雷达散射截面积。 卡塞哥伦天线副反射面:实现波束的复用与分离。 准光滤波器:实现波束的复用与分离。 吸波材料:基于高损耗的介质,可以实现大带宽的吸波材料。 极化扭转:折线形的频率选择表面是一个线极化变成圆极化的极化扭转器。 天线主面:降低带外的噪声。 4、滤波机理 图1 频率选择表面的滤波机理

频率选择表面和一般意义上的通过电容、电感组成的滤波器在目的上是一致。而滤波机理和有很大的区别(图1)。最大的区别是,一般的滤波器作用的对象是电路中的电流,而且一般滤波器我们主要关心通带的波形是不是有畸变,而对于阻带就就不必关心了。而频率选择表面是对于场的滤波器,不论是透射波还是反射波都是十分重要,不仅仅要关注其幅度、相位的变化,还要关心交叉极化和热损耗等。 A、贴片类型:在介质表面周期性的标贴同样的金属单元。 图2 贴片类型频率选择表面的等效电路 滤波机理: 假设电磁波入射从左向右入射到贴片型频率选择表面上。在平行于贴片方向的电场对电子产生作用力使其振荡,从而在金属表面上形成感应电流。这个时候,入射电磁波的一部分能量转化为维持电子振荡状态所需的动能,而另一部分的能力就透过金属丝,继续传播。换言之,根据能量守恒定律,维持电子运动的能量就被电子吸收了。在某一频率下,所有的入射电磁波能量都被转移到电子的振荡上,那么电子产生的附加散射场可以抵消金属导线右侧的电磁波的出射场,使得透射系数为零。此时,电子所产生的附加场同时也向金属导线左侧传播,形成发射场。这种现象就是谐振现象,该频率点成为谐振点。直观的看,这个时候贴片型频率选择表面就成反射特性。 再考虑另一种情况,入射波的频率不是谐振频率的时候,只有很少的能量用于维持电子做加速运动,大部分的能量都传播到了贴片的右侧。在这种情况下,贴片对于入射电磁波而言,是“透明”的,电磁波的能量可以全部传播。这个时候,贴片型频率选择表面就成透射特性。 一般而言,贴片类型是作为带阻型滤波器的。 等效电路:LC串联 B、贴片类型:在金属板上周期性的开一些金属单元的槽孔。

频率选择性衰落信道模型研究与仿真

邮电大学通达学院 毕业设计(论文)题目频率选择性衰落信道模型研究与仿真专业网络工程 学生 班级学号 指导老师何雪云 评阅教师周克琴 指导单位通信与信息工程学院无线电工程系日期:2012年 11月 26 日至 2013 年 6月 21 日

毕业设计(论文)原创性声明 本人重声明:所提交的毕业设计(论文),是本人在导师指导下,独立进行研究工作所取得的成果。除文中已注明引用的容外,本毕业设计(论文)不包含任何其他个人或集体已经发表或撰写过的作品成果。对本研究做出过重要贡献的个人和集体,均已在文中以明确方式标明并表示了意。 论文作者签名: 日期:年月日

摘要 在移动通信中,信号经过不同的路径传送到接收端,合成的接收信号相对于发送信号会产生衰落,这就是多径衰落。本文研究了频率选择性衰落信道的特点;并且运用仿真软件Matlab对频率选择性衰落信道进行模拟仿真,实现了基于Jake模型的频率选择性衰落信道的建模。并利用建立起来的模型比较了具有不同载波频率、数据传输速率以及移动台移动速度的移动通信系统所具有的信道衰落特性。仿真结果表明:移动通信系统的参数会影响其信道的衰落特性。 关键词:频率选择性衰落; 瑞利衰落信道;Jake模型

ABSTRACT In mobile communications, signal arrives at the receiver through different transmission paths. The synthesis of the received signals in relation to the original signal will be faded, which is multi-path fading. In this paper, we research the frequency selective fading channels’ characteristics;And make the simulation to frequency selective fading channels with the tool MATLAB, which is based on jack model modeling. Using the established models, we compare the channel fading characteristics of different mobile communication systems which have different carrier frequencies, data transmission rates and mobile speeds. The simulation shows that: The mobile communication systems’ param eters will affect their channel fading characteristics. Keywords:Frequency-selective fading; Rayleigh channels; Jake model

Ansoft分析频率选择表面FSS

Ansoft分析频率选择表面FSS Ansoft高级培训班教材 Ansoft分析频率选择表面FSS 苏涛谢拥军编著 西安电子科技大学Ansoft培训中心 Ansoft分析频率选择表面FSS 第一章序言 第二章创建项目 第三章建立几何模型 第四章设定无穷阵列和边界第五章设定入射波 第六章设定解 第七章解的后处理 第一章序言 本文讲解使用Ansoft产品分析频率选择表面。由于频率选择表面是场的问题,所以主要采用平面电磁分析(Ansoft Designer中的Ensemble)和高频结构仿真(HFSS)。 现在,Ansoft在Designer里集成了PMM(Periodic Moment Method),就像过去在HFSS中集成Master/Slave边界一样,给工程师带来了2D和3D阵列的分析工具,而无需自己编程。再一次,增加了收益。 下面就是使用Ansoft Designer分析FSS的实例。 第二章创建项目

图1 Ansoft Designer界面 1、在Project Manager窗口中Project1默认工程上右击鼠标,选择Insert 项目,插入Planar EM Design 图2 插入一个Planar EM Design 也可以在菜单条目中直接点击Planar EM Design的图标 图2 菜单条中直接点击图标加入Planar EM Design 2、在弹出的Layout窗口中点击None按钮,表示自己定义基板。

图3 选择基板窗口 3、存储工程。点击存盘图标(或选择菜单File/Save),输入工程名字hexagon,并存盘。最终工作界面如图4所示。 图4 最终工作界面 第三章建立几何模型 1、建立基板结构。 (1)点击工具栏图标

频率选择表面简介

频率选择表面综述 1 滤波原理 两种类型: 1 贴片型(介质型) 在介质表面周期性的标贴同样的金属单元。 滤波机理: 假设电磁波入射从左向右入射到贴片型频率选择表面上。在平行于贴片方向的电场对电子产生作用力使其振荡,从而在金属表面上形成感应电流。这个时候,入射电磁波的一部分能量转化为维持电子振荡状态所需的动能,而另一部分的能力就透过金属丝,继续传播。换言之,根据能量守恒定律,维持电子运动的能量就被电子吸收了。在某一频率下,所有的入射电磁波能量都被转移到电子的振荡上,那么电子产生的附加散射场可以抵消金属导线右侧的电磁波的出射场,使得透射系数为零。此时,电子所产生的附加场同时也向金属导线左侧传播,形成发射场。这种现象就是谐振现象,该频率点成为谐振点。直观的看,这个时候贴片型频率选择表面就成反射特性。 再考虑另一种情况,入射波的频率不是谐振频率的时候,只有很少的能量用于维持电子做加速运动,大部分的能量都传播到了贴片的右侧。在这种情况下,贴片对于入射电磁波而言,是“透明”的,电磁波的能量可以全部传播。这个时候,贴片型频率选择表面就成透射特性。 一般而言,贴片类型是作为带阻型滤波器的。 等效电路:LC串联

2 开槽型(波导型) 在金属板上周期性的开一些金属单元的槽孔。 滤波机理: 当低频电磁波照射开槽型频率选择表面时,将激发大范围的电子移动,使得电子吸收大部分能量,且沿缝隙的感应电流很小,导致透射系数比较小。随着入射波频率的不断升高,这种电子移动的范围将逐渐较小,沿缝隙流动的电流在不断增加,从而透射系数会得到改善。当入射电磁波的频率达到一定值时,槽两侧的电子刚好在入射波电场矢量的驱动下来回移动,在缝隙周围形成较大的感应电流。由于电子吸收大量入射波的能量,同时也在向外辐射能量。运动的电子透过偶极子槽的缝隙向透射方向辐射电场,此时的偶极子槽阵列反射系数低,透射系数高。当入射波频率继续升高时,将导致电子的运动范围减小,在缝隙周围的电流将分成若干段,电子透过槽缝隙辐射出去的电磁波减小,因此,透射系数降低。而对于在远离缝隙的金属板上所产生的感应电流则向反射方向辐射电磁场,并且由于高频电磁波的电场变化周期的限制了电子的运动,辐射能量有限。因此,当高频电磁波入射时,透射系数减小,反射系数增大。 从频率特性相应上看,开槽型频率选择表面是带通型频率选择表面。 等效电路:LC并联。

频率选择表面-HFSS报告

频率选择表面 5.3.1 设计背景 频率选择表面(Frequency Selective Surface,FSS)是一种二维周期性结构,可以有效地控制电磁波的反射与传输。目前FSS的应用十分广泛,可用于反射面天线的负反射器以实现频率复用,提高天线的利用率;也可以用于波极化器、分波数仪和激光器的“腔体镜”,以提高激光器的泵浦功率;还可以用于隐身技术,应用设计的雷达天线罩能够有效地降低雷达系统的雷达散射界面。 5.3.2 设计原理 FSS是一种而为周期排列的阵列结构,本身不能吸收能量,但是却能起到滤波的作用。通常有两种形式,以后总是贴片型,是在介质衬底层上周期性地印上规则的导体贴片单元组成金属阵列;另一种是孔径型,是在很大的金属屏上周期性开孔的周期孔径结构。这两种结构都可以实现对电磁场的频率选择作用和极化选择作用,对于谐振情况下的入射电磁波,这两种阵列分别表现出全反射(单元为导体贴片)、全透射(单元为缝隙、孔径),它们也被分别称为带阻型FSS和带通型FSS。频率选择表面的频率选择特性主要取决于写真单元的形式、单元的排布方式以及周围戒指的电性能。 FSS的基本结构如图5-3-1所示,上下层为介质层,中间层为金属层,金属层也可以位于介质层的上下面上。 1.基本的偶极子或缝隙形式的频率选择表面 FSS的两类基本形式是导线阵列和缝隙阵列,如图5-3-2所示。 ε1 μ1 ε2 μ 2 图5-3-1 FSS的基本结构

如图5-3-2(a )所示的谐振偶极子的阵列作为带阻滤波器,不能通行偶极子谐振频率的波,但 可以通行高于和低于谐振频率的波。与之互补的在理想导电片上的缝隙阵列,如图5-3-2(b )所示,用作带通滤波器,可通行等于缝隙谐振频率的波,但拒绝较高和较低频率的波。两种情况的传输系数图如图5-3-3所示。 2. 其他形式的频率选择表面单元形状 各种各样的FSS 单元形状都是从最基本的直偶极子单元开始的。现在讲偶极子单元分成四类,分别为: (1) “中心连接”或“N-极子”单元。如偶极子、三极子和耶路撒冷十字等。 (2) 环形单元。如圆环,矩形环和六角环形等。 环单元是制造高质量的斜入射FSS 的首选形式。 (3) 不同形状的贴片。 (4) 上述图形的组合。 图5-3-4给出了四种常用谐振单元,其中图(a )、(c )属于孔径型,图(b )、(d )属于贴片型。 入射波 (a ) (b ) 图5-3-2 基本的频率选择表面 频率 带通 图5-3-3 两种形式的传输系数 图5-3-4 FSS 常用谐振单元

频率选择性衰落信道模型研究与仿真

南京邮电大学通达学院 毕业设计(论文)题目频率选择性衰落信道模型研究与仿真 专业网络工程 学生姓名 班级学号 指导老师何雪云 评阅教师周克琴 指导单位通信与信息工程学院无线电工程系 日期:2012年 11月 26 日至 2013 年 6月 21 日

毕业设计(论文)原创性声明 本人郑重声明:所提交的毕业设计(论文),是本人在导师指导下,独立进行研究工作所取得的成果。除文中已注明引用的内容外,本毕业设计(论文)不包含任何其他个人或集体已经发表或撰写过的作品成果。对本研究做出过重要贡献的个人和集体,均已在文中以明确方式标明并表示了谢意。 论文作者签名: 日期:年月日

摘要 在移动通信中,信号经过不同的路径传送到接收端,合成的接收信号相对于发送信号会产生衰落,这就是多径衰落。本文研究了频率选择性衰落信道的特点;并且运用仿真软件Matlab对频率选择性衰落信道进行模拟仿真,实现了基于Jake模型的频率选择性衰落信道的建模。并利用建立起来的模型比较了具有不同载波频率、数据传输速率以及移动台移动速度的移动通信系统所具有的信道衰落特性。仿真结果表明:移动通信系统的参数会影响其信道的衰落特性。 关键词:频率选择性衰落; 瑞利衰落信道;Jake模型

ABSTRACT In mobile communications, signal arrives at the receiver through different transmission paths. The synthesis of the received signals in relation to the original signal will be faded, which is multi-path fading. In this paper, we research the frequency selective fading channels’ characteristics;And make the simulation to frequency selective fading channels with the tool MATLAB, which is based on jack model modeling. Using the established models, we compare the channel fading characteristics of different mobile communication systems which have different carrier frequencies, data transmission rates and mobile speeds. The simulation shows that: The mobile communication systems’ parameters will affect their channel fading characteristics. Keywords:Frequency-selective fading; Rayleigh channels; Jake model

频率选择表面-HFSS报告

频率选择表面-HFSS报告

频率选择表面 5.3.1 设计背景 频率选择表面(Frequency Selective Surface,FSS)是一种二维周期性结构,可以有效地控制电磁波的反射与传输。目前FSS的应用十分广泛,可用于反射面天线的负反射器以实现频率复用,提高天线的利用率;也可以用于波极化器、分波数仪和激光器的“腔体镜”,以提高激光器的泵浦功率;还可以用于隐身技术,应用设计的雷达天线罩能够有效地降低雷达系统的雷达散射界面。 5.3.2 设计原理 FSS是一种而为周期排列的阵列结构,本身不能吸收能量,但是却能起到滤波的作用。通常有两种形式,以后总是贴片型,是在介质衬底层上周期性地印上规则的导体贴片单元组成金属阵列;另一种是孔径型,是在很大的金属屏上周期性开孔的周期孔径结构。这两种结构都可以实现对电磁场的频率选择作用和极化选择作用,对于谐振情况下的入射电磁波,这两种阵列分别表现出全反射(单元为导体贴片)、全透射(单元为缝隙、孔径),它们也被分别称为带阻型FSS

和带通型FSS 。频率选择表面的频率选择特性主要取决于写真单元的形式、单元的排布方式以及周围戒指的电性能。 FSS 的基本结构如图5-3-1所示,上下层为介质层,中间层为金属层,金属层也可以位于介质层的上下面上。 1. 基本的偶极子或缝隙形式的频率选择表面 FSS 的两类基本形式是导线阵列和缝隙阵列,如图5-3-2所示。 介质基 PEC ε1 ε2 μ2 图5-3-1 FSS 的

如图5-3-2(a )所示的谐振偶极子的阵列作为带阻滤波器,不能通行偶极子谐振频率的 波,但可以通行高于和低于谐振频率的波。与之互补的在理想导电片上的缝隙阵列,如图5-3-2(b )所示,用作带通滤波器,可通行等于缝隙谐振频率的波,但拒绝较高和较低频率的波。两种情况的传输系数图如图5-3-3所示。 2. 其他形式的频率选择表面单元形状 偶极 子阵 入射波 E S ? E H i H t 缝隙阵 (a ) (b ) 图5-3-2 基本的频率选0 频率偶极子阵 谐振频率 带通 带阻 缝隙阵 图5-3-3 两种形式的

信道频率选择性的研究报告

多径时延展宽与采样周期的关系对信 道选择性的影响 姓名:陈启武学号:2014200557 专业:微电子学与固体电子学一、概述 在无线通信系统中,信号经过不同的路径传送到接收端,合成的接收信号相对于发送信号会产生衰落,这就是多径衰落。本文基于IEEE802.11信道模型研究了两个参量多径时延 展宽和信号的采样周期T S对该信道频率选择性的影响,并且运用仿真软件Matlab对信道频率选择性的参数进行模拟仿真,实现了基于IEEE802.11模型的信道频率选择性的建模。仿真结果表明:移动通信系统的参数会影响其信道的选择性。 二、频率选择性衰落 频率选择性衰落是指在不同的频率衰落特性不同的现象,引发频率选择性衰落的原因多是时延展宽,时域的时延展宽导致的不同频率的信号经过频率选择性衰落信道的时候具有不同的响应。对于小信号幅度的衰落,令信道的最大多径时延展宽为Tm,那么信道的相干带宽Bc=1/Tm,满足信道频道选择性衰落的条件和特点有: ·信号采样周期的0.1倍小于最大时延展宽(0.1Ts 0.1Bc); ·信道以不同方式改变信号的不同频谱成分,因此宽带信号的接收功率可能会在其带宽范围内随频率发生大的变化。

根据以上频率选择性衰落的特性,对IEEE 802.11信道模型进行仿真,可选择控制采样周期T s=50ns保持不变,研究不同的多径时延展宽对该信道频率选择性衰落特性的影响,由于Tm>0.1Ts,Tm分别取值250ns、1000ns、2500ns时,得到了一下几组仿真结果:

左图反映的是平均信道功率随信道利用指数的变化规律,右图是该信道的频率响应图。从以上三组图形对比可知:(1)从左图比较来看,多径时延展宽的越大,各信道利用指数所对应的平均信道功率越小,且从左向右衰减幅度越小; (2)从右图比较来看,多径时延展宽越大,信道的接收功率在其带宽范围内随频率发生变化越剧烈,即在相关带宽内各频率分量所对应的功率幅值衰落越强,说明信道引入的码间串扰越大。 二、平坦衰落 相干时间和相干带宽都是描述信道特性的参数,当两个发射信号的频率间隔小于信道的相干带宽,那么这两个经过信道后的,受到的信道传输函数是相似的,由于通常的发射信号不是单一频率的,即一路信号也是占有一定带宽的,如果,这路信号的带宽小于相干带宽,那么它整个信号受到信道的传输函数是相似的,即信道对信号而言是平坦特性的,非频率选择性衰落的。 如果信道的最大多径时延展宽为Tm,那么信道的相干带宽Bc=1/Tm;若发射信号的射频带宽BsTm,那么认为接收信号经历的是平坦衰落,此时接收信号的包络起伏变化,但是一般不存在码间串扰。

Ansoft 分析频率选择表面FSS

Ansoft高级培训班教材Ansoft分析频率选择表面FSS 苏涛谢拥军编著 西安电子科技大学Ansoft培训中心

Ansoft分析频率选择表面FSS 第一章序言 第二章创建项目 第三章建立几何模型 第四章设定无穷阵列和边界 第五章设定入射波 第六章设定解 第七章解的后处理

第一章序言 本文讲解使用Ansoft产品分析频率选择表面。由于频率选择表面是场的问题,所以主要采用平面电磁分析(Ansoft Designer中的Ensemble)和高频结构仿真(HFSS)。 现在,Ansoft在Designer里集成了PMM(Periodic Moment Method),就像过去在HFSS 中集成Master/Slave边界一样,给工程师带来了2D和3D阵列的分析工具,而无需自己编程。再一次,增加了收益。 下面就是使用Ansoft Designer分析FSS的实例。 第二章创建项目 图1 Ansoft Designer界面 1、在Project Manager窗口中Project1默认工程上右击鼠标,选择Insert项目,插入Planar EM Design

图2 插入一个Planar EM Design 也可以在菜单条目中直接点击Planar EM Design的图标 图2 菜单条中直接点击图标加入Planar EM Design 2、在弹出的Layout窗口中点击None按钮,表示自己定义基板。 图3 选择基板窗口 3、存储工程。点击存盘图标(或选择菜单File/Save),输入工程名字hexagon,并存盘。最终工作界面如图4所示。

频率选择表面的滤波原理与应用

频率选择表面的滤波原理与应用 频率选择表面就其本质而言是一个空间滤波器。和一般意义说的通过电容、电感组成的滤波器在目的上是一致。而滤波原理和有很大的区别。 最大的区别是,一般的滤波器作用的对象是电路中的电流,而且一般滤波器我们主要关系统带的波形是不是有畸变,而对于阻带就就不必关心了。而频率选择表面是对于场的滤波器,不论是透射波还是反射波都是十分重要,不仅仅要关注其幅度、相位的变化,还要关心交叉极化和热损耗等等。 1频率选择表面的滤波机理 频率选择表面有两种:贴片类型也叫介质类型和开槽类型也叫波导类型。 贴片类型:在介质表面周期性的标贴同样的金属单元。 滤波机理: 假设电磁波入射从左向右入射到贴片型频率选择表面上。在平行于贴片方向的电场对电子产生作用力使其振荡,从而在金属表面上形成感应电流。这个时候,入射电磁波的一部分能量转化为维持电子振荡状态所需的动能,而另一部分的能力就透过金属丝,继续传播。换言之,根据能量守恒定律,维持电子运动的能量就被电子吸收了。在某一频率下,所有的入射电磁波能量都被转移到电子的振荡上,那么电子产生的附加散射场可以抵消金属导线右侧的电磁波的出射场,使得透射系数为零。此时,电子所产生的附加场同时也向金属导线左侧传播,形成发射场。这种现象就是谐振现象,该频率点成为谐振点。直观的看,这个时候贴片型频率选择表面就成反射特性。 再考虑另一种情况,入射波的频率不是谐振频率的时候,只有很少的能量用于维持电子做加速运动,大部分的能量都传播到了贴片的右侧。在这种情况下,贴片对于入射电磁波而言,是“透明”的,电磁波的能量可以全部传播。这个时候,贴片型频率选择表面就成透射特性。 一般而言,贴片类型是作为带阻型滤波器的。 等效电路:LC串联

频率选择表面的模拟与优化

武汉理工大学 毕业设计(论文) 频率选择表面滤波器的模拟与优化学院(系):信息工程学院 专业班级:电子信息工程0706班 学生姓名:叶春宝 指导教师:刘桂珍王琳

本科生毕业设计(论文)任务书 学生姓名:叶春宝专业班级:电信0706班 指导教师:刘桂珍王琳工作单位:信息工程学院 设计(论文)题目频率选择表面滤波器的模拟与优化 设计(论文)主要内容: 1)认真学习频率选择表面的相关理论知识; 2)学习和掌握MATLAB软件; 3)设计频率选择表面的结构,进行软件仿真; 4)学会进行算法的比较; 5)熟悉和掌握毕业论文相关规范格式。 要求完成的主要任务: 1)学习和掌握频率选择表面的相关知识; 2)利用MATLAB软件建立模型; 3)设计频率选择表面的结构,利用相关软件进行仿真; 4)完成毕业论文的撰写,不少于12000字; 5)阅读并翻译与课题相关的英文资料,不少于20000字符; 6)参考文献不少于15篇,其中英文参考文献不少于2篇。 7)完成的设计图纸不少于12幅。 必读参考文献: [1]赵录怀,张震. 电路与系统分析-使用Matlab. 北京:高等教育出版社,2004 [2]张平等. MATLAB基础与应用简明教程.北京:北京航空航天大学出版社, 2003. [3]何红雨.电磁场数值计算与MATLA实现.武汉:华中科技大学出版社,2004.指导教师签名系主任签名 院长签名(章)

武汉理工大学本科生毕业设计(论文)开题报告

2 基本内容和技术方案 为了分析频率选择表面的单元结构对于频率选择表面滤波器的影响,以十字型结构单元来说十字单元可以看成是由两个矩形缝隙垂直交叉放置而组成的,而由于缝隙单元的长度(L )一般远大于宽度(W ),其谐振频率也就主要由L 决定。 其中e 为有效介电常数。 根据上两式可知,改变十字型结构单元的长度可以改变其谐振频率。 开始 输入约束条件:中心谐振频率、宽带要求 选择单元形式 确定单元间距、尺寸的初值 代入FSS 的分析程序计算频率响应 中心频率是否满足 输出单元的尺寸、间距 结束 调整单元尺寸、间距值 否

相关主题
文本预览
相关文档 最新文档