当前位置:文档之家› 结构动力学_读书报告

结构动力学_读书报告

结构动力学_读书报告
结构动力学_读书报告

《结构动力学》读书报告

结构动力学读书报告

学习完本门课程和结合自身所学专业,我对本门课程内容的理解和在各方面的应用总结如下:

1.(1)结构动力学及其研究内容:

结构动力学是研究结构系统在动力荷载作用下的振动特性的一门科学技术,它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。本书的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。

(2)主要理论分析

结构的质量是一连续的空间函数,因此结构的运动方程是一个含有空间坐标和时间的偏微分方程,只是对某些简单结构,这些方程才有可能直接求解。对于绝大多数实际结构,在工程分析中主要采用数值方法。作法是先把结构离散化成为一个具有有限自由度的数学模型,在确定载荷后,导出模型的运动方程,然后选用合适的方法求解。

(3)数学模型

将结构离散化的方法主要有以下三种:①集聚质量法:把结构

的分布质量集聚于一系列离散的质点或块,而把结构本身看作是仅具有弹性性能的无质量系统。由于仅是这些质点或块才产生惯性力,故离散系统的运动方程只以这些质点的位移或块的位移和转动作为自由度。对于大部分质量集中在若干离散点上的结构,这种方法特别有效。②广义位移法:假定结构在振动时的位形(偏离平衡位置的位移形态)可用一系列事先规定的容许位移函数fi(它们必须满足支承处的约束条件以及结构内部位移的连续性条件)之和来表示,例如,对于一维结构,它的位形u(x)可以近似地表为:

结构动力学

(1) 式中的qj称为广义坐标,它表示相应位移函数的幅值。这样,离散系统的运动方程就以广义坐标作为自由度。对于质量分布比较均匀,形状规则且边界条件易于处理的结构,这种方法很有效。③有限元法:可以看作是分区的瑞利-里兹法,其要点是先把结构划分成适当数量的区域(称为单元),然后对每一单元施行瑞利-里兹法。通常取单元边界上(有时也包括单元内部)若干个几何特征点(例如三角形的顶点、边中点等)处的广义位移qj作为广义坐标,并对每个广义坐标取相应的插值函数作为单元内部的位移函数(或称形状函数)。在这样的数学模型中,要求形状函数的组合在相邻单元的公共边界上满足位移连续条件。一般地说,有限元法是最灵活有效的离散化方法,它提供了既方便又可靠的理想化模型,并特别适合于用电子计算机进行分析,是目前最为流行的方

法,已有不少专用的或通用的程序可供结构动力学分析之用。(4)运动方程

可用三种等价但形式不同的方法建立,即:①利用达朗伯原理引进惯性力,根据作用在体系或其微元体上全部力的平衡条件直接写出运动方程;②利用广义坐标写出系统的动能、势能、阻尼耗散函数及广义力表达式,根据哈密顿原理或其等价形式的拉格朗日方程导出以广义坐标表示的运动方程;③根据作用在体系上全部力在虚位移上所作虚功总和为零的条件,即根据虚功原理导出以广义坐标表示的运动方程。对于复杂系统,应用最广的是第二种方法。通常,结构的运动方程是一个二阶常微分方程组,写成矩阵形式为:Μ(t)+D(t)+Kq(t)=Q(t),(2) 式中q (t)为广义坐标矢量,是时间t的函数,其上的点表示对时间的导数;Μ、D、K分别为对应于q (t)的结构质量矩阵、阻尼矩阵和刚度矩阵;Q (t)是广义力矢量。

2.结构动力学在抗震设计中的应用:

(1)序言:地震时地面运动是一个复杂的时间-空间过程,地震反应分析的发展经过了静力法、反应谱法、动力法三个阶段,现行的抗震设计方法包括反应谱法和时程分析法

(2)方法比较:根据《建筑结构抗震规范》,对单自由度体系,给定场地条件以及结构的自振周期和阻尼比,便可以从反应谱中获得结构的最大地震响应(位移、速度和加速度),进而可求出结构的地震力。对于多自由度体系,首先采用多自由度体系的反应谱理论,即先利用模态分析法将多自由度体系分解为一系列广义单自由

度体系,最后将各振型的最大值用一定的振型组合方法组合出结构的最大地震反应[。由于反应谱方法基本正确地反映了地震动特性,并考虑了结构的动力特性,所以对于一般的结构而言,具有良好的精度,且概念明确,计算方便。

地震地面运动是一个非平稳随机过程,而随机振动法充分考虑了地震发生的概率特性,所以普遍认为随机振动法是一种合理的分析方法。但是,随机振动法的缺点是它的计算量庞大而且对于非线性问题可能引起较大的误差,在处理罕遇地震下的强非线性问题时有其局限性。

时程分析法是确定性动力分析方法的一种,是发展较为成熟、应用较多的一种方法。由于这种分析方法是在离散时间点上一步一步地求响应的数值解,所以该法可以在任一时间点上随时修改结构参数,很适合于处理参数随时间变化的非线性问题。它既可虑地震波的多维多点输入,还可以考虑结构几何非线性、物理非线性、非比例阻尼和桩-土-结构相互作用等的地震反应。常用的积分方法有线性加速度法。

(3)这里主要介绍比较先进的时程分析法:逐步积分数值方法特别适用于计算大型结构在地震作用下的动力响应,其无需像振型叠加法那样要预先花费很多的工作量计算频率和振型。此外,由于计算中考虑几何非线性大变形的影响,本文中采用Newmark 逐步积分方法求解。Δt 时间步内增量形式的振动平衡方程为:

(4)注意:1.在进行时程分析过程中,利用上述方法计算结构反应关键的是地震动的描述,即恰当地输入地震波。

2.分析和结果存在一定的局限性,即计算结果仅仅是选择地震波的反应,若选择另外一条地震波,计算结果可能差别很大;

3. 为得到结构反应的统计结果,必须对多条地震波进行分析,工作量较大。

参考文献

[1] 建筑抗震设计规范(GB 50011-2001).北京:中国建筑工业出版社,2001

[2] 高层建筑混凝土结构技术规程(JGJ3-2002).北京:中国建筑工业出版社,2001

[3] 结构动力学张子明杜成斌周星德编著清华大学出版社

结构动力学 论文

《结构动力学》 课程论文

结构动力学在道路桥梁方面的应用 摘要:随着大跨径桥梁结构在工程中的应用日趋广泛,施工控制问题也越来越受重视。结构动力学在各方面都有极为重要的作用,其特性也被广泛应用于桥梁结构技术状态评估中。结构动力学在道路桥梁方面应用十分广泛,比如有限元模型、模态挠度法、桥梁结构(强度、稳定性等)、状态评估、结构模态、结构自由衰减响应及其在结构阻尼识别中的应用、结构无阻尼固有频率与有阻尼固有频率的关系及其应用等,尤其是结合桥梁的检测、桥梁荷载试验与状态评价。本文就其部分内容进行介绍。 关键词:结构动力学道路桥梁应用 如今,科学技术越发先进,结构动力特性越来越广泛地应用于桥梁结构抗震设计、桥梁结构故障诊断和桥梁结构健康状态监测等工程技术领域,由此应用而涉及到的一些动力学基本概念理解的问题应运而生。对于此类知识,我了解的甚少,上课期间,老师虽有讲过这相关内容,但无奈我学到的只是皮毛。我记忆最深的是老师给我们放的相关视频,有汶川地震的,有桥梁施工过程的,还有很多因强度或是稳定性收到破坏而倒塌的桥梁照片。老师还告诉了我们修建建筑物的原则:需做到小震不坏,中震可修,大震不倒。还有强剪弱弯,强柱弱梁,强结点强锚固。桥梁在静止不受外力扰动时是不会破坏的,大多时候在静止的荷载作用下也不会发生破坏,但当桥梁受到动力荷载时就很容易发生破坏了,所以我们在修建桥梁是必须事先计算好最佳强度等等需要考虑的量。下面简单介绍一下结构固有频率及其应用和弹性模量动态测试。 1.结构固有频率及其应用 随着对结构动力特性的深入研究,其被越来越广泛地应用于结构有限元模型修正、结构损伤识别、结构健康状态监测等研究领域.一般情况下,由于结构阻尼较小,因此在结构动力特性的计算分析中,往往不计及结构阻尼以得到结构的振型和无阻尼的固有频率fnj(j=1,2,∧∧);而在结构的动态特性的试验中,识别的却是结构有阻尼的固有频率fdj.理论上有[1,2]fdj

结构动力学读书笔记

《结构动力学》读书报告 学院 专业 学号 指导老师 2013 年 5月 28日

摘要:本书在介绍基本概念和基础理论的同时,也介绍了结构动力学领域的若干前沿研究课题。既注重读者对基本知识的掌握,也注重读者对结构振动领域研究发展方向的掌握。主要容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构动力学的前沿研究课题。侧重介绍单自由度体系和多自由度体系,重点突出,同时也着重介绍了在抗震中的应用。 1 概述 1.1结构动力学的发展及其研究容: 结构动力学,作为一门课程也可称作振动力学,广泛地应用于工程领域的各个学科,诸如航天工程,航空工程,机械工程,能源工程,动力工程,交通工程,土木工程,工程力学等等。作为固体力学的一门主要分支学科,结构动力学起源于经典牛顿力学,就是牛顿质点力学。质点力学的基本问题是用牛顿第二定律来建立公式的。牛顿质点力学,拉格朗日力学和哈密尔顿力学是结构动力学基本理论体系组成的三大支柱。 经典动力学的理论体系早在19世纪中叶就已建立,。但和弹性力学类似,理论体系虽早已建立,但由于数学求解上的异常困难,能够用来解析求解的实际问题实在是少之又少,能够通过手算完成的也不过仅仅限于几个自由度的结构动力体系。因此,在很长一段时间,动力学的求解思想在工程实际中并未得到很好的应用,人们依然习惯于在静力学的畴用静力学的方法来解决工程实际问题。 随着汽车,飞机等新时代交通工具的出现,后工业革命时代各种大型机械的创造发明,以及越来越多的摩天大楼的拔地而起,工程界日新月异的发展和变化对工程师们提出了越来越高的要求,传统的只考虑静力荷载的设计理念和设计方法显然已经跟不上时代的要求了。也正是从这个时候起,结构动力学作为一门学科,也开始受到工程界越来越高的重视,从而带动了结构动力学的快速发展。 结构动力学这门学科在过去几十年来所经历的深刻变革,其主要原因也正是由于电子计算机的问世使得大型结构动力体系数值解的得到成为可能。由于电子计算机的超快速度的计算能力,使得在过去凭借手工根本无法求解的问题得到了解决。目前,由于广泛地应用了快速傅立叶变换(FFT),促使结构动力学分析发生了更加深刻地变化,而且使得结构动力学分析与结构动力试验之间的相互关系也开始得以沟通。总之,计算机革命带来了结构动力学求解方法的本质改变。 作为一门课程,结构动力学的基本体系和容主要包括以下几个部分:单自由度系统结构动力学,;多自由度系统结构动力学,;连续系统结构动力学。此外,如果系统上所施加的动力荷载是确定性的,该系统就称为确定性结构动力系统;而如果系统上所施加的动力荷载是非确定性的,该系统就称为概率性结构动力系统。 1.2主要理论分析 结构的质量是一连续的空间函数,因此结构的运动方程是一个含有空间坐标和时间的偏微分方程,只是对某些简单结构,这些方程才有可能直接求解。对于绝大多数实际结构,在工程分析中主要采用数值方法。作法是先把结构离散化成为一个具有有限自由度的数学模

结构优化设计论文

结构优化课程设计 学院土木学院 专业工程力学 班级1001

学号100120118 姓名崔亚超

总结结构优化设计的原理、方法及发展趋势 崔亚超 工程力学1001班学号100120118 摘要:阐述了工程结构优化设计理论从最初的截面优化发展到形状优化、拓扑优化的基本历程及其相关特点,对优化设计选用的各种算法进行归类,并简述结构优化设计的发展趋势。 关键词:尺寸优化;形状优化;拓扑优化;优化算法 Summary structural optimization design principles, methods and development trends Abstract:The structural optimization of engineering design theory from the initial cross-section to optimize the development of shape optimization, topology optimization of the basic course and its related characteristics, the optimum design on the range of algorithms are classified, and to outline the development trend of structural optimization design . Key words:size optimization; shape optimization; topology optimization; optimization algorithm 0 引言 结构优化设计的目的在于寻求既安全又经济的结构形式,而结构形式包括了关于尺寸、形状和拓扑等信息I对于试图产生超出设计者经验的有效的新型结构来说,优化是一种很有价值的工具,优化的目标通常是求解具有最小重量的结构B同时必须满足一定的约束条件,以获得最佳的静力或动力等性态特征。 集计算力学、数学规划、计算机科学以及其他工程学科于一体的结构优化设计是现代构设计领域的重要研究方向。它为人们长期所追求最优的工程结构设计尤其是新型结构设计提供了先进的工具,成为近代设计方法的重要内容之一。 结构优化设计也使得计算力学的任务由被动的分析校核上升为主动的设计与优化,由此结构优化也具有更大的难度和复杂性。它不仅要以有限元等数值方法作为分析手段,而且还要进一步计算结构力学性态的导数值。它要面向工程设计中的各种实际问题建立优化设计模型,根据结构与力学的特点对数学规划方法进行必要的改进。因此,结构优化设计是一综合性、实用性很强的理论和技术。 目前,结构优化设计的应用领域已从航空航天扩展到船舶、桥梁、汽车、机械、水利、建筑等更广泛的工程领域,解决的问题从减轻结构重量扩展到降低应力水平、改进结构性能和提高安全寿命等更多方面。 由于结构优化设计给工程界带来了经济效益及近年来有限元研究和应用的相对成熟,计算机条件的进一步改善和普及,人们对结构优化设计的研究和应用的呼声更高了。无论国内还是国外,对这一现代技术的需求都有增长的趋势。随着设计技术的更新和产品竞争的加剧,结构优化设计将会有更大的发展。

《学习动力》读后感

《学习动力》读后感 《学习动力》读后感 《学习动力》作者是李洪玉,2011年6月1日由湖北教育出版社出版,该书主要介绍了各种学习动机的培养与激发。 内容摘要:一个人要想学习好,不能离开硬件和软件,更不能离开电源。本从非智力因素这个角度,论述各种学习动机的培养与激发。有力地阐明各种非智力因素的概念、种类(或结构)、功能及影响其形成与发展的因素(或机制),使读者首先对各种非智力因素的本质有一个较为明确的认识;在实践上,结合各种非智力因素的培养与激发,提出了具体的、有效的、有根据的培养途径和措施。 本书共分为二大章,从智力与学习、非智力与学习、动机三大部分进行了阐述。智力因素与学习的关系,不容置疑,本书用了大篇幅,介绍了后两部分内容,有理论有例子,很有说服力,有相当的指导意义。 一、非智力因素与学习。 上海师范大学燕国材教授的《应重视非智力因素的培养》一文发表,引起了我国教育学和心理学界对非智力因素培养的重视。

非智力因素,又称非认知因素,指人在智慧活动中,不直接参与认知过程的心理因素,包括需要、兴趣、动机、情感、意志、性格等方面,是指智力以外的对学习活动起着起动、导向、维持和强化作用的个性心理。 一个智力水平较高的人,如果他的非智力因素没有得到很好的发展,往往不会有太多的成就。相反,一个智力水平一般的人,如果他的非智力因素得到很好的发展,就可能取得事业上的成功,做出较大的贡献。 我国著名的数学家张广厚,在小学、中学读书时,智力水平并不出众,他的成功与良好的非智力因素有关。他曾说:“搞数学不需太聪明,中等天分就可以,主要是毅力和钻劲。”达尔文也曾说过:“我之所以能在科学上成功,最重要的就是我对科学的热爱,对长期探索的坚韧,对观察的搜索,加上对事业的勤奋。”从心理学上讲,感情、意志、兴趣、性格、需要、目标、抱负、世界观等,是智力发展的内在因素。外因通过内因起作用。一个人的非智力因素得到良好的发展,不但有助于智力因素的充分发展,还可弥补其他方面的不足。反之,如果人缺乏意志,贪图安逸,势必影响其智力的发展。 作为教师,我们认识到,对学生的培养,非智力因素的培养和智力因素的培养同等重要,重视非智力因素,要把

结构动力检测研究概述读书报告

结构动力检测研究概述 读书报告

结构动力检测研究概述 一.引言 土木工程事故的发生,造成了人员伤亡和财产损失,必然引起人们对土木工程安全性的关心和重视。评估已有建筑物或桥梁等结构在灾害性事件(如:地震、台风、爆炸等)后的健康情况,采用常规检测方法进行检测是费时的。因为主要的结构构件或节点一般都在外覆盖物或者建筑装饰物的下面。为迅速营救生命、拯救财产,立即对它们的健康情况做出评估是很有必要的。例如,1994年1月17日,美国加州Northridge大地震,一些建筑物在主震后并未倒塌,但是结构的损伤没有及时发现并进行处理,在后来的一次余震作用下结构发生了倒塌。1995年日本神户大地震和1999年台湾台中大地震也有类似的情况发生[1]。 人们在基于振动的结构健康监测方面进行了一系列的研究。20世纪70年代和80年代初,石油工业投人大量的人力和物力开发海洋平台健康监测系统;20世纪70年代后期,美国航天航空部门开展了有关航天飞机动力健康监测的研究;1987年以来,美国所有的人造卫星都配置了航天模型的健康监测系统,美国国家航空和宇航局要求所有的发射设备安置结构健康监测系统[2]。20世纪80年代初,土木工程部门开展了桥梁健康监测系统的研究。在连接香港新机场的青马大桥上安装了600多个传感器[3]。期间,虽然得出了一些较为成功的健康监测技术,但是如何从测量的信息来解释结构的健康状态和损伤情况,至今还没有完善的理论体系,基于振动的结构健康监测仍然是一个挑战。 综观结构损伤检测的研究历史,从损伤的定义来划分,大体上可以划分为单元刚度整体下降的损伤检测法和单元之间连接刚度下降的损伤检测法。对于前者,结构的损伤程度可由单元刚度折减系数来表示[4];对于后者,损伤程度可以由单元之间连接部分(连接单元)刚度的减小来表示,如钢结构梁柱连接部位螺栓的破坏、混凝土与钢筋之间粘结的破坏都属于连接单元失效问题。前者把损伤简单地假定为结构某些单元刚度减小,在此基础上开展的损伤检测研究已经很多了;后一种损伤定义更加接近结构的实际破坏形式,但目前开展的研究工作尚不多。 结构损伤检测从研究对象来看,研究的结构形式是由简单到复杂的一个过程:由简支梁开始到平面框架结构,再到桁架结构和空间结构,如海洋石油井架等。 从研究方法上来划分,可以划分为基于力学理论的损伤检测方法,基于神经网络的损伤检测方法,基于小波分析的损伤检测方法和基于模糊逻辑(fuzzy logic)的损伤检测方法等。基于力学理论的方法可以划分为基于静力学理论和基于动力学理论的方法。基于动力学理论的方法又可以划分为:线弹性理论的损伤检测方法和非线性理论的损伤检测方法。线弹性理论的方法又可以分为:基于模态理论的损伤检测和基于波动理论的损伤检测方法。基于非线性力学理论损伤检测方面的研究文献尚不多见[5]。 二.开展工程结构动力检测的意义 开展工程结构动力检测有如下重大意义:(1)传统的检测手段(如目测和静力检测)和无损检测技术(如超声波)均是结构局部损伤的检测方法,这些方法要求事先知道结构破损的大致位置,所以只能检测到结构表面或附近的损伤。如果是大体量结构,则不仅工作量巨大,而且难以预测结构性能的整体变化。基于结构振动的损伤识别可应用于复杂结构的定量的整体检测,能够有效克服静态检测方法中存在的应用条件限制和工作效率相对较低的缺点。(2)在土木工程实践中,设计、施工存在失误或正常使用中超载、环境腐蚀均可对结构造成不同程度的损伤,利用结构的健康检测技术,不仅可及时发现这些损伤的具体部位,甚至检测到无法接近的或隐蔽的损伤部位,为制定技术、经济水平均较高的加固方案提供充分的技术支持。(3)将结构的健康检测技术应用于结构在线监测,可发现早期的结构损伤,以便及时对结构进行维修,从而排除隐患。结构动力检测方法可不受结构规模和隐蔽的限制,只要在可

工程结构动力分析小论文

薄壁管件的屈曲分析 摘要:本文针对薄壁件的失稳问题,采用线性特征值屈曲分析法和非线性屈曲分析法,借助ANSYS有限元商业软件对薄壁圆管进行模拟计算。特征值分析可以确定临界载荷、屈曲模态,特征值屈曲分析法得到的临界载荷作为非线性屈曲分析分析的初步缺陷载荷,接着进行非线性分析,得到结构完整的稳定性能。将两种结果进行对比讨论,可知非线性分析的结论更切合实际。 关键词:结构屈曲,ANSYS软件,特征值分析,薄壁圆管, 1.引言 薄壁钢材具有高强度、轻质、力学性能优良的特点,是一种良好的结构材料。但是实际工程结构中薄壁钢材的截面轮廓尺寸很小,构件细长,如果其在工艺上处理不当,当受到各种载荷时容易发生局部失稳或整体破坏,给人民的生命财产造成不可估量的损失,所以薄壁结构的稳定性问题成为工程设计人员关心的焦点。所谓失稳,就是当载荷仅有微量增加时,应变增长显著。比如圆筒受到环向载荷,其压缩应力尚未达到材料的屈服点时,就突然失去自身原来的形状被压扁或产生褶皱,这种在外力作用下结构突然失去原有形状的现象叫失稳,也称为屈曲。本文针对工程上常采用的薄壁管件的稳定性问题,借助有限元软件,用线性和非线性的分析方法计算其屈曲时的临界载荷。圆筒形构件的失稳分为整体失稳和局部失稳,其中整体失稳又分为侧向失稳和轴向失稳。 图1-1侧向失稳图1-2轴向失稳 1

22. 力学建模 预测结构发生屈曲时的临界载荷和屈曲后的形状通常的方法有两种,即特征值分析和非线性屈曲分析,但是特征值分析是基于材料完全线性无缺陷的,所以得出的结果与实际有较大差距,因此工程直接运用很少,但是它也是有意义的,一般取其第一阶模态作为非线性分析的初始扰动载荷的依据。用特征值分析得到的是屈曲上限,而用非线性分析得到的是屈曲下限,如图所示。 图2-1 特征值屈曲分析示意图 下面简单介绍特征值分析的理论知识。 设在单位外载荷作用下结构的应力刚度矩阵为[]K σ,那么[]K σλ(λ为载荷乘子)就代表另一强度下的应力刚度矩阵,在线性条件下,它们均与位移函数无关。如果基准状态下的位移矩阵[]D 加上虚位移矩阵[]D — ,而作用的载荷[]R 保持 不变,那么,为了使状态[]D 和_D D ??+????保持平衡状态,必须满足: [][][][]()K K D R σλ+=和[][][]_)K K D D R σλ??++=???? ( 将两个方程相减得到:[][]_)0K K D σλ??+=???? (,此即为经典的特征值问题,由[][]det()0K K σλ+=可得到特征值,其中最小的特征值就是临界载荷。 式中的λ是特征值, D ?????? —是位移特征向量,用λ乘以施加的载荷即得到临界载荷cr P ,D ?????? —是屈曲形状。

结构力学专题论文

结构力学专题论文 超静定梁的极限荷载分析与计算 一、 概述 弹性设计方法及其许用应力设计法的最大缺陷是以某一截面上的max σ达到[σ]作为衡量整个结构破坏的标准。事实上,由塑性材料组成的结构(特别是超静定结构)当某一局部的max σ达到了屈服应力时,结构还没有破坏,还能承受更大的荷载。因此弹性设计法不能充分的利用结构的承载能力,是 不够经济的。 塑性分析考虑了材料的塑性性质,其强度要求以结构破坏时的荷载作为标准: max []Pu P p u F F F k ≤= 其中,Pu F 是结构破坏时荷载的极限值,即极限荷载。u k 是相应的安全系数。 对结构进行塑性分析时仍然要用到平衡条件、几何条件、平截面假定,这与弹性分析时相同。另外还要采用以下假设: (1) 材料为理想弹塑性材料。其应力与应变关系如图所示。(图1.1) 图1.1 (2) 比例加载:全部荷载可以用一个荷载参数P 表示,不会出现卸载 现象。 (3) 结构的弹性变形和塑性变形都很小。 从应力与应变图中看出,一旦进入塑性阶段(AB 段),应力与应变不再是一一对应的关系,只有了解全部受力变形过程才能得到结构的弹塑性解答。但塑性分析法只考虑结构破坏状态时对应的极限荷载,所以比弹塑性分析法要简单的多。 值得注意的是,塑性分析只适用于延性比较好的弹塑性材料组成的结 D s σσ

构,而不适用于脆性材料组成的结构,也不适用于对变形条件要求较严的结构。 二、 相关概念 1、极限弯矩 (1)屈服弯矩 随着M 的增大,截面最外层纤维处的应力达到屈服应力s σ时,截面承受的弯矩称作弹性极限弯矩或者屈服弯矩。 e s M W σ= 式中,W 是弹性弯曲截面系数。 (2)极限弯矩 M 不断增大,整个截面的应力达到屈服应力s σ时,截面承受的弯矩称作极限弯矩。 u s s M W σ= s W 是塑性截面系数,其值为等截面轴上、下部分面积对该轴的静矩。 可见,纯弯曲时,M 只与材料的屈服应力s σ和截面的几何尺寸、形状 有关。剪力和轴力对M 的影响可以忽略不计。 2、塑性铰 2.1 概念 当整个截面应力达到屈服极限时,保持极限弯矩不变,两个无限靠近的截面可以发生有限的相对转动,这样的截面称为塑性铰。 2.2 塑性较的特点 (1)塑性铰可以承受极限弯矩。 (2)塑性铰是单向铰。 (3)卸载时塑性铰消失。 (4)随着荷载分布的不同,塑性铰可以出现在不同的位置。 3、破坏机构 结构在极限荷载作用下,由于出现足够多的塑性铰而形成的机构叫做破坏机构。 破坏机构可以在整体结构中形成,比如简支梁;也可以在结构上的某一局部形成,比如多跨连续梁。同一结构荷载不同时,破坏机构一般也不同。 静定结构在弯矩峰值截面形成一个塑性铰后,就形成破坏机构而丧失承载能力。对于超静定结构,因为有多余约束,要形成足够多的塑性铰才能丧失承载能力,这也是我们在做结构时,要设计成超静定结构的重要原因之一。 三、 判定极限荷载时的一般定理

材料力学读书报告

《材料力学(1)课程读书报告》 《材料力学》这门课程是研究材料在各种外力作用下产生的应变力强度、刚度、稳定和 导致各种材料破坏的极限。《材料力学》是设计工业设施必须掌握的知识。与理论力学、结构 力学并称三大力学。 《材料力学》《材料力学》是一门技术基础课程,是衔接基础课与专业基础课的桥梁课程。 是理论研究和实验并重的一门学科。是固体力学中的一个重要的分支学科,是研究可变形固 体受到处荷载力或温度变化等因素的影响而发生力学响应的一门科学,是研究构件在受载过 程中的强度、刚度和稳定性问题的一门学科。它是门理论研究与工程实践相结合的非常密切 的一门学科。 材料力学的基本任务是在满足强度、刚度和稳定性的安全要求下以最经济的代价。为构 件确定合理的形状和尺寸选择适宜的材料,为构件设计提供必要的理论基础和计算方法解决 结构设计安全可靠与经济合理的矛盾。 在人们运用材料进行建筑,工业生产的过程中,需要对材料的实际随能力和内部变化进 行研究这就催生了材料力学。在材料力学中,将研究对象被看作均匀,连续且具有各同性的 线性弹性物体,但在实际研究中不可能会有符合这些条件的材料,所以须要各种理论与实际 方法对材料进行实验比较,种材料的相关数据。我们一般通过假设对物体进行描述,这样有 利于我们通过数学计算出相关的数据,有连续性假设,均匀性假设。各向同性假设及小变型 假设等。 在材料力学中,物体由于外因而变化时,在物体内部各部分之间产生相互作用的内力以 低抗这种外因的作用,并力图使物体从变形的位置回复到变形前的位置,在所考察的截面某 一点单位面积上的内力称为应力。既受力物体内某点某微截面上的内力的分布集度,应变指 构件等物体内任一点因各种外力作用引起的形状和尺寸的相对改变(变形)。当撤除外力时固 体能恢复其变形的性能称为弹性,当撤除外力时固体能残留下来变形的性能称为塑性。物件 在外力作用下抵抗破坏的能力称强度。刚度是指构件在外力作用下抵抗变形的能力。 研究内力和应力一般用截面法,目的是为了求得物体内部各部分之间的相互作用力。轴 向拉伸(压缩)的计算公式为 ??fn 。?为横截面的应力。正应为和轴力fn同a 号。即拉应力为正,压应力为负。 原理:力作用于杆端的分布方式的不同,只影响杆端局部范围的应力分布影响区的轴向 范围的离杆端1~2个杆的横向尺寸。 《材料力学》在建设工程中有着之泛的应用。在桥梁,铁路,建筑,火箭等行业中起到 很重要的作用。如武汉长江大桥的设计,桥墩主要承受来自两侧浮桥本身的重力,桥面上生 物的重力,钢索主要受到拉力一方面是桥身以及桥面物体它们的自重。另一方面是钢索自重, 在这两个比较大的力的作用下钢索处于被拉伸状态。 《材料力学》研究的问题是构件的强度、刚度和稳定性;所研究的构件主要是杆件、几 种变形形式包括拉伸压缩、剪切、弯曲和扭转这几种基本变形形式。研究《材料力学》就是 解决在工程中研究外力作用下,如何保证构件正常的工作的问题。因此,材料力学是我们在 设计建造工程中起着相关重要的作用。篇二:弹塑性力学读书报告 弹塑性力学读书报告 本学期我们选修了樊老师的弹塑性力学,学生毕备受启发对工科 来说,弹塑性力学的任务和材料力学、结构力学的任务一样,是分析 各种结构物体和其构件在弹塑性阶段的应力和应变,校核它们是否具 有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。 但是在研究方法上也有不同,材料力学为简化计算,对构件的应 力分布和变形状态作出某些假设,因此得到的解答是粗略和近似的;

结构动力学读书报告

《结构动力学》 读书报告

结构动力学读书报告 学习完本门课程和结合自身所学专业,我对本门课程内容的理解和在各方面的应用总结如下: 1. (1)结构动力学及其研究内容: 结构动力学是研究结构系统在动力荷载作用下的振动特性的一门科学技术,它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。本书的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。 (2)主要理论分析 结构的质量是一连续的空间函数,因此结构的运动方程是一个含有空间坐标和时间的偏微分方程,只是对某些简单结构,这些方程才有可能直接求解。对于绝大多数实际结构,在工程分析中主要采用数值方法。作法是先把结构离散化成为一个具有有限自由度的数学模型,在确定载荷后,导出模型的运动方程,然后选用合适的方法求解。 (3)数学模型 将结构离散化的方法主要有以下三种:①集聚质量法:把结构的分布质量集聚于一系列离散的质点或块,而把结构本身看作是仅具有弹性性能的无质量系统。由于仅是这些质点或块才产生惯性力,故离散系统的运动方程只以这些质点的位移或块的位移和转动作为自由

度。对于大部分质量集中在若干离散点上的结构,这种方法特别有效。 ②广义位移法:假定结构在振动时的位形(偏离平衡位置的位移形态)可用一系列事先规定的容许位移函数fi (它们必须满足支承处的约束条件以及结构内部位移的连续性条件)之和来表示,例如,对于一维结构,它的位形u(x)可以近似地表为: @7710 二送 结构动力学 (1)式中的qj称为广义坐标,它表示相应位移函数的幅值。这样,离散系统的运动方程就以广义坐标作为自由度。对于质量分布比较均匀,形状规则且边界条件易于处理的结构,这种方法很有效。 ③有限元法:可以看作是分区的瑞利-里兹法,其要点是先把结构划 分成适当数量的区域(称为单元),然后对每一单元施行瑞利-里兹法。通常取单元边界上(有时也包括单元内部)若干个几何特征点(例如三角形的顶点、边中点等)处的广义位移qj作为广义坐标,并对每个广义坐标取相应的插值函数作为单元内部的位移函数(或称形状函数)。在这样的数学模型中,要求形状函数的组合在相邻单元的公共边界上满足位移连续条件。一般地说,有限元法是最灵活有效的离散化方法,它提供了既方便又可靠的理想化模型,并特别适合于用电子计算机进行分析,是目前最为流行的方法,已有不少专用的或通用的程序可供结构动力学分析之用。 (4)运动方程

力学小论文

题目:自行车力学探究 摘要:自行车是我们日常生活中见到的最普遍的交通工具,然而当我们骑车时它的具体受力情况是怎样的我们却不太清楚,本实验目的主要是探究自行车轮胎的摩擦力系数的测定,并在此基础上探究它在转弯的时候的受力情况。 关键词:摩擦力系数、力偶、杠杆、自行车 引言: 自行车上的力学、结构方面应用了很多科学知识,简单举例:1、杠杆原理:车闸,你在车闸处轻轻一握,就可以产生一个很大的拉动刹车装置的力量。 2、滑动磨擦(两种情况的利用):刹车、车轮,刹车是利用了滑动磨擦使车子停下来,而车轮则正好相反,他利用了滑动磨擦,使车子向前行进,车轮上的花纹就是为了增大他的磨擦系数的。 3、滚动磨擦:他的目的是为了省力。自行车用滚动磨擦的地方

很多,比如在转向装置、车轮轴里安装的轴承,就是利用了滚动磨擦。 4、力偶的原理:手在车把上产生的力正在是以前车叉为原点的一对力偶,力偶比一个单向力更容易控制,也更省力。 5、弹性碰撞的原理:说白了主要就是减震,充气轮胎、车子上的弹簧,都是把钢性碰撞改变成弹性碰撞,从而减少对人体的冲击力,使人骑起来更舒适。 对于本实验,考虑到自行车运动时与地面的摩擦是滚动摩擦,于是用自行车轮胎制成滑块测出橡胶与地面的摩擦系数。我们采用在不同场地多次测量取平均值的方法,来测橡胶轮胎与摩擦面的摩擦系数,在进行这个实验时要注意两点:一是拉力保持水平;二是尽量使滑块保持匀速运动。 器材:5个弹簧秤、2个滑轮、自行车(说明:多个弹簧秤和滑轮是打算在单个弹簧秤不足时用的) 数据: 表一水磨地 表二水泥地

结果:摩擦力系数:水磨地取平均值:0.38 水泥地取平均值:0.72 讨论:当过弯半径R分别为50m、20m、10m时,在水泥地上骑车最大速度Vm分别为多少。受力图如下: 自行车M:10 Kg 人m:60 Kg (M+m)Vm^2/R=μG Vm=(μGR/(m+M))^1/2 当转弯半径为50m时:Vm=18.2m/s 当转弯半径为50m时:Vm=11.9m/s 当转弯半径为50m时:Vm=8.4m/s 结论: 1、橡胶轮与水磨地的摩擦力系数为0.38 橡胶轮与水 泥地摩擦力系数为0.72;

结构力学结课论文:结构动力学振动理论在建筑结构抗震中的应用研究

结构动力学振动理论在建筑结构 抗震中的应用研究 摘要:随着社会的不断发展,抗震功能在建筑结构设计中的要求日益提高。通过结构动力学振动理论的研究应用,抗震技术得到了很大发展。本文将运用单自由度无阻尼和有阻尼受迫振动的理论知识,通过对动力学中的结构动力特性、建筑结构设计中的抗震功能的分析,简要介绍装有粘弹性阻尼器的单自由度体系的应用实例。 关键词:建筑结构抗震结构动力学振动理论单自由度体系简谐荷载 一、综述 随着社会的不断向前发展,建筑结构形式日益多样化,结构设计中对于抗震功能的要求也越来越高。与此同时,各门学科的交叉发展使得建筑结构抗震技术的运用走上了一个新的阶段。 传统的结构抗震设计不仅仅使得结构的造价大大增加,而且由于地震的不确定性而往往难以达到预期效果。通过运用动力学的相关知识来分析隔震减震装置在地震作用下的反应可以发现,自振振动在结构的地震反应中经常占有主导地位,不能够忽略。那么运用动力学理论分析,找到结构反应的最大控制量,通过改进材料的性能参数,就能够使用最合适的材料来制造隔震减震装置,提高装置的使用效能,这样就有希望把被动控制技术推向一个新高度。

二、单自由度无阻尼受迫振动 当体系上作用的外荷载为简谐荷载,同时忽略体系的阻尼,单自由度体系的运动方程为: 式中:p0为简谐荷载的幅值;为简谐荷载的圆频率。 体系的初始条件为: 该方程的解为: 解的第一部分为结构的自振频率振动的部分,即伴生自由频率的振幅,记为: 其中,为自振频率的振幅: 解的第二部分为激振频率振动的部分,即稳态动部分,记为: 其中,为自振频率的振幅:

解的第二部分为激振频率振动的部分,即稳态动部分,记为: 其中:为激振频率振幅: 比较两部分振动的振幅得到: 由上面的式子可以看出,结构自振的振幅与稳态振动部分的振幅的比值是成反比例的。当1 θ≥时,按自振频率部分的振幅大于按荷载频率的部分的振幅,尤其是当1 θ>时,自振部分在结构反应中将占相当重要的部分。 三、单自由度有阻尼受迫振动 在简谐荷载作用下,单自由度体系的运动方程和初始条件为: 该方程解为:

结构力学读书笔记

竭诚为您提供优质文档/双击可除 结构力学读书笔记 篇一:结构力学感想 感悟结构力学 这学期开设土木工程专业基础课结构力学,给我第一印象是:难并且复杂,但是实用。结构力学(structuralmechanics)是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科,它是土木工程专业和机械类专业学生必修的学科。我以后专业方向可能选择结构方向,那么未来的工作和学习很可能一直需要学习结构力学并且研究它。下面谈谈对结构力学初步的感悟。 结构力学研究的内容包括结构的组成规则,结构在各种效应(外力,温度效应,施工误差及支座变形等)作用下的响应,包括内力(轴力,剪力,弯矩,扭矩)的计算,位移(线位移,角位移)计算,以及结构在动力荷载作用下的动力响应(自振周期,振型)的计算等。结构力学通常有三种分析的方法:能量法,力法,位移法,由位移法衍生出的矩

阵位移法后来发展出有限元法,成为利用计算机进行结构计算的理论基础。这三种分析方法实用而且能把复杂的问题简单化,也就是简化实际工程中的问题。在实际生活中,结构无处不在,结构体系是整个工程核心,结构一旦出问题,那么整个工程体系将会出现问题。土建、水利等建筑工程首先考虑的就是建筑工程的结构,结构就是组成工程的灵魂。任何复杂的工程体系都可以简化成一个个简单的结构体系来 分析,进而强化改进整个建筑,使它们能够更安全、更经济、更耐久,满足工程需要。 结构力学在当前的实际中要靠建筑设计作为基础,在满足该设计的前提下进行结构分析与设计,单纯的从结构方面进行的建筑必定难以满足美观的要求,而在现在的建筑中,没有好的外观,纵使你的结构固若金汤也很难被接受。多数情况下,结构设计在建筑设计之后支持那些设计师设计出的外观。结构力学的学习就是为了这一目标,为建筑设计师设计出的建筑图纸设计满足要求的结构,最实用的东西,往往在幕后下功夫,不可否认,结构是关键性作用。以后我如果学习结构的话,那么我将是一个幕后英雄了。 这学期的结构力学,算是初次接触,好多内容都不好理解,理论的东西都很抽象,我只能说我思维跟不上,也不可否认用的功课不够。在结构力学学习的过程中,培养了一个简化问题的能力吧,结构力学的核心思想就是简化,把复杂

结构动力学3-3w总结

T p —荷载的周期 7/63 单自由度体系对周期荷载的反应 任意周期荷载作用下结构总的稳态反应为: 用复数Fourier 级数将周期荷载展开, 先计算单位复荷载e i ωj t 作用下,体系稳态反应的复幅值,设: 总的稳态反应为: 复频反应函数,也称为频响函数,传递函数

单位脉冲:作用时间很短,冲量等于1的荷载。 单位脉冲反应函数:单位脉冲作用下体系动力反应时程。 积分 时刻的一个单位脉冲作用在单自由体系上,使结构的质点获得一个单位冲量,在脉冲结束后,质点获得一个初速度: 由于脉冲作用时间很短,ε→0,质点的位移为零:

13/63 —Duhamel 积分无阻尼体系的单位脉冲反应函数为: 有阻尼体系的单位脉冲反应函数为: 、单位脉冲反应函数 单位脉冲及单位脉冲反应函数 15/63 在任意时间t 结构的反应,等的和: Duhamel 积分: 任意荷载作用下单自由度体系的反应等于作用于结构的外荷载与单位脉冲反应函数的卷积。 3.8.1时域分析方法—Duhamel 积分 无阻尼体系动力反应的Duhamel 积分公式: 阻尼体系动力反应的Duhamel 积分公式:

17/63杜哈曼积分法给出了计算线性SDOF体系在任意荷载作用下动力反应的一般解,适用于线弹性体系。 因为使用了叠加原理,因此杜哈曼积分法限于弹性范 速度和加速度的Fourier变换为:

21/63单自由度体系时域运动方程: 对时域运动方程两边同时进行Fourier 正变换,得单自由度体系频域运动方程: —Fourier 变换法频域解为: )—复频反应函数,i 是用来表示函数是一复数。再利用Fourier 逆变换,即得到体系的位移解: 作Fourier 变换, 得到荷载的Fourier 谱P (ω)和复频反应函数到结构反应的频域解—Fourier 谱U (逆变换,由频域解U (ω)得到时域解u (t ): 在用频域法分析中涉及到两次Fourier 变换,均为无穷域积分,特别是Fourier 逆变换,被积函数是复数,有时涉及复杂的围道积分。

结构力学论文

结构力学论文

————————————————————————————————作者: ————————————————————————————————日期:

成绩 土木工程与建筑学院 结构力学论文 (2016—2017 学年度第一学期) 课程名称:结构力学 论文题目: 浅谈位移法 任课教师: 姓名: 班级: 学号: 2017 年 1 月 1

日 浅谈位移法 摘要位移法是超静定结构分析的基本方法之一,也称变位法或刚度法,通常以结点位移作为基本未知数。位移法有两种计算方式,一种是应用基本结构列出典型方程进行计算,另一种是直接应用转角位移方程建立原结构上某结点或截面的静力平衡方程进行计算。 关键词基本原理典型方程超静定结构 一、简介 位移法以广义位移(线位移和角位移)为未知量,求解固体力学问题的一种方法。位移法的思想是法国的C.-L.-M.-H.纳维于1826年提出的。 位移法是解决超静定结构最基本的计算方法,计算时与结构超静定次数关系不大,相较于力法及力矩分配法,其计算过程更加简单,计算结果更加精确,应用的范围也更加广泛,可以应用于有侧移刚架结构的计算。此外,对于结构较为特殊的体系,应用位移法可以很方便地得出弯矩图的形状,位移法不仅适用于超静定结构内力计算,也适用于静定结构内力计算,所以学习和掌握位移法是非常有必要的。 二、计算种类 1.典型方程法 位移法可按两种思路求解结点位移和杆端弯矩:典型方程法和平衡方程法。下面给出典型方程法的解题思路和解题步骤。 1.1位移法典型方程的建立: 欲用位移法求解图a所示结构,先选图b为基本体系。然后,使基本体系发生与原结构相同的结点位移,受相同的荷载,又因原结构中无附加约束,故基本体系的附加约束中的约束反力(矩)必须为零,即:R1=0,R2=0。 而Ri是基本体系在结点位移Z1,Z2和荷载共同作用下产生的第i个附加约束中的反力(矩),按叠加原理Ri也等于各个因素分别作用时(如图c,d,e所示)产生的第i个附加约束中的反力(矩)之和。于是得到位移法典型方程:

《心理学与生活》读书笔记

《心理学与生活》读书笔记 经济学院金双2班冯承杰 2014141013025 《心理学与生活》是美国著名心理学家理查德?格里格和菲利普?津巴多写的一本经典的心理学课本,全书主要讲的是心理学与人们日常生活的关系。 全书一共分为了18个章节: 第一章是生活中的心理学,主要讲的是心理学的定义以及现代心理学的发展状况; 第二章是心理学的研究方法; 第三章至第六章主要讲的就是感觉、知觉、行为上的心理学基础; 第七章至第十章主要讲的是教学心理学的内容; 第十一章至第十四章,主要讲的是在人本省存在的心理学特性; 第十五章至第十六章主要讲的是心理障碍和心理治疗的内容; 第十七章至第十八章主要讲的是社会人际交往关系之中的心理学。 阅读了《心理学与生活》的部分章节后,我可以感受到生活低位每一个地方都是充满着心理学知识的,心理学真的和我们的日常生活是息息相关的,运用好了心理学的知识,我们就能够更加有效的掌控我们自己的生活。 通过对第一章详细的阅读和理解,我认为当代心理学有以下观点:(1)生物学观点: 引导心理学家在基因大脑、神经系统及内分泌系统中寻找行为的原因。生物学观点引导心理学家在基因、大脑、神经系统以及内分泌系统中寻找行为的原因。一个器官的功能由其身体结构和生物化学过程来解释。体验和行为在很大程度上被理解为在神经细胞内部和之间发生的化学和电活动的结果。 (2)心理动力学观点: 这种观点认为,人的行为是从继承来的本能和生物驱力中产生的,而且试图解决个人需要和社会要求之间的冲突。理动力学的动机原则是由维也纳的医生弗洛伊德在19世纪末和20世纪初最完整地发展起来的。弗洛伊德的思想是从对精神病人临床工作中得出来的,但是他相信他观察到的这些

结构动力学 读书报告

《结构动力学》读书报告

结构动力学读书报告 学习完本门课程和结合自身所学专业,我对本门课程内容的理解和在各方面的应用总结如下: 1.(1)结构动力学及其研究内容: 结构动力学是研究结构系统在动力荷载作用下的振动特性的一门科学技术,它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。本书的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。 (2)主要理论分析 结构的质量是一连续的空间函数,因此结构的运动方程是一个含有空间坐标和时间的偏微分方程,只是对某些简单结构,这些方程才有可能直接求解。对于绝大多数实际结构,在工程分析中主要采用数值方法。作法是先把结构离散化成为一个具有有限自由度的数学模型,在确定载荷后,导出模型的运动方程,然后选用合适的方法求解。 (3)数学模型 将结构离散化的方法主要有以下三种:①集聚质量法:把结构的分布质量集聚于一系列离散的质点或块,而把结构本身看作是仅具有弹性性能的无质量系统。由于仅是这些质点或块才产生惯性力,故离散系统的运动方程只以这些质点的位移或块的位移和转动作为自由

度。对于大部分质量集中在若干离散点上的结构,这种方法特别有效。 ②广义位移法:假定结构在振动时的位形(偏离平衡位置的位移形态)可用一系列事先规定的容许位移函数fi(它们必须满足支承处的约束条件以及结构内部位移的连续性条件)之和来表示,例如,对于一维结构,它的位形u(x)可以近似地表为: 结构动力学 (1) 式中的qj称为广义坐标,它表示相应位移函数的幅值。这样,离散系统的运动方程就以广义坐标作为自由度。对于质量分布比较均匀,形状规则且边界条件易于处理的结构,这种方法很有效。 ③有限元法:可以看作是分区的瑞利-里兹法,其要点是先把结构划分成适当数量的区域(称为单元),然后对每一单元施行瑞利-里兹法。通常取单元边界上(有时也包括单元内部)若干个几何特征点(例如三角形的顶点、边中点等)处的广义位移qj作为广义坐标,并对每个广义坐标取相应的插值函数作为单元内部的位移函数(或称形状函数)。在这样的数学模型中,要求形状函数的组合在相邻单元的公共边界上满足位移连续条件。一般地说,有限元法是最灵活有效的离散化方法,它提供了既方便又可靠的理想化模型,并特别适合于用电子计算机进行分析,是目前最为流行的方法,已有不少专用的或通用的程序可供结构动力学分析之用。 (4)运动方程 可用三种等价但形式不同的方法建立,即:①利用达朗伯原理引

计算结构力学读书报告

计算结构力学读书报告 XX1 (XX大学) 摘要:本文主要叙述了在阅读与学习《计算结构力学》这本书的一些相关的心得体会;在学习由原作者所创立的样条有限点法的过程中,收获了一些新的理解与体验。 关键词:计算结构力学;样条有限点法;读书报告 Computational Structural Mechanics Reading Report (XX) Abstract: This article mainly describes some of the relevant experiences in reading and learning the book “Computational Structural Mechanics”. In the process of learning the spline point method established by the original author, some new understandings and experiences were learned. Keywords: computational structural mechanics; spline finite point method; reading report 引言 工程中的许多问题,从本质上来说都可以归结到力学问题。而这些力学问题,如果按照传统的解析求解方式,往往只能求解一些较为简单和理想化的力学问题,同时又需要专业的力学家花费大量的时间和精力推导公式,并将之记录在教科书中。而近代以来,又有许多力学数学界的专家共同努力,创造出了用于解决力学分析问题的有限单元法,随着电子计算机的发展,利用有限单元法,借助电算方式,求解工程中的力学问题已成为一种趋势。 工程中的力学问题,从本质上说是非线性的,线性假设只是实际问题的一种简化。如果工程中的结构按照线性理论设计,不仅会浪费,而且还会造成灾难。在结构工程设计中,如果考虑弹塑性问题,则可以挖掘材料潜力,提高工程结构承受能力,节约材料,正确估计工程安全度,使工程经济合理及安全可靠;如果按照线弹性理论设计,则会显得过于保守。由此可知,在各种工程设计中,只假设它为线性问题是不够的,必须进一步考虑非线性问题才能保证工程既经济合理又安全可靠。近几年来,在现代化建设中,人们面临着越来越多的非线性力学问题,结构非线性分析已成为工程设计不可缺少的一个工作。因此,结构非线性力学已成为工程设计不可缺少的一个重要学科。 1基本概念 1.1材料特性 在结构工程中,所使用的材料有很多,广泛使用的材料有钢材、混凝土、岩土以及各种砖石。 在单向拉伸状态中,材料由初始弹性状态进入塑性状态的界限是屈服极限。这被称为单向拉伸状态的屈服条件,也称初始屈服条件,它的表达式为:f(σ)=σ?σs=0。 式中,σ和σs分别为应力和屈服极限,f(σ)为屈服函数。如果σ<σs,则f(σ)<0,这时试件处于弹性状态;如果σ>σs,则f(σ)>0,这时试件进入塑性状态。 经过屈服阶段后,材料又恢复抵抗变形的能力,必须增加荷载才能产生变形,这种现象称为材料强化,也称硬化。 1.2应力与应变状态 物体的任意一点的应力状态可由九个应力分量来描述,而且这些分量构成一个二阶对称张量:

相关主题
文本预览
相关文档 最新文档