当前位置:文档之家› 计算电磁学简介

计算电磁学简介

计算电磁学简介
计算电磁学简介

计算电磁学简介

一. 计算电磁学的重要性

在现代科学研究中,“科学试验,理论分析,高性能计算”已经成为三种重要的研究手段。在电磁学领域中,经典电磁理论只能在11 种可分离变量坐标系中求解麦克斯韦方程组或者其退化形式,最后得到解析解。解析解的优点在于:

①可将解答表示为己知函数的显式,从而可计算出精确的数值结果;

②可以作为近似解和数值解的检验标准;

③在解析过程中和在解的显式中可以观察到问题的内在联系和各个参数对数值结果所起的作用。

这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。当遇到不规则形状或者任意形状边界问题时,则需要比较复杂的数学技巧,甚至无法求得解析解。20 世纪60 年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法也迅速发展起来,并在实际工程问题中得到了广泛地应用,形成了计算电磁学研究领域,已经成为现代电磁理论研究的主流。简而言之,计算电磁学是在电磁场与微波技术学科中发展起来的,建立在电磁场理论基础上,以高性能计算机技术为工具,运用计算数学方法,专门解决复杂电磁场与微波工程问题的应用科学。相对于经典电磁理论分析而言,应用计算电磁学来解决电磁学问题时受边界约束大为减少,可以解决各种类型的复杂问题。原则上来讲,从直流到光的宽广频率范围都属于该学科的研究范围。近几年来,电磁场工程在以电磁能量或信息的传输、转换过程为核心的强电与弱电领域中显示了重要作用。

二. 电磁问题的分析过程

电磁工程问题分析时所经历的一般过程为:

三. 计算电磁学的分类

(1) 时域方法与谱域方法

电磁学的数值计算方法可以分为时域方法(Time Domain或TD)和频域方法(Frequeney Domain或FD)两大类。

时域方法对Maxwell方程按时间步进后求解有关场量。最著名的时域方法是时域有限差分法(Finite Difference Time Domain或FDTD)。这种方法通常适用于求解在外界激励下场

的瞬态变化过程。若使用脉冲激励源,一次求解可以得到一个很宽频带范围内的响应。时域方法具有可靠的精度,更快的计算速度,并能够真实地反应电磁现象的本质,特别是在诸如短脉冲雷达目标识别、时域测量、宽带无线电通讯等研究领域更是具有不可估量的作用。

频域方法是基于时谐微分、积分方程,通过对N个均匀频率采样值的傅立叶逆变换得到所需的脉冲响应,即研究时谐(Time Harmonic)激励条件下经过无限长时间后的稳态场分布的情况,使用这种方法,每次计算只能求得一个频率点上的响应。过去这种方法被大量使用,多半是因为信号、雷达一般工作在窄带。

当要获取复杂结构时域超宽带响应时,如果采用频域方法,则需要在很大带宽内的不同频率点上的进行多次计算,然后利用傅立叶变换来获得时域响应数据,计算量较大;如果直接采用时域方法,则可以一次性获得时域超宽带响应数据,大大提高计算效率。特别是时域方法还能直接处理非线性媒质和时变媒质问题,具有很大的优越性。时域方法使电磁场的理论与计算从处理稳态问题发展到能够处理瞬态问题,使人们处理电磁现象的范围得到了极大的扩展。

频域方法可以分成基于射线的方法(Ray-based)和基于电流的方法(Current-based)。前者包括几何光学法(GO)、几何绕射理论(GTD)和一致性绕射理论(UTD)等等。后者主要包括矩量法(MoM)和物理光学法(PO)等等。基于射线的方法通常用光的传播方式来近似电磁波的行为,考虑射向平面后的反射、经过边缘、尖劈和曲面后的绕射。当然这些方法都是高频近似方法,主要适用于那些目标表面光滑,其细节对于工作频率而言可以忽略的情况。同时,它们对于近场的模拟也不够精确。另一方面,基于电流的方法一般通过求解目标在外界激励下的感应电流进而再求解感应电流产生的散射场,而真实的场为激励场与散射场之和。基于电流的方法中最著名的是矩量法。矩量法严格建立在积分方程基础上,在数字上是精确的。其实,我们并不能判断它是一种低频方法或者是高频方法,只是矩量法所需要的存储空间和计算时间随未知元数的快速增长阻止了其对高频情况的应用,因而它只好被限定在低频至中频的应用上。物理光学法可以认为是矩量法的一种近似,它忽略了各子散射元间的相互祸合作用,这种近似对大而平滑的目标是适用的,但是目标上含有边缘、尖劈和拐角等外形的部件时,它就失效了。当然,对于简单形状的物体,PO法还是一个常用的方法,毕竟,它的求解过程很迅速,并且所需的存储空间也非常少(O(N))。

(2)积分方程法与微分方程法

从求解的方程形式又可以分成积分方程法(IF)和微分方程法(DE)。IE法与DE法相比,特点如下:(1)IE法的求解区域维数比DE法少一维,误差仅限于求解区域的边界,故精度高;(2)IE法适宜于求解无限域问题,而DE法用于无限域问题的求解时则要遇到网格截断问题;(3)IE法产生的矩阵是满的,阶数小,DE法所产生的矩阵是稀疏的,但阶数大;(4)IE 法难处理非均匀、非线性和时变煤质问题,而DE法则可以直接用于这类问题。因此,求解电磁场工程问题的出发点有四种方式:频域积分方程(FDIE)、频域微分方程(FDDE)、时域微分方程(TDDE)和时域积分方程(TDIE)。

计算电磁学也可以分成基于微分方程的方法(Differential Equation)和基于积分方程的方法(Integral Equation)两类。前者包括FDTD、时域有限体积法FVTD、频域有限差分法FDFD、有限元法FEM。在微分方程类数值方法中,其未知数理论上讲应定义在整个自由空间以满足电磁场在无限远处的辐射条件。但是由于计算机只有有限的存贮量,人们引入了吸收边界条件来等效无限远处的辐射条件,使未知数局限于有限空间内。即便如此,其所涉及的未知数数目依然庞大(相比于边界积分方程而言)。同时,由于偏微分方程的局域性,使得场在数值网格的传播过程中形成色散误差。所研究的区域越大,色散的积累越大。数目庞大的未知数和数值耗散问题使得微分方程类方法在分析电大尺寸目标时遇到了困难。对于FEM方法,早期基于节点(Node-based)的处理方式非常有可能由于插值函数的导数不满足连续性而导致

不可预知的伪解问题,使得这种在工程力学中非常成功的方法在电磁学领域内无法大展身手,直到一种基于棱边(Edge-based)的处理方式的出现后,这个问题才得以解决。

积分方程类方法主要包括各类基于边界积分方程(Boundary Integral Equation)与体积分方程(Volume Integral Equation)的方法。与微分类方法不同,其未知元通常定义在源区,比如对于完全导电体(金属)未知元仅存在于表面,显然比微分方程类方法少很多;而格林函数(Green’s Function)的引入,使得电磁场在无限远处的辐射条件己解析地包含在方程之中。场的传播过程可由格林函数精确地描述,因而不存在色散误差的积累效应。

(3)计算电磁学常用方法汇总

(4) 几种主要方法之间的比较

这里对计算电磁学中几种主要的数值方法进行简单的比较,即时域有限差分法(FDTD)、有限元(FEM)、矩量法(MoM)、多极子法(MMP)、几何光学绕射法(GTD)、物理光学绕射法

(5) 多种方法的混合使用

由于实际问题的多样性,单独使用以上介绍的方法可能并不能满足需要,比如涂敷介质的目标、印刷电路板及微带天线的辐射散射/EMC分析、带复杂腔体和缝隙结构的目标的散射等等。因此工程界常常将各种方法搭配起来使用,形成各种混合方法。常见的混合方法包括边界积分方程与体积分方程/微分方法混合、高频近似方法与低频精确方法的混合、解析方法与数值方法的混合等。

高频方法与低频方法的混合技术一般针对含有复杂细节的电大尺寸目标而提出的。由于完全使用低频的精确方法来处理电大尺寸部分往往超出了目前计算机的能力,而单纯使用高频方法又得不到足够精确的近场,所以这种分而治之的折中方案就出现了。常用的混合方法包括弹跳射线法/矩量法混合(SBR/MoM)、物理绕射理论/矩量法混合(PTD/MoM)、几何绕射理论/矩量法混合(GTD/MOM)等等。当然,引入了高频近似,赢得了速度和空间,同时在一定程度上也损失了精度。

除了上述几种混合方法之外,将解析方法和数值方法混合也是一种非常有用的方法。比如二维非均匀介质电磁问题中将二维的数值计算转化为径向本征模式展开与纵向的解析递推的数值模式匹配法(NMM)以及对于n维偏微分方程先使用(n一l)维数值离散转化为常微分方程后再用解析方法求其通解的直线法都是很好的例子。

(6) 算法的快速求解

快速算法:快速算法是为了解决矩量法求解过程中存储量和计算量过大的问题而出现的。近年来,许多学者致力于精确方法的快速求解以满足工程中日益增长的对电大尺寸复杂物体精确模拟之需要。由于矩量法产生的是一个满阵,存储量为O( N2),采用直接求解的计算复杂度为O (N3),采用迭代求解的计算复杂度为O( N2),当未知量N增大的时候,存储量和计算量都会快速增加,这极大的限制了其求解能力。而某些基于矩量法的快速算法,如多层快速多极子算法,可以成功得将存储量和计算复杂度分别降到O (N)和O (N logN)量级,极大的扩大了其求解能力。这些方法主要有基于分组思想的快速多极子方法(FMM),多层快速多极子算法(MLFMA),快速非均匀平面波算法(FIPWA),自适应积分方法(AIM),共轭梯度快速傅立叶变换(CG-FFT)等方法。

并行计算,也称之为高性能计算,则是在现有的算法基础上,增加计算资源等硬件设施,把待求解的问题分解为许多小问题,分别在不同的处理器上求解,通过网络等方式实现进程间的通信,最后得到需要的解,从而实现联合求解大问题。并行计算机从上世纪中期出现以来,出现了很多种不同的体系,主要有并行向量机(PVP),对称多处理机(SMP),大规模并行处理机(MPP),集群(Cluster),分布式共享存储多处理机(DSM)等。

下面就几种最主要的计算电磁学数值方法进行简单的介绍:

一. 有限元

(1)历史

有限元方法是在20 世纪40 年代被提出, 在50 年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前, 作为广泛应用于工程和数学问题的一种通用方法, 有限元法已非常著名。

(2)原理

有限元法是以变分原理为基础的一种数值计算方法。应用变分原理, 把所要求解的边值问题转化为相应的变分问题, 利用对场域的剖分、插值, 离散化变分问题为普通多元函数的极值问题, 进而得到一组多元的代数方程组, 求解代数方程组就可以得到所求边值问题的数值解。一般要经过如下步骤:

①区域离散化。即将场域或物体分为有限个子域,如三角形、四边形、四面体、六面体等;

②选择插值函数。选择插值函数的类型如多项式,用结点(图形定点)的场值求取子域各点的场的近似值。插值函数可以选择为一阶(线性)、二阶(二次)、或高阶多项式。尽管高阶多项式的精度高,但通常得到的公式也比较复杂;

③方程组公式的建立。可以通过里兹方法或者迦辽金方法建立;

④选择合适的代数解法求解代数方程, 即可得到待求边值问题的数值解。

(3)特点

①最终求解的线性代数方程组一般为正定的稀疏系数矩阵;

②特别适合处理具有复杂几何形状物体和边界的问题;

③方便于处理有多种介质和非均匀连续煤质问题;

④便于计算机实现,可以做成标准化的软件包。

(4)相应的商业软件介绍

①Ansof t HFSS软件

Ansoft HFSS 是美国Ansoft 公司开发的一种三维结构电磁场仿真软件,可分析仿真任意三维无源结构的高频电磁场,并直接得到特征阻抗、传播常数、S 参数及电磁场、辐射场、天线方向图等结果。该软件被广泛应用于无线和有线通信、计算机、卫星、雷达、半导体和微波集成电路、航空航天等领域。

Ansoft HFSS 采用自适应网格剖分、AL PS 快速扫频、切向元等专利技术,集成了工业标准的建模系统,提供了功能强大、使用灵活的宏语言,直观的后处理器及独有的场计算器,可计算分析显示各种复杂的电磁场,并可利用Optimetrics 对任意参数进行优化和扫描分析。使用Ansoft HFSS 还可以计算:1) 基本电磁场数值解和开边界问题,近远场辐射问题;2) 端口特征阻抗和传输常数;3) S 参数和相应端口阻抗的归一化S 参数;4) 结构的本征模或谐振解等

②ANSYS Emax软件

ANSYS Emax 是ANSYS 公司的高频电磁场分析产品。应用领域包括:射频/ 微波无源器件、射频/微波电路、电磁干扰与电磁兼容( EMI/ EMC) 、天线设计和目标识别。

ANSYS Emax 支持有限元计算区域所有结果的静态和动画显示。包含:电磁场强度、品质因素、S 参数、电压、特征阻抗、雷达截面积(RCS) 、模型区域的远场和近场、天线方向图、焦耳热损耗。

ANSYS Emax7. 1 还提供新的计算功能:1) 频段内快速扫频计算,用于S 参数的快速提取;2) 天线各项拓展指标(增益、辐射功率、方向图、效率) 的计算;3) N 端口网络S 参数自

动提取;4) 热效应分析;5) S 参数的Touch Stone 格式文件输出;6) RCS极化方向选择。

(5)数值例子

受到时域有限差分算法研究的带动,将有限元引入到时域是目前研究的一个热点。例如文章(V. F. Rodríguez-Esquerre, Masanori Koshiba, and H. E. Hernández-Figueroa, “Finite-Element Time-Domain Analysis of 2-D Photonic Crystal Resonant Cavities,”IEEE Photonics Technology Letters, vol. 16, no. 3, pp. 816-818, March 2004)就利用时域有限元来研究光子晶体谐振腔。

二. 矩量法 (1)历史

矩量法是计算电磁学中最为常用的方法之一。自从二十世纪六十年代Harrington 提出矩量法的基本概念以来,它在理论上日臻完善,并广泛地应用于工程之中。特别是在电磁辐射与散射及电磁兼容领域,矩量法更显示出其独特的优越性。

(2)原理

矩量法的基本思想是将几何目标剖分离散,在其上定义合适的基函数,然后建立积分方程,用权函数检验从而产生一个矩阵方程,求解该矩阵方程,即可得到几何目标上的电流分布,从而其它近远场信息可从该电流分布求得。

矩量法可以分为三个基本的求解过程:

①离散化过程-在这一过程中的主要目的是在于将算子方程化为代数方程。

针对算子方程()g f L =中算子L 的定义域适当地选择一组线性无关的基函数(或称为展开函数)n f f f ,,,21 ,将未知函数f 在算子L 的定义域内展开为基函数的线性组合,并且取有限项近似,即:∑∑=∞

==

≈=

N

n n

n N n n n f a

f f a

f 1

1

。再将此式代入到算子方程中,利用算子的线性性

质,将算子方程转化为代数方程,即

()g f L a N

n n

n

=∑=1

。于是,求解未知函数f 的问题就转化为

求解系数n a 的问题。

②取样检验过程-为了使未知函数f 的近似函数N f 与f 之间的误差极小,必须进行取样检验,在抽样点上使加权平均误差为零,从而确定未知系数n a 。

在算子L 的值域内适当选择一组线性无关的权函数(又称为检验函数)m W ,将其与上述代数方程取内积进行抽样检验,即()()N m W g W f L m m n ,,2,1,, ==。利用算子的线性和内积

性质,将其化为矩阵方程,得到

()()N m W g W f L a

N

n m

m n n

,,2,1,,1

==∑=。于是求解代数方程的

问题就转化为求解矩阵方程的问题。

③矩阵的求逆过程 一旦得到了矩阵方程,通过常规的矩阵求逆或求解线性方程组,就可以得到矩阵方程的解,从而确定展开系数n a ,得到原算子方程的解。

(3)特点

①矩量法是基于电磁场积分方程的数值方法,积分方程的主要优点在于,一方面由于格林函数的引入,电磁场在无限远处的辐射条件已经解析的包含在积分方程之中,这样未知量之间的关系可以准确的得到,避免数值色散;另一方面,它产生的未知数的数目一般都比微分类方程少很多,比较适用于计算电大尺寸的电磁散射。

②它是一种精确方法,其结果精度仅仅受到计算精度和计算模型精度的限制,因此它可以实现任意需要精度下的计算和求解;

③它是一种稳定的计算方法,在整个矩量法的求解过程中,不易出现类似于其它计算方法计算过程中出现的“伪解”问题,同时它所得到的矩阵条件数好,求解、求逆容易;

④对于金属表面,矩量法可以利用边界条件,直接简化计算,从而导出金属表面的积分方程,而其它方法则往往要完全计算整个实体的场分布,这就体现出矩量法在分析金属表面问题时的优越性。

⑤由于矩量法的全局性,矩量法所产生的矩阵为稠密矩阵,这样经典矩量法的数据存储量和计算复杂度都很高。因此快速算法的研究成为矩量法应用研究中的一个热点;

(4)相应的商业软件介绍

①Agilent ADS软件

Agilent ADS 是美国安捷伦公司在HP EESOF系列EDA 软件基础上发展完善起来的大型综合设计软件,为系统和电路设计人员提供可开发各种形式射频设计的有力工具,应用面涵盖从射频/ 微波模块到集成MMIC。该软件可以在微机上运行,其前身是工作站运行版本MDS (Microwave Design System) 。ADS 软件还提供了一种新的滤波器设计指导,可以使用智能化用户界面来分析和综合射频/ 微波电路,并可对平面电路进行场分析和优化。它允许用户定义频率范围、材料特性、参数的数量和根据用户的需要自动产生关键的无源器件模型。该软件范围涵盖了小至元器件芯片,大到系统级的设计和分析。尤其可在时域或频域内实现对数字或模拟、线性或非线性电路的综合仿真分析与优化,并可对设计结果进行成品率分析与优化,提高了复杂电路的设计效率,使之成为设计人员的有效工具

②Sonnet软件

Sonnet 软件公司是全球领先的以电磁场技术为核心的电子设计自动化专业软件商。其主要业务是开发、推广并在技术上支持它的高端技术软件产品。Sonnet 公司开发的3D 平面电磁场分析软件,凭借其在单层和多层平面电路和天线上的精确、快速的分析能力,赢得了世界上几百家客户的赞誉。

Sonnet 是一种基于矩量法的电磁仿真软件,提供面向3D 的高频电路设计,以及在微波、毫米波领域和电磁兼容/ 电磁干扰设计的EDA 工具。Sonnet应用于高频电磁场分析, 频率从1MHz 到数十GHz。主要应用有:微带匹配网络、微带电路、微带滤波器、带状线电路、带状线滤波器、过孔(层的连接或接地) 、耦合线分析、PCB 板电路分析、PCB 板电磁干扰分析、桥式螺线电感器、平面高温超导电路分析、毫米波集成电路( MMIC) 设计和分析、混合匹配的电路分析、HDI 和L TCC 转换、单层或多层传输线的精确分析、多层的平面电路分析、单层或多层的平面天线分析、平面天线阵分析、平面耦合孔的分析等。

③IE3D软件

IE3D 是Zeland 公司开发的一种基于矩量法的电磁场仿真工具,可以解决多层介质环境下三维金属结构的电流分布问题。它利用积分的方式求解Maxwell 方程组,从而解决电磁波效应、不连续性效应、耦合效应和辐射效应问题。仿真结果包括S、Y、Z参数、VSWR、RLC 等效电路、电流分布、近场分布和辐射方向图、方向性、效率和RCS 等。IE3D在微波/ 毫米波集成电路(MMIC) 、RF 印制板电路、微带天线、线天线和其它形式的RF 天线、HTS 电路及滤波器、IC 的互联和高速数字电路封装方面是一个非常有用的工具。

④Microwave Off ice软件

Microwave Office 软件是Applied Wave Research 公司开发的高频电磁仿真软件,是通过两个模拟器来对微波平面电路进行模拟和仿真的。对于由集总元件构成的电路,用电路的方法来处理较为简便。该软件设有“V oltaireXL”模拟器用来处理集总元件构成的微波平面电路问题。而对于由具体的微带几何图形构成的分布参数平面电路则采用场的方法较为有效,该软件采用“EMSight”模拟器处理任何多层平面结构的三维电磁场问题。

“VoltaireXL”模拟器内设一个元件库,在建立电路模型时,可以调出微波电路所用的元件,其中无源器件有电感、电阻、电容、谐振电路、微带线、带状线、同轴线等等,非线性器件有双极晶体管、场效应晶体管、二极管等等。

“EMSight”模拟器是一个三维电磁场模拟程序包,可用于平面高频电路和天线结构的分析。其特点是把修正谱域矩量法与直观的视窗图形用户界面(GUI) 技术结合起来,使得计算速度加快许多。它可以分析射频集成电路(RFIC) 、微波单片集成电路(MMIC) 、微带贴片天线和高速印制电路( PCB)等的电气特性。

⑤FEKO软件

FEKO 是Ansys 公司开发的以矩量法为核心算法的高频电磁仿真软件。由于其基于严格的积分方程方法,因此只要硬件条件许可,就可以求解任意复杂结构的电磁问题。为了在当前的计算机硬件条件下完成大尺寸复杂结构(一般从数值计算的角度定义为,待分析目标尺寸超过10 个波长) 的计算,本软件还提供了专用于大尺寸问题的高频方法——物理光学方法(PO) 和一致性几何绕射理论(U TD) 。

FEKO 真正实现了MM 方法和PO/ U TD 的混合,因此完全可以根据用户的需要进行快速精确的电磁计算。当问题的电尺寸太大时,就可考虑使用本产品的混合方法来进行仿真模拟。对关键性的部位使用矩量法,对其他重要的区域(一般都是大的平面或者曲面) 使用PO 或者U TD。根据不同的电磁问题,对混合方法进行组合,可按用户需要得到满意的精度和速度。另外,对PO 方法,FEKO 使用了棱边修正项和模拟凸表面爬行波的福克电流。根据计算机硬件条件和待求解问题精度要求的不同,FEKO 软件可以求解成百上千个波长的电磁问题。

(5)数值例子

利用矩量法对波长为0.70m的P波段抛物柱面天线进行分析和计算。(张云华,“P 波段抛物柱面天线的矩量法分析,”遥感技术与应用,vol. 21, no.2, pp.98-102, Apr. 2006)

三. 时域有限差分算法 (1)历史

从Yee 于1966 年在解决电磁散射问题中时候提出最初思想到现在,时域有限差分算法已经经过了近四十年的发展。在此期间,人们不断提出新的思想和方法来克服时域有限差分算法的以上缺点。例如,在时间步进算法上,除了传统的Leap-Frog 算法,还发展了线性多步时间步进算法如Staggered Backward differentiation time integrator 和staggered Adams-Bashforth time integrator 、单步时间步进算法如Runge-Kutta 算法和Symplectic integrator propagator 、伪谱算法如采用Laguerre 多项式、交替方向隐式时间步进算法,等等;在空间离散上,除了传统的基于Taylor 级数展开定理的中心对称有限差分格式,还发展了Discrete Singular Convolution (DSC)格式、Nonstandard finite difference 、基于窗函数法的中心对称有限差分格式、最优有限差分格式、FFT ,等等。至此,时域有限差分算法已经形成了庞大的一个算法族。

(2)原理

时域有限差分(FDTD) 是电磁场的一种时域计算方法。传统上电磁场的计算主要是在频域上进行的, 这些年以来, 时域计算方法也越来越受到重视。它已在很多方面显示出独特的优越性, 尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。FDTD 法直接求解依赖时间变量的麦克斯韦旋度方程, 利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式, 这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。电场和磁场分量在空间被交叉放置,

这样保证在介质

边界处切向场分量的连续条件自然得到满足。在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4 个电场分量包围着, 反之亦然。

这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。因此FDTD 算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。这正是电磁场的感应原理。这些关系构成FDTD 法的基本算式, 通过逐个时间步对模拟区域各网格点的计算, 在执行到适当的时间步数后, 即可获得所需要的结果。

(3)特点

①直接时域计算。FDTD直接把含时间变量的Maxwell旋度方程在Yee氏网格空间中转换为差分方程。在这种差分格式中每个网格点上的电场(或磁场)分量仅与它相邻的磁场(或电场)分量及上一时间步该点的场值有关。在每一时间步计算网格空间各点的电场和磁场分量,随着时间步的推进,即能直接模拟电磁波及其与物体的相互作用过程。FDTD把各类问题都作为初值问题来处理,使电磁波的时域特性被直接反映出来。这一特点使它能直接给出非常丰富的电磁场问题的时域信息,给复杂的物理过程描绘出清晰的物理图像。如果需要频域信息,则只需对时域信息进行Fouricr变换。为获得宽频带的信息,只需在宽频谱的脉冲激励下进行一次计算。

②广泛的适用性。由于FDTD的直接出发点是概括电磁场普遍规律的Maxwell方程,这就预示着这一方法具有最广泛的适用性。近几年的发展完全证实了这点。从具体的算法看,在FDTD的差分式中被模拟空间电磁性质的参量是按空间网格给出的,因此,只需设定相应空间点以适应参数,就可模拟各种复杂的电磁结构。媒质的非均匀性、各向异性、色散特性和非线性等能很容易地进行精确模拟。由于在网格空间中电场和磁场分量是被交叉放置的,而且计算用差分代替了微商,使得介质交界面上的边界条件能自然得到满足,这就为模拟复杂的结提供了极大的方便,任何问题只要能正确地对源和结构进行模拟,FDTD就应该给出正确解答,不管是散射、辐射、传输、透入或吸收中的哪一种,也不论是瞬态问题还是稳态问

③节约计算机的存储空间和计算时间。很多复杂的电磁场问题不能计算往往不是没有可选用的方法,而是计算条件的限制。当代电子计算机的发展方向是运用并行处理技术,以进一步提高计算速度。并行计算机的发展推动了数值计算中并行处理的研究,适合并行计算的发展将更多地发挥作用。如前面所指出的,FDTD的计算特点是,每一网格点上的电场(或磁场)只与其周围相邻点处的磁场(或电场)及其上一时间步的场值有关,这使得它特别适合并行计算。施行并行计算可使FDTD所需的存储空间和计算时间减少为只与N1/3成正比。

④计算程序的通用性。由于Maxwell方程是FDTD计算任何问题的数学模型,因而它的基本差分方程对广泛的问题是不变的。此外,吸收边界条件和连接条件对很多问题是可以通用的,而计算对象的模拟是通过给网格赋予参数来实现,对以上各部分没有直接联系,可以独立进行。因此一个基础的FDTD计算程序,对广泛的电磁场问题具有通用性,对不同的问题或不同的计算对象只需修改有关部分,而大部分是共同的。

⑤简单、直观、容易掌握。由于FDTD直接从Maxwell方程出发,不需要任何导出方程,这样就避免了使用更多的数学工具,使得它成为所有电磁场计算方法中最简单的一种。其次,由于它能直接在时域中模拟电磁波的传播及其与物体作用的物理过程,所以它又是非常直观的一种方法。由于它既简单又直观,掌握它就不是件很困难的事情,只要有电磁场的基本理论知识,不需要数学上的很多准备,就可以学习运用这一方法解决很复杂的电磁场问题。这样,这一方法很容易得到推广,并在很广泛的领域发挥作用。

(4)相应的商业软件介绍

①CST MICROW A VE STUDIO 仿真软件

CST MICROW A VE STUDIO 是Computer Simulation Technology 公司专门开发的高频电磁场问题EDA 工具,是基于PC 机Windows 环境下的仿真软件, 主要应用在复杂和更高频的谐振结构。CST 通过散射参数把电磁场元件结合在一起,把复杂的系统分离成更小的子单元,通过对系统每一个单元行为的S 参数的描述,可以进行快速的分析,并且降低系统所需的内存。CST 考虑了在子单元之间高阶模式的耦合,由于系统的有效分割而没有影响系统的准确性。

CST MICROW A VE STUDIO可以应用在仿真电磁场领域,分析大多数高频电磁场问题,包括移动通信、无线设计、信号完整性和电磁兼容( EMC)等。具体应用范围包括耦合器、滤波器、平面结构电路、连接器、IC封装、各种类型天线、微波元器件、蓝牙技术和电磁兼容/ 干扰等。

CST具有以下特点:1)采用近乎完美的边界条件逼近(PBA)方法; 2)可视的图形化用户界面( GUI) 使CST MWS 更加易于学习和使用;3)自动输入CAD 数据节省了大量时间;4)通过先进的优化软件包对产品进行优化处理,使设计师快速得到需要的结构尺寸。

②FIDELITY软件

FIDEL ITY是Zeland 公司开发的基于非均匀网格的时域有限差分方法的三维电磁场仿真软件,可以解决具有复杂填充介质求解域的场分布问题。仿真结果包括S、Y、Z参数、VSWR、RLC等效电路、近场分布、坡印廷矢量和辐射方向图等。FIDELITY可以分析非绝缘和复杂介质结构的问题。它在微波/ 毫米波集成电路(MMIC)、RF印制板电路、微带天线、线天线和其它形式的RF 天线、HTS电路及滤波器、IC 的内部连接和高速数字电路封装,EMI 及EMC 方面得到应用。

FIDEL ITY的特点有:1)可对三维金属和非绝缘介质结构进行建模;2)高效非均匀网格的FDTD仿真引擎;3)能方便地对分析目标进行排列定位和几何结构的编辑与检查;4)可对非各向同性介质填充的同轴波导和矩形波导进行建模;5)具有自动网格生成功能、网格优化功能和对输入的几何结构进行单独网格生成功能;6)预定义同轴、微带、矩形波导和用户定义端口; 7) 不同边界条件的实现(如PML) ;8) 集成的预处理和后处理功能,包括S 参数提取和时域信号显示;9) 辐射方向图的计算、近场动态显示功能;10) 具有切片显示功能的三维和二维电场、磁场及坡印廷矢量的显示;11) 平面波激励和SAR 计算功能。

③IMST Empire软件

IMST Empire 是一种3D 电磁场仿真软件,是基于3D 的时域有限差分方法。它的应用范围从分析平面结构、互联、多端口集成到微波波导、天线、EMC 问题。Empire 基本覆盖了RF 设计3D 场仿真的整个领域。根据用户定义的频率范围,一次仿真运行就可以得到散射参数、辐射参数和辐射场图。对于结构的定义,3D 编辑器集成到EMPIRE 软件中。AutoCAD 是流行的机械画图工具,可以在Empire 环境中使用。监视窗口和动画可以给出电磁波现象,并获得准确结果。

(5)数值例子

文章(Nanbo Jin, Yahya Rahmat-Samii, “Parallel particle swarm optimization and Finite-Difference Time-Domain (PSO/FDTD) algorithm for multiband and wide-band patch

antenna designs,” IEEE Transactions on Antennas and Propagation, vol.53, no. 11, pp. 3459-3468, Nov. 2005)将粒子群优化算法(particle swarm optimization, PSO)和时域有限差分算法结合起来对多通带的宽带的天线进行优化。

计算电磁学---有限差分法

第一章 有限差分法 一元函数泰勒公式: 设函数()f x 在0x 处的某邻域内具有1n +阶导数,则对该邻域异于0x 的任意点x ,在0 x 与x 之间至少存在一点ξ,使得 () 2 0000000()() ()()()()()()()2! ! n n n f x f x f x f x f x x x x x x x R x n '''=+-+ -+???+ -+ 其中,(1) 1 0() ()() (1)! n n n f R x x x n ξ++= -+ 二元函数的泰勒公式: 设函数(,)z f x y =在点00(,)x y 的某一邻域内连续且有直到1n +阶连续偏导数, 00(,)x h y k ++为此邻域内任意点,则有 0000002 00001 00(,)(,)()(,) 1()(,)2!1()(,)!1() (,) (1)! n n f x h y k f x y h k f x y x y h k f x y x y h k f x y n x y h k f x h y k n x y θθ+??++=++????+++??? ????++????+++++?? 式中01θ<<; 0000(,) (,)m m m p p m p m x y p m p p f h k f x y c h k x y x y --=?? ???+= ? ??????∑ 1.利用泰勒展开求不等间距的差分格式。 (1) 2 x y ???? (2) 3 3 x ??? 解:(1) 2 6001 04001 0401 01 04001 04 00010041()()2! 11 ()() (,) ! (1)! n n h h h h x y x y h h h h x h y h n x y n x y ??????θθ+????=+-++ -++??????????? + -++ -+-+??+??(1.1)

高考物理 电磁学计算题

二、电磁学计算题 考情分析 增分专练 1.如图所示,在xOy平面内0L的区域内有一方向垂直于xOy平面向外的匀强磁场。某时刻,一带正电的粒子从坐标原点,以沿x轴正方向的初速度v0进入电场;之后的某一时刻,一带负电粒子以同样的初速度从坐标原点进入电场。正、负粒子从电场进入磁场时速度方向与电场和磁场边界的夹角分别为60°和30°,两粒子在磁场中分别运动半周后恰好在某点相遇。已知两粒子的重力以及两粒子之间的相互作用都可忽略不计。求:

(1)正、负粒子的比荷之比∶; (2)正、负粒子在磁场中运动的半径大小; (3)两粒子先后进入电场的时间差。 2.如图所示,空间存在一水平向右的有界匀强电场,电场上下边界间的距离为d,左右边界足够宽。现有一带电荷量为+q、质量为m的小球(可视为质点)以竖直向上的速度从下边界上的A点进入匀强电场,且恰好没有从上边界射出,小球最后从下边界的B点离开匀强电场,若A、B两点间的距离为4d,重力加速度为g,求: (1)匀强电场的电场强度; (2)小球在B点时的动能; (3)求小球速度的最小值。

3.如图甲所示,一对足够长的平行粗糙导轨固定在水平面上,两导轨间距l=1 m,左端用R=3 Ω的电阻连接,导轨的电阻忽略不计。一根质量m=0.5 kg、电阻r=1 Ω的导体杆静止置于两导轨上,并与两导轨垂直。整个装置处于磁感应强度B=2 T 的匀强磁场中,磁场方向垂直于导轨平面向上。现用水平向右的拉力F拉导体杆,拉力F与时间t的关系如图乙所示,导体杆恰好做匀加速直线运动。在0~2 s内拉力F所做的功为W=J,重力加速度g取10 m/s2。求: (1)导体杆与导轨间的动摩擦因数μ; (2)在0~2 s内通过电阻R的电荷量q; (3)在0~2 s内电阻R上产生的热量Q。

电磁学计算题题库(附答案)

《电磁学》练习题(附答案) 1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求: (1) 在它们的连线上电场强度0=E ? 的点与电荷为+q 的点电荷相距多远? (2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远? 2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场 力作功多少?(2) 该电场的场强多大? 3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度. 4. 一半径为R 的带电球体,其电荷体密度分布为 ρ =Ar (r ≤R ) , ρ =0 (r >R ) A 为一常量.试求球体外的场强分布. 5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2 / N ·m 2 ) 6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0. 常量b =1000 N/(C ·m).试求通过该高斯面的电通量. 7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两 电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩. (2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功. 8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电 场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 ) 9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和 xOz 平面.盒子的一角在坐标原点处.在此区域 有一静电场,场强为j i E ? ??300200+= .试求穿过各面的电通量. 10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 ) 11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布. 12. 如图所示,在电矩为p ? 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷 之间距离)移到B 点,求此过程中电场力所作的功. 13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功. (1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ; (3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角). 14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. ( 41 επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 ) 16. 一段半径为a 的细圆弧,对圆心的角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度. 17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若 E ? q L q Ⅱ d a σA σB A B q ∞ ∞

计算电磁学

电磁学: 电磁学是研究电磁现象的规衛[]应用的物理学分支学科,起源于18世纪。广义的电磁学可以说是包含电学和磁学”但狭义来说是_ 门探讨电性与磁性交互关系的学科。主要硏究电磁波、电磁场以及有关电荷、带电物体的动力学等等。 计算电磁学: 内容简介: 本书在论述计算电磁学的产生背景、现状和发展趋势的基础上, 系统地介绍了电磁仿真中的有限差分法、人工神经网络在电磁建模中的应用,遗传算法在电磁优化中的应用等。 图书目录: 第一童绪论 1.1计算电磁学的产生背景 1.1.1高性能计算技术 1.1.2计算电磁学的重要性 1.1.3计算电磁学的硏究特点 1.2电磁场问题求解方法分类 1.2.1解析法 1.2.2数值法 1.2.3半解析数值法 13当前计算电磁学中的几种重要方法 13.1有限元法

1.3.2时域有限差分法 1.3.3矩量法 1.4电磁场工程专家系统 1.4.1复杂系统的电磁特性仿真 1.4.2面向CAD的复杂系统电磁特性建模1.4.3电磁场工程专家系统 第一篇电磁仿真中的有限差分法 第二童有限差分法 2.1差分运算的基本概念 2.2二维电磁场泊松方程的差分格式 2.2.1差分格式的建立 2.2.2不同介质分界面上边界条件的离散方法2.2.3第一类边界条件的处理 2.2.4第二类和第三类边界条件的处理 2.3差分方程组的求解 2.3.1差分方程组的特性 2.3.2差分方程组的解法 2.4工程应用举例 2.5标量时域有限差分法 2.5.1瞬态场标量波动方程 2.5.2稳定性分析 2.5.3网格色散误差

2.5.4举例 第三童时域有限差分法I——差分格式及解的稳定性3.1FDTD基本原理 3.1.1Yee的差分算法 3.1.2环路积分解释 3.2解的稳定性及数值色散 3.2.1解的稳定条件 3.2.2数值色散 3.3非均匀网格及共形网格 3.3.1渐变非均匀网格 3.3.2局部细网格 3.3.3共形网格 3.4三角形网格及平面型广义Yee网格 3.4.1三角形网格离散化 3.4.2数值解的稳定性 3.4.3平面型广义Yee网格 3.5半解析数值模型 3.5.1细导线问题 3.5.2增强细槽缝公式 3.5.3小孔耦合问题 3.5.4薄层介质问题 3.6良导体中的差分格式

(完整版)面对高考高中电磁学公式总结

高中电磁学公式总结 (一)直流电路 1、电流的定义: I = Q t (微观表示: I=nesv ,n 为单位体积内的电荷数) 2、电阻定律: R=ρ S L (电阻率ρ只与导体材料性质和温度有关,与导体横截面积和长度无关) 3、电阻串联、并联: 串联:R=R 1+R 2+R 3 +……+R n 并联: 11112R R R =+ 两个电阻并联: R=2121R R R R + 4、欧姆定律:(1)部分电路欧姆定律:I U R = U=IR R U I = (2)闭合电路欧姆定律:I =ε R r + 路端电压: U = ε -I r= IR 电源输出功率: P 出 = I ε-I 2r = I R 2 电源热功率: P I r r =2 电源效率: η=P P 出 总=U ε =R R+r (3)电功和电功率: 电功:W=IUt 电热:Q=I Rt 2 电功率 :P=IU 对于纯电阻电路: W=IUt=I Rt U R t 2 2 = P=IU =R I 2 对于非纯电阻电路: W=Iut >I Rt 2 P=IU >R I 2 (4)电池组的串联:每节电池电动势为ε0`内阻为r 0,n 节电池串联时:

电动势:ε=n ε0 内阻:r=n r o (二)电场 1、电场的力的性质: 电场强度:(定义式) E = q F (q 为试探电荷,场强的大小与q 无关) 点电荷电场的场强: E = 2 r kQ (注意场强的矢量性) 2、电场的能的性质: 电势差: U = q W (或 W = U q ) U AB = φA - φB 电场力做功与电势能变化的关系: U = - W 3、匀强电场中场强跟电势差的关系: E = d U (d 为沿场强方向的距离) 4、带电粒子在电场中的运动: ① 加速: Uq =2 1mv 2 ②偏转:运动分解: x= v o t ; v x = v o ; y =2 1a t 2 ; v y = a t a = m Eq (三)磁场 1、几种典型的磁场:通电直导线、通电螺线管、环形电流、地磁场的磁场分布。 2、 磁场对通电导线的作用(安培力):F = BIL (要求 B ⊥I , 力的方向由左手定则判定;若B ∥I ,则力的大小为零) 3、磁场对运动电荷的作用(洛仑兹力): F = qvB (要求v ⊥B, 力的方向也是由左手定则判定,但四指必须指向正电荷的运动方向;若B ∥v,则力的大小为零) 4、带电粒子在磁场中运动:当带电粒子垂直射入匀强磁场时,洛仑兹力提供 向心力,带电粒子做匀速圆周运动。即: qvB = R v m 2

各种计算电磁学方法比较和仿真软件

各种计算电磁学方法比较和仿真软件 各种计算电磁学方法比较和仿真软件微波EDA 仿真软件与电磁场的数值算法密切相关,在介绍微波EDA 软件之前先简要的介绍一下微波电磁场理论的数值算法。所有的数值算法都是建立在Maxwell 方程组之上的,了解Maxwell 方程是学习电磁场数值算法的基础。计算电磁学中有众多不同的算法,如时域有限差分法(FDTD )、时域有限积分法(FITD )、有限元法(FE)、矩量法(MoM )、边界元法(BEM )、谱域法(SM)、传输线法(TLM )、模式匹配法(MM )、横向谐振法(TRM )、线方法(ML )和解析法等等。在频域,数值算法有:有限元法( FEM -- Finite Element Method)、矩量法(MoM -- Method of Moments ),差分法( FDM -- Finite Difference Methods ),边界元法( BEM --Boundary Element Method ),和传输线法 ( TLM -Transmission-Line-matrix Method )。在时域,数值算法有:时域有限差分法( FDTD - Finite Difference Time Domain ),和有限积分法( FIT - Finite Integration Technology )。这些方法中有解析法、半解析法和数值方法。数值方法中又分零阶、一阶、二阶和高阶方法。依照解析程度由低到高排列,依次是:时域有限差分法(FDTD )、传输线法(TLM )、时域有限积分法(FITD )、有限元法(FEM )、矩量法(MoM )、线方法(ML )、边界元法(BEM )、谱域法(SM )、模式匹配法

计算电磁学结课论文

《计算电磁学》学习心得 姓名:桑dog 学号: 班级: 联系方式:

前言 计算电磁学是科技的重要领域它的研究涉及到应用计算机求解电磁方程它的重要性基于麦克斯韦方程——唯一的可以描述小到亚原子大到天体尺度的所有物理现象的方程, 。而且, 麦克斯韦方程式对于结果拥有很强的预测能力: 对于一个复杂问题的麦克斯韦方程的解通常可以准确的预知实验结果。因此, 麦克斯韦方程的解对于提高我们对复杂系统之物理现象的洞察力和设计复杂系统的能力均有极大帮助所以, 成功求解麦克斯韦方程式拥有广泛的应用前景: 例如纳米技术, 电脑微电子电路, 电脑芯片设计, 光学, 纳米光学, 微波工程, 遥感, 射电天文学, 生物医学工程, 逆散射和成象等等。 这篇文章的安排如下:第一章介绍了计算电磁学的重要意义以及发展状况。第二章介绍了计算电磁学中解决问题的方法分类。第三章对主要的数值方法进行了简介。第四章展望了计算电磁学的发展趋势。

第1章计算电磁学的重要性 在现代科学研究中,“科学试验,理论分析,高性能计算”已经成为三种重要的研究手段[1]。在电磁学领域中,经典电磁理论只能在11 种可分离变量坐标系中求解麦克斯韦方程组或者其退化形式,最后得到解析解。解析解的优点在于: ●可将解答表示为己知函数的显式,从而可计算出精确的数值结果; ●可以作为近似解和数值解的检验标准; ●在解析过程中和在解的显式中可以观察到问题的内在联系和各个参数对数值 结果所起的作用。 这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题[2]。当遇到不规则形状或者任意形状边界问题时,则需要比较复杂的数学技巧,甚至无法求得解析解。20 世纪60 年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法也迅速发展起来,并在实际工程问题中得到了广泛地应用,形成了计算电磁学研究领域,已经成为现代电磁理论研究的主流。简而言之,计算电磁学是在电磁场与微波技术学科中发展起来的,建立在电磁场理论基础上,以高性能计算机技术为工具,运用计算数学方法,专门解决复杂电磁场与微波工程问题的应用科学。相对于经典电磁理论分析而言,应用计算电磁学来解决电磁学问题时受边界约束大为减少,可以解决各种类型的复杂问题。原则上来讲,从直流到光的宽广频率范围都属于该学科的研究范围。近几年来,电磁场工程在以电磁能量或信息的传输、转换过程为核心的强电与弱电领域中显示了重要作用。[3]

高考电磁学计算题专练

高考电磁学计算题专练

————————————————————————————————作者:————————————————————————————————日期: 2

高三物理复习资料-电磁学计算专练 姓名学号班级 1.(18分)如图(a)所示,倾斜放置的光滑平行导轨,长度足够长,宽度L = 0.4m,自身电阻不计,上端接有R= 0.3Ω的定值电阻。在导轨间MN虚线以下的区域存在方向垂直导轨平面向上、磁感应强度B = 0.5T的匀强磁场。在MN虚线上方垂直导轨放有一根电阻r= 0.1Ω的金属棒。 现将金属棒无初速释放,其运动时的v-t图象如图(b)所示。重力加速度取g = 10m/s2。试求:(1)斜面的倾角θ和金属棒的质量m; (2)在2s~5s时间内金属棒动能减少了多少?此过程中整个回路产生的热量Q是多少(结果保留一位小数)? θ 2.(18分)如图所示,一半径为r的圆形导线框内有一匀强磁场,磁场方向垂直于导线框所在平面,导线框的右端通过导线接一对水平放置的平行金属板,两板间的距离为d。在t=0时,圆形导线框内的磁感应强度B从B0开始均匀增大;同时,有一质量为m、带电量为q的液滴以初速度v0水平向右射入两板间(该液滴可视为质点)。该液滴恰能从两板间作匀速直线运动,然后液滴在电场强度大小(恒定)、方向未知、磁感应强度为B1、宽为L的(重力场、电场、磁场)复合场(磁场的上下区域足够大)中作匀速圆周周运动.求: ⑴磁感应强度B从B0开始均匀增大时,试判断1、2两板哪板为正极板?磁感应强度随时间的变化率K=? ⑵(重力场、电场、磁场)复合场中的电场强度方向如何?大小如何? ⑶该液滴离开复合场时,偏离原方向的距离。 高三物理复习资料-电学实验与计算题专练第3页(共14页)

计算电磁学入门基础介绍

计算电磁学入门基础介绍 一. 计算电磁学的重要性 在现代科学研究中,“科学试验,理论分析,高性能计算”已经成为三种重要的研究手段。在电磁学领域中,经典电磁理论只能在11 种可分离变量坐标系中求解麦克斯韦方程组或者其退化形式,最后得到解析解。解析解的优点在于: ①可将解答表示为己知函数的显式,从而可计算出精确的数值结果; ②可以作为近似解和数值解的检验标准; ③在解析过程中和在解的显式中可以观察到问题的内在联系和各个参数对数值结果所起的作用。 这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。当遇到不规则形状或者任意形状边界问题时,则需要比较复杂的数学技巧,甚至无法求得解析解。20 世纪60 年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法也迅速发展起来,并在实际工程问题中得到了广泛地应用,形成了计算电磁学研究领域,已经成为现代电磁理论研究的主流。简而言之,计算电磁学是在电磁场与微波技术学科中发展起来的,建立在电磁场理论基础上,以高性能计算机技术为工具,运用计算数学方法,专门解决复杂电磁场与微波工程问题的应用科学。相对于经典电磁理论分析而言,应用计算电磁学来解决电磁学问题时受边界约束大为减少,可以解决各种类型的复杂问题。原则上来讲,从直流到光的宽广频率范围都属于该学科的研究范围。近几年来,电磁场工程在以电磁能量或信息的传输、转换过程为核心的强电与弱电领域中显示了重要作用。 二. 电磁问题的分析过程 电磁工程问题分析时所经历的一般过程为: 三. 计算电磁学的分类 (1) 时域方法与谱域方法 电磁学的数值计算方法可以分为时域方法(Time Domain或TD)和频域方法(Frequeney Domain或FD)两大类。 时域方法对Maxwell方程按时间步进后求解有关场量。最著名的时域方法是时域有限差分法(Finite Difference Time Domain或FDTD)。这种方法通常适用于求解在外界激励下场

国外电化学讲义

Section 5: Voltammetric Methods

Voltammetric Methods ?Historical ?Electrolysis at DME -1920’s ?Usually 3-electrode cells ?Measurement of current that results from the application of potential. ?Different voltammetric techniques are distinguished primarily by the potential function that is applied to the working electrode and by the material used as the working electrode.

Types of Voltammetry Polarography Linear sweep and Cyclic Voltammetry Hydrodynamic Voltammetry Pulsed methods AC Voltammetry (not here) ip=2.69 x 105n3/2A D O1/2v1/2C O It is instructive to start with Polarography Voltammetry at a dropping mercury electrode

Polarography uses mercury droplet electrode that is regularly renewed during analysis. Applications: Metal ions (especially heavy metal pollutants) -high sensitivity. Organic species able to be oxidized or reduced at electrodes: quinones, reducing sugars and derivatives, thiol and disulphide compounds, oxidation cofactors (coenzymes etc), vitamins, pharmaceuticals. Alternative when spectroscopic methods fail.

有限元法在计算电磁学中的应用毕设论文完整版

目录 1.绪论 (3) 1.1 电磁场理论概述 (3) 1.2 有限元法概述 (3) 1.2.1有限元的发展历史 (4) 1.2.2有限元方法分析过程及其应用 (6) 1.2.3 有限元方法的分析过程 (6) 1.2.4 有限元方法的应用 (7) 2 电磁场及有限单元法的理论基础 (9) 2.1矢量及其代数运算 (9) 2.1.1 矢量的基本概念 (9) 2.1.2 矢量函数的代数运算规则 (11) 2.2矢量函数和微分 (12) 2.2.1矢量函数的偏导数 (13) 2.2.2 梯度,散度和旋度的定义 (14) 2.3 矢量微分算子 (15) 2.3.1 微分算子?的定义 (15) 2.3.2 含有?算子算式的定义和性质 (16) 2.3.3 二重?算子 (18) 2.3.4 包含?算子的恒等式 (19) 2.4 矢量积分定理 (19) 2.4.1高斯散度定理 (19) 2.4.2 斯托克斯定理 (20) 2.4.3 其他积分定理 (20) 2.5 静电场中的基本定律 (20) 2.5.1 库仑定律 (20) 2.5.2电场强度E (22) 2.5.3 高斯定律的积分和微分形式 (23) 2.6 静电场的边界条件 (26)

2.6.1电位移矢量的法向分量 (26) 2.6.2电场强度的切向分量 (27) 2.6.3 标量电位的边界条件 (29) 2.7 泊松方程和拉普拉斯方程 (30) 2.8 静电场的边值问题 (31) 2.8.1边值问题的分类 (31) 2.8.2 静电场中解的唯一性定理 (32) 3.有限单元法 (34) 3.1 泛函及泛函的变分 (34) 3.2 与边值问题等价的变分问题 (35) 3.2.1与二维边值问题等价的变分问题 (35) 3.2.2平衡问题的变法表示法 (37) 3.3 区域剖分和插值函数 (41) 3.3.1定义域的剖分 (41) 3.3.2 单元内局部坐标系中φ的近似表达式—插值函数 (45) 3.4 单元分析 (48) 3.5总体合成 (50) 3.6 引入强加边界条件 (53) 4.有限单元法的具体应用 (53) 5.结束语 (64) 参考文献 (65) 致谢 (65)

高考物理电磁学计算题(三十一)含答案与解析

高考物理电磁学计算题(三十一)含答案与解析评卷人得分 一.计算题(共40小题) 1.如图所示,直角坐标系xOy在竖直平面内,x轴沿水平方向,在第一、四象限区域内存在有匀强电场和匀强磁场,电场强度E=4.0×105N/C,方向沿y轴正方向,磁感应强度B=0.2T,方向与xoy平面垂直向外。在x轴上的A点处有一足够长、与x轴垂直的荧光屏,交点A与坐标原点O的距离为40.0cm,在OA中点P处有一粒子发射枪(可看作质点),能连续不断的发射速度相同的带正电粒子,粒子质量m=6.4×10﹣27kg,电量q= 3.2×10﹣19C.粒子发射枪向x轴方向发射的粒子恰能打到荧光屏的A点处。若撤去电场, 并使粒子发射枪在xoy平面内以角速度ω=2πrad/s逆时针转动(整个装置都处在真空中),求: (1)带电粒子的速度及在磁场中运动的轨迹半径; (2)荧光屏上闪光点范围的长度(结果保留两位有效数字); (3)荧光屏上闪光点从最低点移动到最高点所用的时间(结果保留两位有效数字)。 2.如图,上下放置的两带电金属板,相距为3l,板间有竖直向下的匀强电场E.距上板l 处有一带+q电的小球B,在B上方有带﹣6q电的小球A,他们质量均为m,用长度为l 的 绝缘轻杆相连。已知E=mg/q。让两小球从静止释放,小球可以通过上板的小孔进入电场中(重力加速度为g)。求: (1)B球刚进入电场时的速度v1大小;

(2)A球刚进入电场时的速度v2大小; (3)B球是否能碰到下金属板?如能,求刚碰到时的速度v3大小。如不能,请通过计算说明理由。 3.如图所示,质量为m、带电荷量为+q的小物块置于绝缘粗糙水平面上的A点。首先在如图所示空间施加方向水平向右的匀强电场E,t=0时刻释放物块,一段时间后物块运动到B位置,同时将电场更换为方向水平向左的匀强电场E,物块运动到C点速度恰好减为零,已知A、B间距是B、C间距离的2倍,物块从B点运动到C点所需时间为t,求: (1)物块与水平面间的摩擦力; (2)物块从A点运动到C点的过程中克服摩擦力所做的功。 4.一列机械波沿x轴传播,M、N是这列波上的两点,M、N两点的平衡位置之间的距离L =2m,M点的振动方程为y=Asin(50πt)m,N点的振动方程为y=Asin(50πt+)m,求该机械波传播的最大速度。 5.如图甲所示,平行金属导轨竖直放置,导轨间距为L=1m,上端接有电阻R1=3Ω,下端接有电阻R2=6Ω,虚线OO′下方是垂直于导轨平面的匀强磁场。现将质量m=0.1kg、电阻不计的金属杆ab,从OO′上方某处垂直导轨由静止释放,杆下落0.2m过程中始终与导轨保持良好接触,加速度a与下落距离h的关系图象如图乙所示。求: (1)磁感应强度B; (2)杆下落0.2m过程中通过电阻R1的电荷量q1。

高考物理电学大题整理

高三期末计算题复习题 1.两根平行光滑金属导轨MN 和PQ 水平放置,其间距为0.60m ,磁感应强度为的匀强磁场垂直轨道平面向下,两导轨之间连接的电阻R =Ω。在导轨上有一电阻为Ω的金属棒ab ,金属棒与导轨垂直,如图13所示。在ab 棒上施加水平拉力F 使其以10m/s 的水平速度匀速向右运动。设金属导轨足够长。求: (1)金属棒ab 两端的电压。 (2)拉力F 的大小。 (3)电阻R 上消耗的电功率。 1.(7分)解:(1)金属棒ab 上产生的感应电动势为 BLv E ==, (1分) 根据闭合电路欧姆定律,通过R 的电流 I = R r E += 0.50A 。 (1分) 电阻R 两端的电压 U =IR =。 (1分) (2)由于ab 杆做匀速运动,拉力和磁场对电流的安培力大小相等,即 F = BIL = N (2分) (3)根据焦耳定律,电阻R 上消耗的电功率 R I P 2== (2分) 2.如图10所示,在绝缘光滑水平面上,有一个边长为L 的单匝正方形线框abcd ,在外力的作用下以恒定的速率v 向右运动进入磁感应强度为B 的有界匀强磁场区域。线框被全部拉入磁场的过程中线框平面保持与磁场方向垂直,线框的ab 边始终平行于磁场的边界。已知线框的四个边的电阻值相等,均为R 。求: ⑴在ab 边刚进入磁场区域时,线框内的电流大小。 ⑵在ab 边刚进入磁场区域时,ab 边两端的电压。 ⑶在线框被拉入磁场的整个过程中,线框产生的热量。 2.(7分)(1)ab 边切割磁感线产生的电动势为E=BLv …………………(1分) 所以通过线框的电流为 I= R BLv R E 44= ……………………(1分) (2)ab 边两端电压为路端电压 U ab =I ·3R ……………………(1分) 所以U ab = 3BLv/4……………………(1分) (3)线框被拉入磁场的整个过程所用时间t=L/v ……………………(1分) 线框中电流产生的热量Q=I 2·4R ·t R v L B 432= ……………………(2分) 图 10 B N Q 图13

2020年高考物理《电磁学综合计算题》专题训练及答案解析

2020年高考物理《电磁学综合计算题》专题训练 1.如图所示,一对加有恒定电压的平行金属极板竖直放置,板长、板间距均为d .在右极板的中央有个小孔P ,小孔右边半径为R 的圆形区域内存在方向垂直纸面向里的匀强磁场,区域边界刚好与右极板在小孔P 处相切.一排宽度也为d 的带负电粒子以速度v 0竖直向上同时进入两极板间后,只有一个粒子通过小孔P 进入磁场,其余全部打在右极板上,且最后一个到达极板的粒子刚好打在右极板的上边缘.已知这排粒子中每个粒子的质量均为m 、带电荷量大小均为q ,磁场的磁感应强度大小为2mv 0qR ,不计粒子的重力及粒子间的相互作用 力.求: (1)板间的电压大小U ; (2)通过小孔P 的粒子离开磁场时到右极板的距离L ; (3)通过小孔P 的粒子在电场和磁场中运动的总时间t 总. 【解析】 (1)依题意,从左极板下边缘射入的粒子恰好打在右极板的上边缘 在竖直方向上有t =d v 0 在水平方向上有a =qE m =qU md ,d =12 at 2 联立解得U =2mv 2 0q . (2)从小孔P 射入磁场的粒子,在电场中的运动时间 t 1=d 2v 0 经过小孔P 时,水平分速度v 1=at 1=v 0 进入磁场时的速度大小v =v 20+v 21=2v 0,速度方向与右极板的夹角θ=π4 设粒子在磁场中做匀速圆周运动后从Q 点离开磁场,其轨迹如图所示,

轨迹圆心在O ′点,则qvB =m v 2r ,得 r =mv qB =2mv 0qB =R 由几何关系可知粒子射出磁场时的速度方向竖直向下,由图知L =r +r cos θ=(1+22 )R . (3)从小孔P 飞出的粒子在磁场中偏转的角度α=3π4 ,粒子在磁场中运动的时间t 2=3π 42π·2πr v =32πR 8v 0 通过小孔P 的粒子在电场和磁场中运动的总时间 t 总=t 1+t 2=d 2v 0+32πR 8v 0 . 【答案】 (1)U =2mv 20q (2)(1+22)R (3)d 2v 0+32πR 8v 0 2.如下图甲所示,一边长L =0.5 m ,质量m =0.5 kg 的正方形金属线框,放在光滑绝缘的水平面上,整个装置处在方向竖直向下、磁感应强度B =0.8 T 的匀强磁场中.金属线框的一个边与磁场的边界MN 重合,在水平拉力作用下由静止开始向右运动,经过t =0.5 s 线框被拉出磁场.测得金属线框中的电流I 随时间变化的图象如图乙所示,在金属线框被拉出磁场的过程中. (1)求通过线框导线截面的电量及该金属框的电阻; (2)写出水平力F 随时间t 变化的表达式; (3)若已知在拉出金属框的过程中水平拉力做功1.10 J ,求此过程中线框产生的焦耳热. 【解析】(1)根据题图乙知,在t =0.5 s 时间内通过金属框的平均电流I =0.50 A ,

计算电磁学之FDTD算法的MATLAB语言实现

South China Normal University 课程设计实验报告 课程名称:计算电磁学 指导老师: 专业班级: 2014级电路与系统姓名: 学号:

FDTD算法的MATLAB语言实现 摘要:时域有限差分(FDTD)算法是K.S.Yee于1966年提出的直接对麦克斯韦方 程作差分处理,用来解决电磁脉冲在电磁介质中传播和反射问题的算法。其基本思想是:FDTD计算域空间节点采用Yee元胞的方法,同时电场和磁场节点空间与时间上都采用交错抽样;把整个计算域划分成包括散射体的总场区以及只有反射波的散射场区,这两个区域是以连接边界相连接,最外边是采用特殊的吸收边界,同时在这两个边界之间有个输出边界,用于近、远场转换;在连接边界上采用连接边界条件加入入射波,从而使得入射波限制在总场区域;在吸收边界上采用吸收边界条件,尽量消除反射波在吸收边界上的非物理性反射波。 本文主要结合FDTD算法边界条件特点,在特定的参数设置下,用MATLAB语言进行编程,在二维自由空间TEz网格中,实现脉冲平面波。 关键词:FDTD;MATLAB;算法 1 绪论 1.1 课程设计背景与意义 20世纪60年代以来,随着计算机技术的发展,一些电磁场的数值计算方法逐步发展起来,并得到广泛应用,其中主要有:属于频域技术的有限元法(FEM)、矩量法(MM)和单矩法等;属于时域技术方面的时域有限差分法(FDTD)、传输线矩阵法(TLM)和时域积分方程法等。其中FDTD是一种已经获得广泛应用并且有很大发展前景的时域数值计算方法。时域有限差分(FDTD)方法于1966年由K.S.Yee提出并迅速发展,且获得广泛应用。K.S.Yee用后来被称作Yee氏网格的空间离散方式,把含时间变量的Maxwell旋度方程转化为差分方程,并成功地模拟了电磁脉冲与理想导体作用的时域响应。但是由于当时理论的不成熟和计算机软硬件条件的限制,该方法并未得到相应的发展。20世纪80年代中期以后,随着上述两个条件限制的逐步解除,FDTD便凭借其特有的优势得以迅速发展。它能方便、精确地预测实际工程中的大量复杂电磁问题,应用范围几乎涉及所有电磁领域,成为电磁工程界和理论界研究的一个热点。目前,FDTD日趋成熟,并成为分析大部分实际电磁问题的首选方法。

计算电磁学

计算电磁学 计算电磁学是指对一定物质和环境中的电磁场相互作用的建模 过程,通常包括麦克斯韦方程计算上的有效近似。计算电磁学被用来计算天线性能,电磁兼容,雷达散射截面和非自由空间的电波传播等问题。 计算电磁学的主要思想有,基于积分方程的方法,基于微分(差分)方程的方法,及其他模拟方法。 1.基于积分方程的方法 1.1 离散偶极子近似(discrete dipole approximation,DDA) DDA是一种计算电磁波在任意几何形状物体上散射和吸收的方法,其表达式基于麦克斯韦方程的积分形式。DDA用有限阵列的可极化点来近似连续形式的物体。每个点通过对局部电场的响应获得对应的偶极子矩量,然后这些偶极子通过各自的电场相互作用。因此,DDA 有时也被认为是耦合偶极子近似。这种线性方程的计算一般采用共轭梯度迭代法。由于离散矩阵的对称性,就可能在迭代中使用FFT计算矩阵的向量乘法。 1.2 矩量法(Method of Moments,MoM ),边界元法(Boundary Element Method,BEM ) MoM和BEM是求解积分形式(边界积分形式)的线性偏微分方程的数值计算方法,已被应用于如流体力学,声学,电磁学等诸多科技领域。自从上世纪八十年代以来,该方法越来越流行。由于只计算边界值,而不是方程定义的整个空间的数值,该方法是计算小表面(体

积)问题的有效办法。从概念上讲,它们在建模后的表面建立网格。然而对于很多问题,此方法的效率较基于体积离散的方法(FEM,FDTD)低很多。原因是,稠密矩阵的生成将意味着存储需求和计算时间会以矩阵维数的平方律增长。相反的,有限元矩阵的存储需求和计算时间只会按维数的大小线性增长。即使可以采用矩阵压缩技术加以改善,计算成功率和因此增加的计算复杂性仍强烈依赖问题的本质。 BEM可用在能计算出格林函数的场合,如在线性均匀媒质中的场。为了能使用BEM,需要对问题有很多限制,使用上不方便。 以下是运用MoM的计算程序:Vector Fields Ltd Concerto、CST MICROWAVE STUDIO、Numerical Electromagnetic Code (NEC)、Sonnet Lite、FEKO 1.3 快速多极子法(Fast Multipole Method,FMM ) FMM是一种可以替代MoM的电磁计算方法,其效率比MoM的计算效率更高,也更准确,而且对内存和处理运行时间的要求比MoM小很多。FMM基于多极子展开技术,并首先被Greenyard和Rokhlin提出。 2.基于微分(差分)方程的方法 2.1 时域有限差分(FDTD) FDTD是计算电磁学中广泛应用的一种方法,很容易理解和软件实现。由于它是时域方法,求出的解将涵盖很宽的频率范围。 FDTD属于一类基于网格的时域差分数值建模方法。麦克斯韦方程被改写成中心差分方程,并在软件中离散实现。方程的求解采用蛙跳

2018年高考电学计算题汇编

2018年高考电学计算题汇编 1.如图所示,两条平行的光滑金属导轨所在平面与水平面的夹角为 ,间距为d.导轨处于匀强磁场中,磁感应强度大小为B,方向与导轨平面垂直.质量为m的金属棒被固定在导轨上,距底端的距离为s,导轨与外接电源相连,使金属棒通有电流.金属棒被松开后,以加速度a沿导轨匀加速下滑,金属棒中的电流始终保持恒定,重力加速度为g.求下滑到底端的过程中,金属棒 (1)末速度的大小v; (2)通过的电流大小I; (3)通过的电荷量Q. 2.一足够长的条状区域内存在匀强电场和匀强磁场,其在xoy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xoy平面;磁场的上、下两侧为电场区域,宽度均为,电场强度的大小均为E,方向均沿x轴正方向;M、N为条形区域边界上的两点,它们的连线与y轴平行。一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出。不计重力。 (1)定性画出该粒子在电磁场中运动的轨迹; (2)求该粒子从M点射入时速度的大小; (3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为,求该粒子的比荷及其从M点运动到N点的时间。 3.真空管道超高速列车的动力系统是一种将电能直接转换成平动动能的装置。图1是某种动力系统的简化模型,图中粗实线表示固定在水平面上间距为l的两条平行光滑金属导轨,电阻忽略不计,ab 和cd是两根与导轨垂直,长度均为l,电阻均为R的金属棒,通过绝缘材料固定在列车底部,并与导轨良好接触,其间距也为l,列车的总质量为m。列车启动前,ab、cd处于磁感应强度为B的匀强

电子信息工程专业综述

电子信息工程专业综述 学生姓名:张华 学号:20122450112 专业:电子信息工程 院(系):信息工程学院 指导教师:马旭东 职称:讲师 2013年05月07日

专业综述 电子信息技术是在十九世纪末、二十世纪出发展起来的新兴技术,特别是在二十世纪,发展最为迅速,成为近代科学技术的一个重要指标。进入二十一世纪,电子技术越来越成为国民经济发展的主要推动力量,人类步入信息化时代。 首先介绍一下电子信息技术的历史。电子信息工程专业来自于军事应用,最早是马可尼发明的无线电报使得这门学科有了萌芽。随后一战、二战爆发,在军事作战中,电子对抗与侦测逐渐成为战争中不可缺少的重要手段,雷达的研究与应用也在战争需求中飞速的发展起来了,如二战初期英国的雷达对防范德国空袭起到了举足轻重的作用。雷达是复杂无线电路系统,由于雷达的出现,无线电通信技术得到了空前的发展,没有雷达就没有今天的无线通信。当今雷达已经发展成为高度复杂的电子系统,把雷达拆解就是电子信息工程的所有研究方向,主要三个领域:电磁场与电磁波技术,电路与系统,信息与信号处理。 电子信息工程是一门应用计算机等现代化技术进行电子信息控制和信息处理的学科,主要研究信息的获取与处理,电子设备与信息系统的设计、开发、应用和集成。电子信息工程已经涵盖了社会的诸多方面,像电话交换局里是如何处理各种电话信号的,手机是怎样传递我们的声音甚至图像的,我们周围的网络是怎么传递数据的,甚至信息化时代军队的信息传递是如何保密的等,这些都要涉及电子信息工程的应用技术。 电子信息工程专业培养掌握现代电子技术理论、通晓电子系统设计原理与设计方法,具有较强的计算机、外语和相应工程技术应用能力,面向电子技术、自动控制和智能控制、计算机与网络技术等电子、信息、通信领域的宽口径、高素质、德智体全面发展的具有创新能力的高级工程技术人才。注重培养电子信息技术基础知识与能力;电子产品的装配、调试及设计的基本能力;一般电子设备的安装、调试、维护与应用能力;对办公自动化设备的安装、调试、维修和维护管理能力;对通信设备、家用电子产品电路图的阅读分析及安装、调试、维护能力;对机电设备进行智能控制的设计和组织能力;阅读相关专业英语资料能力。并要求计算机技术应用能力达到计算机等级四级要求水平。对于

相关主题
文本预览
相关文档 最新文档