当前位置:文档之家› 《计算电磁学》--2010讲义

《计算电磁学》--2010讲义

《计算电磁学》--2010讲义
《计算电磁学》--2010讲义

电磁学计算题题库(附答案)

《电磁学》练习题(附答案) 1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求: (1) 在它们的连线上电场强度0=E ? 的点与电荷为+q 的点电荷相距多远? (2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远? 2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场 力作功多少?(2) 该电场的场强多大? 3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度. 4. 一半径为R 的带电球体,其电荷体密度分布为 ρ =Ar (r ≤R ) , ρ =0 (r >R ) A 为一常量.试求球体外的场强分布. 5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2 / N ·m 2 ) 6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0. 常量b =1000 N/(C ·m).试求通过该高斯面的电通量. 7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两 电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩. (2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功. 8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电 场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 ) 9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和 xOz 平面.盒子的一角在坐标原点处.在此区域 有一静电场,场强为j i E ? ??300200+= .试求穿过各面的电通量. 10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 ) 11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布. 12. 如图所示,在电矩为p ? 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷 之间距离)移到B 点,求此过程中电场力所作的功. 13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功. (1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ; (3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角). 14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. ( 41 επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 ) 16. 一段半径为a 的细圆弧,对圆心的角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度. 17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若 E ? q L q Ⅱ d a σA σB A B q ∞ ∞

各种计算电磁学方法比较和仿真软件

各种计算电磁学方法比较和仿真软件 各种计算电磁学方法比较和仿真软件微波EDA 仿真软件与电磁场的数值算法密切相关,在介绍微波EDA 软件之前先简要的介绍一下微波电磁场理论的数值算法。所有的数值算法都是建立在Maxwell 方程组之上的,了解Maxwell 方程是学习电磁场数值算法的基础。计算电磁学中有众多不同的算法,如时域有限差分法(FDTD )、时域有限积分法(FITD )、有限元法(FE)、矩量法(MoM )、边界元法(BEM )、谱域法(SM)、传输线法(TLM )、模式匹配法(MM )、横向谐振法(TRM )、线方法(ML )和解析法等等。在频域,数值算法有:有限元法( FEM -- Finite Element Method)、矩量法(MoM -- Method of Moments ),差分法( FDM -- Finite Difference Methods ),边界元法( BEM --Boundary Element Method ),和传输线法 ( TLM -Transmission-Line-matrix Method )。在时域,数值算法有:时域有限差分法( FDTD - Finite Difference Time Domain ),和有限积分法( FIT - Finite Integration Technology )。这些方法中有解析法、半解析法和数值方法。数值方法中又分零阶、一阶、二阶和高阶方法。依照解析程度由低到高排列,依次是:时域有限差分法(FDTD )、传输线法(TLM )、时域有限积分法(FITD )、有限元法(FEM )、矩量法(MoM )、线方法(ML )、边界元法(BEM )、谱域法(SM )、模式匹配法

计算电磁学

电磁学: 电磁学是研究电磁现象的规衛[]应用的物理学分支学科,起源于18世纪。广义的电磁学可以说是包含电学和磁学”但狭义来说是_ 门探讨电性与磁性交互关系的学科。主要硏究电磁波、电磁场以及有关电荷、带电物体的动力学等等。 计算电磁学: 内容简介: 本书在论述计算电磁学的产生背景、现状和发展趋势的基础上, 系统地介绍了电磁仿真中的有限差分法、人工神经网络在电磁建模中的应用,遗传算法在电磁优化中的应用等。 图书目录: 第一童绪论 1.1计算电磁学的产生背景 1.1.1高性能计算技术 1.1.2计算电磁学的重要性 1.1.3计算电磁学的硏究特点 1.2电磁场问题求解方法分类 1.2.1解析法 1.2.2数值法 1.2.3半解析数值法 13当前计算电磁学中的几种重要方法 13.1有限元法

1.3.2时域有限差分法 1.3.3矩量法 1.4电磁场工程专家系统 1.4.1复杂系统的电磁特性仿真 1.4.2面向CAD的复杂系统电磁特性建模1.4.3电磁场工程专家系统 第一篇电磁仿真中的有限差分法 第二童有限差分法 2.1差分运算的基本概念 2.2二维电磁场泊松方程的差分格式 2.2.1差分格式的建立 2.2.2不同介质分界面上边界条件的离散方法2.2.3第一类边界条件的处理 2.2.4第二类和第三类边界条件的处理 2.3差分方程组的求解 2.3.1差分方程组的特性 2.3.2差分方程组的解法 2.4工程应用举例 2.5标量时域有限差分法 2.5.1瞬态场标量波动方程 2.5.2稳定性分析 2.5.3网格色散误差

2.5.4举例 第三童时域有限差分法I——差分格式及解的稳定性3.1FDTD基本原理 3.1.1Yee的差分算法 3.1.2环路积分解释 3.2解的稳定性及数值色散 3.2.1解的稳定条件 3.2.2数值色散 3.3非均匀网格及共形网格 3.3.1渐变非均匀网格 3.3.2局部细网格 3.3.3共形网格 3.4三角形网格及平面型广义Yee网格 3.4.1三角形网格离散化 3.4.2数值解的稳定性 3.4.3平面型广义Yee网格 3.5半解析数值模型 3.5.1细导线问题 3.5.2增强细槽缝公式 3.5.3小孔耦合问题 3.5.4薄层介质问题 3.6良导体中的差分格式

计算电磁学入门基础介绍

计算电磁学入门基础介绍 一. 计算电磁学的重要性 在现代科学研究中,“科学试验,理论分析,高性能计算”已经成为三种重要的研究手段。在电磁学领域中,经典电磁理论只能在11 种可分离变量坐标系中求解麦克斯韦方程组或者其退化形式,最后得到解析解。解析解的优点在于: ①可将解答表示为己知函数的显式,从而可计算出精确的数值结果; ②可以作为近似解和数值解的检验标准; ③在解析过程中和在解的显式中可以观察到问题的内在联系和各个参数对数值结果所起的作用。 这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。当遇到不规则形状或者任意形状边界问题时,则需要比较复杂的数学技巧,甚至无法求得解析解。20 世纪60 年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法也迅速发展起来,并在实际工程问题中得到了广泛地应用,形成了计算电磁学研究领域,已经成为现代电磁理论研究的主流。简而言之,计算电磁学是在电磁场与微波技术学科中发展起来的,建立在电磁场理论基础上,以高性能计算机技术为工具,运用计算数学方法,专门解决复杂电磁场与微波工程问题的应用科学。相对于经典电磁理论分析而言,应用计算电磁学来解决电磁学问题时受边界约束大为减少,可以解决各种类型的复杂问题。原则上来讲,从直流到光的宽广频率范围都属于该学科的研究范围。近几年来,电磁场工程在以电磁能量或信息的传输、转换过程为核心的强电与弱电领域中显示了重要作用。 二. 电磁问题的分析过程 电磁工程问题分析时所经历的一般过程为: 三. 计算电磁学的分类 (1) 时域方法与谱域方法 电磁学的数值计算方法可以分为时域方法(Time Domain或TD)和频域方法(Frequeney Domain或FD)两大类。 时域方法对Maxwell方程按时间步进后求解有关场量。最著名的时域方法是时域有限差分法(Finite Difference Time Domain或FDTD)。这种方法通常适用于求解在外界激励下场

计算电磁学结课论文

《计算电磁学》学习心得 姓名:桑dog 学号: 班级: 联系方式:

前言 计算电磁学是科技的重要领域它的研究涉及到应用计算机求解电磁方程它的重要性基于麦克斯韦方程——唯一的可以描述小到亚原子大到天体尺度的所有物理现象的方程, 。而且, 麦克斯韦方程式对于结果拥有很强的预测能力: 对于一个复杂问题的麦克斯韦方程的解通常可以准确的预知实验结果。因此, 麦克斯韦方程的解对于提高我们对复杂系统之物理现象的洞察力和设计复杂系统的能力均有极大帮助所以, 成功求解麦克斯韦方程式拥有广泛的应用前景: 例如纳米技术, 电脑微电子电路, 电脑芯片设计, 光学, 纳米光学, 微波工程, 遥感, 射电天文学, 生物医学工程, 逆散射和成象等等。 这篇文章的安排如下:第一章介绍了计算电磁学的重要意义以及发展状况。第二章介绍了计算电磁学中解决问题的方法分类。第三章对主要的数值方法进行了简介。第四章展望了计算电磁学的发展趋势。

第1章计算电磁学的重要性 在现代科学研究中,“科学试验,理论分析,高性能计算”已经成为三种重要的研究手段[1]。在电磁学领域中,经典电磁理论只能在11 种可分离变量坐标系中求解麦克斯韦方程组或者其退化形式,最后得到解析解。解析解的优点在于: ●可将解答表示为己知函数的显式,从而可计算出精确的数值结果; ●可以作为近似解和数值解的检验标准; ●在解析过程中和在解的显式中可以观察到问题的内在联系和各个参数对数值 结果所起的作用。 这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题[2]。当遇到不规则形状或者任意形状边界问题时,则需要比较复杂的数学技巧,甚至无法求得解析解。20 世纪60 年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法也迅速发展起来,并在实际工程问题中得到了广泛地应用,形成了计算电磁学研究领域,已经成为现代电磁理论研究的主流。简而言之,计算电磁学是在电磁场与微波技术学科中发展起来的,建立在电磁场理论基础上,以高性能计算机技术为工具,运用计算数学方法,专门解决复杂电磁场与微波工程问题的应用科学。相对于经典电磁理论分析而言,应用计算电磁学来解决电磁学问题时受边界约束大为减少,可以解决各种类型的复杂问题。原则上来讲,从直流到光的宽广频率范围都属于该学科的研究范围。近几年来,电磁场工程在以电磁能量或信息的传输、转换过程为核心的强电与弱电领域中显示了重要作用。[3]

计算电磁学之FDTD算法的MATLAB语言实现

South China Normal University 课程设计实验报告 课程名称:计算电磁学 指导老师: 专业班级: 2014级电路与系统姓名: 学号:

FDTD算法的MATLAB语言实现 摘要:时域有限差分(FDTD)算法是K.S.Yee于1966年提出的直接对麦克斯韦方 程作差分处理,用来解决电磁脉冲在电磁介质中传播和反射问题的算法。其基本思想是:FDTD计算域空间节点采用Yee元胞的方法,同时电场和磁场节点空间与时间上都采用交错抽样;把整个计算域划分成包括散射体的总场区以及只有反射波的散射场区,这两个区域是以连接边界相连接,最外边是采用特殊的吸收边界,同时在这两个边界之间有个输出边界,用于近、远场转换;在连接边界上采用连接边界条件加入入射波,从而使得入射波限制在总场区域;在吸收边界上采用吸收边界条件,尽量消除反射波在吸收边界上的非物理性反射波。 本文主要结合FDTD算法边界条件特点,在特定的参数设置下,用MATLAB语言进行编程,在二维自由空间TEz网格中,实现脉冲平面波。 关键词:FDTD;MATLAB;算法 1 绪论 1.1 课程设计背景与意义 20世纪60年代以来,随着计算机技术的发展,一些电磁场的数值计算方法逐步发展起来,并得到广泛应用,其中主要有:属于频域技术的有限元法(FEM)、矩量法(MM)和单矩法等;属于时域技术方面的时域有限差分法(FDTD)、传输线矩阵法(TLM)和时域积分方程法等。其中FDTD是一种已经获得广泛应用并且有很大发展前景的时域数值计算方法。时域有限差分(FDTD)方法于1966年由K.S.Yee提出并迅速发展,且获得广泛应用。K.S.Yee用后来被称作Yee氏网格的空间离散方式,把含时间变量的Maxwell旋度方程转化为差分方程,并成功地模拟了电磁脉冲与理想导体作用的时域响应。但是由于当时理论的不成熟和计算机软硬件条件的限制,该方法并未得到相应的发展。20世纪80年代中期以后,随着上述两个条件限制的逐步解除,FDTD便凭借其特有的优势得以迅速发展。它能方便、精确地预测实际工程中的大量复杂电磁问题,应用范围几乎涉及所有电磁领域,成为电磁工程界和理论界研究的一个热点。目前,FDTD日趋成熟,并成为分析大部分实际电磁问题的首选方法。

电磁学复习计算题(附答案)

《电磁学》计算题(附答案) 1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求: (1) 在它们的连线上电场强度0=E ? 的点与电荷为+q 的点电荷相距多远? (2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远? d +q 2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大? 3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度. 4. 一半径为R 的带电球体,其电荷体密度分布为 =Ar (r ≤R ) , =0 (r >R ) A 为一常量.试求球体内外的场强分布. 5. 若电荷以相同的面密度均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度的值. (0 =8.85× 10-12C 2 / N ·m 2 ) 6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位 置.已知空间的场强分布为: E x =bx , E y =0 , E z =0. 常量b =1000 N/(C ·m).试求通过该高斯面的电通量. 7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩. (2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功. 8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量 =8.85×10 -12 C 2N -1m -2 ) 9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在 此区域有一静电场,场强为j i E ? ??300200+= .试求穿过各面的电通量. E ? q L d q O x z y a a a a

计算电磁学

计算电磁学 计算电磁学是指对一定物质和环境中的电磁场相互作用的建模 过程,通常包括麦克斯韦方程计算上的有效近似。计算电磁学被用来计算天线性能,电磁兼容,雷达散射截面和非自由空间的电波传播等问题。 计算电磁学的主要思想有,基于积分方程的方法,基于微分(差分)方程的方法,及其他模拟方法。 1.基于积分方程的方法 1.1 离散偶极子近似(discrete dipole approximation,DDA) DDA是一种计算电磁波在任意几何形状物体上散射和吸收的方法,其表达式基于麦克斯韦方程的积分形式。DDA用有限阵列的可极化点来近似连续形式的物体。每个点通过对局部电场的响应获得对应的偶极子矩量,然后这些偶极子通过各自的电场相互作用。因此,DDA 有时也被认为是耦合偶极子近似。这种线性方程的计算一般采用共轭梯度迭代法。由于离散矩阵的对称性,就可能在迭代中使用FFT计算矩阵的向量乘法。 1.2 矩量法(Method of Moments,MoM ),边界元法(Boundary Element Method,BEM ) MoM和BEM是求解积分形式(边界积分形式)的线性偏微分方程的数值计算方法,已被应用于如流体力学,声学,电磁学等诸多科技领域。自从上世纪八十年代以来,该方法越来越流行。由于只计算边界值,而不是方程定义的整个空间的数值,该方法是计算小表面(体

积)问题的有效办法。从概念上讲,它们在建模后的表面建立网格。然而对于很多问题,此方法的效率较基于体积离散的方法(FEM,FDTD)低很多。原因是,稠密矩阵的生成将意味着存储需求和计算时间会以矩阵维数的平方律增长。相反的,有限元矩阵的存储需求和计算时间只会按维数的大小线性增长。即使可以采用矩阵压缩技术加以改善,计算成功率和因此增加的计算复杂性仍强烈依赖问题的本质。 BEM可用在能计算出格林函数的场合,如在线性均匀媒质中的场。为了能使用BEM,需要对问题有很多限制,使用上不方便。 以下是运用MoM的计算程序:Vector Fields Ltd Concerto、CST MICROWAVE STUDIO、Numerical Electromagnetic Code (NEC)、Sonnet Lite、FEKO 1.3 快速多极子法(Fast Multipole Method,FMM ) FMM是一种可以替代MoM的电磁计算方法,其效率比MoM的计算效率更高,也更准确,而且对内存和处理运行时间的要求比MoM小很多。FMM基于多极子展开技术,并首先被Greenyard和Rokhlin提出。 2.基于微分(差分)方程的方法 2.1 时域有限差分(FDTD) FDTD是计算电磁学中广泛应用的一种方法,很容易理解和软件实现。由于它是时域方法,求出的解将涵盖很宽的频率范围。 FDTD属于一类基于网格的时域差分数值建模方法。麦克斯韦方程被改写成中心差分方程,并在软件中离散实现。方程的求解采用蛙跳

计算电磁学数值方法的探究

计算电磁学数值方法的探究 13208-2 许嘉晨 摘要:本文介绍了计算电磁学数值求解方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,其中包括矩量法、有限元法以及时域有限差分方法。关键词:电磁学数值求解、矩量法、有限元法、时域有限差分法。 1引言 计算电磁学是指基于麦克斯韦方程组,建立逼近实际问题的连续型数学模型,合理地利用理想化或工程化假设,准确地给出问题的定解条件(初始条件、边界条件),然后采用相应的数值计算方法,经离散化处理,将连续型数学模型转化为等价的离散型数学模型,应用有效的代数方程组解法,求解出该数学模型的数值解(离散解)。再经各种后处理过程,得出场域中任意点处的场强,或任意区域的能量、损耗分布,以及各类电磁参数值等,以达到理论分析、工程判断和优化设计等目的。对计算天线性能,电磁兼容,雷达散射截面和非自由空间的电波传播等问题具有深刻意义。本文将介绍计算电磁学的研究进展,并重点探究矩量法、有限元法以及时域有限差分方法的基本思路和特点。 2计算电磁学发展 1864年,Maxwell在前人理论和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是Maxwell方程组。笼统而言,所有的宏观电磁问题都可以归结为Maxwell 方程组在各种边界条件下的求解问题。从整个电磁理论发展的过程来看,可以大概地把它分为2个阶段。20世纪60年代以前可以称为经典电磁学阶段。在这个时期,电磁场理论和工程中的许多问题大多采用解析或渐进的方法进行处理,即在11种可分离变量的坐标系中求解Maxwell方程组或其退化形式,最后得到解析解。这种方法能够得到问题的准确解,而且计算效率比较高,但适用范围较窄,只能求解具有规则边界的简单问题,对任意形状的边界则无能为力或需要很高的数学技巧。20世纪60年代以后以基于积分方程的矩量法和基于微分方程的差分类方法为代表的数值计算方法的运用标志着计算电磁学阶段的到来,当然这也得益于电子计算机的迅速发展,使大型数值计算成为可能。相对于经典电磁学而言,数值方法几乎不再受限于边界的约束,能解决各种类型的复杂问题。经过几十年世界各国学者的研究和发展,计算电磁学已成为现阶段电磁理论的主要组成部分。当然这种划分也不是绝对的,经典电磁理论的研究也一直在进行着,它是计算电磁学的理论基础,没有它,计算电磁学也不可能得到蓬勃的发展。 计算电磁学之所以能取代经典电磁学而成为现代电磁理论研究的主流,主要得益于计算机硬件和软件的飞速发展以及计算数学的丰富成果。计算机内存容量不断增大,计算速度不断提高,软件功能不断强大,计算方法不断改进,再加上并行计算机的使用,使得我们能解决的电磁问题越来越大,越来越复杂,因此计算电磁学已经被广泛应用于诸如天线、雷达、电磁兼容等各种电磁领域,具有巨大的实用价值。 3 计算电磁学数值方法概述 当前电磁学研究领域十分广泛,电磁学问题的数值求解方法从求解方程的形式看,可以分为两大类,一类是以电磁场问题的积分方程为基础的数值方法——积分方程法(IE),如:矩量法、直接积分法、等效源法、边界元法等;另一类是以电磁场问题的微分方程为基础的数值方法——微分方程法(DE),如:有限差分法、有限元法等。

电磁学计算方法的比较

电磁学计算方法的比较 | [<<] [>>]摘要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引言 1864 年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwel l方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常

需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。 2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。

计算电磁学义

第一章计算电磁学概述 引言计算电磁学应用 计算电磁学应用图示 §1.1 数学模型 在自然科学领域内,利用数学来阐明自然现象是科学的发展趋势,人们应用单纯的数学关系式描述自然法则,求其解答,并在与实验和观测结果比对的基础上,去理解和应用自然现象,可见理解宇宙的原理是数理。 随着计算技术的发展,数学应用已深入到各工程及物理学领域,并进一步向经济、生态、人口和社会等非物理学领域发展。许多工程设计问题正以相关的计算机辅助工程(CAE)和计算机辅助设计等为工具进行有效的定量分析及优化,同时,一些以定性方法为基础的学科也正转向定量化的发展道路。众多边缘学科的出现也使数学在生产、经营管理及各自然科学学科中的重要性日益为人们所理解,也促进了应用数学及相关学科的同步发展。 当应用数学方法解决上述物理及非物理问题时,必须建立与问题相应的数学模型,并在此基础上进行分析和研究。因此,所建立的数学模型必须精确地逼近所探讨的问题。 数学模型是对客观事物的抽象模拟,它按事物固有的规律性,通过数学语言描绘出客观事物的本质属性及其与环境的内在联系。必须指出,通常与客观事物完全吻合的数学表达并不多见,因此实际的数学模型往往是在一些理想化或工程化的条件下给出的数学描述。重要的是,数学模型的确立必须有实验及测试结果来证实,或能被推广乃至预测为人们所公认的结果,如牛顿力学就经受了对哈雷彗星的研究及海王星发现等大量事实的证明。麦氏方程也为百多年来电磁学科的发展进程所公认,证明它是宏观电磁现象普适的数学模型,因而奠

定了经典电磁理论的基础。 根据数学建模的方法分类,模型可分为微分方程模型、积分方程模型、优化模型和控制论模型等。按实际问题中变量特征分类,数学模型又可分为确定性模型和随机模型,而由变化情况分类,则可分为连续型模型和离散型模型,此外,线性模型与非线性模型;静态模型与动态模型等这里就不一一赘述。必须指出数学模型的分类并不具有特殊意义,但物理概念的引入要便于理解,模型的建立应有助于综合利用各种数学工具,从各个侧面分析出客观事物的本质。 电磁计算学就是以宏观电磁理论高度概括的麦克斯韦方程组为数学模型,结合实际问题的初始条件和边界条件,给出具体电磁学问题的解。数学模型及宏观电磁学理论模型见图1.1。 图1.1 数学模型与宏观电磁理论的数学模型

计算电磁学各种方法和电磁仿真软件

计算电磁学各种方法和电磁仿真软件 计算电磁学中有众多不同的算法,如时域有限差分法(FDTD)、时域有限积分法(FITD)、有限元法(FE)、矩量法(MoM)、边界元法(BEM)、 谱域法(SM)、传输线法(TLM)、模式匹配法(MM)、横向谐振法(TRM)、线方法(ML)和解析法等等。 在频域,数值算法有:有限元法 ( FEM -- Finite Element Method)、矩量法( MoM -- Method of Moments),差分法( FDM -- Finite Difference Methods),边界元法( BEM --Boundary Element Method),和传输线法( TLM -- Transmission-Line-matrix Method)。 在时域,数值算法有:时域有限差分法( FDTD - Finite Difference Time Domain ),和有限积分法( FIT - Finite Integration Technology )。 这些方法中有解析法、半解析法和数值方法。数值方法中又分零阶、一阶、二阶和高阶方法。依照解析程度由低到高排列,依次是:时域有限差分法(FDTD)、传 输线法(TLM)、时域有限积分法(FITD)、有限元法(FEM)、矩量法(MoM)、线方法(ML)、边界元法(BEM)、谱域法(SM)、模式匹配 法(MM)、横向谐振法(TRM)、和解析法。 依照结果的准确度由高到低,分别是:解析法、半解析法、数值方法。 在数值方法中,按照结果的准确度有高到低,分别是:高阶、二阶、一阶和零阶。 时域有限差分法(FDTD)、时域有限积分法(FITD)、有限元法(FEM)、矩量法(MoM)、传输线法(TLM)、线方法(ML)是纯粹的数值方法; 边界元法(BEM)、谱域法(SM)、模式匹配法(MM)、横向谐振法(TRM)则均具有较高的分辨率。 模式匹配法(MM)是一个半解析法,倘若传输线的横向模式是准确可得的话。理论上,模式可以是连续谱。但由于数值求解精度的限制,通常要求横向模式是离散 谱。这就要求横向结构上是无耗的。更通俗地讲,就是无耗波导结构。换言之,MM 最适用于波导空腔、高Q且在能量传输的某一维上结构具有一定的均匀性。譬如,它适用于两个圆柱腔在高度维上的耦合的分析,但不适用

计算电磁学

电磁学: 电磁学是研究电磁现象的规律和应用的物理学分支学科,起源于18世纪。广义的电磁学可以说是包含电学和磁学,但狭义来说是一门探讨电性与磁性交互关系的学科。主要研究电磁波、电磁场以及有关电荷、带电物体的动力学等等。 计算电磁学: 内容简介: 本书在论述计算电磁学的产生背景、现状和发展趋势的基础上,系统地介绍了电磁仿真中的有限差分法、人工神经网络在电磁建模中的应用,遗传算法在电磁优化中的应用等。 图书目录: 第一章绪论 1.1 计算电磁学的产生背景 1.1.1 高性能计算技术 1.1.2 计算电磁学的重要性 1.1.3 计算电磁学的研究特点 1.2 电磁场问题求解方法分类 1.2.1 解析法 1.2.2 数值法 1.2.3 半解析数值法 1.3 当前计算电磁学中的几种重要方法 1.3.1 有限元法

1.3.2 时域有限差分法 1.3.3 矩量法 1.4 电磁场工程专家系统 1.4.1 复杂系统的电磁特性仿真 1.4.2 面向CAD 的复杂系统电磁特性建模1.4.3 电磁场工程专家系统 第一篇电磁仿真中的有限差分法 第二章有限差分法 2.1 差分运算的基本概念 2.2 二维电磁场泊松方程的差分格式 2.2.1 差分格式的建立 2.2.2 不同介质分界面上边界条件的离散方法2.2.3 第一类边界条件的处理 2.2.4 第二类和第三类边界条件的处理 2.3 差分方程组的求解 2.3.1 差分方程组的特性 2.3.2 差分方程组的解法 2.4 工程应用举例 2.5 标量时域有限差分法 2.5.1 瞬态场标量波动方程 2.5.2 稳定性分析 2.5.3 网格色散误差

计算电磁学习题集

计算电磁学习题集 1.麦克斯韦方程是根据那些电磁现象的实验定律创建的?概述这些实验的过程和意义(画出实验的原理示意图)。 2.试由矢量场的旋度和散度积分式推导出矢量场的旋度和散度微分式。 3.麦克斯韦方程组的四个微分方程之间虽有具有一定的关系(根据亥姆霍兹定理,矢量场同时要由其旋度和散度才能唯一确定)。可在四个微分方程和电流连续性方程中,只有三个方程是独立的。试证明由麦克斯韦方程组的两个散度方程和电流连续性方程可以推导出两个旋度方程。 4.试推证导电媒质中欧姆定律的微分形式E J σ=。 5.虚拟了磁荷和磁流的观念后,对应于导电媒质中欧姆定律的微分 形式E J σ=,有导磁媒质中欧姆定律的微分形式 H J m m σ=, 其中 m σ称为磁导率。试推导m σ的量纲表达。 6.对于时谐电磁场的电场表达式: ) t )cos((2)t )cos((2t),(y x ?ω?ω+++=r E e r E e r E y y x x ) t )cos((2z ?ω++r E e z z 试画示意图阐述这样表达的合理性。 7.利用傅里叶变换,由麦克斯韦方程的瞬时形式(时域)推导其复数形式(频域)。 8.试从微观上分别阐述媒质在电磁场中极化和磁化的过程(画示意图),解释极化强度和磁化强度的物理涵义。

9.对于高频系统和微波系统来说,电流的时谐表示一般为: )sin(r k J J 0??=t ω。试结合电流连续性方程 t -??=??t) ,(t),(r r ρJ ,论证:高频系统和微波系统中到处 都进行着充、放电的过程。 10.在非均匀介质中,ε和μ是坐标位置的函数。试对于无源区导出:(1)只含E 和H 的麦克斯韦方程;(2)E 和H 的波动方程。 11.推导在导电媒质中的波动方程和矢量位方程。 12.利用麦克斯韦积分方程推导两种媒质边界上的边界条件: s ρ=??)(21n D D e m s ρ=??)(21n B B e m s J E E e 21n ?=?×)(s 21n J H H e =?×)(13.在各向异性媒质中, ???? ? ??????=→ → 0,0,2j,1,0j,01,0εε,当:(1)x E e E 0=;(2)y E e E 0=;(3)z E e E 0=;(4))y x E e (e E 0+=;

电磁学计算题题库(附答案)

《电磁学》练习题(附答案) 1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求: (1) 在它们的连线上电场强度0=E ? 的点与电荷为+q 的点电荷相距多远 (2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远 d -3q +q 2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为×10-5 J .求:(1) 粒子运动过程中电场力作功多少(2) 该电场的场强多大 3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度. 4. 一半径为R 的带电球体,其电荷体密度分布为 =Ar (r ≤R ) , =0 (r >R ) A 为一常量.试求球体内外的场强分布. 5. 若电荷以相同的面密度均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度的值. ( =×10-12C 2 / N ·m 2 ) 6. 真空中一立方体形的高斯面,边长a = m ,位于图中所示位置.已 知空间的场强分布为: E x =bx , E y =0 , E z =0. 常量b =1000 N/(C ·m).试求通过该高斯面的电通量. 7. 一电偶极子由电荷q =×10-6 C 的两个异号点电荷组成,两电荷相距l = cm .把这电偶极子放在场强大小为 E =×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩. (2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功. 8. 电荷为q 1=×10-6 C 和q 2=-×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量 =×10 -12 C 2N -1m -2 ) 9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E ? ??300200+= .试求穿过各面的电通量. 10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a = m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数0 =×10-12 C 2 ·N -1 ·m -2 ) 11. 有一电荷面密度为 的“无限大”均匀带电平面.若以该平 面处为电势零点,试求带电平面周围空间的电势分布. 12. 如图所示,在电矩为p ?的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功. 13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = × 10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功. (1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ; (3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角). 14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10 -7 C ,相距 m .求距q 1为 m 、距q 2为 m 处P 点的电场强 度. ( 41επ=×109 Nm 2 /C 2 ) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度 A =-×10-8 C ·m -2 ,B 面的电荷面密度 B = ×10-8 C ·m -2 .试计算两平面 之间和两平面外的电场强度.(真空介电常量0 =×10-12 C 2 ·N -1 ·m -2 ) 16. 一段半径为a 的细圆弧,对圆心的张角为0 ,其上均匀分布有正电荷q , 如图所示.试以a ,q ,0 表示出圆心O 处的电场强度. E ? q L d q O x z y a a a a A B R ? Ⅰ Ⅱ Ⅲ d b a 45 c E ? σA σB A B O a θ0 q A B R ∞ ∞ O

计算电磁学

计算电磁学 由电子科技大学“电磁辐射与散射基础理论及关键技术”国家自然基金委创新研究群体发起的“计算电磁学前沿学术交流”系列讲坛,通过线上形式利用华为WeLink平台于2020年5月开始举办。 截至2020年6月15日,“计算电磁学前沿学术交流”系列讲坛已成功举办三场,分别由复旦大学吴语茂教授、清华大学李懋坤教授和新加坡国立大学陈旭东教授,做了题为“多尺度结构目标的电磁散射算法与ISAR成像研究”、“深度学习技术在计算电磁学中的应用初探”和“Physical Insights on Solving Scattering Problems via Machine Learning” 的学术报告。由电子科技大学“电磁辐射与散射基础理论及关键技术”国家自然基金委创新研究群体发起的“计算电磁学前沿学术交流”系列讲坛,通过线上形式利用华为WeLink平台于2020年5月开始举办。 截至2020年6月15日,“计算电磁学前沿学术交流”系列讲坛已成功举办三场,分别由复旦大学吴语茂教授、清华大学李懋坤教授和新加坡国立大学陈旭东教授,做了题为“多尺度结构目标的电磁散

射算法与ISAR成像研究”、“深度学习技术在计算电磁学中的应用初探”和“Physical Insights on Solving Scattering Problems via Machine Learning” 的学术报告。李懋坤教授讲到随着深度学习技术的发展,不断提高的学习能力有可能让机器从大量的物理数据中“学习”并“掌握”物理定律,从而在一些可控边界条件下较好的解译物理规律。希望通过在方程求解,阵列天线综合,电磁建模,电磁成像等方面的一些初步研究,与同行一起探讨深度学习方法在计算电磁学领域应用的特点、可行性与面临的挑战。

计算电磁学结课论文学习资料.doc

《计算电磁学》学习心得 姓名:桑 dog 学号: 班级: 联系方式:

前言 计算电磁学是科技的重要领域它的研究涉及到应用计算机求解电磁方程它的重要性基 于麦克斯韦方程——唯一的可以描述小到亚原子大到天体尺度的所有物理现象的方程, 。而且,麦克斯韦方程式对于结果拥有很强的预测能力 : 对于一个复杂问题的麦克斯韦方程的解通常 可以准确的预知实验结果。因此 , 麦克斯韦方程的解对于提高我们对复杂系统之物理现 象的洞察力和设计复杂系统的能力均有极大帮助所以, 成功求解麦克斯韦方程式拥有广泛 的应用前景 : 例如纳米技术 , 电脑微电子电路 , 电脑芯片设计 , 光学 , 纳米光学 , 微波工程 , 遥感 , 射电天文学 , 生物医学工程, 逆散射和成象等等。 这篇文章的安排如下:第一章介绍了计算电磁学的重要意义以及发展状况。第二章介绍了计算电磁学中解决问题的方法分类。第三章对主要的数值方法进行了简介。第四章展望了计算电磁学的发展趋势。

第1章计算电磁学的重要性 在现代科学研究中,“科学试验,理论分析,高性能计算”已经成为三种重要的研究手 段[1]。在电磁学领域中,经典电磁理论只能在11 种可分离变量坐标系中求解麦克斯韦方程 组或者其退化形式,最后得到解析解。解析解的优点在于: 可将解答表示为己知函数的显式,从而可计算出精确的数值结果; 可以作为近似解和数值解的检验标准; 在解析过程中和在解的显式中可以观察到问题的内在联系和各个参数对数值 结果所起的作用。 这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题[2] 。当遇到不规则形状或者任意形状边界问题时,则需要比较复杂的 数学技巧,甚至无法求得解析解。20 世纪60 年代以来,随着电子计算机技术的发展,一 些电磁场的数值计算方法也迅速发展起来,并在实际工程问题中得到了广泛地应用,形成了 计算电磁学研究领域,已经成为现代电磁理论研究的主流。简而言之,计算电磁学是在电磁场 与微波技术学科中发展起来的,建立在电磁场理论基础上,以高性能计算机技术为工具, 运用计算数学方法,专门解决复杂电磁场与微波工程问题的应用科学。相对于经典电磁理论 分析而言,应用计算电磁学来解决电磁学问题时受边界约束大为减少,可以解决各种类型的 复杂问题。原则上来讲,从直流到光的宽广频率范围都属于该学科的研究范围。近几年来, 电磁场工程在以电磁能量或信息的传输、转换过程为核心的强电与弱电领域中显示了重要作 用。 [3]

相关主题
文本预览
相关文档 最新文档