当前位置:文档之家› 平衡容器工作原理分析

平衡容器工作原理分析

平衡容器工作原理分析
平衡容器工作原理分析

平衡容器的工作原理

3.双室平衡容器的工作原理

3.1.简介

双室平衡容器是一种结构巧妙,具有一定自我补偿能力的汽包水位测量装置。它的主要结构如图1所示。在基准杯的上方有一个圆环形漏斗结构将整个双室平衡容器分隔成上下两个部分,为了区别于单室平衡容器,故称为双室平衡容器。为便于介绍,这里结合各主要部分的功能特点,将它们分别命名为凝汽室、基准杯、溢流室和连通器,另外文中把双室平衡容器汽包水位测量装置简称为容器。

3.2.凝汽室

理想状态下,来自汽包的饱和水蒸汽经过这里时释放掉汽化潜热,形成饱和的凝结水供给基准杯及后续环节使用。

3.3.基准杯

它的作用是收集来自凝汽室的凝结水,并将凝结水产生的压力导出容器,传向差压测量仪表——差压变送器(后文简称变送器)的正压侧。基准杯的容积是有限的,当凝结水充满后则溢出流向溢流室。由于基准杯的杯口高度是固定的,故而称为基准杯。

3.4.溢流室

溢流室占据了容器的大部分空间,它的主要功能是收集基准杯溢出的凝结水,并将凝结水排入锅炉下降管,在流动过程中为整个容器进行加热和蓄热,确保与汽包中的温度达到一致。正常情况下,由于锅炉下降管中流体的动力作用,溢流室中基本上没有积水或少量的积水。 3.5.连通器

倒T 字形连通器,其水平部分一端接入汽包,另一端接入变送器的负压侧。毋庸置疑,它的主要作用是将汽包中动态的水位产生的压力传递给变送器的负压侧,与正压侧的(基准)压力比较以得知汽包中的水位。它之所以被做成倒T 字形,是因为可以保证连通器中的介质具有一定的流动性,防止其延伸到汽包之间的管线冬季发生冻结。连通器内部介质的温度与汽包中的温度很可能不一致,致使其中的液位与汽包中不同,但是由于流体的自平衡作用,对使汽包水位测量没有任何影响。

3.6.差压的计算

通过前面的介绍可以知道,凝汽室、基准杯及其底部位于容器内部的导压管中的介质温度与汽包中的介质温度是相等的,即γw =γ`w ,γs =γ`s 。故而不难得到容器所输出的差压。本文以东方锅炉厂DG670-13.73-8A 型锅炉所采用的测量范围为±300mm 双室平衡容器为例加以介绍(如图1所示)。

通过图1可知,容器正压侧输出的压力等于基准杯口所在水平面以上总的静压力,加上基准杯口至L 形导压管的水平轴线之间这段垂直区间的凝结水压力,再加上L 形导压管的水平轴线至连通器水平轴线之间,位于容器的外部的这段垂直管段中的介质产生的压力。显而易见,其中的最后部分压力,由于其中的介质为静止的且距容器较远,因此其中的介质密度应为环境温度下的密度。因此 P += P J +320 γ w +(580-320) γ c 式中P + —— 容器正压侧输出的压力

γ w —— 容器中的介质密度(γ w = γ `w )

γ c

—— 环境温度下水的密度

P J —— 基准杯口以上总的静压力

负压侧的压力等于基准杯口所在水平面以上总的静压力,加上基准杯口水平面至汽包中汽水分界面之间的饱和水蒸汽产生的压力,再加上汽包中汽水分界面至连通器水平轴线之间饱和水产生的压力,即 P -= P J +(580-h w ) γ s + h w γw

式中P

——容器负压侧输出的压力

h

w

——汽水分界线至连通器水平管中心线之间的垂直高度

γ

s

——汽包中饱和水蒸汽的密度

因此差压

ΔP=P+-P-=320 γw+260 γc-(580-h w) γs-h wγw

即ΔP=260 γ

c + 320 γ

w

-580 γ

s

-(γ

w

γ

s )h

w

(1)

这里有一点需要说明,(1)式中环境温度下水的密度γ

c

,通常情况下它会随着季节的变化而变化,它的变化将会影响汽包水位测量的准确性。就本例中的容器而言,当环境温度由25℃升高到50℃时,由于密度的变化对于差压产生的影响为-2.3mm水柱,经过补偿系统补偿后对最终得到的汽包水位的影响将为

+2.3~5.5mm之间。通常情况下这样的误差是可以忽略的,也就是说可以认为这里的温度是恒定的。但是为了尽量减小误差,必须恰当地确定这里的温度。确定温度可以遵循这样一条原则,就高不就低,视当地气候及冬季伴热等因素确定。比如此处的环境温度一年当中通常在0~50℃之间变化,平均温度为25℃,则可以令这里的温度为35℃。这是因为水的密度随着温度升高它的变化梯度越来越大,确定的温度高些,将会使环境温度变化对整个系统的影响更小。就本例中的容器而言,当温度从0℃升高到25℃时,温度的变化对测量系统的最终结果影响只有1mm左右,而环境温度从25℃升高到50℃所带来的影响却为+2.3~5.5mm 之间。故而,确定温度应就高不就低。

4.双室平衡容器的工作特性

容器的工作特性对于汽包水位测量和补偿系统来说非常重要,了解这种特性利于用户的应用和掌握应用中的技巧。查《饱和水与饱和水蒸汽密度表》可以获得各种压力下饱和水与饱和水蒸汽的密度。把0、±50、±100mm等汽包水位分别代入(1)式,可得到容器输出的一系列差压,见下表1《双室平衡容器固有补偿特性参照表》。通过表1可以得知双室平衡容器的工作特性。

从表1中可以看到,各水位所对应的由容器所输出的差压随着压力的变化(相关饱和汽、水密度)各自发生着不同的变化。这里首先注意0水位所对应的差压,它的变化规律较其它水位有明显不同,只在一个较小的范围内波动。由于该容器的设计压力为13.73MPa,因此14.5MPa以下它的波动范围更小,仅在±5mm水柱以内。也就是说当汽包中的水位为0水位时,无论压力如何变化,即使在没有补偿系统的情况下,对0水位测量影响都极小或者基本没有影响。关于其它水位,则当汽包水位越接近于0水位,其对应的差压受压力的变化影响越小,反之则大。

因此,双室平衡容器是一种具有一定的自我补偿能力的汽包水位测量装置。它的这种能力主要体现在,当汽包中的水位越接近于0水位,其输出的差压受压力变化的影响越小,即对汽包水位测量的影响越小。毫无疑问,容器特性由于容器的自身结构决定的,故又称为固有补偿特性。表1中,0MPa对应两行差压值,其原因后文将会提到。之所以双室平衡容器会有这种特性其实质,是由于双室平衡容器在设计制造时采取了特殊的结构,这种结构最大限度地削弱了汽水密度变化对常规运行水位差压的影响。但是尽管如此,它并不能完全满足生产的需要,仍然需要继续补偿。

5.补偿系统

5.1.基础知识与基本概念

从容器的特性中可以看到,双室平衡容器不能完全满足生产的需要。究其原因,是由于介质密度的变化所造成的。因此,必须要采取一定的措施,进一步消除密度变化对汽包水位测量的影响。这种被用来消除密度变化带来的影响的措施就叫做补偿。通过补偿以准确地测定汽包中的水位。

汽包水位测量补偿的方法通常有两种,一种是压力补偿,另一种是温度补偿,无论采取哪种

方法补偿效果都一样。但是它们之间略有区别,即温度补偿可以从0℃开始,而压力补偿只能从100℃开始。这是因为温度可以一一对应饱和密度以及100℃以下时的非饱和密度,而压力却只能一一对应饱和密度,即最低压力0MPa只能对应100℃时的饱和密度。故而由这两种方法构成的补偿系统各自对应的补偿起始点有所不同,即差压变送器量程有所不同。表1中0MPa对应两行差压值,其原因即在于此;其中上一行对应的是温度补偿,下一行对应压力补偿。很显然,温度补偿也可以从100℃开始。

5.2.建立补偿系统的步骤

第一步确定双室平衡容器的0水位位置

容器的0水位的位置一般情况下比较容易确定,通过查阅锅炉制造厂家有关汽包(学名锅筒)及附件方面的图纸和资料,进行比较和计算即可获得。文中例举的容器0水位位置位于连通器水平管轴线以上365mm处,即基准杯口水所在的平面下方215mm处。但是,偶尔由于图纸的疏漏缺少与确定0水位相关的数据,无法计算出0水位的位置,那么确定起来就比较复杂。如图1中就缺少数据。这种情况下就只有根据容器的自我补偿特性在0水位所体现的特点通过反复验算来获得。由于容器本身就是用这样的方法经反复验算而设计制造的,只要验算的方法正确通过验算得到的数据会很准确可靠,当然这只限于图纸不详的情况下。由于限于篇幅,这里只提供思路,具体的验算的方法本文不予介绍。对此感兴趣的读者可以试一试。

第二步确定差压变送器的量程

差压变送器的量程是由汽包水位的测量范围、容器的0水位位置以及补偿系统的补偿起始点等三方面因素决定的。一些用户一般只考虑了前两方面因素,而忽略了补偿起始点因素,甚至极个别的用户只简单地根据汽包水位的测量范围确定变送器的量程,造成很大的测量误差。一般情况下,忽略容器的0水位位置所造成的误差在70~90mm之间,忽略补偿起始点所产生的误差在30mm以下,特别情况下误差都将会更大。此外,这里特别提醒用户,在进行汽包水位测量工作时,关于变送器的量程,在没有得到确认的情况下,切不可单纯依赖设计部门的图纸。事实上,多数情况下,设计部门在进行此类设计,对变送器选型时,只确定基本量程,而不给出应用量程。

下面来确定变送器的量程。

本文的例子中容器的0水位位置位于连通器水平管轴线以上365mm处。由于该容器的量程为±300mm,因此(1)式中的hw的最大值和最小值分别为665mm和65mm。如果采用压力补偿,从《饱和水与饱和水蒸汽密度表》中查出100℃时的饱

和水与饱和水蒸汽的密度代入(1)式,再分别将665mm和65mm代入(1)式,即得最小差压

ΔPmin=-70.5mm水柱

和最大差压

ΔPmax=504mm水柱

这两个差压值就是变送器的量程范围(见表1中0MPa对应的下行),即-70.5~504mm水柱。如果采用温度补偿,且从0℃开始补偿,则由于水的密度极其接近1mg/mm3,误差可以忽略,令蒸汽的密度为0。用同样方法即可得到变送器的量程为-85~515mm水柱(见表1中0MPa对应的上行)。实际上,从0℃开始补偿是完全没有必要的,其原因这里无需遨述。

第三步确定数学模型

数学模型是补偿系统中的最重要环节。由(1)式得

(2)

由于相对于规定的0水位的汽包水位h= hw-365mm,所以

(3)

式中h ——相对于规定的0水位的汽包水位

γw ——饱和水的密度

γs ——饱和水蒸气的密度

γ c ——环境温度下水的密度

ΔP——差压

(3)式即为补偿系统的数学模型。式中γc为常数,令环境温度为30℃,则γc=0.9956mg/mm3,所以

(4)

(4)式为最终的数学模型。显然,它与(3)式的作用完全一样。在补偿系统中可以任选其一。

第四步确定函数、完成系统

在(3)式和(4)式中含都有“320 γw-580 γs”和“γw-γs”关于饱和水与饱和水蒸汽密度的两个子式。查《饱和水与饱和水蒸汽密度表》,可以获得这两个子式关于压力或温度的函数曲线。将所得到的曲线以及(3)式或者(4)式输入用以执行运算任务硬件设备,补偿系统即告完成。

从补偿系统的建立过程可以发现,补偿系统是根据某一特定构造的容器而建立的。因此,建立补偿系统时应根据不同的容器,建立不同的补偿系统。建立补偿系统时,当确定差压的计

算公式以后,只需重复这里的步骤即可得到新的汽包水位测量补偿系统。

6.关于容器保温问题的释疑

众所周知,为了使容器达到理想工作状态,容器的外部必须作以适当的保温。然而,关于容器的凝汽室及顶部的保温问题目前有些争议,部分用户认为这里的保温可有可无。笔者在这里阐述一下个人的观点。笔者通过多年观察发现,在这里没有保温的情况下,冬季由仪表显示的汽包水位会比夏季低将近10mm。分析原因,是因为一般情况下凝汽室的温度都要比环境高300℃左右,甚至更高,因此它的热辐射能力很强。当凝汽室外部没有保温或者保温条件比较差时,尽管凝结水的速度会加快并导致更多的饱和水蒸汽流到这里补充这里的热量,但是由于这里的介质处于自然对流状态且受到管路等的阻力的制约,使补充的热量难以维持这里的温度,进而影响了测量的准确性。对于额定工作压力为13.73MPa的锅炉而言,如果冬季由仪表显示的汽包水位比真实水位低10mm,将意味着容器内部的温度比饱和温度低7℃左右。所以,为确保其包水位测量的准确性,这里必须加以适当的保温。笔者以为,这里的保温以保温层的外层温度不超过120℃为佳。

平衡容器工作原理

平衡容器的工作原理 3.双室平衡容器的工作原理 3.1.简介 双室平衡容器是一种结构巧妙,具有一定自我补偿能力的汽包水位测量装置。它的主要结构如图1所示。在基准杯的上方有一个圆环形漏斗结构将整个双室平衡容器分隔成上下两个部分,为了区别于单室平衡容器,故称为双室平衡容器。为便于介绍,这里结合各主要部分的功能特点,将它们分别命名为凝汽室、基准杯、溢流室和连通器,另外文中把双室平衡容器汽包水位测量装置简称为容器。 3.2.凝汽室 理想状态下,来自汽包的饱和水蒸汽经过这里时释放掉汽化潜热,形成饱和的凝结水供给基准杯及后续环节使用。 3.3.基准杯 它的作用是收集来自凝汽室的凝结水,并将凝结水产生的压力导出容器,传向差压测量仪表——差压变送器(后文简称变送器)的正压侧。基准杯的容积是有限的,当凝结水充满后则溢出流向溢流室。由于基准杯的杯口高度是固定的,故而称为基准杯。 3.4.溢流室

溢流室占据了容器的大部分空间,它的主要功能是收集基准杯溢出的凝结水,并将凝结水排入锅炉下降管,在流动过程中为整个容器进行加热和蓄热,确保与汽包中的温度达到一致。正常情况下,由于锅炉下降管中流体的动力作用,溢流室中基本上没有积水或少量的积水。 3.5.连通器 倒T 字形连通器,其水平部分一端接入汽包,另一端接入变送器的负压侧。毋庸置疑,它的主要作用是将汽包中动态的水位产生的压力传递给变送器的负压侧,与正压侧的(基准)压力比较以得知汽包中的水位。它之所以被做成倒T 字形,是因为可以保证连通器中的介质具有一定的流动性,防止其延伸到汽包之间的管线冬季发生冻结。连通器内部介质的温度与汽包中的温度很可能不一致,致使其中的液位与汽包中不同,但是由于流体的自平衡作用,对使汽包水位测量没有任何。 3.6.差压的 通过前面的介绍可以知道,凝汽室、基准杯及其底部位于容器内部的导压管中的介质温度与汽包中的介质温度是相等的,即γw =γ`w ,γs =γ`s 。故而不难得到容器所输出的差压。本文以东方锅炉厂DG670-13.73-8A 型锅炉所采用的测量范围为±300mm 双室平衡容器为例加以介绍(如图1所示)。 通过图1可知,容器正压侧输出的压力等于基准杯口所在水平面以上总的静压力,加上基准杯口至L 形导压管的水平轴线之间这段垂直区间的凝结水压力,再加上L 形导压管的水平轴线至连通器水平轴线之间,位于容器的外部的这段垂直管段中的介质产生的压力。显而易见,其中的最后部分压力,由于其中的介质为静止的且距容器较远,因此其中的介质密度应为环境温度下的密度。因此 P += P J +320 γ w +(580-320) γ c 式中P + —— 容器正压侧输出的压力 γ w —— 容器中的介质密度(γ w = γ `w ) γ c —— 环境温度下水的密度 P J —— 基准杯口以上总的静压力 负压侧的压力等于基准杯口所在水平面以上总的静压力,加上基准杯口水平面至汽包中汽水分界面之间的饱和水蒸汽产生的压力,再加上汽包中汽水分界面至连通器水平轴线之间饱和水产生的压力,即 P -= P J +(580-h w ) γ s + h w γw

内置式平衡容器

内置式平衡容器 1、差压水位计(老式单室平衡容器) 下面就单室平衡容器的测量误差作一简要分析:如图三所示: 当ΔP2=0时,有公式(5)成立 H =(r- r //)g.L-ΔP1 -----(5) g(r / - r // ) 式中ΔP1:变送器所测参比水柱与汽包内水位的差压值(ΔP2=0 时) L:参比水柱高度 r :参比水柱的平均密度 ΔP2:正、负压侧仪表管路的附加差压 这里饱和蒸汽和饱和水的密度(r //、r /)是汽包压力P的单值非线性函数,通过测量汽包压力可以得到,而参比水柱中水的平均密度r 通常是按50℃时水的密度来计算的,而实际的r 具有很大的不确定性与50℃时水的密度相差很大是造成测量误差的主要原因之一。 单室平衡容器参比水柱温度与DCS 修正补偿的50℃或60℃相差很大,带来不确定的附加误差,其误差在100mm 以上。 由于云母水位计和单室平衡容器的误差方向不一致,所以要保证各水位计之间的偏差在30mm 以内是不可能的,现行是以云母水位计为准,通过改变变送器或DCS 软件修正来拼凑的,只能从数值上在一个特定的工况和小范围内使其偏差在30mm 以内,是自欺欺人的做法,不能保证锅炉的安全运行。 从上可见要全过程全范围的实现汽包各水位计之间的偏差小于30mm 是不可能的。 由于汽包水位测量不准,造成汽包长期高水位运行,降低了旋风分离器的工作效率,使饱和蒸汽带水过多,增加了过热器和汽轮机的结垢,降低了机组的工作效率,加速了过热器的爆管泄漏,存在着很大的事故隐患。 21 图三单室平衡容器测量原理图

2、内置式单室平衡容器 如图四所示: H=L-ΔP /g(r / - r // ) --- (6) (6)式是(5)式中,参比水柱的平均密度r 等于饱和水的密度r / 转换而来,L 、g 为常数,r / - r //是汽包压力的单值函数,ΔP 是变送器测得的 差压值,故此消除环境温度对参比水柱密度的影响,从而克服了这一误差。 内置式平衡容器特点: 1 、精确度高,不受汽包内水欠饱和以及外置平衡容器参比水柱温度变化的 影响,从公式)S W /(0 -?--=?p H L h 可以看出变送器所测得的差压值p ?为汽段参比水柱(饱和水)和相同高度的饱和汽静压之差,这一点与以往的任何一种外置式平衡容器不同,而采用外置式平衡容器测量汽包水位不仅受平衡容器下参比水柱温度变化的影响,而且由于补偿公式是假定汽包内水是饱和状态下推算出来,而实际上汽包内的水是欠饱和的,而且随着负荷变化欠饱和度也是变化的,由此可见,采用内装平衡容器的测量精确度远比外置式平衡容器要高。 2 、由于汽包的汽侧取样管上焊接有冷凝罐,可以及时向平衡容器中补充冷凝后的饱和水,因而可以保证锅炉点火不久就可投入汽包水位测量。 内置式单室平衡容器图片

蒸汽疏水阀工作原理

蒸汽疏水阀工作原理 一、国内蒸汽疏水阀现状概述 蒸汽疏水阀是用于蒸汽供热设备和蒸汽管道上,能自动地排除蒸汽使用设备和管道中的冷凝水、空气及其它不可凝结的气体,并能防止蒸汽泄漏的自动阀门。蒸汽广泛地应用于工业生产和生活设施中,无论在蒸汽的输送管道系统,还是利用蒸汽来进行加热、干燥、保温、消毒、蒸煮、浓缩、换热、采暖、空调等工艺,过程中所产生的冷凝水都需要通过蒸汽疏水阀排除,而不允许蒸汽泄漏。蒸汽疏水阀性能的优劣,对于蒸汽系统的正常运行,用汽设备热效率的提高及能源的合理利用等方面具有至关重要的作用。 特别是在煤、石油及天然气等一次能源日益减少的情况下,世界各国政府都将节约能源和开发新能源作为重要的国策。而蒸汽疏水阀在蒸汽使用系统的节能方面起着不可忽视的关键作用。据我国有关部门统计,目前全国蒸汽疏水阀拥有量约为432.4万台,大约有80%的产品达不到现行国家标准漏汽量小于3%的要求,其泄漏率大都在10%左右,这样一台蒸汽疏水阀就耍浪费 4.44吨标煤,全国正在使用的达不到现行国家标准的疏水阀就要浪费1432.33万吨标煤,折合人民币186203万元,这是一笔相当可观的数字,由此可见蒸汽疏水阀的节能作用之大,及其在国民经济发展中的地位之重要是不可等闲视之的。 随着国外能源危机的进一步加剧和现代化工业技术的迅速发展,对热能充分利用的要求日益提高,蒸汽疏水阀的研究工作在国外更是得到了广泛的开展。国外蒸汽疏水阀生产厂家为适应现代工业的需要,研制工作更加深入,生产发展很快。本文将结合良科公司的蒸汽疏水阀的产品系列介绍各种类型的蒸汽疏水阀和它们的适用场合。 二、各种蒸汽疏水阀的工作原理 当蒸汽冷凝时,它会释放出汽化的能量(潜热能)而形成冷凝水。冷凝水只含有饱和温度下水所含有的能量(显热能)。但是为了确保蒸汽系统中维持最大的热传导效率,此冷凝水必须排出系统之外,另外从锅炉中产生的一些不凝性气体和空气以及蒸汽系统起动时管道内的空气也必须排出蒸汽系统,但同时必须保留有用的蒸汽,这些功能就是由一种自动装置 - 蒸汽疏水阀来完成。 蒸汽疏水阀有各种不同的疏水方式,有些是感应密度的变化(如机械式)而动作,有些是感应温度的变化而动作排放,而有些是受通过它们的热态冷凝水本身的静压及动压之变化而感应开关的。目前疏水阀在世界范围内,按工作原理划分,主要有三大类 1、机械型蒸汽疏水阀:利用冷凝水与蒸汽之间的密度差来操作的。 机械类疏水阀的第一大类是浮球式疏水阀,目前国际上主导的产品为连杆式浮球疏水阀,其工作原理如图1所示。疏水阀除了排水阻汽功能外,要求具有良好的排空气性能,所有的良科浮球式蒸汽疏水阀均带有热静力派空气装置TV,作为标准配置。有些疏水阀除了排空气装置以外,还带有蒸汽汽锁释放装置,主要应用于发生蒸汽堵塞冷凝水无法到达疏水阀的场合即所谓的蒸汽汽锁情况,如使用虹吸管排除冷凝水(旋转滚筒设备)或疏水阀前有一段长管道时。 浮球式蒸汽疏水阀在冷凝水产生后立刻排出冷凝水,能够根据压力和负载的变化迅速排出大量的冷凝水,当对于其它类型的同口径疏水阀排量大,因此它最适合于换热要求高、设备不允许积水的各种换热设备以及带自动温度控制的设备的最佳选择。同时该类型的疏水阀出口总是浸没在冷凝水中,具有真正意义上排水阻汽的功能。良科可以提供各种型号的浮球式蒸汽疏水阀能满足各种制程工艺的需要。

减压阀工作原理

一、减压阀工作原理

1-复位弹簧,2-阀口,3-阀芯,4-阻尼孔,5-膜片,6、7-调压弹簧,8-调压手轮 直动式减压阀 上图所示为直动式带溢流阀的减压阀(简称溢流减压阀)的结构图。 压力为P1的压缩空气,由左端输入经进气阀口10节流后,压力降为P2输出。P2的大小可由调压弹簧2、3进行调节。顺时针旋转旋钮1,压缩弹簧2、3及膜片5使阀芯8下移,增大阀口10的开度使P2增大。若反时针旋转旋钮1,阀口10的开度减小,P2随之减小。 若P1瞬时升高,P2将随之升高,使膜片气室6内压力升高,在膜片5上产生的推力相应增大,此推力破坏了原来力的平衡,使膜片5向上移动,有少部分气流经溢流孔12、排气孔11排出。在膜片上移的同时,因复位弹簧9的作用,使阀芯8也向上移动,关小进气阀口10,节流作用加大,使输出压力下降,直至达到新的平衡为止,输出压力基本又回到原来值。若输入压力瞬时下降,输出压力也下降、膜片5下移,阀芯8随之下移,进气阀口10开大,节流作用减小,使输出压力也基本回到原来值。 逆时针旋转旋钮1。使调节弹簧2、3放松,气体作用在膜片5上的推力大于调压弹簧的作用力,膜片向上曲,靠复位弹簧的作用关闭进气阀口10。再旋转旋钮1,进气阀芯8的顶端与溢流阀座4将脱开,膜片气室6中的压缩空气便经溢流孔12、排气孔11排出,使阀处于无输出状态。 总之,溢流减压阀是靠进气口的节流作用减压,靠膜片上力的平衡作用和溢流孔的溢流作用稳

压;调节弹簧即可使输出压力在一定范围内改变。为防止以上溢流式减压阀徘出少量气体对周围环境的污染,可采用不带溢流阀的减压阀(即普通减压阀),其符号如图14—1c所示。

换向阀工作原理

换向阀 利用阀芯对阀体的相对运动,使油路接通、关断或变换油流的方向,从而实现液压执行元件及其驱动机构的启动、停止或变换运动方向。 按阀芯相对于阀体的运动方式:滑阀和转阀 按操作方式:手动、机动、电磁动、液动和电液动等按阀芯工作时在阀体中所处的位置:二位和三位等 按换向阀所控制的通路数不同:二通、三通、四通和五通等。 1、工作原理 图4-3a所示为滑阀式换向阀的工作原理图,当阀芯向右移动一定的距离时,由液压泵输出的压力油从阀的P口经A口输向液压缸左腔,液压缸右腔的油经B口流回油箱,液压缸活塞向右运动;反之,若阀芯向左移动某一距离时,液流反向,活塞向左运动。图4-3b为其图形符号。 2、换向阀的结构 1)手动换向阀 利用手动杠杆来改变阀芯位置实现换向。分弹簧自动复位(a)和弹簧钢珠(b)定位两种。 2)机动换向阀 机动换向阀又称行程阀,主要用来控制机械运动部件的行程,借助于安装在工作台上的档铁或凸轮迫使阀芯运动,从而控制液流方向。 3)电磁换向阀

利用电磁铁的通电吸合与断电释放而直接推动阀芯来控制液流方向。它是电气系统和液压系统之间的信号转换元件。 图4-9a所示为二位三通交流电磁阀结构。在图示位置,油口 P和A相通,油口B断开;当电磁铁通电吸合时,推杆1将阀芯2推向右瑞,这时油口P和A断开,而与B相通。当电磁铁断电释放时,弹簧3推动阀芯复位。图 4-9b为其图形符号。 4)液动换向阀 利用控制油路的压力油来改变阀芯位置的换向阀。阀芯是由其两端密封腔中油液的压差来移动的。如图所示,当压力油从K2进入滑阀右腔时,K1接通回油,阀芯向左移动,使P和B相通,A和T相通;当 K1接通压力油,K2接通回油,阀芯向右移动,使P和A相通,B和T相通;当K1和K2都通回油时,阀芯回到中间位置。 5)电液换向阀 由电磁滑阀和液动滑阀组成。电磁阀起先导作用,可以改变控制液流方向,从而改变液动滑阀阀芯的位置。用于大中型液压设备中。 3、换向阀的性能和特点 1)滑阀的中位机能 各种操纵方式的三位四通和三位五通式换向滑阀,阀芯在中间位置时,各油口的连通情况称为换向阀的中位机能。其常用的有“O”型、“H”型、“P”型、K”型、“M”型等。 分析和选择三位换向阀的中位机能时,通常考虑: (1)系统保压 P口堵塞时,系统保压,液压泵用于多缸系统。 (2)系统卸荷 P口通畅地与T口相通,系统卸荷。(H K X M型) (3)换向平稳与精度 A、B两口堵塞,换向过程中易产生冲击,换向不平稳,但精度高;A、B口都通T口,换向平稳,但精度低。 (4)启动平稳性阀在中位时,液压缸某腔通油箱,启动时无足够的油液起缓冲,启动不平稳。

汽包平衡容器说明书

专利产品 证书号:第935394号 TPH—A(B)(C)型 差压式水位计(平衡容器) 使用说明书 铁岭铁光仪器仪表有限责任公司 TIELINGTIE GUANG INSTRUMENT&APPARATUS CO.,LT 目录 一、概述------------------------------------------------------------------ 二、工作原理--------------------------------------------------------- 三、技术参数-------------------------------------------------------------

四、温度变送器----------------------------------------------------------- 五、制造-------------------------------------------------------------------- 六、安装----------------------------------------------------------------- 七、运行--------------------------------------------------------------------- 八、供货范围-------------------------------------------------------------- 九、定货须知--------------------------------------------------- 一、概述 TPH-A(B)(C)型差压式液位计是铁岭铁光仪器仪表有限责任公司根据市场需求开发生产的一种液位计。广泛应用于电厂、化工厂、冶金等行业的锅炉汽包、储罐、储槽等水位监视,与其它水位计相比,具有适用压力范围广,运行泄漏点少,可靠性高,显示水位准确,远距离集控室监视等特点。 平衡容器分为三种形式: 1、TPH-A型单室平衡容器,见图1。

蒸汽疏水阀工作原理

蒸汽疏水阀工作原理
一、国内蒸汽疏水阀现状概述 蒸汽疏水阀是用于蒸汽供热设备和蒸汽管道上, 能自动地排除蒸汽使用设备和管道中的冷凝水、 空气及其它不可凝结的气体,并能防止蒸汽泄漏的自动阀门。蒸汽广泛地应用于工业生产和生活设 施中,无论在蒸汽的输送管道系统,还是利用蒸汽来进行加热、干燥、保温、消毒、蒸煮、浓缩、 换热、采暖、空调等工艺,过程中所产生的冷凝水都需要通过蒸汽疏水阀排除,而不允许蒸汽泄 漏。 蒸汽疏水阀性能的优劣,对于蒸汽系统的正常运行,用汽设备热效率的提高及能源的合理利 用等方面具有至关重要的作用。 特别是在煤、石油及天然气等一次能源日益减少的情况下,世界各国政府都将节约能源和开发 新能源作为重要的国策。而蒸汽疏水阀在蒸汽使用系统的节能方面起着不可忽视的关键作用。 据我 国有关部门统计,目前全国蒸汽疏水阀拥有量约为 432.4 万台,大约有 80%的产品达不到现行国家 标准漏汽量小于 3%的要求,其泄漏率大都在 10%左右,这样一台蒸汽疏水阀就耍浪费 4.44 吨标煤, 全国正在使用的达不到现行国家标准的疏水阀就要浪费 1432.33 万吨标煤, 折合人民币 186203 万元, 这是一笔相当可观的数字,由此可见蒸汽疏水阀的节能作用之大,及其在国民经济发展中的地位之 重要是不可等闲视之的。 随着国外能源危机的进一步加剧和现代化工业技术的迅速发展,对热能充分利用的要求日益提 高,蒸汽疏水阀的研究工作在国外更是得到了广泛的开展。国外蒸汽疏水阀生产厂家为适应现代工 业的需要,研制工作更加深入,生产发展很快。
二、各种蒸汽疏水阀的工作原理 当蒸汽冷凝时,它会释放出汽化的能量(潜热能)而形成冷凝水。冷凝水只含有饱和温度下水 所含有的能量(显热能)。但是为了确保蒸汽系统中维持最大的热传导效率,此冷凝水必须排出系 统之外,另外从锅炉中产生的一些不凝性气体和空气以及蒸汽系统起动时管道内的空气也必须排出 蒸汽系统,但同时必须保留有用的蒸汽,这些功能就是由一种自动装置 - 蒸汽疏水阀来完成。 蒸汽疏水阀有各种不同的疏水方式,有些是感应密度的变化(如机械式)而动作,有些是感应 温度的变化而动作排放, 而有些是受通过它们的热态冷凝水本身的静压及动压之变化而感应开关的。 目前疏水阀在世界范围内,按工作原理划分,主要有三大类 1、机械型蒸汽疏水阀(利用冷凝水与蒸汽之间的密度差来操作) 机械类疏水阀的第一大类是浮球式疏水阀,目前国际上主导的产品为连杆式浮球疏水阀,其工 作原理如图 1 所示。疏水阀除了排水阻汽功能外,要求具有良好的排空气性能。有些疏水阀除了排

电磁换向阀原理

电磁换向阀是利用电磁铁推动阀芯来控制液流方向的。采用电磁换向阀可以使操作轻便,容易实现自动化操作,因此应用极广。 电磁换向阀只是采用电磁铁来操纵滑阀阀芯运动,而阀芯的结构及型式可以是各种各样的,所以电磁滑阀可以是二位二通、二位三通、二位四通、三位四通和三位五通等多种型式。 一般二位阀用一个电磁铁,三位阀需用两个电磁铁。 操纵电磁阀用的电磁铁分为交、直流两种,交流电磁铁的电压一般为220 伏。其特点是启动力 较大,换向时间短,价廉。但当阀芯卡住或吸力不够而使铁芯吸不上时,电磁铁容易因电流过 大而烧坏,故工作可靠性较差,动作时有冲击,寿命较低。直流电磁铁电压一般为24伏。其 优点是工作可靠,不会因阀芯卡住而烧坏,寿命长,体积小,但启动力较交流电磁铁小,而且 在无直流电源时,需整流设备。为了提高电磁换向阀的工作可靠性和寿命,近年来,国内外正 日益广泛地采用湿电磁铁,这种电磁铁与滑阀推杆间无须密封,消除了O形密封圈处的摩擦力,它的电磁线圈外面直接用工程塑料封固,不另作金属外壳,这样既保证了绝缘,又利于散热, 所以工作可靠,冲击小,寿命长。 换向阀 作用:变换阀心在阀体内的相对工作位置,使阀体各油口连通或断开, 从而 控制执行元件的换向或启停。 1换向阀的分类 座阀式换向阀 按结构形式分 < 滑阀式换向阀 转阀式换向阀 2 滑阀式换向阀 (1)换向阀的结构和工作原理 阀体:有多级沉割槽的圆柱孔 结构〈 阀芯:有多段环行槽的圆柱体 分类: 二位 按工作位置数分< 三位位:阀心相对于阀体的工作位置数。 四位

二通 按通路数分< 三通通: 阀体对外连接的主要油口数 四通(不包括控制油和泄漏油口) 五通 电磁换向阀 液动换向阀 按控制方式分< 电液换向阀 机动换向阀 手动换向阀

汽包水位双室平衡容器2008

汽包水位双室平衡容器2008-03-31 09:20 分类:默认分类 字号:大中小 践为基础,剖析了双室平衡容器的工作原理与特性。重点论述了补偿系统的建立方法与步骤,同时指出了应用中的常见错误并提出了解决方案。 关键词:水位测量汽包水位双室平衡容器补偿 1.摘要 本文以实践为基础,剖析了双室平衡容器的工作原理与特性。重点论述了补偿系统的建立方法与步骤,同时指出了应用中的常见错误并提出了解决方案。 2.前言 汽包水位是锅炉及其控制系统中最重要的参数之一,双室平衡容器在其中充当着不可或缺的重要角色。但是由于一些用户对于双室平衡容器及其测量补等方面缺少全面的必要的了解或者疏漏,致使应用中时有错误发生,甚至形成安全隐患。例如胜利油田胜利发电厂一期工程,该工程投入运行早期其汽包水位测量系统的误差竟达70~90mm,特殊情况下误差将会更大(曾因此造成汽包满水停机事故)。迄今为止,据不完全了解,目前仍有个别用户存在一些类似的问题或者其它问题。汽包水位是涉及机组安全与和运行的重要参数和指标,因此不允许任何人为的误差。为使用户能够更好地掌握双室平衡容器在汽包水位测量中的应用,谨撰此文。不足之处,请不吝指正。 3.双室平衡容器的工作原理 3.1.简介 双室平衡容器是一种结构巧妙,具有一定自我补偿能力的汽包水位测量装置。它的主要结构如图1所示。在基准杯的上方有一个圆环形漏斗结构将整个双室平衡容器分隔成上下两个部分,为了区别于单室平衡容器,故称为双室平衡容器。为便于介绍,这里结合各主要部分的功能特点,将它们分别命名为凝汽室、基准杯、溢流室和连通器,另外文中把双室平衡容器汽包水位测量装置简称为容器。

圆盘式疏水阀工作原理

圆盘式疏水阀工作原理 民经济保持了发展速度较快、物价较低、效益较好的势头。胡锦涛就做好下半年的经济工作提出了6点要求。一是要切实控制固定资产投资规模。要继续加强和改善宏观调控,区别对待,分类指导,从信贷、土地、环境等方面采取有效措施,坚决抑制高耗能、高污染和产能过剩行业盲目扩张,切实把经济发展的着力点放在提高质量和效益上来。二是要积极扩大国内需求。要进一步增强内需对经济增长的拉动作用,扩大居民特别是农民和城镇中低收入者的消费,加大对社会发展的投入,加快发展农村教育、医疗、文化等社会事业和公共服务。三是要扎实推进社会主义新农村建设。要坚持抓好农业生产,继续推进农村综合改革,以生产发展和农民增收为重点,稳定和完善各项支农惠农政策,加强对新农村建设的指导,认真解决农民生产生活中的实际问题,努力使农业基础地位更加巩固、农民生活水平不断提高。四是要加快推进重点领域的体制改革。要毫不动摇地坚持社会主义市场经济的改革方向,进一步完善社会主义市场经济体制,完善宏观调控体系、行政管理体制和经济法律制度,深化国有企业、财税金融等方面的 >>产品中心>>自动自由浮球式蒸汽疏水阀 首页 一、产品[自动自由浮球式蒸汽疏水阀]的详细资料: 产品名称:自动自由浮球式蒸汽疏水阀 产品特点:疏水阀是自动阀门,尤其对压力低、排水量低和温度稳定性要求高,不宜带存凝结 水的蒸汽设备更为适用。 二、工作原理:

本产品根据浮力的原理,使阀体内的浮球随水位变化作升降运动,以达到阀门启闭,即排水阻汽的作用。 三、结构特点: 1、能连续排水、性能稳定、排水量大、漏水量小。 2、能排连续饱和水,至使设备凝结水滞存量较少、升温快、加热温度稳定。 3、有自动排冷空气装置,无汽锁现象,工作平衡无噪音。 四、主要零件材料: 主要零件材料 阀体碳钢 阀盖碳钢 阀座不锈钢 过滤器不锈钢 五、自动自由浮球式蒸汽疏水阀主要外型及连接尺寸: 尺寸 型号CS11H-16C 口径DN152025324050 L150150150270280290 H195195195250290300 H1103103103108108108 产品型号口径尺寸 DN L H D D1D2b f Z-Φd CS41H -16/25/ 40C-B 151951959565451424-Φ14 2019520010575551424-Φ14 2521522511585651424-Φ14 CS41H -16/25/ 40C-D 2527024511585651424-Φ14 32270250135100781624-Φ18 40280290145110851634-Φ18 502903001601251001634-Φ18 CS41H -16/25 C-F 504103801601251001634-Φ18 654103801801451201834-Φ18 804304201951601352038-Φ18 1004304402151801552038-Φ18 1254805102452101852238-Φ18

减压阀工作原理和选用

减压阀工作原理和选用 减压阀是通过改变节流面积,使流速及流体的动能改变,造成不同的压力损失,从而达到减压的目的,并依靠介质本身的能量控制与调节系统的调节,使阀后压力的波动与弹簧力相平衡,使阀后压力在一定的误差围保持恒定的自动阀门。 减压阀选用原则: 1.减压阀进口压力的波动应控制在进口压力给定值的80%~105%,如超过该围,减压阀的性能会受影响。 2.通常减压阀的阀后压力Pc 应小于阀前压力的0.5 倍,即Pc<0.5P1。减压阀的每一档弹簧只在一定的出口压力围适用,超出围应更换弹簧。 3.在介质工作温度比较高的场合,一般选用先导式活塞式减压阀或先导式波纹管减压阀。 4.介质为空气或水(液体)的场合,一般宜选用直接作用薄膜式减压阀或先导式薄膜式减压阀。 5.介质为蒸汽的场合,宜选用先导活塞式减压阀或先导波纹管减压阀。 6.为了操作、调整和维修的方便,减压阀一般应安装在水平管道上。 一、减压阀的工作原理 直动式减压阀

图14—1a所示为直动式带溢流阀的减压阀(简称溢流减压阀)的结构图。 压力为P1的压缩空气,由左端输入经阀口10节流后,压力降为P2输出。P2的大小可由调压弹簧2、3进行调节。顺时针旋转旋钮1,压缩弹簧2、3及膜片5使阀芯8下移,增大阀口10的开度使P2增大。若反时针旋转旋钮1,阀口10的开度减小,P2随之减小。 若P1瞬时升高,P2将随之升高,使膜片气室6压力升高,在膜片5上产生的推力相应增大,此推力破坏了原来力的平衡,使膜片5向上移动,有少部分气流经溢流孔12、排气孔11排出。在膜片上移的同时,因复位弹簧9的作用,使阀芯8也向上移动,关小进气阀口10,节流作用加大,使输出压力下降,直至达到新的平衡为止,输出压力基本又回到原来值。若输入压力瞬时下降,输出压力也下降、膜片5下移,阀芯8随之下移,进气阀口10开大,节流作用减小,使输出压力也基本回到原来值。逆时针旋转旋钮1。使调节弹簧2、3放松,气体作用在膜片5上的推力大于调压弹簧的作用力,膜片向上曲,靠复位弹簧的作用关闭进气阀口10。再旋转旋钮1,进气阀芯8的顶端与溢流阀座4将脱开,膜片气室6中的压缩空气便经溢流孔12、排气孔11排出,使阀处于无输出状态。 总之,溢流减压阀是靠进气口的节流作用减压,靠膜片上力的平衡作用和溢流孔的溢流作用稳压;调节弹簧即可使输出压力在一定围改变。为防止以上溢流式减压阀徘出少量气体对周围环境的污染,可采用不带溢流阀的减压阀(即普通减压阀),其符号如图14—1c 所示。

平衡容器差压式液位计的结构及工作原理

平衡容器差压式液位计的结构及工作原理差压式液位计都会用到平衡容器,但有的使用者对其不太了解,尤其是搞不清楚双室平衡容器的内部结构,而影响了使用。云润仪表制造有限公司与您分享平衡容器相关知识。差压式液位计是基于液体静压平衡原理工作的,平衡容器实际上是一个“液位--差压”转换器。其作用是造成个恒定的液体静压力,使之与被测液位形成的液体静压力相比较,输出二者之差。平衡容器实际上就是个冷凝器,按结构分有单室平衡容器(单层)和双室平衡容器(双层)之分。大型锅炉用的平衡容器结构要复杂些,在此仅介绍工业锅炉常用的FP型平衡容器。 单室平衡容器的结构较简单,如图所示。测量低压容器的液位时,当容器内外温差大,或气相容易凝结成液体时,如除氧水箱的水位,大多采用单室平衡容器进行测量。测量前应根据所测介质的性质,把平衡容器的堵头拆开,灌入冷水或其他液体。对一些化工生产的有毒有害场合平衡容器内装的是隔离液。

双室平衡容器的结构如图所示。测量锅炉汽包水位采用双室平衡容器,平衡容器由内外两层容室构成。平衡器的外层容室与锅炉汽包的蒸汽相连且充满了冷凝水;内层容室经平衡器下侧导压管与锅炉汽包的水相连,使用的是连通器原理,所以内层容室水位高度跟随汽包水位而变化。这样结构的双层容器保证了外层容室和内层容室的水温基本相等,因而可以减少由于温度不同所产生的测量误差。 用双室平衡容器测量锅炉水位,双室平衡器的外层容室与锅炉汽包的蒸汽相连,外层容室内充满了冷凝水;当外层容室的水面低于平衡器上端导压管时,靠汽包蒸汽的冷凝水补充,当水面高于平衡器上端导压管时,水经导压管流人锅炉汽包,

使外层容室水位高度始终保持不变。内层容室经平衡器下侧导压管与锅炉汽包的水相连,其水位高度随汽包的水位变化而变化。如果蒸汽的压力、温度参数恒定时,差压变送器的输出信号仅与锅炉汽包的水位有关。 对于低压锅炉,由于内层容器内水的密度近似等于饱和温度下水的密度,所以双室平衡容器内层容器中的水柱高度也就等于汽包中的实际水位高度。由于平衡器外层容室与差压变送器的低压侧连接,内层容室与差压变送器高压侧连接。此时H、L之间产生的差压为△P=Lρl-[ρ2H+(L-H)×ρQ]

倒置桶式疏水阀的工作原理和适用范围

倒置桶式疏水阀的工作原理和使用范围 杭州瓦特节能工程有限公司技术部李少鹏 倒置桶式疏水阀是一种机械型疏水阀,其工作原理是根据蒸汽和冷凝水的密度不同而产生浮力,带动阀芯阀座的调节和开关。其主要结构是一个倒置的不锈钢开口桶,桶的顶部连接阀芯杠杆。瓦特倒置桶疏水阀的原理和结构使其具有一些无以伦比的特点和优势。 1.高效节能是由于性能可靠 在各种疏水阀的工作原理中,瓦特倒置桶型是最可靠的,其全部设计的核心是一个独特的杠杆系统,该系统将浮桶的重力放大以便开启受到压差作用的阀瓣。排量大,有水就排,饱和态排水。 由于浮桶开口倒置,所以它可以防止由于水击所造成的损坏,并且为了延长期其使用寿命,各磨损点都采取了加固措施。倒置桶型疏水阀只有两个运动部件――阀门杠杆悬挂件及倒置桶,不存在固定支点和复杂的连接,不会发生卡死和阻塞。 2.即使零件磨损后仍可节能 倒置桶型疏水阀的开启与关闭是根据凝结水和蒸汽的密度差来工作的――倒置桶原理。其开启动作非常轻缓,从而减少了磨损,这一简单的事实表明倒置桶型疏水阀的磨损大大小于其它种类的疏水阀。 事实上,倒置桶型疏水阀发生磨损后其密封反而有所改善,因为阀瓣和阀座形成了完整的接触环线,所有的关闭力都集中在较窄的密封环线上,从而加强了密封。 随着使用时间的增加,瓦特倒置桶型疏水阀将继续有效的工作,实际磨损使阀孔的直径略微增加,而它愈磨损,其密封性就愈好,因为随着磨擦的增大,球型阀瓣就越来越深的陷入阀座中,从而保证了密封性。 比较高的水封高度可以消除由于机械死区的存在而导致的蒸汽泄露,这对负荷变化较大的应用很适应,比同样是机械型的杠杆浮球式蒸汽疏水阀节能10%以上。 3.耐磨耐腐蚀部件 瓦特倒置桶型疏水阀的不锈钢阀瓣和阀座被单独磨削加工后在机械装置上一起配研,所有的其它部件都采用耐磨损、耐腐蚀的不锈钢。 4.空气和二氧化碳的排放 倒置桶型蒸汽疏水阀可以自动连续地排放空气和二氧化碳气体而没有冷滞后

2位5通阀原理

二位五通电磁阀原理图解 电-气转化组件将电讯号转化为气动讯号,电气讯号输入控制了气动输出。最常用的电-气转换组件是电磁阀(Solenoid actuated valves) 。电磁阀既是电器控制部分和气动执行部分的接口,也是和气源系统的接口。电磁阀接受命令去释放,停止或改变压缩空气的流向,在电-气动控制中,电磁阀可以实现的功能有:气动执行组件动作的方向控制,ON/OFF开关量控制,OR/NOT/AND 逻辑控制。在电磁阀家族中,最重要的是电磁控制换向阀(Solenoid actuated directional control valves) 。 电磁控制换向阀的工作原理 在气动回路中,电磁控制换向阀的作用是控制气流通道的通、断或改变压缩空气的流动方向。主要工作原理是利用电磁线圈产生的电磁力的作用,推动阀芯切换,实现气流的换向。按电磁控制部分对换向阀推动方式的不同,可以分为直动式电磁阀和先导式电磁阀。直动式电磁阀直接利用电磁力推动阀芯换向,而先导式换向阀则利用电磁先导阀输出的先导气压推动阀芯换向。 图4.2a表示3/2(三路二位)直动式电磁阀(常断型)结构的简单剖面图及工作原理。线圈通电时,静铁芯产生电磁力,阀芯受到电磁力作用向上移动,密封垫抬起,使1、2接通,2、3断开,阀处于进气状态,可以控制气缸动作。当断电时,阀芯靠弹簧力的作用恢复原状,即1、2断,2、3通,阀处于排气状态。

图4.2b表示5/2(五路二位)直动式电磁阀(常断型)结构的简单剖面图及工作原理。起始状态,1,2进气﹔4,5排气﹔线圈通电时,静铁芯产生电磁力,使先导阀动作,压缩空气通过气路进入阀先导活塞使活塞启动,在活塞中间,密封圆面打开通道,1,4进气,2,3排气﹔当断电时,先导阀在弹簧作用下复位,恢复到原来的状态。

单室平衡容器原理doc资料

锅炉汽包水位测量误差分析 汽包水位是电厂的主要监控参数之一,正确测量汽包水位是锅炉安全运行的保证。传统的测量方式有:就地双色水位计、电接点水位计、差压式水位计(单室或双室平衡容器补偿式)。就地水位计、电接点水位计的测量误差受锅炉压力、散热情况、安装形式、实际水位的影响,很难准确计算。因此高参数、大容量机组多以各种补偿差压水位计作为汽包水位测量的主要仪表,但这种水位计测量误差也同样受到诸多因素的影响。本文通过分析汽包水位计的测量方式和水位测量误差的原因,并对特定工况下汽包水位的测量进行定量计算分析,提出减少水位测量误差的方法和措施。 一、就地水位计: 就地水位计是安装在锅炉本位上的直读式仪表,是锅炉厂必配的基本设备,大容量机组均采用工业电视远传到集控室监视,一般都配有两套,分别安装在汽包的两端。 就地水位计有玻璃、云母和牛眼之分,工作原理都是连通管原理,连通管原理是:在液体密度相同的条件下,连通管中各个支管的液位均处于同一高度。就地水位计如图1所示。

式中: h——汽包正常水位距水侧取样的距离,mm △h——水位计中的水位与汽包中水位的差值,mm Ps——饱和蒸汽密度,kg/m3 Pw——饱和水密度,kg/m3 Pa——水位计中水的平均密度,kg/m3 Ps'——水位计中蒸汽的密度,kg/m3 对就地水位计来说,汽包内的水温是对应压力下的饱和温度,饱和蒸汽通过汽侧取样孔进入水位计,水位计的环境温度远低于蒸汽温度,使蒸汽不断凝结成水,并迫使水位计中多余的水通过水侧取样管流回汽包。 从水和蒸汽的特性表可看出:在常温常压下,汽包和水位计中的水密度是相等的,从式(1)可见,水位计中的水位与汽包内的水位也是相同的,且与h值无关;随着汽压的升高,汽包中的水密度变小,蒸汽密度变大;而就地水位计因散热的影响,水位计中的水密度也变小,但变化幅度不如汽包内水的大;蒸汽密度虽也有增大,但变化幅度没汽包内的大,即Ps是不应等于Ps'的,但其影响只要保温处理的好,可忽略不计,下面的计算均是按Ps=Ps,来进行的;致使水位计中水位和汽包内水位的差值也随之增大,这一差值始终是就地水位计中水位低于汽包水位的主要因素;并且当h值改变时,水位差值也会改变。 为了给电厂提供参考,有的锅炉厂给出了就地水位计和汽包正常水位差值的参考数据见表1。

疏水阀的工作原理

疏水阀的工作原理 疏水阀是用于蒸汽管网及设备中,能自动排出凝结水、空气及其它不凝结气体,并阻水蒸汽泄漏的阀门。 根据蒸汽疏水阀工作原理的不同,蒸汽疏水阀可化为以下三种类型: 机械型:依靠蒸汽疏水阀内凝结水液卫高度的变化而动作,包括: 浮球式:浮子为封闭的空心球体 敞口向上浮子式:浮子为开口向上的桶型 敞口向下浮子式:浮子为开口向下的桶型 热静力型:依靠液体温度的变化而动作,包括: 双金属片:敏感原件为双金属片 蒸汽压力式:敏感原件为波纹管或墨盒,内部充入挥发性液体 热动力型:依靠液体的热动力学性质的变化而动作。 圆盘式:由于在相同的压力下,液体与气体的流速不同,所产生的不同的动,静压力,驱使圆盘阀片动作 脉冲式:由于不同温度的凝结水通过两极串连节流孔板式,坐在两极节流孔板之间形的不同压力,驱使阀瓣动作。 疏水阀在蒸汽加热系统中起到阻汽排水作用,选择合适的疏水阀,可使蒸汽加热设备达到最高工作效率。要想达到最理想的效果,就要对各种类型疏水阀的工作性能、特点进行全面的了解。 疏水阀的品种很多,各有不同的性能。选用疏水阀时,首先应选其特性能满足蒸汽加热设备的最佳运行,然后才考虑其他客观条件,这样选择你所需要的疏水阀才是正确和有效的。疏水阀要能“识别”蒸汽和凝结水,才能起到阻汽排水作用。“识别”蒸汽和凝结水基于三个原理:密度差、温度差和相变。于是就根据三个原理制造出三种类型的疏水阀:分类为机械型、热静力型、热动力型。 蒸汽疏水阀的概述 蒸汽疏水阀是用于蒸汽供热设备和蒸汽管道上,能自动地排除蒸汽使用设备和管道中的冷凝水、空气及其它不可凝结的气体,并能防止蒸汽泄漏的自动阀门。蒸汽广泛地应用于工业生产和生活设施中,无论在蒸汽的输送管道系统,还是利用蒸汽来进行加热、干燥、保温、消毒、蒸煮、浓缩、换热、采暖、空调等工艺,过程中所产生的冷凝水都需要通过蒸汽疏水阀排除,而不允许蒸汽泄漏。蒸汽疏水阀性能的优劣,对于蒸汽系统的正常运行,用汽设备热效率的提高及能源的合理利用等方面具有至关重要的作用。 一、国内蒸汽疏水阀现状概述 蒸汽疏水阀是用于蒸汽供热设备和蒸汽管道上,能自动地排除蒸汽使用设备和管道中的冷凝水、空气及其它不可凝结的气体,并能防止蒸汽泄漏的自动阀门。蒸汽广泛地应用于工业生产和生活设施中,无论在蒸汽的输送管道系统,还是利用蒸汽来进行加热、干燥、保温、消毒、蒸煮、浓缩、换热、采暖、空调等工艺,过程中所产生的冷凝水都需要通过蒸汽疏水阀排除,而不允许蒸汽泄漏。蒸汽疏水阀性能的优劣,对于蒸汽系统的正常运行,用汽设备热效率的提高及能源的合理利用等方面具有至关重要的作用。特别是在煤、石油及天然气等一次能源日益减少的情况下,世界各国政府都将节约能源和开发新能源作为重要的国策。而蒸汽疏水阀在蒸汽使用系统的节能方面起着不可忽视的关键作用。 二、各种蒸汽疏水阀的工作原理

疏水阀的工作原理

疏水阀的分类及工作原理 疏水阀在蒸汽加热系统中起到阻汽排水作用,选择合适的疏水阀,可使蒸汽加热设备达到最高工作效率。要想达到最理想的效果,就要对各种类型疏水阀的工作性能、特点进行全面的了解。 疏水阀的品种很多,各有不同的性能。选用疏水阀时,首先应选其特性能满足蒸汽加热设备的最佳运行,然后才考虑其他客观条件,这样选择你所需要的疏水阀才是正确和有效的。疏水阀要能“识别”蒸汽和凝结水,才能起到阻汽排水作用。“识别”蒸汽和凝结水基于三个原理:密度差、温度差和相变。于是就根据三个原理制造出三种类型的疏水阀:分类为机械型、热静力型、热动力型。 一、机械型疏水阀 机械型也称浮子型,是利用凝结水与蒸汽的密度差,通过凝结水液位变化,使浮子升降带动阀瓣开启或关闭,达到阻汽排水目的。机械型疏水阀的过冷度小,不受工作压力和温度变化的影响,有水即排,加热设备里不存水,能使加热设备达到最佳换热效率。最大背压率为80%,工作质量高,是生产工艺加热设备最理想的疏水阀。 机械型疏水阀又可分为自由浮球式、自由半浮球式、杠杆浮球式、倒吊桶式等 1、自由浮球式疏水阀 自由浮球式疏水阀的结构简单,内部只有一个活动部件精细研磨的不锈钢空心浮球,既是浮子又是启闭件,无易损零件,使用寿命很长,“YQ牌”疏水阀内部带有Y系列自动排空气装置,非常灵敏,能自动排空气,工作质量高。 设备刚启动工作时,管道内的空气经过Y系列自动排空气装置排出,低温凝结水进入疏水阀内,凝结水的液位上升,浮球上升,阀门开启,凝结水迅速排出,蒸汽很快进入设备,设备迅速升温,Y系列自动排空气装置的感温液体膨胀,自动排空气装置关闭。疏水阀开始正常工作,浮球随凝结水液位升降,阻汽排水。自由浮球式疏水阀的阀座总处于液位以下,形成水封,无蒸汽泄漏,节能效果好。最小工作压力0.01Mpa,从0.01Mpa至最高使用压力范围之内不受温度和工作压力波动的影响,连续排水。能排饱和温度凝结水,最小过冷度为0℃,加热设备里不存水,能使加热设备达到最佳换热效率。背压率大于85%,是生产工艺加热设备最理想的疏水阀之一。 2、自由半浮球式疏水阀 自由半浮球式疏水阀只有一个半浮球式的球桶为活动部件,开口朝下,球桶即是启闭件,又是密封件。整个球面都可为密封,使用寿命很长,能抗水锤,没有易损件,无故障,经久耐用,无蒸汽泄漏。背压率大于80%,能排饱和温度凝结水,最小过冷度为0℃,加热设备里不存水,能使加热设备达到最佳换热效率。 当装置刚启动时,管道内的空气和低温凝结水经过发射管进入疏水阀内,阀内的双金属片排空元件把球桶弹开,阀门开启,空气和低温凝结水迅速排出。当蒸汽进入球桶内,球桶产生向上浮力,同时阀内的温度升高,双金属片排空元件收缩,球捅漂向阀口,阀门关闭。当球桶内的蒸汽变成凝结水,球桶失去浮力往下沉,阀门开启,凝结水迅速排出。当蒸汽再进入球桶之内,阀门再关闭,间断和连续工作。 3、杆浮球式疏水阀 杠杆浮球式疏水阀基本特点与自由浮球式相同,内部结构是浮球连接杠杆带动阀心,随凝结水的液位升降进行开关阀门。杠杆浮球式疏水阀利用双阀座增加凝结水排量,可达到体积小排量大,最大疏水量达100吨/小时,是大型加热设备最理想的疏水阀。 4、倒吊桶式疏水阀 倒吊桶式疏水阀内部是一个倒吊桶为液位敏感件,吊桶开口向下,倒吊桶连接杠杆带动阀心开闭阀门。倒吊桶式疏水阀能排空气,不怕水击,抗污性能好。过冷度小,漏汽率小

气体钢瓶减压阀工作原理及使用方法

气体钢瓶减压阀工作原理及使用方法 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

气体钢瓶减压阀工作原理及使用方法在物理化学实验中,经常要用到氧气、氮气、氢气、氩气等气体。这些气体一般都是贮存在专用的高压气体钢瓶中。使用时通过减压阀使气体压力降至实验所需范围,再经过其它控制阀门细调,使气体输入使用系统。最常用的减压阀为氧气减压阀,简称氧气表。 1.氧气减压阀的工作原理 氧气减压阀的高压腔与钢瓶连接,低压腔为气体出口,并通往使用系统。高压表的示值为钢瓶内贮存气体的压力。低压表的出口压力可由调节螺杆控制。 使用时先打开钢瓶总开关,然后顺时针转动低压表压力调节螺杆,使其压缩主弹簧并传动薄膜、弹簧垫块和顶杆而将活门打开。这样进口的高压气体由高压室经节流减压后进入低压室,并经出口通往工作系

统。转动调节螺杆,改变活门开启的高度,从而调节高压气体的通过量并达到所需的压力值。 减压阀都装有安全阀。它是保护减压阀并使之安全使用的装置,也是减压阀出现故障的信号装置。如果由于活门垫、活门损坏或由于其它原因,导致出口压力自行上升并超过一定许可值时,安全阀会自动打开排气。 2.氧气减压阀的使用方法 (1)按使用要求的不同,氧气减压阀有许多规格。最高进口压力大多为,最低进口压力不小于出口压力的2.5倍。出口压力规格较多,一般为,最高出口压力为。

(2)安装减压阀时应确定其连接规格是否与钢瓶和使用系统的接头相一致。减压阀与钢瓶采用半球面连接,靠旋紧螺母使二者完全吻合。因此,在使用时应保持两个半球面的光洁,以确保良好的气密效果。安装前可用高压气体吹除灰尘。必要时也可用聚四氟乙烯等材料作垫圈。 (3)氧气减压阀应严禁接触油脂,以免发生火警事故。 (4)停止工作时,应将减压阀中余气放净,然后拧松调节螺杆以免弹性元件长久受压变形。 (5)减压阀应避免撞击振动,不可与腐蚀性物质相接触。 3.其它气体减压阀

相关主题
文本预览
相关文档 最新文档