当前位置:文档之家› 电动机展开图

电动机展开图

电动机展开图
电动机展开图

建立时间:2006年10月11日

{三相异步电动机绕组检修-6}

用双层叠式绕组画展开图例3、一台36槽4极三相异步电动机,要求用双层叠式画展开图。

1、求每极所占槽数=36/4=9

2、求每极每相所占槽数=每极所占槽数/3相=9/3=3

3、根据上二式计算,用不同的线条分出各极、各相槽数。

该图表现为每极占9槽,每相占每极中的3槽。同时可根据每相邻二相电流必定相反。按此标出电流方向:在第一磁极里1、2、3三槽为A相,电流向上。4、5、6三槽为C相,电流向下。7、8、9槽三槽为B相,电流向上。以后各极各相均按此顺序排列,但电流方向在N极的均向上,而在S极的均向下。如下图所示

4、按双层叠式绕组方式画出第一相绕组(对于双层叠式绕组,若是整距绕组,基本上还是一个线圈的一边在N极,另一边必定在S极。注意:这是指整距绕组。),如下图所示

由上图可以看出1、2、3、10、11、12、19、20、21、28、29、30计12槽为A 相绕组(上图中的每一个槽内有二条线,实线部分为槽内线圈的上层绕组,双点划线为下层绕组。)。上下层绕组必须分清。每个线圈由如下组成:第1槽的实线

与第10的虚线为一个线圈,第2槽的实线与第11的虚线为一个线圈,第3槽的实线与第12的虚线为一个线圈。第10槽的实线与第19的虚线为一个线圈,第11槽的实线与第20的虚线为一个线圈,第12槽的实线与第21的虚线为一个线圈------余类推。

5、连接方法按电流方向、向右方向、依线圈的排列顺序依次连接。如下图所示

连接顺序:第1槽的实线为第一相进线其(电流向上)。其尾线由第12槽的双点划线(虚线、电流向下)出与第21槽的虚线相连(电流向上),其出线头由第10槽实线出(电流向下),由第10槽的实线与第19槽的实线相连(电流向上),其出线由第30槽的虚线出(电流向下),第30槽的虚线再与第3槽的虚线相连(电流向上),其出线由第28槽的实线出(电流向下)。细看就可以发现,每一槽的电流方向均与上方所标注的电流方向相。

6、第二相绕组的进线及其绕组画法

计算每槽电角度=(极数X180度)/36=20度

求120度后的第一槽120/20=6槽由于第一相进线是从第1槽进,1、2、3、4、5、6槽,每槽20度,计120度,120度后的第一槽则是第7槽。就是说第二相绕组的进线应是由第7槽开始,并按第一相绕组相同的方法接线。

7、第三相绕组的进线及其画法

第三相进线的推算与第二相计算法一样,只不过是以第二相进线头为准计算的。即第7、8、9、10、11、12槽每槽为20度,合计和为120度,120度后的第一槽为第13槽。如下图所示

8、下线口诀:

双层绕组:

先底层,迂满距,两边下,先底层,后面层,倒序下,至结束。

9、下线先后顺序下第10、11、12槽的虚线(先底层)、下第13、14、15槽的虚线(先底层)、下第16、17、18槽的虚线(先底层)、下第19、20、21槽(迂满距,两边下,先底层)、下第10、11、12槽的实线(后面层)、下第22、23、24槽的虚线(迂满距,两边下,先底层)、下第13、14、15槽实线(后面层)------以下均按这方法下线。

将乐老连2007/5/19 15:24:19 | 阅读全文(14578)| 回复

(23)

实训二三相异步电机绕组结构

一、有关术语和基本参数

(一)线圈和线圈组

1.线圈

线圈是组成绕组的基本元件,

用绝缘导线(漆包线)在绕线模

上按一定形状绕制而成。一般由

多匝绕成,其形状如图1-2-1所

示。它的两直线段嵌入槽内,是

电磁能量转换部分,称线圈有效边;两端部仅为连接有效边的“过(a)菱形线圈(b)弧形线圈(c)简化画法桥”,不能实现能量转换,故端部越图1-2-1常用线圈及简化画法

长材料浪费越多;引线用于引入电流的接线。图

1-2-2是线圈嵌入铁心槽内的情况。

(a)立体图 (b)展开图 (c)有效边在槽内实际情况

图1-2-2单层绕组部分线圈嵌入铁心槽内

2.线圈组

几个线圈顺接串联即

构成线圈组,异步电机中

最常见的线圈组是极相组。

它是一个极下同一相的几

个线圈顺接串联而成的一

组线圈,见图1-2-3所示。(a)连接方法(b)展开图(c)简化图

图1-2-3 一个极相组线圈的连接方法(二)定子槽数和磁极数2

1.定子槽数

定子铁心上线槽总数称之为定子槽数,用字母表示。如图1-2-2(a)、(b)所示的就为电机定子铁心上的线槽。

2.磁极数2

磁极数是指绕组通电后所产生磁场的总磁极个数,电机的磁极个数总是成对出现,所以电机的磁极数用2表示。异步电机的磁极数可从铭牌上得到,也可根据电机转速计算出磁极数,即

式中—电源频率;

—磁极对数;

—电机同步转速,可从电机转速取整数后获得。

它在交流电机中为确定转速的重要参数,即

(r/min)

(三)极距τ和节距y

1.极距τ

相邻两磁极之间的槽距,通常用槽数来表示

(槽)

2.节距

一个线圈的两有效边所跨占的槽数。为了获得较好的电气性能,节距应尽量接近极距τ。即

(取整)

在实际生产中常采用的是整距和短距绕组。

(四)每极相槽数与槽距角

1.每极相槽数

是指绕组每极每相所占的槽数

(槽)

2.槽距角

指定子相邻槽之间的间隔,以电角度来表示,即

(电角度)

(五)线径与并绕根数

线径是指绕制电机时,根据安全载流量确定的导线直径。功率大的电机所用导线较粗,当线径过大时,会造成嵌线困难,可用几根细导线替代一根粗导线进行并绕。其细导线根数

就为并绕根数

(六)单层与双层绕组

单层绕组是在每槽中只放一个有

效边,这样每个线圈的两有效边要分

别占一槽。故整个单层绕组中线圈数

等于总槽数的一半。 1—槽楔;2—覆盖绝缘;3—槽绝缘;4—层间绝缘;

双层绕组是在每槽中用绝缘隔为 5—上层线圈边;6—下层线圈边;

上、下两层,嵌放不同线圈的各一有图1-2-4 单、双层槽内布置情况

效边,线圈数与槽数相等,图1-2-4是单层、双层槽内布置情况示意图。

二、三相绕组的排列方法

为了在电机内形成旋转磁场,定子槽内各有效边应流过哪一相的电流是有规律的,对三相绕组进行排列其目的,就是体现规律,形成旋转磁场。

(一)三相绕组的构成规则

1.每相绕组的槽数必须相等,且在定子上均匀分布;

2.三相绕组在空间应相互间隔1200电角度。

3.三相绕组一般采用600相带,即三相有效边在一对磁场下均匀地分为6个相带。

(二)排列方法

1.计算基本参数

每极相槽数;

槽距角。

2.编写槽号

编号从第一槽开始顺序编号。

3.划分相带

取个槽为一个相带,相带按U

1-W

2

-V

1

-U

2

-W

1

-V

2

的顺序循环排列。

4.标定电流正方向

把U

1、V

1

、W

1

相带电流正方向选定为指向上方,则U

2

、V

2

、W

2

相带电流正方向指向下方。

即相邻相带的电流正方向上下交替。

5.作绕组表

槽号

相带

6.排列实例

图1-2-5是三个三相绕组分相带、标电流的排列情况。取不同的极数和槽数,以利于观

察其规律。(a)图为三相4极24槽;(b)图为三相2极24槽;(c)图为三相4极36槽。

(a)3相4极24槽

(b)3相2极24槽

(c)3相4极36槽

图1-2-5定子绕组有效边相带分布及各相电流正方向

只要按上述排列方法,使U1相带各槽导体流入U相电流;V1相带各槽导体流入V相电流;W1相带各槽导体流入W相电流,而U2相带、V2相带和W2相带对应的各槽导体分别流出U相、V相和W相电流,即可满足绕组空间对称的规则。

三、三相绕组的端部连接方式

连接端部是为了将分布在各相带的槽导体构成三相对称绕组,连接方式是多种的,每一种连接方式就形成一种形式的绕组。

(一)三相单层绕组端部连接方式性能及特点

1.等宽度式(叠式)

线圈为等距,所有线圈节距相同,线模容易调整;线圈节距短于极距(整距),较省线材;单层绕组的线圈数目少,嵌线省时,但电气性能较差。

2.同心式

绕组是单层布线,有较高的槽满率;线圈节距的平均值为等距,绕组端部长度大而耗线材,且漏磁较大、电气性能也较差;可采用分层嵌线而形成“双平面”或“三平面”绕组,使嵌线方便,多适用于二极电机。

3.交叉式

绕组为整距,但线圈平均节距较短,用线较节省;每组线圈数和节距都不等,给嵌线工艺增加了困难;槽满率较高,电气性能较差。另外,端部连接方式也可成为同心交叉式,即把等宽度的两线圈改成同心式。

(二)三相单层4极36槽绕组端部连接方式

三相

4极36槽可知该绕组的每极相槽数q=3,端部连接方式可能出现三种方式,用图1-2-6(a)、(b)、(c)描绘,只连接其中某一相在各分图上说明。

a)等宽

式(叠

式)

(b)同心式

(c)交叉式

图1-2-6 单层绕组的三种类型

在实际中,选用哪种端部连接方式,这不是修理人员所考虑的,只有设计人员才考虑。对修理人员来说,原设计数据是重绕电机的重要依据,是不可更改的。

(三)三相单层4极24槽绕组端部连接方式

由三相4极24槽的两个基本参数可计算出每极相槽数=2,根据其规则排列组合有三种端部连接方式,见图1-2-7所示。

(a)等宽式(叠式)

(b)同心式

(c)单链式

总之,以上几种单层绕组型式,具有高的槽利用率、不易发生相间短路、线圈数目较少、

嵌线工时省等优点,在小型电机中得到广泛应用。常用的JO

2

及Y系列电机中,单层叠式绕组用于的4、6、8极电机;单层交叉式绕组用于的2、4极电机;同心式绕组用于的2极电机。这些绕组型式在日常的修理工作中都经常可以见到。另外,单层绕组由于结构的限定,其绕组端部较厚,不易整形,无法利用适当的短距来改善绕组的电磁性能,这就是单层绕组的电机性能较差的原因。

对容量大,要求高的电机,通常用双层绕组。双层绕组的节距可任意选定,利用适当的短距系数即可消除气隙磁场中的高次谐波,改善电机性能。

(四)三相双层绕组端部连接方式

双层绕组在每槽内嵌放两个有效边,形成了上层边与下层边,各层均有自身的分布规则。绕组的上层边仍按单层对称三相绕组的分相规则进行,划分出每对磁极下的

U 1-W

2

-V

1

-U

2

-W

1

-V

2

各相带,而下层边是按给定的节距,确定每一线圈的下层边。节距

的确定可按原先设定值,在拆绕组时记录下来。也可计算确定节距:先由τ=确定极

距,再按取整数即可。最后用叠绕的方式连接各线圈端部。

双层绕组的每个线圈两个有效边一定要分别置于上层边和下层边,连接线圈端部组成极相组和相绕组所依据的电流正方向是按各线圈上层有效边所标定的,具体端部连接方式

见图1-2-8所示,图为三相4极36槽双层叠绕组。

(a)U相绕组

b)三相绕组

图1-2-8 双层叠绕组展开图

(五)三相双层叠绕组端部连接方式性能及特点

1.性能

(a)由于能随意选择合理的节距,从而改善了电磁性能;

(b)线圈采用了短节距,使端部长度变小,省线材,并提高了效率. 2.特点

(a)所有线圈节距相同,绕制方便;

(b)线圈端部变形小,易整形;

(c)线圈数比单层绕组多一倍,故嵌线费工;

(d)在同一槽内由于嵌入异相线圈边,这样容易造成短路故障;

(e)层间需加绝缘,槽满率就较低。

四、实训要求

1.搞懂600相带在磁极下按U

1-W

2

-V

1

-U

2

-W

1

-V

2

规律排序的原因。

2.补画出图1-2-6(a)、(b)、(c)各分图的其它两相的端部接线,并作出绕组表,最后再把三相绕组接为Y接。

3.补画出图1-2-7各分图中其它两相的端部接线,作出绕组表,最后再把三相绕组接为△接,并将绕组接成二路并联的形式。

4.会画三相双层叠绕36槽二极绕组端部连接图和展开图。

5.对所要嵌线修理的三相异步电机,作出绕组表,画出绕组端部连接图和展开图。体会“按分相后确定的各导体有效边内电流正方向连接”这句话,简练地总结出三相绕组端部连接的接线规律。

三相异步电动机定子绕组展开图绘制教案

三相异步电动机定子绕组展开图绘制教案 课程: 《电机与变压器》 课题: 三相异步电动机单层链式定子绕组展开图绘制方法 教学目标: 要求学生掌握绘制定子绕组展开图的基本步骤和作图技巧,充分领悟电动机绕组的嵌线规律,为后期的电机实习做好准备。 教学重点: 正确绘制三相异步电动机单层链式定子绕组展开图 教学难点: 1、电机定子铁心是圆的,而展开图是平铺的,二者如何关联? 2、怎样正确连接U相绕组? 教学方法: 讲授法、示例法、练习法 时间: 2014年2月25日 地点: 多媒体教室 教者: 王泽忠 授课班级: 12电3.4班 教学过程: 【组织教学】 【复旧导入】 1、三相定子绕组的构成原则 2、电动机定子铁心是圆的,如何正确表达其绕组的结构?——运用展开图【新授】 三相异步电动机单层链式定子绕组展开图绘制方法 一、展开图的含义 将电动机从两个定子槽之间沿着轴线方向切开,然后展开平铺于一个平面上,是一种直观的、方便同学们了解和学习电动机的平面图形。 注: 其切开开口处不是电动机的槽,而是两槽之间的硅钢片铁心。 ==> 二、展开图的绘制 以三相单层链绕组为例: 绘制方法第一步: 计算参数

极距每极每相槽数 第二步: 画槽划出24 根平行线段,表示电机的24 个槽,并在其上标明槽号 第三步: 分极将24个槽分成4极,每个极下6个槽,极距为6槽,每个极占有180度电角度,并标明磁极号 第四步: 分相带每个极分三相,每相为两个槽,每个槽占有30度电角度,并按相带排列顺序U1—W2—V1—U2—W1—V2标明相带 第五步: 标明电流参考方向假设某一瞬间电流从绕组的首端流入,尾端流出,根据同一个相带中有效边的电流参考方向相同,相邻相带有效边的电流参考方向相反,标明电流参考方向。 第六步: 画单个线圈U相绕组包括第1、2、7、8、13、14、19、20共八个槽四个线圈,从节省端部导线的角度考虑,应该选择最短节距y =5,故四个线圈为2和7、8和13、14和19、20和1.

常见电动机控制电路图

电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为,要求电路能定时自动循环正反转 控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2串联的KT1、KT2断电延

时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

2极24槽电动机展开图

2极24槽电动机.绕组形式:单层迭绕,线圈节距=10(1-11).绕组形式,单层同心式,线圈节距=11(1-12),9(1-10). 2极36槽电动机.绕组形式:单层迭绕.线圈节距=15(1-16).绕组形式,单层同心式,线圈节距=17(1-18),15(1-16),13(1-14).绕组形式,双层选绕组,线圈节距=12(1-13). 4极24槽电动机,绕组形式:单层迭绕,绕组形式=5(1-6).绕组形式,单层同心式,线圈节距=5(1-6),7(1-8).绕组形式:双层迭绕,线圈节距5(1-6). 4极36槽电动机,绕组形式,单层单,双圈迭式布线,线圈节距=7(1-8)单圈,8(1-9)双圈.绕组形式:双层迭式,线圈节距=7(1-8).绕组形式:单层迭绕,线圈节距=9(1-10).绕组形式:单层同心式,线圈节距 =7(1-8),9(1-10),11(1-12).用双层叠式绕组画展开图 例3、一台36槽4极三相异步电动机,要求用双层叠式画展开图。 1、求每极所占槽数=36/4=9 2、求每极每相所占槽数= 每极所占槽数/3相=9/3=3 3、根据上二式计算,用不同的线条分出各极、各相槽数。 该图表现为每极占9槽,每相占每极中的3槽。同时可根据每相邻二相电流必定相反。按此标出电流方向:在第一磁极里1、2、3三槽为A相,电流向上。4、5、6三槽为C相,电流向下。7、8、9槽三槽为B相,电流向上。以后各极各相均按此顺序排列,但电流方向在N极的均向上,而在S极的均向下。如下图所示 4、按双层叠式绕组方式画出第一相绕组(对于双层叠式绕组,若是整距绕组,基本上还是一个线圈的一边在N极,另一边必定在S极。注意:这是指整距绕组。),如下图所示

电机展开图解读其嵌线工艺

由电机展开图解读其嵌线工艺摘要:在技校维修电工专业实习教学中,三相异步电动机的嵌线工艺是教学的重点,也是教学的难点。许多学生由于对三相异步电动机的展开图理解不深,嵌线时感觉无从下手,部分学生只是死记几种嵌线方法,不会灵活运用。本文结合展开图解读其嵌线工艺,以期对维修电工专业学生有所帮助。 关键词: 嵌线工艺电动机 1、单层链式绕组嵌线工艺图1是三相4极24槽单层链式绕组展开图。每极每相槽数为2,线圈节距为1—6。 图1 展开图上面一行数字表示嵌线顺序,下面一行数字表示线槽序号。由图可以看出每一相都有4个线圈。每一个线圈都有两个边,通常我们把先下的那一个边称为下层边,例如本例中的奇数槽里下的那一边(图上每个线圈的左边),都是下层边;后下的那一边称为上层边,例如本例中的偶数槽里下的那一边(图上每个线圈的右边),都是上层边。每一个上层边都压着两个下层边,例如本例中的6槽里下的上层边压着5槽、3槽下的下层边,由此可见,单层链式绕组嵌线时一定要吊起两把线圈最后下,即吊把线圈2把。嵌线步骤是按次序先嵌下层边,

后嵌上层边;最后嵌吊起的两把线圈的上层边。具体的嵌线顺序如下: (1)选好第一槽位置,靠近机座出线口。 (2)嵌槽1(U相第一个线圈的下层边),上层边吊起。 (3)空一槽24,嵌23槽(W相第一个线圈的下层边),上层边吊起。(4)再空一槽22,嵌21槽(V相第一个线圈的下层边),上层边按节距1—6压着1槽、23槽的下层边嵌入槽2。 (5)再空一槽20,嵌入19槽(U相第二个线圈的下层边),上层边按节距1—6压着23槽、21槽下层边嵌入24槽。此线圈与本相第一个线圈的连接关系是上层边与上层边相连或下层边与下层边相连,即尾、尾或首、首相连。 (6)以后W、V相按空一槽嵌入一槽的次序,轮流将U、W、V三相的4个线圈嵌完。最后把吊把线圈两把嵌入,至此整个绕组全部嵌完。 单层链式绕组的嵌线规律是:嵌1槽,空1槽,吊2把线圈。简称为“嵌1空1吊2”。 按此种方法嵌线,同相线圈之间的过桥线可不截断,连接时要注意翻把,使其首首相连、尾尾相连。最后留出的6个线头,隔一即为同名端,如V1、U1、W1和W2、V2、U2。 2、单层同心式绕组嵌线工艺 图2是三相2极24槽单层同心式绕组的展开图。每极每相槽数为4,节距为1—10、24—11(见U相)。 展开图上面一行数字表示嵌线顺序,下面一行数字表示线槽序号。由图可以看出每一相都有2组线圈,每一组线圈都有两个同心线圈组

典型电动机控制原理图及解说

1、定时自动循环控制电路 说明: 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器K A吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并 联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合 触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时 开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电 延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电 。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止 。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动 合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触 点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此

时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮 SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次 起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断 开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理: 图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2, KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机 的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2 电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件 ,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制 KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路 只有满足M1电动机先起动的条件,才能起动M2电动机。 3、电动机顺序控制电路

电动机控制原理图

三相异步电动机启动控制原理图 1、三相异步电动机的点动控制 点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路。所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。 典型的三相异步电动机的点动控制电气原理图如图3-1(a)所示。点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。其中以转换开关QS作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止。 点动控制原理:当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。按下启动按钮SB,接触器KM的线圈得电,带动接触器KM的三对主触头闭合,电动机M便接通电源启动运转。当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,带动接触器KM的三对主触头恢复断开,电动机M失电停转。在生产实际应用

中,电动机的点动控制电路使用非常广泛,把启动按钮SB换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行。 2.三相异步电动机的自锁控制 三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM的一对常开辅助触头。接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用。它主要由按钮开关SB(起停电动机使用)、交流接触器KM (用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。 欠压保护:“欠压”是指线路电压低于电动机应加的额定电压。“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护。因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”(即 电动机接通电源但不转动)的现象,以致损坏电动机。采用接触器自锁正转控制线路就可避免电动机欠压运行,这是因为当线路电压下降到一定值(一般指低于额定电压85%以下)时, 接触器线圈两端的电压也同样下降到一定值,从而使接触器线圈磁通减弱,产生的电磁吸力减小。当电磁吸力减小到小于反作用弹簧的拉力时,动铁心被迫释放,带动主触头、自锁触头同时断开,自动切断主电路和控制电路,电动机失电停转,达到欠压保护的目的。

电机基本控制原理图简介

电机基本控制原理图简介 一、星三角启动原理图简介 L1/L2/L3分别表示三根相线; QS表示空气开关; Fu1表示主回路上的保险; Fu2表示控制回路上的保险; SP表示停止按钮; ST表示启动按钮; KT表示时间继电器的线圈,后缀的数字表示它不同的触点; KMy表示星接触器的线圈,后缀的数字表示它不同的触点; KM△表示三角接触器的线圈,后缀的数字表示它不同的触点; KM表示主接触器的线圈,后缀的数字表示它不同的触点; U1/V1/W1分别表示电动机绕组的三个同名端; U2/V2/W2分别表示电动机绕组的另三个同名端; 为了叙述方便,将图纸整理了一下,添加了触点的编号。整理后的图纸见附图。 合上QS,按下ST,KT、KMy得电动作。 KMY-1闭合,KM得电动作;KMY-2闭合,电动机线圈处于星形接法,KMY-3断开,避免KM△误动作; KM-1闭合,自保启动按钮;kM-2闭合为三角形工作做好准备;kM-3闭合,电动机得电运转,处于星形启动状态。 时间继电器延时到达以后,延时触点KT-1断开,KMy线圈断电,KMY-1断开,KM通过KM-2仍然得电吸合着;KMY-2断开,为电动机线圈处于三角形接法作准备;KMY-3闭合,使KM△得电吸合; KM△-1断开,停止为时间继电器线圈供电;KM△-2断开,确保KMY不能得电误动作:KM△-3闭合是电动机线圈处于三角形运转状态。 电动机的三角形运转状态,必须要按下SP,才能使全部接触器线圈失电跳开,才能停止运转。

接线图:

二、电机直接启动原理图 图l中,三相电源的火线(相线)Ll、L2和L3接在隔离刀开关QS上端。QS的作用是在检修时断开电源.使受检修电路与电源之间有一个明显的断开点,保证检修人员的安全。FU 是一次回路的保护用熔断器。准备启动电动机时,首先合上刀开关QS,之后如果交流接触器KM主触点闭合,则电动机得电运行:接触器主触点断开,电动机停止运行。接触器触点闭合与否.则受二次电路控制。 图2中.FUl和FU2是二次熔断器. SBl是停止按钮.SB2是启动按钮.FH是热继电器的保护输出触点。按下SB2。交流接触器KMl的线圈得电,其主触点闭合,电动机开始运行。同时,接触器的辅助触点KMl-1也闭合。它使接触器线圈获得持续的工作电源,接触器的吸合状态得以保持。习惯上将辅助触点KMl一1称做自保(持)触点。 电动机运行中.若因故出现过流或短路等异常情况,热继电器FH(见图1)内部的双金属片会因电流过大而热变形,在一定时限内使其保护触点FH(见图2)动作断开,致使接触器线圈失电,接触器主触点断开,电动机停止运行,保护电动机不被过电流烧坏。保护动作后,接触器的辅助触点KMl-1断开,电动机保持在停运状态。 电动机运行中如果按下SBl.电动机同样会停止运行,其动作过程与热保护的动作过程相同。 停止指示绿灯HG和运行指示红灯HR分别受接触器的常『利(动断)或常开(动合)辅助触点KMl-2、KMl一3控制,用作信号指示。电流互感器TA的二次线圈串接电流表PA,电压表PV则直接接在电源线上.

双速电机接线图及控制原理分析

双速电机接线图及控制原理分析 一、双速电机控制原理调速原理 根据三相异步电动机的转速公式:n1=60f/p 三相异步电动机要实现调速有多种方法,如采用变频调速(YVP变频调速电机配合变频器使用),改变励磁电流调速(使用YCT电磁调速电机配合控制器使用,可实现无极调速),也可通过改变电动机变极调速,即是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的(这也是常见的2极电机同步转速为3000rpm,4极电机同步转速1500rpm,6极电机同步转速1000rpm等)。这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机,这就是双速电机的调速原理。 下图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。 ∴转速比=2/1=2 二、控制电路分析(双速电机接线图如下图)

1、合上空气开关QF引入三相电源 2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、W2悬空。电动机在△接法下运行,此时电动机p=2、n1=1500转/分。 3、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。 4、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。KM2的辅助常开触点断开,防KM1误动。 5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM2线圈串联,这种控制就是按钮的

电动机绕组展开图的画法

电动机绕组展开图的画法 所谓展开图,就是将电动机定子铁心带绕组用刀切开并摊平,按电动机绕组在定子铁心上的布置,画出的一种绕组展开图。 例1、一台24槽,4极电机,要求采用同心式绕组布置,求画绕组展开图。 1、根据要求先出每极所占槽数 每极所占槽数=电动机的总槽数/(2P) 或=电动机的总槽数/4(极数) 每极所占槽数=24/4=6槽如下图所示 2、求出每极每相所占(即为极相组)槽数,即在一个磁极里(N或S)按三相平分所得的槽数。每相在每个磁极里均按A、C、B的规律排列,而每相所占的槽数必定相等。如下图所示。 每极每相所占槽数=每极所占槽数/3相=6/3=2槽 3、画第一相绕组展开图

根据上面计算分配得知,每极每相所占槽数为2,即第一极N中,A相占2槽(1、2槽)。而第二极S中,A相也占2槽(7、8槽)。第三极N中,A相也一样占2槽(13、14槽)。而第四极S中,A相同样也占2槽(19、20槽)。对于单层电动机而言,一个线圈有二个有效边,如果它的第一个有效边在N极,则另一个有效边就是在S极。根据同心式绕组的画法,我们得出第一个N极和第二个S极的1------8槽(y=7)、2------7槽(y=5)相连的二个绕组,而第三个N极与第四个S极的连接与上面是相同的,分别是13------20、14------19相连,同样组成另二个绕组。这样A相绕组全部画完(画时应逆时针方向)。 4、绕组的连接绕组的连接是按顺电流方向,逆时针,依绕组先后排列顺序依次连接。 A、电流的方向在同性磁极下电流方向必定相同,在异性磁极下电流的方向必定相反。根据经验,相邻二相的电流方向恰恰相反(初学时电流方向一定要搞清)。 对于一个绕组而言,若规定了它的进出线的位置,按上图第一个线圈是由第1槽进线(它位于N极),可以确定电流的流向是向上。而电流不管匝数有多少电流总是由第8槽流出(它位于S极),故电流的流向必定是向下的。又由于第2槽与第1槽同处于N极,故第2槽的电流方向与第1槽相同,同是向上。而第7槽则与第8槽一样同处于S极,其电流流向相同,均向下。现我们来看第13、14槽它们位于N极与第1、2槽同极性故其电流方向应相同而向上,而第19、20槽则处于S极,故其电流流向与第7、8槽(处于S极)其流向相同,均向下。至此线圈的8个有效边的电流方向均已确定,并把它标于图上。 B、逆序依次连接我们把1------8槽的线圈编为第一个线圈,把2------7的线圈编为第二个线圈,再把13------20的线圈编为第三个线圈,又把14------19的线圈编为第四个线圈。我们把第一个线圈的第1槽作为A相的进线,按规定编为U1。而它的出线在第8槽,第8槽的出线要么与第二个线圈的第2槽或第7槽相接,若假定与第8槽与第7槽相接,我们就会发现其电流方向恰好与原标定的方向相反,而只有与第2槽相接才会顺着电流的方向,故应跟第2槽相接。此时的线尾则是由第7槽出来。而第7槽则应与第三个线圈的第13槽相接,而由第20槽出来,而第20槽的出线则与第14槽相接,由第19槽出来,而第19槽出来的线,则为A相绕组的尾线。只有这样连接才能保持电流的方向不变。而尾线则按规定编为U2。 按上述的顺序连接方向,即为逆序方向,不得反向连接。 5、确定三相绕组的进线电动机三相绕组在空间位置上,应分别相差120度电角度。以第一相进线为准,以每槽的电角度累计和120度后的第1槽即为第二相进线的头。而第三相进线,则以第二相进线头为准,依上法确定。其计算方法如下:

三相异步电动机控制电路图

三相异步电动机的控制 1.直接启动控制电路 直接启动即启动时把电动机直接接入电网,加上额定电压,一般来说, 电动机的容量不大于直接供电变压器容量的20%~30%时,都可以直接启 动。 1).点动控制 合上开关QF ,三相电源被引入控 制电路,但电动机还不能起动。按下按钮SF ,接触器KM 线圈通电,衔铁吸合,常开主触点接通,电动机定子接入 三相电源起动运转。松开按钮SF , 图5-13 点动控制 接触器KM 线圈断电,衔铁松开,常开主触点断开,电动机因断电而停转。 2).直接起动控制 (1)起动过程。按下起动按钮SF ,接触器KM 线圈通电,与SF 并联的KM 的辅助常开触点闭合,以保 证松开按钮SF 后KM 线圈持续通电,串联在电动机回路中的KM 的主触点持续闭合,电动机连续运转,从而实现连续运转控制。 (2)停止过程。按下停止按钮SS ,接触器KM 线圈断电,与SF 并联的KM 的辅助常开触点断开,以保 证松开按钮SS 后KM 线圈持续失电,串联在电动机回路中的KM 的主触点持续断开,电动机停转。 与SF 并联的KM 的辅助常开触点的这种作用称为自锁。 图示控制电路还可实现短路保护、过载保护和零压 保护。 图5-14直接起动控制 ? 起短路保护的是串接在主电路中的熔断器FU 。一旦电路发生短路故障,熔体立即熔断,电动机立即停转。 ? 起过载保护的是热继电器KH 。当过载时,热继电器的发热元件发热,将其常闭触点断开,使接触器KM 线圈断电,串联在电动机回路中的KM 的主触点断开,电动机停转。同时KM 辅助触点也断开,解除自锁。故障排除后若要重新起动,需按下KH 的复位按钮,使KH 的常闭触点复位(闭合)即可。 ? 起零压(或欠压)保护的是接触器KM 本身。当电源暂时断电或电压严重下降时,接触器KM 线圈的电磁吸力不足,衔铁自行释放,使主、辅触点自行复位,切断电源,电动机停转,同时解除自锁。

由电机展开图解读其嵌线工艺

由电机展开图解读其嵌线工艺 摘要:在技校维修电工专业实习教学中,三相异步电动机的嵌线工艺是教学的重点,也是教学的难点。许多学生由于对三相异步电动机的展开图理解不深,嵌线时感觉无从下手,部分学生只是死记几种嵌线方法,不会灵活运用。本文结合展开图解读其嵌线工艺,以期对维修电工专业学生有所帮助。 关键词: 嵌线工艺电动机 1、单层链式绕组嵌线工艺图1是三相4极24槽单层链式绕组展开图。每极每相槽数为2,线圈节距为1—6。 图1 展开图上面一行数字表示嵌线顺序,下面一行数字表示线槽序号。由图可以看出每一相都有4个线圈。每一个线圈都有两个边,通常我们把先下的那一个边称为下层边,例如本例中的奇数槽里下的那一边(图上每个线圈的左边),都是下层边;后下的那一边称为上层边,例如本例中的偶数槽里下的那一边(图上每个线圈的右边),都是上层边。每一个上层边都压着两个下层边,例如本例中的6槽里下的上层边压着5槽、3槽下的下层边,由此可见,单层链式绕组嵌线时一定要吊起两把线圈最后下,即吊把线圈2把。嵌线步骤是按次序先嵌下层边,后嵌上层边;最后嵌吊起的两把线圈的上层边。具体的嵌线顺序如下: (1)选好第一槽位置,靠近机座出线口。 (2)嵌槽1(U相第一个线圈的下层边),上层边吊起。 (3)空一槽24,嵌23槽(W相第一个线圈的下层边),上层边吊起。 (4)再空一槽22,嵌21槽(V相第一个线圈的下层边),上层边按节距1—6压着1槽、23槽的下层边嵌入槽2。 (5)再空一槽20,嵌入19槽(U相第二个线圈的下层边),上层边按节距1—6压着23槽、21槽下层边嵌入24槽。此线圈与本相第一个线圈的连接关系是上层边与上层边相连或下层边与下层边相连,即尾、尾或首、首相连。 (6)以后W、V相按空一槽嵌入一槽的次序,轮流将U、W、V三相的4个线圈嵌完。最后把吊把线圈两把嵌入,至此整个绕组全部嵌完。 单层链式绕组的嵌线规律是:嵌1槽,空1槽,吊2把线圈。简称为“嵌1空1吊2”。 按此种方法嵌线,同相线圈之间的过桥线可不截断,连接时要注意翻把,使其首首相连、尾尾相连。最后留出的6个线头,隔一即为同名端,如V1、U1、W1和W2、V2、

2极24槽电动机展开图

2极24槽电动机.绕组形式:单层迭绕,线圈节距=10(1-11).绕组形式,单层同心式,线圈节距=11(1-12),9(1-10). 2极36槽电动机.绕组形式:单层迭绕.线圈节距=15(1-16).绕组形式,单层同心式,线圈节距=17(1 -18),15(1-16),13(1-14).绕组形式,双层选绕组,线圈节距=12(1-13). 4极24槽电动机,绕组形式:单层迭绕,绕组形式=5(1-6).绕组形式,单层同心式,线圈节距=5(1-6),7(1-8).绕组形式:双层迭绕,线圈节距5(1-6). 4极36槽电动机,绕组形式,单层单,双圈迭式布线,线圈节距=7(1-8)单圈,8(1-9)双圈.绕组形式:双层迭式,线圈节距=7(1-8).绕组形式:单层迭绕,线圈节距=9(1-10).绕组形式:单层同心式,线圈节距=7(1-8),9(1-10),11(1-12).用双层叠式绕组画展开图 例3、一台36槽4极三相异步电动机,要求用双层叠式画展开图。 1、求每极所占槽数=36/4=9 2、求每极每相所占槽数= 每极所占槽数/3相=9/3=3 3、根据上二式计算,用不同的线条分出各极、各相槽数。 该图表现为每极占9槽,每相占每极中的3槽。同时可根据每相邻二相电流必定相反。按此标出电流方向:在第一磁极里1、2、3三槽为A相,电流向上。4、5、6三槽为C相,电流向下。7、8、9槽三槽为B相,电流向上。以后各极各相均按此顺序排列,但电流方向在N极的均向上,而在S极的均向下。如下图所示 4、按双层叠式绕组方式画出第一相绕组(对于双层叠式绕组,若是整距绕组,基本上还是一个线圈的一边在N极,另一边必定在S极。注意:这是指整距绕组。),如下图所示

常用电动机控制电路原理图全解

三相异步电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控 制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2

串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

4极24槽电动机展开

青岛港湾职业技术学院授课教案 编号:第8 周Array课题实训七电机拆装与检修 班级 授课日期年月日

实训七电机拆装与检修 一、电机的定义及分类 1、电动机是根据电磁感应原理,把电能转换为机械能,并输出机械转矩的原动机。 2、分类: 按电流分同步 交流单相 异步绕线式 三相 鼠笼式 二、电动机常见故障分析及判断 电机常见故障主要分机械故障和电气故障两大类。 机械故障主要包括轴承、风扇、端盖、转轴、机壳等故障。电气故障主要包括定子绕组、转子绕组和电路故障。 要正确判断电动机发生故障的原因,是一项复杂细致的工作。电动机在运行时,不同的原因会产生很相似的故障现象,这给分析、判断和查找故障原因带来一定难度。为了尽量缩短故障停机的时问,迅速修复电动机,对故障原因的判断要快而准。电工在巡视检查时,可以通过自身韵感官来了解电动机的运行状态是否正常。 看,观察电机和所拖带的机械设备转速是否正常;看控制设备上的电压表、电流表批示数值有无超出规定范围,看控制线路中的指示、信号装置是否正常。 听,必须熟悉电动机启动、轻载、重载的声音特征;学会辨别电动机单相、过载等故障时的声音及转子扫膛、笼型转子断条、轴承故障时的特殊声音,可帮助查找故障部位。 摸,电动机过载及发生其他故障时,温升显著增加,造成工作温度上升,用手摸电动机外壳各部位即可判断温升情况。 闻,电动机严重发热或过载时问较长,会引起绝缘受损而散发特殊气味;轴承发热严重时也可挥发出油脂气味。闻到特殊气味时,便可确认电动机有故障。 问,向操作者了解电动机运行时有无异常征兆;故障发生后,向操作者询问故障发生前后电动机及所拖带机械的症状,对分析故障原因很有帮助。 造成电动机故障的原因很多,仅靠最初查出的故障是不够的,还应在初步分析的基础上,使用各种仪表(万用表、兆欧表、钳形表及电桥)进行必要的测量检查。除了要检查电动机本身可能出现的故障外,还要检查所拖带的机械设备及供电线路、控制线路。通过认真检查,找出故障点,准确地分析造成故障的原因,才能有针对性地进行处理,采取预防措施,以防止故障再次发生。 三、电机拆卸 电机绕组被烧毁或老化后,电机就不能再使用了;只有拆除旧绕组更换新绕组后,电机才能重新使用。电机种类很多,绕组方式也各有差异,但电机绕组的拆除方法是相同的。这里以小功率三相笼式电动机拆卸为例介绍电机的拆除方法与步骤。 1.拆卸前的准备 (1)备齐常用电工工具及拉码等拆卸工具。 (2)查阅并记录被拆电机的型号、外型和主要技术参数。 (3)在端盖、轴、螺钉、接线桩等零件上做好标记。 2.拆卸步骤 小型电机的拆卸应按如下几个基本步骤进行,如图7—1所示。

三相异步电动机启动控制原理及接线图

三相异步电动机启动控制原理及接线图

控制电路和主电路都不能接通。所以在电源恢复供电时,电动机就不能自行启动运转,保证了人身和设备的安全。 控制原理:当按下启动按钮SB2后,电源U1相通过热继电器FR动断接点、停止按钮SB1的动断接点、启动按钮SB2动合接点及交流接触器KM的线圈接通电源V1相,使交流接触器线圈带电而动作,其主触头闭合使电动机转动。同时,交流接触器KM的常开辅助触头短接了启动按钮SB2的动合接点,保持交流接触器线圈始终处于带电状态,这就是所谓的自锁(自保)。与启动按钮SB2并联起自锁作用的常开辅助触头称为自锁触头(或自保触头)。 3.三相异步电动机的正反转控制 三相异步电动机接触器联锁的正反转控制的电气原理图如图3-4所示。线路中采用了两个接触器,即正转用的接触器KM1和反转用的接触器KM2,它们分别由正转按钮SB2和反转按钮SB3控制。这两个接触器的主触头所接通的电源相序不同,KM1按L1—L2—L3相序接线,KM2则对调了两相的相序。控制电路有两条,一条由按钮SB2和KM1线圈等组成的正转控制电路;另一条由按钮SB3和KM2线圈等组成的反转控制电路。 控制原理:当按下正转启动按钮SB2后,电源相通过热继电器FR的动断接点、停止按钮SB1的动断接点、正转启动按钮SB2的动合接点、反转交流接触器KM2的常闭辅助触头、正转交流接触器线圈KM1,使正转接触器KM1带电而动作,其主触头闭合使电动机正向转动运行,并通过接触器KM1的常开辅助触头自保持运行。反转启动过程与上面相似,只是接触器KM2动作后,调换了两根电源线U、W相(即改变电源相序),从而达到反转目的。 互锁原理:接触器KM1和KM2的主触头决不允许同时闭合,否则造成两相电源短路事故。为了保证一个接触器得电动作时,另一个接触器不能得电动作,以避免电源的相间短路,就在正转控制电路中串接了反转接触器KM2的常闭辅助触头,而在反转控制电路中串接了正转接触器KM1的常闭辅助触头。当接触器KM1得电动作时,串在反转控制电路中的KM1的常闭触头分断,切断了反转控制电路,保证了KM1主触头闭合时,KM2的主触头不能闭合。同样,当接触器KM2得电动作时, KM2的常闭触头分断,切断了正转控制电路,可靠地避免了两相电源短路事故的发生。这种在一个接触器得电动作时,通过其常闭辅助触头使另一个接触器不能得电动作的作用叫联锁(或互锁)。实现联锁作用的常闭触头称为联锁触头(或互锁触头)。

电动机绕组展开图的画法

转】电动机绕组展开图的画法 2010-12-14 19:42 转载自iwooye 最终编辑iwooye 同芯式绕组展开图 所谓展开图,就是将电动机定子铁心带绕组用刀切开并摊平,按电动机绕组在定子铁心上的布置,画出的一种绕组展开图。 例1、一台24槽,4极电机,要求采用同心式绕组布置,求画绕组展开图。 1、根据要求先出每极所占槽数 每极所占槽数=电动机的总槽数/(2P) 或=电动机的总槽数/4(极数) 每极所占槽数=24/4=6槽如下图所示 800)this.width=800" border=0> 2、求出每极每相所占(即为极相组)槽数,即在一个磁极里(N 或S)按三相平分所得的槽数。每相在每个磁极里均按A、C、B的规律

排列,而每相所占的槽数必定相等。如下图所示。 每极每相所占槽数=每极所占槽数/3相=6/3=2槽 800)this.width=800" border=0> 3、画第一相绕组展开图 800)this.width=800" border=0> 根据上面计算分配得知,每极每相所占槽数为2,即第一极N中,A相占2槽(1、2槽)。而第二极S中,A相也占2槽(7、8槽)。第三极N中,A相也一样占2槽(13、14槽)。而第四极S中,A相同样也占2槽(19、20槽)。对于单层电动机而言,一个线圈有二个有

效边,如果它的第一个有效边在N极,则另一个有效边就是在S极。根据同心式绕组的画法,我们得出第一个N极和第二个S极的1------8槽(y=7)、2------7槽(y=5)相连的二个绕组,而第三个N极与第四个S极的连接与上面是相同的,分别是13------20、14------19相连,同样组成另二个绕组。这样A相绕组全部画完(画时应逆时针方向)。 4、绕组的连接绕组的连接是按顺电流方向,逆时针,依绕组先后排列顺序依次连接。 800)this.width=800" border=0> A、电流的方向在同性磁极下电流方向必定相同,在异性磁极下电流的方向必定相反。根据经验,相邻二相的电流方向恰恰相反(初学时电流方向一定要搞清)。 对于一个绕组而言,若规定了它的进出线的位置,按上图第一个线圈是由第1槽进线(它位于N极),可以确定电流的流向是向上。而电流不管匝数有多少电流总是由第8槽流出(它位于S极),

电动机正反转控制电路图及其原理分析

正反转控制电路图及其原理分析 要实现电动机的正反转,只要将接至电动机三相电源进线中的任意两相对调接线,即可达到反转的目的。下面是接触器联锁的正反转控制线路,如图所示

图中主回路采用两个接触器,即正转接触器KM1和反转接触器KM2。当接触器KM1的三对主触头接通时,三相电源的相序按U―V―W接入电动机。当接触器

KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。电路要求接触器KM1和接触器KM2不能同时接通电源,否则它们的主触头将同时闭合,造成U、W两相电源短路。为此在KM1和KM2线圈各自支路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源,KM1和KM2的这两对辅助常闭触头在线路中所起的作用称为联锁或互锁作用,这两对辅助常闭触头就叫联锁或互锁触头。 正向启动过程:按下起动按钮SB2,接触器KM1线圈通电,与SB2并联的KM1的辅助常开触点闭合,以保证KMl线圈持续通电,串联在电动机回路中的KM1的主触点持续闭合,电动机连续正向运转。 停止过程:按下停止按钮SB1,接触器KMl线圈断电,与SB2并联的KM1的辅助触点断开,以保证KMl线圈持续失电,串联在电动机回路中的KMl的主触点持续断开,切断电动机定子电源,电动机停转。 反向起动过程:按下起动按钮SB3,接触器KM2线圈通电,与SB3并联的KM2的辅助常开触点闭合,以保证KM2线圈持续通电,串联在电动机回路中的KM2的主触点持续闭合,电动机连续反向运转。 对于这种控制线路,当要改变电动机的转向时,就必须先按停止按钮SB1,再按反转按钮SB3,才能使电机反转。如果不先按SB1,而是直接按SB3,电动机是不会反转的。

电动机控制电路图全集

电动机控制电路图全集一.双速电动机用三个接触器的变速控制电路图 二.三相电动机制动装置

· [图文] 汽车热限制器的烙铁 Auto Heat Limiter for Soldering Iron · [图文] 简单的直流电机PWM调速电路 Simple DC motor PWM speed control · 步进电机和交流伺服电机性能比较 · [图文] 直流电动机可逆电路--DC Motor Reversing Circuit · [图文] 直流电动机控制电路-DC Motor Control Circuit · [组图] 单极性步进电机控制器电路--Unipolar Stepper Motor Controller · [图文] 直流无刷电动机工作原理与控制方法 · [图文] 电动机缺相保护器电路原理 · [组图] 微型电机驱动电路原理分析及实验 · [图文] 双向调速直流电机驱动电路设计方案 · [组图] 直流电机无级调速电路的制作原理 · [图文] 电动自行车控制器电路原理分析 · [组图] 音频功率放大器 · 起动机的工作原理 · 自控电机起动方式原理分析 · [图文] 起动电机电阻控制原理图 · [图文] 串级型直流电源的结构电路图 · [图文] 用晶体管做成的H电桥电路图 · [图文] 实际的控制电路图 · [图文] 设计的电动机控制电路图 · [图文] 电动机正转逆转驱动电路图

· [图文] 电动机正反转控制电路 · [图文] 转轴转动状况检测电路 · [图文] 压电泵驱动电路 · [图文] 伺服电机转速控制电路 · [图文] LM324的直流电动机调速器 · [图文] 三相交流电焊机空载自停控制电路 · [图文] 三相电动机制动装置 · [图文] 交流电焊机的节电线路 · [图文] 交流电动机的简易能耗制动 · [图文] 电动机过热保护电路 · [图文] 电动机断相自动保护装置 · [图文] 双速电机控制电路图 · [组图] 双速电机控制原理图 · [图文] 自动夜光灯电路图 · [图文] 与50kHz调频发射机配用的接收机电路图 · [图文] 利用中断光束的脉冲发生器电路图 · [图文] 可调光检测开关电路图 · [图文] 精密光二极管比较器电路图 · [图文] 精密光电二极管光强检测器电路图 · [图文] 交流电源控制用光电池记忆开关电路图 · [图文] 光线中断检测器电路图 · [图文] 光通信系统电路图 · [图文] 光束控制的通-断继电器电路图 · [图文] 光施密特触发器电路图 · [图文] 光亮度敏感器电路图 · [图文] 光接收器电路图 · [图文] 光隔离的固体功率继电器电路图 · [图文] 光发射机电路图 · [图文] 对数特性光敏感器电路图 · [图文] 调频光发送器电路图 · [图文] 4象限光导检测放大器电路图 · [图文] 4位马达开关电路图 · [图文] 两只单相电压互感器组成的V-V形接线图 · [图文] 三只单相电压互感器组成星形接线图 · [图文] 钻床主轴电动机和液压电动机的联锁控制电路图 · [图文] 自动循环控制电路 · [图文] 直流电动机正反转控制电路图 · [图文] 直流电动机使用变阻器起动控制电路图 · [图文] 由三个接触器组成的正反转控制电路图 · [图文] 用电流继电器控制机械扳手 · [图文] 用电弧联锁继电器延长转换时间的正反控制 · [图文] 用倒顺开关的正反转控制

相关主题
文本预览
相关文档 最新文档