当前位置:文档之家› 年产50万吨合成氨中变换工段设计

年产50万吨合成氨中变换工段设计

年产50万吨合成氨中变换工段设计
年产50万吨合成氨中变换工段设计

年产50万吨合成氨中变换工段设计

[摘要]变换工段工序是合成氨生产中关键的一步,其主要任务是将变换气中的一氧化碳转化为二氧化碳。

本设计采用中串低工艺流程。首先对工艺流程和工艺条件进行简单说明;然后对全厂布置进行合理的设计;其次根据工艺参数对中变炉、低变炉、饱和热水塔等主要设备进行物料、热量衡算;再次对变换炉、换热器进行总体结构设计和计算;最后对变换炉进行强度校核。

[关键词]中串低;变换工段;工艺设计

目录

1 概述 (1)

1.1目的和意义 (1)

1.2合成氨工业概况 (1)

1.2.1基本现状 (1)

1.2.2发展趋势 (1)

1.2.3应用领域 (2)

1.3变换工艺介绍 (2)

1.3.1中温变换工艺 (2)

1.3.2中串低变换工艺 (2)

1.3.3中低低变换工艺 (2)

1.3.4全低变工艺 (3)

1.4变换工艺的选择 (3)

1.4.1工艺原理 (3)

1.4.2工艺条件 (3)

1.4.3工艺流程确定 (3)

1.4.4主要设备的选择说明 (4)

2 全厂总平面布置 (5)

2.1全场总平面布置的任务 (5)

2.2全厂总平面设计的原则 (5)

2.3全厂总平面布置内容 (5)

2.4全厂平面布置的特点 (5)

2.5全厂人员编制 (5)

3 物料与热量衡算 (7)

3.1已知条件及计算基准 (7)

3.2中温变换炉物料及热量计算 (7)

3.2.1水汽比的确定 (7)

3.2.2中变炉CO的实际变换率的求取 (7)

3.2.3中变炉催化剂平衡曲线 (8)

3.2.4最佳温度曲线的计算 (8)

3.2.5中变炉一段催化床层的物料及热量衡算 (9)

3.2.6中变炉二段催化床层的物料及热量衡算 (12)

3.3低变炉的物料及热量衡算 (15)

3.3.1低变炉物料计算 (15)

3.3.2出低变炉的变换气温度估算: (16)

3.3.3低变炉的热量衡算 (16)

3.3.4低变催化剂操作线计算 (17)

3.3.5低变炉催化剂平衡曲线 (18)

3.4饱和热水塔的热量和物料衡算 (19)

3.4.1 饱和塔的热量和物料衡算 (19)

3.4.2热水塔的物料和热量衡算 (20)

3.5主换热器的物料与热量的衡算 (22)

3.6中间变换器物料与热量衡算 (23)

4 设备的计算 (25)

4.1中温变换炉的计算 (25)

4.1.1触媒用量的计算 (25)

4.1.2第一段床层触媒用量 (25)

4.1.3 第二段床层触媒用量 (26)

4.1.4 触媒直径的计算 (27)

4.1.5中变炉进出口管径的选择 (28)

4.2低温变换炉的计算 (29)

4.2.1催化剂用量计算 (29)

4.2.2催化剂床层阻力 (29)

4.3主换热器的计算 (30)

4.3.1传热面积的计算 (30)

4.3.2设备直径与管板的确定 (31)

4.3.3传热系数的验算 (31)

4.3.4壳侧对流传热系数计算 (32)

4.3.5总传热系数核算 (33)

4.3.6其他换热器的选择 (33)

4.4泵的选择 (34)

5 变换炉机械设计及校核 (36)

5.1变换炉筒体和裙座壁厚计算 (36)

5.2变换炉的质量载荷计算 (36)

5.2.1塔壳和裙座的质量 (36)

5.2.2封头质量 (36)

5.2.3 裙座质量 (37)

5.2.4塔内构件质量 (37)

5.2.5人孔、法兰、接管与附属物质量 (37)

5.2.6保温材料质量 (37)

5.2.7平台、扶梯质量 (37)

5.2.8操作时塔内物料质量 (37)

5.3地震载荷计算 (38)

5.3.1计算危险截面的地震弯矩 (38)

5.4风载荷计算 (39)

5.4.1风力计算 (39)

5.4.2风弯矩计算 (40)

5.5各种载荷引起的轴向应力 (40)

5.5.1计算压力引起的轴向应力 (40)

5.5.2操作质量引起的轴向压应力 (40)

5.5.3最大弯矩引起的轴向应力 (40)

5.6筒体和裙座危险截面的强度与稳定性校核 (41)

5.6.1筒体的强度与稳定性校核 (41)

5.6.2裙座的稳定性校核 (41)

5.7裙座和筒体水压试验应力校核 (42)

5.7.1筒体水压试验应力校核 (42)

5.7.2裙座水压试验应力校核 (43)

5.8基础环设计 (43)

5.8.1基础环尺寸 (43)

5.8.2基础环尺寸的应力校核 (43)

5.8.3基础环厚度 (44)

5.9地脚螺栓计算 (44)

5.9.1地脚螺栓承受的最大拉应力 (44)

5.9.2地脚螺栓直径 (44)

总结 (46)

设备一览表 (47)

符号说明 (48)

参考文献 (49)

致谢 (50)

附图说明 (51)

1 概述

氨是一种重要的化工产品,主要用于化学肥料的生产。合成氨生产经过多年的发展,现已发展成为一种成熟的化工生产工艺。合成氨的生产主要分为:原料气的制取;原料气的净化与合成。粗原料气中常含有大量的C ,由于CO 是合成氨催化剂的毒物,所以必须进行净化处理,通常,先经过CO 变换反应,使其转化为易于清除的CO 2和氨合成所需要的H 2。因此,CO 变换既是原料气的净化过程,又是原料气造气的继续。最后,少量的CO 用液氨洗涤法,或是低温变换串联甲烷化法加以脱除。

变换工段是指CO 与水蒸气反应生成二氧化碳和氢气的过程。变换工段工序是合成氨生产中的第一步,也是较为关键的一步,因为能否正常生产出合格的压缩气,是后面的所有工序正常运转的前提条件。在合成氨工艺流程中起着非常重要的作用。 1.1目的和意义

氨是重要的无机化工产品,在国民经济中占有重要地位。随着世界人口的不断增加,用于制造尿素、硝酸铵、磷酸铵、硫酸铵以及其他化工产品的氨用量也在增长。在化学工业中,合成氨工业已经成为了重要的支柱产业。据统计,世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨用来生产化学肥料,20%作为其它化工产品的原料。

合成氨的生产主要分为原料气的制取和原料气的净化与合成。粗原料气中常含有大量的C ,由于CO 是合成氨催化剂的毒物,所以必须进行净化处理,通常,先经过CO 变换反应,使其转化为易于清除的CO 2和氨合成所需要的H 2。因此,CO 变换既是原料气的净化过程,又是原料气造气的继续。最后,少量的CO 用液氨洗涤法,或是低温变换串联甲烷化法加以脱除。

合成氨,除原料为天然气、石油、煤炭等一次能源外,整个生产过程还需消耗较多的电力、蒸汽等二次能源,而用量又很大。现在合成氨能耗约占世界能源消费总量的3%,中国合成氨生产能耗约占全国能耗的4%。因而能耗是衡量合成氨技术水平和经济效益的重要指标。

变换工段是指CO 与水蒸气反应生成CO 2和H 2的过程。在合成氨工艺流程中起着非常重要的作用。在合成氨生产中,各种方法制取的原料气都含有CO ,其体积分数一般为12%~40%。合成氨需要的两种组分是H 2和N 2,因此需要除去合成气中的CO 。变换反应如下:222CO H O = CO H ++。由于CO 变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO 含量。第一步是高温变换,使大部分CO 转变为CO 2和H 2;第二步是低温变换,将CO 含量降至0.3%左右。因此,CO 变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。

目前,变换工段主要采用中变串低变的工艺流程,这是从80年代中期发展起来的。所谓中变串低变流程,就是在B106等Fe-Cr 系催化剂之后串入Co-Mo 系宽温变换催化剂。在中变串低变流程中,由于宽变催化剂的串入,操作条件发生了较大的变化。一方面入炉的蒸汽比有了较大幅度的降低;另一方面变换气中的CO 含量也大幅度降低。由于中变后串了宽变催化剂,使变换系统便于操作,也大幅度降低了能耗。

变换过程需在高温高压使用催化剂条件下进行,因此变换工序是合成氨生产的高成本工序,其成本降低对合成氨成本的降低有重要意义。 1.2合成氨工业概况 1.2.1基本现状

我国的氮肥工业自20世纪50年代以来,不断发展壮大,目前合成氨产量已跃居世界第一位,已掌握了以焦炭、无烟煤、焦炉气、天然气及油田伴生气和液态烃多种原料生产合成氨、尿素的技术,形成了特有的煤、石油、天然气原料并存和大、中、小生产规模并存的生产格局。目前合成氨总生产能力为4500万吨/年左右,氮肥工业已基本满足了国内需求,在与国际接轨后,具备与国际合成氨产品竞争的能力,今后发展重点是调整原料和产品结构,进一步改善经济性。 1.2.2发展趋势

根据合成氨技术发展的情况分析,估计未来合成氨的基本生产原理将不会出现原则性的改变,其技术发展将会继续紧密围绕“降低生产成本、提高运行周期,改善经济性”的基本目标,进一步集中

在“大型化、低能耗、结构调整、清洁生产、长周期运行”等方面进行技术的研究开发。

大型化、集成化、自动化,形成经济规模的生产中心、低能耗与环境更友好将是未来合成氨装置的主流发展方向。单系列合成氨装置生产能力将从2000t/d提高至4000~5000t/d;以天然气为原料制氨吨氨能耗已经接近了理论水平,今后难以有较大幅度的降低,但以油、煤为原料制氨,降低能耗还可以有所作为。

在合成氨装置大型化的技术开发过程中,其焦点主要集中在关键性的工序和设备,即合成气制备、合成气净化、氨合成技术、合成气压缩机;在低能耗合成氨装置的技术开发过程中,其主要工艺技术将会进一步发展;实施与环境友好的清洁生产是未来合成氨装置的必然和惟一的选择。生产过程中不生成或很少生成副产物、废物,实现或接近“零排放”的清洁生产技术将日趋成熟和不断完善;提高生产运转的可靠性,延长运行周期是未来合成氨装置“改善经济性、增强竞争力”的必要保证。有利于“提高装置生产运转率、延长运行周期”的技术,包括工艺优化技术、先进控制技术等将越来越受到重视。

1.2.3应用领域

氨在国民经济中占有重要的地位。现在约有80%的氨用来制造化学肥料,其余作为生产其他化工产品的原料。

除液氨可直接作为肥料外,农业上使用的氨肥,例如尿素、硝酸铵、磷酸铵、硫酸铵、氯化铵、氨水以及各种含氨混肥和复肥,都是以氨为原料的。

氨在工业上主要用来制造炸药和各种化学纤维和塑料。从氨可以制的硝酸,继而再制造硝酸铵、硝化甘油、三硝基甲苯和硝基纤维素等。在化纤和塑料工业中,则以氨、硝酸和尿酸作为氮源,生产已内酰胺,尼龙6单体、己二胺、人造丝、全脂树脂和脲醛树脂等产品。

氨的其他工业用途也十分广泛,例如,作为制冰、空调、冷藏等系统的制冷剂,在冶金工业中用来提炼矿石中的铜、镍等金属,在医药和生物化学方面生产磺胺类生物、维生素、蛋氨酸和其他氨基酸等。

1.3变换工艺介绍

1.3.1中温变换工艺

中温变换工艺早期均采用常压,经节能改造,现在大都采用加压变换。加压中温变换工艺主要特点是:采用低温高活性的中变催化剂,降低了工艺上对过量蒸汽的要求;采用段间冷激降温,减少了系统的热负荷和阻力,减小外供蒸汽量;合成与变换,铜洗构成第二换热网络,合理利用热能。其中有两种模式,一是“水流程”模式,二是“汽流程”模式。前者指在合成塔后设置水加热器以热水形式向变换系统补充热能,并通过变换工段设置的两个饱和热水塔使自产蒸汽达到变换反应所需的汽气比。后者在合成塔设后置式锅炉或中置式锅炉产生蒸汽供变换用,变换工段则设置第二热水塔回收系统余热供精炼铜液再生用;采用电炉升温,革新了变换工段燃烧炉升温方法,使之达到操作简单、平稳、省时、节能效果。

1.3.2中串低变换工艺

所谓中温变换串低温变换流程,就是在B107等Fe-Cr系催化剂之后串入Co-Mo系宽温变换催化剂。由于宽变催化剂的串入,操作条件发生了较大的变化。一方面入炉的蒸汽比有较大幅度的降低;另一方面变换气中的CO含量也大幅度降低。由于中变后串了宽变催化剂,使变换系统便于操作,也大幅度降低了能耗。根据催化剂低温性能,低变炉入口温度可控制在180~230℃。这样,由于催化剂终态温度降低,可以减少蒸汽添加量,达到节能的效果。另外,由于变换效率的提高,合成氨产量可以相对增加。与中变流程相比,中串低工艺蒸汽消耗下降,饱和塔负荷减轻。

1.3.3中低低变换工艺

中低低流程是在一段铁铬系中温变换催化剂后直接串二段钴钼系耐硫变换催化剂,利用中温变换的高温来提高反应速率,脱除有毒杂质,利用两段低温变换提高变换率,实现节能降耗。这样充分发挥了中变催化剂和低变催化剂的特点,实现了最佳组合,达到了能耗低、阻力小、操作方便的理想效果。该流程与中变串低变相比,关键是增加了第一低变,填补了280~250℃这一中变串低变

所没有的反应温区,充分利用了低变催化剂在这一温区的高活性。比全低变工艺操作稳定在于中低低工艺以铁铬系中变催化剂为净化剂,过滤煤气中氧和油污,起到了保护钴钼系耐硫催化剂的作用。 1.3.4全低变工艺

全低变工艺是全部采用低温活性钴钼系变换催化剂进行一氧化碳变换的工艺过程,作为一种节能新工艺, 节能降耗的效果显著。低变炉各段进口温度均在200℃左右,床层温度比传统的床层温度下降100~300℃,有利于变换反应平衡。汽气比降低,蒸汽消耗大幅下降,在几种变换流程中蒸汽消耗最低。热回收率高,有效能损失小,热交换设备换热面积可减少1/2左右。与原高变催化剂比较,催化剂用两可以减少一半以上,降低了变换炉床层阻力,降低了压缩功耗。余热回收效果好。催化剂段间换热等用水加热器逐级回收、逐级加热饱和热水塔循环热水,出饱和塔半水煤气的温度及饱和度高,出热水塔变换气温度可降到100℃以下。 1.4变换工艺的选择 1.4.1工艺原理

一氧化碳变换反应式为:

222CO H O = CO H ++ (1)

22CO+H =C+H O (2)

其中反应(1)是主反应,反应(2)是副反应,为了控制反应向生成目的产物的方向进行,工业上采用对式反应(1)具有良好选择性催化剂,进而抑制其它副反应的发生。一氧化碳与水蒸气的反应是一个可逆的放热反应,反应热是温度的函数。

变换过程中还包括下列反应式:2222H O =H O + 1.4.2工艺条件

(1)压力:

压力对变换反应的平衡几乎没有影响。但是提高压力使析炭和生成甲烷等副反应易于进行。单就平衡而言,加压并无好处。但从动力学角度,加压可提高反应速率。从能量消耗上看,加压也是有利。由于干原料气摩尔数小于干变换气的摩尔数,所以,先压缩原料气后再进行变换的能耗,比常压变换再进行压缩的能耗底。具体操作压力的数值,应根据中小型氨厂的特点,特别是工艺蒸汽的压力及压缩机投各段压力的合理配置而定。一般小型氨厂操作压力为0.7~1.2MPa,中型氨厂为1.2~1.8Mpa 。本设计压力取1.75MPa 。

(2)温度:

变化反应是可逆放热反应。从反应动力学的角度来看,温度升高,反应速率常数增大对反应速率有利,但平衡常数随温度的升高而变小,即 CO 平衡含量增大,反应推动力变小,对反应速率不利,可见温度对两者的影响是相反的。因而存在着最佳反应温。对一定催化剂及气相组成,从动力学角度推导的计算式为

2

2111ln -e

m e T T RT E E E E =

+ 式中T m 、T e —分别为最佳反应温度及平衡温度,最佳反应温度随系统组成和催化剂的不同而变化。

(3)汽气比

水蒸汽比例一般指H 2O/CO 比值或水蒸汽/干原料气。改变水蒸汽比例是工业变换反应中最主要的调节手段。增加水蒸汽用量,提高了CO 的平衡变换率,从而有利于降低CO 残余含量,加速变换反应的进行。由于过量水蒸汽的存在,保证催化剂中活性组分Fe 3O 4的稳定而不被还原,并使析炭及生成甲烷等副反应不易发生。但是,水蒸气用量是变换过程中最主要消耗指标,尽量减少其用量对过程的经济性具有重要的意义,蒸汽比例如果过高,将造成催化剂床层阻力增加;CO 停留时间缩短,余热回收设备附和加重等,所以,中(高)变换时适宜的水蒸气比例一般为:H 2O/CO=3~5,经反应后,中变气中H 2O/CO 可达15以上,不必再添加蒸汽即可满足低温变换的要求。 1.4.3工艺流程确定

一氧化碳变换工艺的流程安排应做如下考虑。若一氧化碳体积分数较高,应采用中温变换因为中变催化剂操作温度范围较宽,而且价廉,寿命长,大多数合成氨原料气中一氧化碳高于10%,故都可先通过中变除去大部分一氧化碳。对一氧化碳体积分数高于15%者,一般可考虑适当分段,段间进行冷却降温,尽量靠近最适宜温度操作。其次,根据原料气的温度和湿含量情况,则考虑适当预热和增湿,合理利用余热。如允许变换气中残余CO体积分数在3%左右,只采用中变即可。如要求在0.3%左右,则将中变和低变串联使用。

目前的变化工艺有:中温变换,中串低,全低及中低低4种工艺。本设计参考陕西汉中市城固化工厂的生产工艺,选用中串低工艺。从压缩工段来的半水煤气进入饱和热水塔,在饱和塔中半水煤气从30℃升温到109℃,在饱和塔出口加入水蒸汽使汽气比达到3到5之间,以后再进入中变炉将转换气中一氧化碳含量降到3%以下。再通过换热器将转换气的温度降到180℃左右,进入低变炉将转换气中一氧化碳含量降到0.3%以下,再进入脱碳工段。

1.4.4主要设备的选择说明

中低变串联流程中,主要设备有中变炉、低变炉、饱和热水塔、换热器等。中变炉选用C6型催化剂,计算得中变催化剂实际用量30m3。以上设备的选择主要是依据所给定的合成氨系统的生产能力、原料气中碳氧化物的含量以及变换气中所要求的CO浓度。

2 全厂总平面布置

2.1全场总平面布置的任务

全厂平面设计为本设计的一项重要任务,总平面设计的是否合理,直接影响新建厂能否节约而有效的顺利进行,影响到建厂后的生产,管理,成本,能耗等各个方面,同时还影响到全厂的美观和今后的发展。

总平面设计任务:

1在满足生产流程条件下,结合厂区地形情况,经济合理的安排场内外各建筑物、构筑物﹑堆场等的相对位置;

2经济合理的竖向布置,正确选择标高;

确定场内外运输方式﹑运输布置,合理组织人流﹑物流;

3布置综合管线;

4标高绿化美化,考虑卫生﹑消防条件,创造美好的工作条件。

2.2全厂总平面设计的原则

全厂总平面设计的基本原则为:

(1)建筑物之间相互配置应符合生产程序的要求,并能保证合理生产作业线;

(2)原材料、半成品、成品的生产作业线应衔接协调,流程疏通,避免交叉和往返;

(3)厂内一切运输系统布置应适合货物运转的特征,尽可能使货运路线和人员路线不交叉;

(4)适当划分厂区,建筑物之间的距离尽量缩小,但必须符合防火和卫生技术条件的要求;

(5)在保证安全生产的前提下力求缩小厂房战地面积,厂房布置尽量紧凑,根据生产的特点和设计拟建的工厂为中小型企业的情况,将工厂划分为几个区域,并按照区域进行布置,以保证各区域之间位置的协调配合,并符合卫生防疫和环境美化。

2.3全厂总平面布置内容

全厂应主要包括厂前区、生产区、动力区、仓库区、三废处理区。

厂前区:包括行政楼、研发楼、职工食堂、医务室等主要建筑。

生产区:应包括七大车间:原料车间、热电车间、造气车间、压缩车间、碳化车间、合成车间和尿素车间。还应有备件库、机修车间、消防车间等辅助车间。

动力区:包括变电站、锅炉房等。他们尽量靠近其服务的车间。这样可以减少管路的铺设和运输过程的损耗。

仓库区:应靠近主干道以便于运输。

2.4全厂平面布置的特点

平面布置有以下几个特点:

厂房建筑物的布置与生产工艺流程相适应。原料﹑半成品和成品形成整个顺序,尽量保证流水作业,避免逆行和交叉;锅炉房﹑水泵房﹑配电站等辅助车间尽量靠近其主要部门,以缩短期间距离,节省投资;由前区到生产区主要干道,应避免与主要运输道路交叉;尽量使大多数厂房向阳﹑背风﹑避免瓦斯等,尽可能使各厂区有条件采用自然采光和自然通风等;按防火规范的要求,保证建筑物之间的距离,符合规定;根据卫生规范的要求,保证厂区内卫生符合规定;根据环境发展的要求,生产区设在有废渣处理系统﹑废水处理系统﹑废气处理系统等设施;考虑工厂今后的发展,在厂区留有建筑余地;尽量做到以生产区为轴线,再考虑辅助车间﹑行政楼和道路的安排。

2.5全厂人员编制

企业实行厂长负责制,各部门负责人直接受厂长负责,并实行三级管理,厂、科、车间及人员编制以组织好生产为原则。生产车间实行三班制,每班八小时,机械设备大修每二年一次,机械设备保养每一年一次。

表2.1 合成氨全厂人员编制

工种班制男女总人数原料岗位 3 3 3 热电岗位3 3 3

造气岗位3 3 3

变换岗位3 3 3

脱碳岗位3 3 3

甲烷化岗位3 3 3

压缩岗位3 3 3

脱硫岗位3 3 3

尿素岗位3 3 3

司炉岗位 3 3 3

技术员 1 3 1 4 安全员 1 2 2 辅助人员 1 5 5 车间主任 1 4 4 总计321345

3.1已知条件及计算基准

进中变炉变换气组分含量见下表:

表3.1 进中变炉变换气各组分含量

组 分 CO 2 CO H 2 N 2 O 2 CH 4 合计 含量,%

13.8

22.5

40.1

20.8

0.5

2.3

100

计算基准:1吨氨

计算生产1吨氨需要的变换气量:

31000/1722.4/(220.8%)3167.421Nm ??=

取生产过程中物料损失为0.01,则变换气量取3560Nm 3 年产五十万吨合成氨日生产量为(一年连续生产330天): 50000/330=1515.2T/d=63.1T/h

进中变炉的变换气干组分见下表:

表3.2 进中变炉变换气干组分含量

组 分 CO 2 CO H 2 N 2 O 2 CH 4 合计 含量,%

13.8 22.5 40.1 20.8 0.5 2.3 100 Nm 3 491.28 801 1427.56 740.48 17.8 81.88 3560 kmol

21.932

35.759

63.730

33.057

0.795

3.655

158.928

假设进中变炉的变换气温度为330℃,取变换气进出的温差为35℃,出炉的变换气温度为365℃。 进中变炉干气压力=1.75MPa P 中。 3.2中温变换炉物料及热量计算 3.2.1水汽比的确定

取H 2O/CO=3。

故332403Nm 2

H O CO V V =?=,=107.277kmol 2

H O n

因此进中变炉的变换气湿组分见下表:

表3.3 进中变炉变换气湿组成

组 分 CO 2 CO H 2 N 2 O 2 CH 4 H 2O 合计 含量% 8.24 13.43 23.94 12.41 0.3 1.37 40.3 100 Nm 3 491.28 801 1427.56 740.48 17.8 81.88 2403 5963 3.2.2中变炉CO 的实际变换率的求取

假定湿转化气为100mol ,其中CO 湿基含量为13.43%,要求变换气中CO 含量为2%,根据变换反应: 222CO+H O = H +CO ,可得CO 的实际变换率公式为:

()

-1001a a p a a Y Y X Y Y '=

?'+

式中Y a 、Y a ′分别为原料及变换气中CO 的摩尔分率(湿基)

所以: ()()13.43210083%100213.43

p

X -?=

=+?

则反应掉的CO 的量为:

13.4383%11.15%?=

则反应后的各组分的量分别为:

2H O%40.3%11.15%0.6%29.75%=-+= CO%13.43%11.15% 2.28%=-=

2H %23.94%11.15%0.6%34.49%=+-=

2CO %8.24%11.15%19.39%=+= 计算中变炉出口的平衡常数得:

222(H %CO )(H O%CO%)10p K =??=

查文献[1]可知K p =10时温度为405℃,中温变换的平均温距为:30℃到50℃ 中变的平均温距为405℃-365℃=40℃

所以中变的平均温距合理,故取的H 2O/CO 可用。 3.2.3中变炉催化剂平衡曲线

根据H 2O/CO=3,与文献[1]上的公式

100%2-=

?p U q X AW

=-p V K AB CD q =

()()=+++P U K A B C D

1=-P W K

其中A 、B 、C 、D 分别代表CO 、H 2O 、CO 2及H 2的起始浓度。

计算结果列于下表:

表3.4 不同温度下的催化剂转化率

t 300 340 380 400 420 440 T 573 613 653 673 693 713 X p

0.956

0.928

0.878

0.854

0.824

0.779

图3.1 中变炉催化剂平衡曲线

3.2.4最佳温度曲线的计算

由于中变炉选用C 6型催化剂,最适宜温度曲线用下式进行计算:

()()(

)()211986

log 1.88

m p p p p T C AX D AX E E A AX B AX =

??++??+?--????

式中E 1、E 2分别为催化剂的正负反应活化能。

查文献[2]C 6型催化剂的正负反应活化能分别为E 1=10000千卡/公斤分子,E 2=19000千卡/公斤分子。

最适宜温度计算结果列于下表中:

表3.5 中变催化剂不同转化率下的适宜温度

X p 0.956 0.878 0.824 0.779 0.7 0.65 0.59 T ,K 417 468 493 511 542 561 585 t ,℃

144

195

220

238

269

288

312

3.2.5中变炉一段催化床层的物料及热量衡算

已知条件:

进中变炉一段催化床层的变换气的温度为330℃

进中变炉一段催化床层的变换气湿组分含量见表2-3: (1)出中变炉一段催化床层的气体组成

假设CO 在一段催化床层的实际变换率为60% 假使O 2 与H 2 完全反应,O 2 完全反应掉 故在一段催化床层反应掉的CO 的量为: 380160%480.6Nm 21.455kmol ?== 出一段催化床层的CO 的量为:

3801480.6320.4Nm 14.304kmol -==

在一段催化床层反应后剩余的H 2的量为: 31427.56480.6217.81872.56Nm 83.596kmol +-?==

在一段催化床层反应后剩余的CO 2的量为:

3491.28480.6971.34Nm 43.363kmol +==

出中变炉一段催化床层的变换气干组分的体积: 3320.41872.56971.34740.4881.883986.66Nm V =++++=干

故出中变炉一段催化床层的变换气干组分中CO 的含量:

320.4CO%8.03%3986.66=

同理得:

2971.34

CO %24.36%3986.66==

21872.56

H 46.97%3986.66%==

2740.48

N 18.57%3986.66%==

481.88

CH % 2.05%3986.66

==

所以出中变炉一段催化床层的变换气干组分:

表3.6 出中变炉一段变换气干组成含量

组 分 CO 2 CO H 2 N 2 CH 4 合计 含量% 24.36 8.03 46.97 18.57 2.05 100 Nm 3 971.34 320.4 1872.56 740.48 81.88 3986.66 kmol

43.363

14.304

83.596

33.057

3.655

177.976

剩余的H 2O 的量为:

2403-480.6+2×17.8=1958N m 3=87.410kmol

故出中变炉一段催化床层的变换气湿组分的体积:

3

320.41872.56971.34740.4881.8819585944.66Nm 265.387kmol V =+++++==湿

所以出中变炉一段催化床层的变换气湿组分的含量见下表:

表3.7 进中变炉一段变换气湿组成含量

组 分 CO 2 CO H 2 N 2 CH 4 H 2O 合计 含量% 16.34 5.39 31.5 12.46 1.38 32.93 100 Nm 3 971.34 320.4 1872.56 740.48 81.88 1958 5944.66 koml

43.363

14.304

83.596

33.057

3.655

87.41

265.387

(2)出中变炉一段催化床层的变换气的温度 根据:222(H %CO )(H O%CO%)=??p K 计算得K p =4

查文献[1]知当K p =4时t =445℃。设平均温距为35℃,则出中变炉一段催化床层的变换气温度为:445℃-35℃=415℃

(3)中变炉一段催化床层的热量衡算 已知条件:

进中变炉一段催化床层的变换气温度:330℃ 出中变炉一段催化床层的变换气温度为:415℃

可知反应放热Q :在变化气中含有CO ,H 2O ,O 2,H 2 这4种物质会发生以下2种反应:

222CO+H O = H +CO (1) 222O +2H =H O (2)

这2个反应都是放热反应。

查文献[1]得变换气的各个组分的生成焓列于下表

年产18万吨合成氨、30万吨尿素项目建议书

一、项目概况 1、项目名称:年产18万吨合成氨、30万吨尿素项目 2、合作方式:独资、合资、合作、贷款等均可 3、建设单位:XX煤业有限责任公司及合作单位 4、建设性质:新建 5、建设范围:内蒙古自治区XX自治旗XX矿区 6、建设内容及规模:以XX矿区丰富的褐煤资源为依托,建设年产合成氨18万吨、尿素 30 万吨的项目。可联产轻质油4752吨/年、煤焦油 14454吨/年,氨水(16%)27720吨/年、粗酚1980吨/年 7、建设期限:项目建设期为4年,即2005年4月-2008年9月。 8、投资估算及资金筹措: 投资规模:总投资为147215万元,其中建设投资 138703万元,流动资金8512万元。 本项目资金来源可以是贷款、风险投资等。 9、经济评价 经济评价一览表

二、项目区基本情况 1.地理位置 XX矿区位于内蒙古自治区呼伦贝尔市XX自治旗境内的东北部,地处大兴安岭西麓。其地理坐标是东经120°24′~120°38′、北纬49°09′~49°16′。矿区西连海拉尔区,东接牙克石市,南临巴彦嵯岗苏木,北至海拉尔河,与陈巴尔虎旗隔河相望,南北宽约13.7Km,东西长约46.1Km,总面积385.7Km2。XX火车站东距牙克石18Km,西距呼伦贝尔市64Km,滨州铁路线由东向西穿过XX矿区,北有301国道,铁路经过牙克石可达齐齐哈尔,哈尔滨乃至全国各地,经海拉尔可达满州里市,民航经海拉尔机场可达北京、呼和浩特等地,交通十分方便。 2.煤炭资源及煤质情况 ⑴资源情况 XX煤业公司拥有XX矿区、扎尼河矿区、伊敏河东区、陈旗巴彦哈达矿区、莫达木吉矿区五大矿区。煤炭储量丰富,XX矿区精查储量17.3亿吨;扎尼河矿区预计储量15.8亿吨;伊敏河东区普查储量58.4亿吨,其中详查储量6.1亿吨,精查储量2.3亿吨;巴彦哈达区预计储量49.0亿吨;莫达木吉矿区普查储量30.0亿吨。煤田内煤层集中,赋存稳定,构造较简单,倾角小,沼气含量低,埋藏较深,适宜于井工大型机械集约化连续生产。 ⑵煤质情况

化肥公司20万吨合成氨35万吨尿素改扩建工程项目环境评估报告

前言 ********化肥股份有限公司是1972年建成投产的一家以煤为原料的中型氮肥企业,最初设计生产能力合成氨6万吨/年、尿素11万吨/年,1991年生产能力达到合成氨7万吨/年、尿素13万吨/年,后经过10多年的不断改造、填平补齐而形成12万吨/年合成氨、20万吨/年尿素的生产规模。目前该套生产装置净化工段的脱碳工艺采用的是70年代开发的三触媒配热钾碱法脱碳流程,该流程要求汽气比高,造成蒸汽消耗高,本次改扩建工程拟对此脱碳工艺进行改造,由原来的三触媒配热钾碱法改为NHD脱碳工艺,脱碳后的气体再通过联醇、高压甲烷化脱除CO、CO2,使吨氨净化蒸汽消耗降为230Kg以下。 1995年该公司扩建了一套15万吨/年合成氨和13万吨/年尿素装置,该扩建工程环评报告由河北省环境科学研究院于1991年10月完成,并已经国家环保总局批复。扩建工程大部分工艺和公用工程设备已到厂并安装完毕,但由于后续资金不到位,管道、仪表等设施无法继续安装,致使整个工程于1998年底停止建设。2003年该公司将扩建工程中的15万吨/年合成氨改产为20万吨/年甲醇,目前已安装完毕,未投产,13万吨/年尿素装置闲置。该甲醇工程环评报告由河北省环境科学研究院于2004年5月完成,并已经河北省环境保护局批复。 该公司目前闲置的13万吨/年尿素生产装置采用的是意大利斯娜姆氨气提工艺,控制系统为DCS集中控制系统,是世界上较为先进的尿素生产装置。公司拟对该套闲置的尿素生产装置进行必要的完善,使其达到15万吨/年尿素的生产能力,并配套建设8万吨/年合成氨生产装置,实现增产8万吨/年合成氨、15万吨/年尿素的目标。另外,还将对现有12万吨/年合成氨系统进行技术改造,使公司最终形成20万吨/年合成氨35万吨/年尿素的生产规模。 根据《中华人民共和国环境影响评价法》的有关规定,建设单位********化肥股份有限公司于2006年5月委托河北省环境科学研究院对该改扩建工程进行环境影响评价工作。评价单位接到委托后,立即组织人员进行了现场踏勘,调查和收集有关资料,编写了《********化肥股份有限公司20万吨合成氨35万吨尿素改扩建工程环境影响报告书》(报审版),报河北省环境工程评估中心评审。 在报告书编制工作中,得到了河北省环保局、**市环保局以及建设单位的大力支持和帮助,在此一并致谢!

合成氨毕业设计任务书

本科毕业设计 任务书 题目年产20万吨合成氨变换工段及换热器的设计 学院化学与材料工程专业化学工程与工艺班级06化工学号0611401110学生姓名范重泰指导教师乔迁 温州大学教务处制

温州大学本科毕业设计任务书 一、设计的主要任务与目标: 主要任务: 1.阅读资料,了解国内外合成气和CO变换工艺 2.根据实习地—巨化集团合成氨厂的资料,确定CO变换工艺 3.完成设计说明书及相应的图纸 主要目标: 年产20万吨合成氨变换工段工艺以及换热器的设计 1.完成带控制点的工艺流程图 2.完成换热器的设备图 二、设计的主要内容与基本要求: 主要内容: 1.确定合成氨变换工段的工艺路线,生产方法的论证 2.根据规定的年产量准确的进行车间的物料和热量衡算。 3.根据确定的生产工艺条件并结合物料横算对换热器进行衡算。 4.计算换热器设备的体积、主要尺寸和进出口管径及材质规格。在设计中,记录各个过程的详细计算过程。 5.设计图纸的绘制,工段工艺流程图和设备图.

基本要求: 1.完成对生产工艺的设计及工艺流程图 2.完成换热器的设计及相应的设备图 三、计划进度: 1、2010.2.14-2010.2.19 查阅相关资料、确定论文的题目、资料收集并整 理。 2、2010.2.20-2010.2.27 确定设计方案,并做开题报告、任务书。 3、2010.2.28-2010.5.10 进行设计 4、2010.5.11-2010.5.19 进行总结、撰写论文并上交 5、2010.5.20-2010.5.27 导师审阅论文及修改 6、2010.5.28 准备论文答辩

四、主要参考文献: [1] 陈声宗. 化工设计[M] .北京: 化学工业出版社, 2001: 15-81. [2] 胡建生,江会保. 化工制图[M].北京:化学工业出版社 [3] 贺匡国.化工容器及设备简明设计手册[M].北京:化学工艺出版社. [4] 赵军,张有忱,段成红.化工设备机械基础[M].北京:化学工业出版社. [5] 陈英南,刘玉兰. 常用化工单元设备的设计[M].上海:华东理工大学出版社. [6] 董大勤. 化工设备机械基础[M].北京: 化学工业出版社, 2002: 164-202, 247-308. [7] 贾绍义, 柴诚敬. 化工原理课程设计[M].天津: 天津大学出版社, 2002(2007.重印): 101-134. [8] 谢端绶, 苏元复. 化工工艺算图(第一册)[M].北京: 化学工业出版社, 1982(1985.重印): 1-158. [9] 胡建生,江会保. 化工制图[M].北京:化学工业出版社. [10] 陈声宗.化工过程开发与设计[M].北京:化学工业出版社,2005 [11] 茅晓东,李建伟.典型化工设备机械设计知道[M].上海:华东理工大学出版社. [12] 崔小明. 国外聚丙烯生产工艺及催化剂技术进展[J].科技经纬.2005年第一期. [13] 崔小明聚丙烯的供需现状及发展前景[J].化学工业.2008年5月第26卷第5期. [14] 孙涛,张宝森,刘田库. 聚丙烯生产工艺进展[J].辽宁化工.2007年6月第36卷第6期 指导教师(签名): 年月日学院审核意见: 签名: 年月日注:任务书必须由指导教师和学生互相交流后,由指导老师下达并交学院本科毕业设计领导小组审核后发给学生,最后同学生毕业论文等其它材料一起存档。

年产合成氨30万吨

目录 一、绪论 (1) 、概述 (3) 、设计任务的依据 (1) 二、装置流程及说明 (2) 、生产工艺流程说明 (2) 、粗苯洗涤 (4) 、粗苯蒸馏 (4) 三、吸收工段工艺计算 (7) 、物料衡算 (7) 、气液平衡曲线 (8) 、吸收剂的用量 (9) 、塔底吸收液 (10) 、操作线 (10) 、塔径计算 (10) 、填料层高度计算 (13) 、填料层压降计算 (16) 四、脱苯工段工艺计算 (17) 、管式炉 (17) 、物料衡算 (18) 、热量衡算 (22)

五、主要符号说明 (25) 六、设计心得 (26) 七、参考文献 (27)

一、绪论 概述 氨是重要的化工产品之一,用途很广。在农业方面,以氨为主要原料可以生产各种氮素肥料,如尿素、硝酸铵、碳酸氢氨、氯化铵等,以及各种含氮复合肥料。液氨本身就是一种高效氮素肥料,可以直接施用。目前,世界上氨产量的85%—90%用于生产各和氮肥。因此,合成氨工业是氮肥工业的基础,对农业增产起着重要的作用。合成氨工业对农业的作用实质是将空气中游离氮转化为能被植物吸收利用的化合态氮,这一过程称为固定氮。 氨也是重要的工业原料,广泛用于制药、炼油、纯碱、合成纤维、合成树脂、含氮无机盐等工业。将氨氧化可以制成硝酸,而硝酸又是生产炸药、染料等产品的重要原料。生产火箭的推进剂和氧化剂,同样也离不开氨。此外,氨还是常用的冷嘲热讽冻剂。 合成氨的工业的迅速发展,也促进了高压、催化、特殊金属材料、固体燃料气化、低温等科学技术的发展。同时尿素的甲醇的合成、石油加氢、高压聚合等工业,也是在合成氨工业的基础上发展起来的。所以合成氨工业在国民经济中占有十分重要的地位,氨及氨加工工业已成为现代化学工业的一个重要部门。 在合成氨工业中,脱硫倍受重视。合成氨所需的原料气,无论是天然气、油田气还是焦炉气、半水煤气都人含有硫化物,这些硫化物主要是硫化氢(S H 2)、二硫化碳(2CS )、硫氧化碳(COS )、硫醇(SH -R )和噻吩(S H C 44)等。其中硫化氢属于无机化合物,常称为“无机硫”。 合成氨在生产原料气中硫化物虽含量不高,但对生产的危害极大。 ①腐蚀设备、管道。含有S H 2的原料气,在水分存在时,就形成硫氢酸(HSH ),腐蚀金属设备。其腐蚀程度随原料气中S H 2的含量增高而加剧。 ②使催化剂中毒、失活。当原料气中的硫化物含量超过一定指标时,硫化物与催化剂活性中心结合,就能使以金属原子或金属氧化物为活性中心的催化剂中毒、失活。包括转化催化剂、高温变换催化剂、低温变换催化剂、合成氨催化剂

年产20万吨合成氨项目可行性研究报告

年产20万吨合成氨项目 可行性研究报告 第一章总论 1.1概述 1.1.1项目名称、主办单位名称、企业性质及法人 项目名称:20万吨/年合成氨项目 主办单位:X 企业性质:股份制 企业法人: 邮编: 电话: 传真: 1.1.2可行性研究报告编制的依据和原则 1.1. 2.1编制依据 1.原化工部化计发(1997)426号文“化工建设项目可行性研究报告内容和深度的规定”(修订本); 2.《中华人民共和国工程建设标准强制性条文》; 3.《建设项目环境保护设计规定》[(87)国环字第002号]及国务院

(98)253号文; 4.《建设项目环境保护管理办法》; 5. 污水综合排放标准:(GB8978-96); 6.大气污染物综合排放标准:(GB1629-1996); 7.合成氨工业水污染物排放标准:(GB13458-2001); 8. 环境空气质量标准:(GB3095-1996); 9.锅炉大气污染物排放标准(GB13271-2001); 10.恶臭污染物排放标准(GB14554-93); 11.城市区域环境噪声标准(GB3096-93); 12..工业企业厂界噪声标准(GB12348-90); 1.1. 2.2编制原则 1.实事求是的研究和评价,客观地为上级主管部门审议该项目提供决策依据。 2.坚持可持续发展战略,企业生态环境建设,实现社会、经济、环境效益的统一。 3.坚持以人为本的原则,创造优美的企业环境。 4.合理有序的安排用地结构,用地功能布局考虑产业用地与生态环境协调发展。 5.根据工厂的区域位臵及性质,严格控制污染,污水的排放应遵循大集中小分散的原则。 6.在满足生产工艺及兼顾投资的前提下,尽可能地推广新技术、新工艺、新设备新材料的应用,以体现本工程的先进性。

60万吨醇氨I期50万吨合成氨工程可行性实施报告

60万吨醇氨(I期50万吨合成氨)工程可行性研究报告

目录 1 总论 1.1 概述 1.2 项目提出的背景 1.3 项目投资的必要性 1.4 项目建设的意义 1.5 项目建设的有条件 1.6 研究指导思想 1.7 项目研究围 1.8 研究结论 2 市场预测 2.1 国际液氨的市场 2.2 国市场 2.3省市场 2.4产品价格分析 3 产品方案及生产规模 3.1 产品方案的选择与比较 3.2 产品方案 3.3 产品生产规模及操作时间 3.3 产品的质量指标 4 技术方案 4.1 原料路线和工艺方案的确定 4.2 全厂工艺物料平衡和消耗定额 4.3 空分装置 4.4气化 4.5 变换 4.6 低温甲醇洗 4.7 液氮洗 4.8压缩和氨合成

4.9硫回收 4.10 冷冻站 4.11 空压站 4.12自控技术方案 4.13主要设备一览表 4.14 引进设备一览表 5 主要原材料和动力供应 5.1 原材料规格、来源和运输 5.2 水、电、汽动力供应 6 建厂条件和厂址方案 6.1 厂址方案 6.2 建厂条件 6.3 地区和城镇社会经济的现状及发展规划6.4 交通运输条件 6.5 水源、供排水、防洪、排涝情况 6.6 供热、供电及电讯 6.7 当地施工和协作条件 6.8 与城镇、地区规划的关系和生活福利条件 6.9 拟选厂址目前土地使用现状 7 公用工程和辅助设施方案 7.1 总图运输 7.2 给排水 7.3 供电及电讯 7.4 供热 7.5固体原料、产品贮运 7.6工厂外管 7.7采暖通风及空气调节 7.8 中央化验室 7.9 维修设施 7.10 土建 8 环保、安全卫生和消防

18万吨合成氨、30万吨尿素

一、市场情况 (一)产品用途 尿素是一种含氮量最高的中性固体肥料,也是重要的化工原料。农业用尿素占90%,10%用于工业。农业上尿素可作单一肥料、复合肥料、混合肥料及微肥使用,也用作饲料添加剂。在工业上,尿素可生产脲醛树脂、氰尿酸、氯化异氰尿酸、三羟基异氰酸酯、水合肼、盐酸氨基脲、脲烷、氨基磺酸、发泡剂AC 、尿囊素等;尿素可制氨基甲酸酯、酰尿、造影显影剂、止痛剂、漱口水、甜味剂等医药品;尿素可生产石油炼制的脱蜡剂;尿素用于生产含脲聚合物,也可作纤维素产品的软化剂;尿素还可以作炸药的稳定剂,选矿的起泡剂,也可用于制革颜料生产。 (二)市场情况 2000年到2006年,我国尿素产能从 二、产品方案及生产规模 (1)合成氨:600吨/日(中间产品),公称能力18万吨/年 (2)尿素:1052吨/日,公称能力30万吨/年 工厂年运行天数:330天/年、按8000小时 三、工艺技术方案 原料煤与水在棒磨机湿法研磨,浓度达到61%的水煤浆加压后与高压氧气一起进行部分氧化,生产出含有CO 、H 2的粗合成气。合成气送到变换工段,在变换工段,大部分的CO 和水蒸汽反应生成H 2和CO 2,变换气中的CO 2和H 2S 等酸性气体在低温甲醇洗工段中被脱除,得到的净化气送入液氮洗工段精制,并配氮使合成气中的氢氮比达到3:1,精制气进入合成气压缩机,升压至后送入氨合成系统生产合成氨。低温甲醇洗的CO 2部分送往尿素装置,经压缩与液氨合成为尿素。

(一)气化工艺技术简介 气化工艺一般分为三种类型:移动床(有时也被称为固定床),流化床和气流床。 1、固定床气化炉是最老的气化炉,它很长时间在煤气化工艺中占主要地位。固定床煤气技术经历了固定层间歇气化法、富氧连续气化法和鲁奇加压气化法。 固定床气化炉中的氧化剂与煤的流动方向相反,通过由煤变为焦油,再到灰等一系列反应区。当空气被作为氧化剂时,温度通常不会超过灰熔点,而纯氧气流床气化炉既可以是干灰也可以是熔渣。由于粗煤气出口温度(400~500℃)相对较低,粗合成气中通常会有液态碳氢化合物。固定层间歇气化法因吹风过程中放空气对环境污染严重而被淘汰,富氧连续气化法因原料只能用焦炭和无烟煤,原料价格高,且生成气中甲烷含量高;富氧气化的特点是投资少,操作简单,在中型氮肥厂中具有丰富的操作经验,是国家重点推荐的中氮厂造气技术。由于国家大力整治小煤窑和国家经济发展和重化工业的强力拉动,全国各地的煤价格随着需求的增加正在节节上扬,使合成氨成本大幅上升,所以必须采用先进的煤气化工艺,提高煤的利用率和水煤气中有效气组成。鲁奇(Lurgi)加压气化技术,在我国建有3套装置。该技术虽然能连续加压气化,但由于气化温度低,生成气中甲烷含量大,同时生成气中含苯、酚、焦油等一系列难处理的物质,净化流程长;尤其是该技术只能用碎煤不能用粉煤,因而原料利用率低,大量筛分下来的粉煤要配燃煤锅炉进行处理。 2、流化床气化炉采用粉碎了的煤作为原料,用氧化剂(氧气或空

年产18万吨合成氨厂合成工段工艺设计

计算基准按1000Nm 3新鲜原料气。 本工段计算中全部采用绝对压力,为简便计算,下文中的压力单位中“绝对”二字略去不写。 1、工艺流程: 3、压力: ①系统压力为30MPa ; ②废热锅炉产蒸汽压力为2.5MPa ; ③计算循环机进出口气体温升时,其进出口压差取2.5MPa ; ④系统压力降忽略不计。 4、温度: ①新鲜气温度为35℃; ②合成塔底进气温度190℃; ③合成塔出口(至废热锅炉)气体温度约为320℃; ④废热锅炉出口气体温度195℃,进入合成塔前预热器; ⑤入水冷器气体温度80℃; ⑥水冷器出口气体温度为35℃; ⑦废热锅炉进口软水温度约为122℃; ⑧冷却水供水温度为30℃,冷却回水温度为40℃; ⑨进循环机气体温度28℃; ⑩氨库来源氨温度20℃。 5、气体组成: ①合成塔进出口气体中氨含量为3%; 塔前预热器 去氢回收

②合成塔出口气体中氨含量为16.7%; ③循环气中H 2/N 2为3; ④循环气中(CH 4+Ar )含量为15%; ⑤各气体组分在液氨中的溶解量忽略不计。 6、年操作日:285。 7、参考书: ①《小氮肥工艺设计手册》 ②《合成氨工艺》 二、物料衡算 基准:1000Nm 3新鲜气为基准 1、 合成物料衡算: ?、放空气体量V 1及其组成 V 1= 15% 0.38%) (1.21%1000+?=106Nm 3 查手册查得35℃时,气相中平衡氨含量为:y*NH3=9.187%,取过饱和度为10%,则: y NH3=9.187%?(100%+10%)=10.11% y H2= %17.56%)15%11.10%100(43 =--? y N2=72.18%)15%44.10%100(4 1 =--?% y CH4=15%%42.1138.0%21.1% 21.1=+? y Ar =15%%58.3% 38.0%21.1% 38.0=+? (2)、氨产量V 4 由气量平衡:V 2-V 0=V 3-V 1-V 4 ① 由于氨合成时体积减少,故:V2-V 3=V 4+10.11%V 1 ② 式中:V 0——补充新鲜气 Nm 3 V 1——放空气体积 Nm 3 V 2——进入合成塔混合气体积 Nm 3 V 3——出合成塔混合气体体积 Nm 3 V 4——冷凝成产品氨(液氨)的体积 Nm 3 301000Nm V = 31106Nm V = 由①、②解得:V4= 31064.4412 106 1011.1100021011.1Nm V V =?-=- (3)、合成塔出口气体3V 及其组成(进入循环机中氨含量控制在3%)

年产30万吨合成氨工艺设计毕业论文

年产30万吨合成氨工艺设计毕业论文 目录 摘要........................................................................ I Abstract................................................................... II ...................................................................... IV 1 综述.................................................................. - 1 - 1.1 氨的性质、用途及重要性.......................................... - 1 - 1.1.1 氨的性质................................................... - 1 - 1.1.2 氨的用途及在国民生产中的作用............................... - 1 - 1.2 合成氨生产技术的发展............................................ - 2 - 1.2.1世界合成氨技术的发展....................................... - 2 - 1.2.2中国合成氨工业的发展概况................................... - 4 - 1.3合成氨转变工序的工艺原理......................................... - 6 - 1.3.1 合成氨的典型工艺流程介绍................................... - 6 - 1.3.2 合成氨转化工序的工艺原理................................... - 8 - 1.3.3合成氨变换工序的工艺原理................................... - 8 - 1.4 设计方案的确定.................................................. - 9 - 1.4.1 原料的选择................................................. - 9 - 1.4.2 工艺流程的选择............................................. - 9 - 1.4.3 工艺参数的确定............................................ - 10 - 1.4.4 工厂的选址................................................ - 11 - 2 设计工艺计算......................................................... - 1 3 -

年产10万吨合成氨合成工段设计_毕业设计

年产10万吨合成氨合成工段设计毕业设计 年产10万吨合成氨合成工段设计 1引言 氮是植物营养的重要成分之一,大多数的植物不能直接吸收存在于空气中的游离氮,只有当氮与其他元素化合以后,才能被植物吸收利用。将空气中的游离氮转变为化合态氮的过程称为“固定氮”。 20世纪初,经过人们的不懈探索,终于成功的开发了三种固定氮的方法:电弧法、氰氨法、和合成氨法。其中合成氨法的能耗最低。1913年工业上实现了氨合成以后,合成氨法发展迅速,30年代以后,合成氨法已成为人工固氮的主要方法。 1.1氨的性质 氨化学式为NH3常温下为无色有刺激性辛辣味的恶臭气体,会灼伤皮肤、眼睛,刺激呼吸道器官粘膜,空气中氨的质量分数占0.5% ~ 1.0%就会使人在几分钟内窒息。氨的主要物理性质见表0-1。氨在常温加压易液化,称为液氨。氨易溶于水,与水反应形成水合氨(NH3 + H2O=NH3·H2O)简称氨水,呈弱碱性,氨水极不稳定,受热分解为氨气和水,氨含量为1%的水溶液PH为11.7。浓氨水氨含量为28% ~ 29%。氨的化学性质比较活泼,能与酸反应生成盐,如与盐酸反应生成氯化铵;与磷酸反应生成磷酸铵;与硝酸反应生成硝酸铵;与二氧化碳反应生成甲基甲酸铵,脱水后生成尿素等等。 表1-1氨的主要物理性质[1]

年产10万吨合成氨合成工段设计 1.2氨的用途 氨主要用于制造化学肥料,如农业上使用的所有氮肥、含氮混合肥和复合肥等;也作为生产其他化工产品的原料,如基本化学工业中的硝酸、纯碱、含氮无机盐,有机化学工业的含氮中间体,制药工业中磺胺类药物、维生素,化纤和塑料工业中的己酰胺、己二胺、甲苯二异氰酸酯、人造丝、丙烯腈、酚醛树脂等都需要直接或间接地以氨为原料。另外在国防工业尖端技术中,作为制造三硝基甲苯、三硝基苯酚、硝化甘油、硝化纤维等多种炸药的原料。氨还可以做冷冻,冷藏系统的制冷剂。 1.3合成氨的发展历史 1.3.1氨气的发现 十七世纪30年代末英国的牧师、化学家S.哈尔斯(HaLes,1677~1761),用氯化铵与石灰的混合物在以水封闭的曲颈瓶中加热,只见水被吸入瓶中而不见气体放出,1774年化学家普利斯德里重做该实验,用汞代替水来密封,制得了碱空气(氨),并且他还研究发现了氨的性质,发现氨极易溶于水、可以燃烧,还发现该气体通以电火花时其容积增加,而且分解为两种气体:H2和N2,其后H.戴维(Davy,1778~1829)等化学家继续研究,进一步证明了2体积的氨通过电火花放电后,分解为1体积的氮气和3体积的氢气[2]。 1.3.2合成氨的发现及其发展 19世纪以前农业上所需的氮肥来源主要来自于有机物的副产物和动植物的废物,如粪便、腐烂动植物等等,随着农业和军工生产的发展的需要,迫切的需要建立规模巨大的探索性的研究,化学家们设想,能不能把空气中大量的氮气固定下来,从而开始设计以氮和氢为原料的合成氨流程。19世纪,大量的化学家开始试图合成氨,他们试图利用高温、高压、电弧、催化剂等手段试验直接合成氨,均未成功。19世纪末,随着化学热力学、动力学和催化剂等领域取得一定进展后,对合成氨反应的研究有了新的进展。1901年法国物理化学家吕·查得利开创性地提出氨合成的条件是高温、高压,催化剂存在。1912

万吨年合成氨合成工段工艺设计毕业设计

万吨年合成氨合成工段工艺设计毕业设计

四川理工学院毕业设计 9万吨/年合成氨合成工段工艺设计 四川理工学院材料与化学工程学院

摘要 氨是最为重要的基础化工产品之一,其产量居各种化工产品的首位。氨主要用于农业,合成氨是氮肥工业的基础。氨的合成主要有脱硫、转化、净化、合成几个工段。合成氨合成工段的设计,原料采用氮气和氢气,以合成塔为主要设备,在氨冷器、水冷器、气—气交换器、循环机、分离器、冷凝塔等辅助设备的作用下制得液氨,工艺条件为:A201为催化剂,480℃,31Mpa。本设计进行了物料衡算,热量衡算,设备选型计算。 关键词:合成工艺参数衡算设备计算

-Ⅰ- ABSTR Ammonia is one of the most important basic chemical products in the world,Its output of various kinds of chemicals rank first in the world. Ammonia mainly used in agriculture and synthetic ammonia is the basis of nitrogen fertilizer industry. Ammonia synthesis is mainly from the four sections of desulphurization, conversion, decontamination, and synthesis. With using nitrogen and hydrogen as materials and synthesis converter as main equipment, under the action of the auxiliary equipments of ammonia air conditioning, water-cooling device, gas to gas exchanger, circulator, separator, and condenser and so on, in the end, the design of the ammonia synthesis section makes ammoniacalliquor, The process conditions are determined as following:A201 as catalyst, 480℃,31Mpa .The design is be designed to material balance, heat balance and calculation of Devices type. KEY WORDS:synthesis process parameter balance calculation of Devices

年产30万吨合成氨脱碳工段工艺设计

年产30万吨合成氨脱碳 工艺项目 可行性研究报告 指导教师:姚志湘 学生:魏景棠

目录 第一章总论 (3) 1.1 概述 (3) 1.1.1 项目名称 (3) 1.1.2 合成氨工业概况 (3) 1.2 项目背景及建设必要性 (4) 1.2.1 项目背景 (4) 1.2.2 项目建设的必要性 (4) 1.2.3 建设意义............................................................................. 错误!未定义书签。 1.2.4 建设规模 (4) 第二章市场预测 (6) 2.1国内市场预测 (6) 2.2 产品分析 (6) 第三章脱碳方法及种类.. (7) 3.1 净化工序中脱碳的方法. (7) 3.1.1 化学吸收法 (7) 3.1.2 物理吸收法 (8) 3.1.3 物理化学吸收法................... (8) 3.1.4 固体吸收法 (10) 3.2碳酸丙烯酯(PC)法脱碳基本原理 (10) 3.2.1 PC法脱碳技术国内外的情况 (10) 3.2.2 发展过程 (10) 3.2.3 技术经济 (11) 3.2.4 工艺流程 (11) 3.2.5 存在的问题及解决方法 (12) 3.2.6 PC脱碳法发展趋势 (13)

第一章项目总述 2.1 概述 1.1.1项目名称 年产30万吨合成氨脱碳工段工艺设计 1.1.2合成氨工业概况 1898年,德国A.弗兰克等人发现空气中的氮能被碳化钙固定而生成氰氨化钙(又称石灰氮),进一步与过热水蒸气反应即可获得氨: CaCN2+3H2O(g)→2NH3(g)+CaCO3 在合成氨工业化生产的历史中,合成氨的生产规模(以合成塔单塔能力为依据)随着机械、设备、仪表、催化剂等相关产业的不断发展而有了极大提高。50年代以前,最大能力为200吨/日,60年代初为400吨/日,美国于1963年和1966年分别出现第一个600t/d 和1000t/d的单系列合成氨装置,在60-70年代出现1500-3000t/d规模的合成氨。 世界上85%的合成氨用做生产化肥,世界上99%的氮肥生产是以合成氨为原料。虽然全球一体化的发展减少了用户的选择范围,但市场的稳定性却相应地增加了,世界化肥生产的发展趋势是越来越集中到那些原料丰富且价格便宜的地区,中国西北部有蕴藏丰富的煤炭资源,为发展合成氨工业提供了极其便利的条件。 2.2 项目背景及建设必要性 1.2.1 项目背景 我国是一个人口大国,农业在国民经济中起着举足轻重的作用,而农业的发展离不开化肥。氮肥是农业生产中需要量最大的化肥之一,合成氨则是氮肥的主要来源,因而合成氨工业在国民经济中占有极为重要的位置。 我国合成氨工业始于20世纪30年代,经过多年的努力,我国的合成氨工业得到很大的发展,建国以来合成氨工业发展十分迅速,从六十年代末、七十年代初至今,我国陆续引进了三十多套现代化大型合成氨装置,已形成我国特有的煤、石油、天然气原料并存和大、中、小规模并存的合成氨生产格局。目前我国合成氨产能和产量己跃居世界前列。 但是,由于在我国合成氨工业中,中小型装置多,技术基础薄弱,国产化水平低,远远不能满足农业生产和发展的迫切需要,因此,开发新技术的同时利用计算机数学模型来提高设汁、生产、操作和管理等的核算能力,促进设计、管理和生产操作的优化,从而推动合成氨工业发展,提升整体技术水平,己成为国内当前化学工程科研、工程设计的重要课题。

60万吨醇氨(一期50万吨合成氨)工程可行性研究报告

能化有限公司 60万吨醇氨(I期50万吨合成氨)工程可行性研究报告

目录 1 总论 1.1 概述 1.2 项目提出的背景 1.3 项目投资的必要性 1.4 项目建设的意义 1.5 项目建设的有条件 1.6 研究指导思想 1.7 项目研究范围 1.8 研究结论 2 市场预测 2.1 国际液氨的市场 2.2 国内市场 2.3贵州省内市场 2.4产品价格分析 3 产品方案及生产规模 3.1 产品方案的选择与比较 3.2 产品方案 3.3 产品生产规模及操作时间 3.3 产品的质量指标 4 技术方案 4.1 原料路线和工艺方案的确定 4.2 全厂工艺物料平衡和消耗定额 4.3 空分装置 4.4气化 4.5 变换 4.6 低温甲醇洗 4.7 液氮洗 4.8压缩和氨合成

4.9硫回收 4.10 冷冻站 4.11 空压站 4.12自控技术方案 4.13主要设备一览表 4.14 引进设备一览表 5 主要原材料和动力供应 5.1 原材料规格、来源和运输 5.2 水、电、汽动力供应 6 建厂条件和厂址方案 6.1 厂址方案 6.2 建厂条件 6.3 地区和城镇社会经济的现状及发展规划6.4 交通运输条件 6.5 水源、供排水、防洪、排涝情况 6.6 供热、供电及电讯 6.7 当地施工和协作条件 6.8 与城镇、地区规划的关系和生活福利条件 6.9 拟选厂址目前土地使用现状 7 公用工程和辅助设施方案 7.1 总图运输 7.2 给排水 7.3 供电及电讯 7.4 供热 7.5固体原料、产品贮运 7.6工厂外管 7.7采暖通风及空气调节 7.8 中央化验室 7.9 维修设施 7.10 土建

30万吨合成氨联产尿素项目可行性研究报告

30万吨合成氨联产尿素 项目建议书 湖滨区大项目办公室 2006年9月27日 1总论 一、工艺技术状况 来自厂内的焦炉煤气,压力300mmH2O柱,温度35℃,进入罗茨鼓风机,加压后依次进入两台串联的脱硫塔内与自上而下的与PDS脱硫液逆流接触,吸收气体中的H2S及部分有机硫,出塔后经气液分离器分离液体后,至焦炉气压缩工序。 吸收了H2S及部分在同硫的脱硫液进入循环槽与溶液槽反应救分钟后,由半贫液泵或富液泵打至再生液混合器,经再生喷

射器与自吸空气混合,进行强化氧化反应,然后进入喷射再生槽,这硫泡沫及溶液从喷射再生槽迅速返上,在再生槽顶部,浮选出的硫泡沫自流入硫泡沫混和槽,再由空压罐压送至硫泡沫高位槽,用蒸汽加热至85℃左右,自流入熔硫釜,继续用蒸汽加热至95℃左右,不断排出清液,待浓度达到45%左右时,加热至135℃熔融后放入硫磺冷却盘,自然冷却后得副产品硫磺。 从再生槽分离出来的清液经液位调节器进入贫液槽,经贫液泵加压至0.5MPa后,分两股进入脱硫塔。 脱硫过程中所消耗的碱,以及需要补充的ADA、偏钒酸钠、PDS等试剂,均在溶液制备槽配制成溶液后,用溶液泵送反应槽或事故槽而进入系统。 当循环溶液中的硫氰酸钠及硫代硫酸钠积累到一定程度后,从贫液泵出口抽取部分溶液去回收楼提取硫氰酸钠和硫代硫酸钠。 来自贫液泵后的贫脱硫液,流入回收楼的母液槽,由母液泵定期抽入真空蒸发器用蒸汽加热浓缩,待蒸发结束后通过旋转的溜槽将料液放至真空吸滤器,热过滤除Na2CO3等杂质。滤渣在滤渣溶解槽中用脱硫溶解后予以回收,滤液至结晶槽用夹套冷却水(冷冻水)冷至5℃左右,加入同质晶种使其结晶,最后在离心机中分离得至粗制Na2S2O3产品。 分离得到Na2S2O3的滤液(或NaCNS/Na2 S2O3>5的脱硫清液)经中间槽用压缩空气压入真空蒸发器,用蒸汽加热浓缩,待

18万吨合成氨项目可行性研究报告

1 项目建设的目的和意义 农业是我国的基础,要实现农业的稳定发展,化肥是不可缺少的生产资料,化肥行业在国民经济中有着特殊的地位,它直接关系到农业的可持续发展。在中国化学工业“十五”规划中将其列为“对国民经济发展有重大影响,为国家基础产业,支柱产业和国防建设提供保障的行业”的第一类化工产业。 我国现有化肥企业近900家,以氮肥生产企业为主,共有800多家,其中年产30万吨合成氨的企业有29家,绝大多数为中小氮肥企业,国内氮肥工业的原料以煤为主,煤、气(天然气、油田气)、重油(石脑油)比例为66%,23%、11%。 我省煤化工产业发展的指导思想是:依托我省丰富的煤焦资源能源优势,以煤化工大企业大集团为龙头,围绕“肥、醇、炔、苯、油”五条发展主线,实施循环经济战略,加快“六区一带”特色煤化工经济区域的建设,形成横向成群、纵向成链的山西煤化工产业集群,打造山西煤化工品牌,力争3~5年内使全省煤化工产业尿素总产量达600万吨、甲醇及其下游产品总产量达200万吨。实现“依托煤炭资源优势,发展现代煤化工,走新型工业化道路”的山西煤化发展战略。 “十一五”期间,我国化肥行业的发展战略仍将以结构调整为主题:国家将支持、推动基础肥料生产布局调整,引导基础肥料生产向资源地转移、集中,支持资源富集的中西部地区发展基础肥料生产;国家将减少基础肥料生产企业的数量,提高单套装置的规模,培育有国际竞

争能力的大型肥料产业集团;到2010年,争取达到20家大型企业集团控制全国50%化肥产量的集中度,并形成2~3家在国际上有一家影响的大型企业集团。 值此时机,XXXX公司按照市场导向,调整产品结构,增加科技含量,寻找新的利润增长点,充分利用当地的水、电、煤、劳力资源廉价的优势,决定采用固定层常压间歇气化技术及水溶液全循环法工艺生产尿素,新建一套以焦炭为原料的15万吨/年合成氨、26万吨/年尿素和3万吨/年甲醇装置,达到改善单一的化肥产品结构,调剂产品供求之目的,增加对市场的抗风险能力,使企业从容的应付市场变化。 XXXXXX煤气化有限公司,现属独资有限股份制责任企业,是平遥县属煤焦重点企业四家之一。其厂址位于平遥县西南15公里段村镇段村,处于平遥规划工业生产区域之内。公司现有XJL20—Ⅱ2×30孔机焦炉与XJL20—Ⅱ2×28孔机焦炉二座;可处理年产1.5万吨煤焦油加工设备一座;年洗精煤40万吨6m3筛下空气式湿洗设备一套;可处理回收现有焦炉煤气生产粗苯化工设备一套。 公司将进一步依托自身优势,以及平遥地区丰富的煤炭资源与30万吨焦炭生产能力的优势,大力发展煤化工产业。随着本项目的逐步实施,XXXXXX煤气化有限公司必将取得更大发展。 本装置选择以焦炭生产合成氨,加工尿素和附产甲醇符合国家的产业调整政策、能源政策、环保政策、安全生产和工业卫生政策及XXXXXX 煤气化有限公司的发展规划,加快了企业的改革和调整。项目的建立是

年产10万吨合成氨合成工艺设计毕业设计论文

年产10万吨合成氨工艺设计 摘要:合成氨是化学工业的基础,也是我国化学工业发展的重要先驱,其中氨合成工段是合成氨工艺的中心环节。本设计目的在于对年产10万吨合成氨进行设计,并简要介绍了氨的用途、现状和未来发展趋势。 在中压法和催化剂的条件下,设计合成氨合成工段的生产工艺流程,将精制的氢氮混合气直接合成为氨,然后将所得的气氨从未合成为氨的混合气中冷凝分离出来,最后在未反应的混合气中补充一定量的新鲜气继续循环反应。 在物料衡算中出塔气氨含量达到16.50%,合成氨27.778t/h,合成率为29.133%,由热量衡算得到合成塔、中置锅炉和塔外换热器的热量变化。并根据设计任务及操作温度、压力按相关标准对换热器的尺寸和材质进行选择。塔外换热器采用换热面积为546.97m2的立式列管式换热器。 关键词:氨合成物料衡算能量衡算

The Process Design of 200kt/a Synthetic Ammonia Synthesis Abstract: Ammonia is the basis of the chemical industry, but also an important pioneer of China chemical industry,in which ammonia synthesis section is the central part of the synthetic ammonia process. is to optimize outputting 200,000 t/a of synthetic ammonia synthesis is as the purpose of the design,and the use of ammonia, current situation and future development trend is briefly introduced. The production process of synthetic ammonia synthesis is designed in the medium pressure and catalyst.The refined hydrogen and nitrogen mixture is made into synthesis ammonia by the design,then took the synthesis ammonia gas out of the mixture that has not been become ammonia.At last,the mixture of not reacting is supplied a certain amount of fresh gas to continue to cyclic response. The design of raw material of gas refining section in production process the synthetic ammonia content that gets out from synthetic ammonia tower is made rich to 16.50% in material balance calculations,synthetic ammonia 27.778 t /h,synthetic rate 29.133% in this design of raw material of gas refining section in production process.The heat change of the synthesis tower,the boiler and the heat exchanger is attained by the heat balance,also we selected piping size and material according to the design operation of temperature,pressure and relevant standards.The heat exchanging area of 546.97m2 of vertical tube type exchanger is used as external heat exchanger of tower. Keywords: ammonia synthesis section;material balance accounting;energy balance accounting

相关主题
文本预览
相关文档 最新文档