当前位置:文档之家› 18万吨合成氨项目可行性研究报告

18万吨合成氨项目可行性研究报告

18万吨合成氨项目可行性研究报告
18万吨合成氨项目可行性研究报告

1 项目建设的目的和意义

农业是我国的基础,要实现农业的稳定发展,化肥是不可缺少的生产资料,化肥行业在国民经济中有着特殊的地位,它直接关系到农业的可持续发展。在中国化学工业“十五”规划中将其列为“对国民经济发展有重大影响,为国家基础产业,支柱产业和国防建设提供保障的行业”的第一类化工产业。

我国现有化肥企业近900家,以氮肥生产企业为主,共有800多家,其中年产30万吨合成氨的企业有29家,绝大多数为中小氮肥企业,国内氮肥工业的原料以煤为主,煤、气(天然气、油田气)、重油(石脑油)比例为66%,23%、11%。

我省煤化工产业发展的指导思想是:依托我省丰富的煤焦资源能源优势,以煤化工大企业大集团为龙头,围绕“肥、醇、炔、苯、油”五条发展主线,实施循环经济战略,加快“六区一带”特色煤化工经济区域的建设,形成横向成群、纵向成链的山西煤化工产业集群,打造山西煤化工品牌,力争3~5年内使全省煤化工产业尿素总产量达600万吨、甲醇及其下游产品总产量达200万吨。实现“依托煤炭资源优势,发展现代煤化工,走新型工业化道路”的山西煤化发展战略。

“十一五”期间,我国化肥行业的发展战略仍将以结构调整为主题:国家将支持、推动基础肥料生产布局调整,引导基础肥料生产向资源地转移、集中,支持资源富集的中西部地区发展基础肥料生产;国家将减少基础肥料生产企业的数量,提高单套装置的规模,培育有国际竞

争能力的大型肥料产业集团;到2010年,争取达到20家大型企业集团控制全国50%化肥产量的集中度,并形成2~3家在国际上有一家影响的大型企业集团。

值此时机,XXXX公司按照市场导向,调整产品结构,增加科技含量,寻找新的利润增长点,充分利用当地的水、电、煤、劳力资源廉价的优势,决定采用固定层常压间歇气化技术及水溶液全循环法工艺生产尿素,新建一套以焦炭为原料的15万吨/年合成氨、26万吨/年尿素和3万吨/年甲醇装置,达到改善单一的化肥产品结构,调剂产品供求之目的,增加对市场的抗风险能力,使企业从容的应付市场变化。

XXXXXX煤气化有限公司,现属独资有限股份制责任企业,是平遥县属煤焦重点企业四家之一。其厂址位于平遥县西南15公里段村镇段村,处于平遥规划工业生产区域之内。公司现有XJL20—Ⅱ2×30孔机焦炉与XJL20—Ⅱ2×28孔机焦炉二座;可处理年产1.5万吨煤焦油加工设备一座;年洗精煤40万吨6m3筛下空气式湿洗设备一套;可处理回收现有焦炉煤气生产粗苯化工设备一套。

公司将进一步依托自身优势,以及平遥地区丰富的煤炭资源与30万吨焦炭生产能力的优势,大力发展煤化工产业。随着本项目的逐步实施,XXXXXX煤气化有限公司必将取得更大发展。

本装置选择以焦炭生产合成氨,加工尿素和附产甲醇符合国家的产业调整政策、能源政策、环保政策、安全生产和工业卫生政策及XXXXXX 煤气化有限公司的发展规划,加快了企业的改革和调整。项目的建立是

非常有必要的。

本项目环保、安全卫生及消防措施落实。工艺先进,技术成熟,产品纯度高,消耗定额低,生产成本低。

所选厂址条件较优越,交通运输方便,公用工程供应完全满足要求,原料焦炭供应可靠。

2 市场初步预测

2.1 合成氨市场预测

2.1.1国内外市场情况预测

2.1.1.1产品性质及用途

⑴氨的性质

氨的分子式NH3,分子量17.03,在常温下是无色气体, 比空气密度小,有刺激性恶臭味。相对密度0.7714g/l,熔点-77.7℃,沸点-33.35℃,易溶于水,溶于醇和乙醚。氨是一种可燃性物质,并具有爆炸性,常压、室温下的爆炸范围是15.5%-28%.氨具有毒性。

⑵氨的用途

合成氨主要用来制造化学肥料,也作为生产其他化工产品的原料,除液氨本身可作为化学肥料外,农业上使用的所有氮肥、含氮混合肥和复合肥,都以氨为原料。

2.1.1.2国际市场供需现状和主要消费去向

氨是化学工业中产量最大的产品之一,产量已位居世界化工产品的首位。世界合成氨生产能力主要分布在中国、美国、俄罗斯和印度等国家,近年亚太地区比重越来越大,约占总产能的45%以上。

合成氨80%以上是用于化肥生产,但如果包括直接用于农业的合成氨需求量,该比率为84%。余下16%用于各种其它工业产品。而用于化肥生产的合成氨需求量又主要由尿素生产决定,这占世界合成氨的生

产消费量的近50%;用于硝铵、硫铵等生产的合成氨消费量将占18%,而用于MAP/DAP(磷铵)生产的只占4%。

2.1.1.3我国合成氨工业生产现状

我国合成氨工业经过40多年的发展,产量已跃居世界第1位,2004年产量达4222.2万吨,比上年增长11.3%。我国合成氨生产原料多种多样,现已掌握了以焦炭、无烟煤、褐煤、焦炉气、天然气及油田伴生气和液态烃等气固液多种原料生产合成氨的技术,形成了我国特有的煤、石油、天然气原料并存和大、中、小装置并存的合成氨生产格局。

目前,全国有规模以上合成氨生产企业约570家,装置700多套,大、中、小规模并存,总生产能力为4260万t/a。其中,大型合成氨装置有30套,设计能力为900万t/a,实际生产能力为1000万t/a;中型合成氨装置有55套,生产能力为460万t/a;小型合成氨装置约700套,生产能力为2800万t/a。

2.1.1.4国内市场供需现状和主要消费去向

合成氨是氮肥的基础原料。目前,氮肥生产合成氨消耗量约占全国合成氨消耗总量的87%,其中尿素和碳酸氢铵分别约占60%和15%;其他方面(包括硝酸、硝酸盐、纯碱、制冷剂等化工产品)消耗比例约13%。

2004年,我国合成氨产量受下游产品拉动大幅增长,全年产量首次突破4000万吨,达4222万吨,是2001年以来增幅最高的一年。今年以来,我国合成氨产量继续保持增长势头。据统计,1-4月份合成氨产量为1462万吨,比2004年同期增长8.3%,同比增长8%左右。我国氮肥产量已基本能够满足农业的需要。今后一段时期,氮肥工业的发展重

点是调整产品结构,预计对合成氨的需求将继续增长。

2005年农业对化肥的总需求量约5250万吨。其中,氮肥需求量约3420万吨,约占化肥需求总量的65%。在氮肥需求量中,尿素约1850万吨,折实物量约4020万吨。加上工业用尿素,国内市场对尿素的总需求量约4100万吨实物量。预计今年全国氮肥生产对合成氨的需求量约4050万吨;其他方面(主要是浓硝酸和各种铵盐等)的需求量,估计将以每年5%的速度增长,年需合成氨约550万吨。综上所述,预计今年全国合成氨产量有可能超过4600万吨,比上年增产约380万吨。2006年合成氨产量将继续稳定增长,同比增长率为5%左右。

2.2尿素市场预测

2.2.1 国内外市场情况预测

2.2.1.1产品性质和用途

大颗粒尿素主要是用于农业肥料,与普通小颗粒尿素相比,有以下优点:

⑴颗粒大,粒重,使用方便,不易流失,提高肥效。

⑵缓释性强,肥效长久,有利于农作物的吸收。对农作物增产起到了决定性的作用。

⑶高强度,无粉尘,不易破碎,便于运输和储存。

⑷不易结块,保质期更长。

⑸缩二脲含量低,不易烧苗。

⑹适合作掺混肥料,进一步提高肥效。

⑺其物性指标好于国家标准GB2440-2001。

据中国水稻研究所实验报告,大颗粒尿素在同等施氮量的情况下,比普通尿素增产10%左右;同时大颗粒尿素深施比表施更有利于提高氮的利用率,增产效果更好。

2.2.2国内外尿素生产、供求和消费情况

2.2.2.1世界尿素生产、供求和消费情况

⑴世界尿素生产情况

2000年,世界化肥生产能力约为19400万吨(纯养分),其中氮肥12170万吨,磷肥3550万吨,钾肥3680万吨。全球化肥产量相对稳定,每年波动不大。1999/2000年度全球化肥产量为15083.17万吨,从产品结构上看,氮肥占总产量的60%,磷肥占22%,钾肥18%。

世界化肥生产主要集中在亚洲、北美州和欧洲,特别是具有原料优势的国家。中国是最大的氮肥生产国;世界磷肥主要生产国和地区是美国、中国、非洲和中东;而世界钾肥总产量的60%左右来自加拿大和前苏联。

尿素是氮肥的主要品种,2003年全球尿素生产能力已接近1.37亿吨(实物量),其中60%的生产能力分布在亚洲,37%的能力集中在中国。中东、独联体国家以及其他欧洲国家分别占世界8%的生产能力,南北美洲共占了13%。

2003年,全球尿素产量约为1.12亿吨,占全球生产能力的82%。

2004年,全球将新增400万吨/年的尿素生产力,2005年将有另外的450万吨/年产能投入生产。从现在到2010年之间,全球将新增2700万吨/年的尿素生产能力,预计其中1/3的扩能将发生在中国。全球尿素产量将随着生产能力的扩大而增加,到2004年,全球尿素产量将达到1.15亿吨,到2010年达至1.39亿吨。

⑵世界尿素供求和消费情况

尿素主要用作化肥,与其它氮肥相比,尿素生产简单、运输安全便捷,而且因其含氮量高、肥效好,而成为最普遍的固体氮肥品种,在氮肥的生产、消费和贸易中所占比例越来越高。1987至1999年间,全世界氮肥的消费量增加了17%,而尿素的表观消费量却猛增了48%。此外,尿素还是重要的工业原料,用量约占世界尿素总量的5%~10%。

世界尿素市场需求主要是由中国和印度来决定的。2003年,全球尿素消费量为1.12(实物量)亿吨,其中63%的消费来自亚洲。据世界肥料协会(IFA)分析,到2013年世界尿素总产能将达1.78亿吨,较目前增加4000万吨,年均增长2.9%。需求方面,预计到2013年全球尿素需求量将达到1.45亿吨,年均增长率约2.4%。

⑶尿素的国际贸易

尿素是国际市场上主要的氮肥贸易品种。2004年世界尿素生产能力为1.41亿吨,产量1.15亿吨。由于尿素生产和需求的不均衡性,在各种肥料国际贸易中,尿素贸易量仅次于钾肥,位居第二。2003年全球尿素生产量的20%用于国际贸易,约为2300万吨。2004年为2800万吨。

目前尿素贸易量较大的国家基本上可分为三类:

第一类为以出口尿素为主的国家,主要代表为中东、独联体国家。

第二类国家为以进口尿素为主的国家,代表的有美国、越南、泰国、菲律宾、巴西、欧洲部分国家。

第三类为有出有进的国家,时而国内尿素表现为过剩,可以出口,时而国内又有缺口,可以进口。中国比较典型。

2.2.2.2国内尿素生产与消费

㈠国内尿素生产情况

氮肥是我国传统的大宗化肥,应用量最大,氮肥的品种有尿素、碳铵、硫酸铵、和氯化铵等。

尿素是氮肥中的主要品种,我国是世界上最大的尿素生产国和消费国,产量约占世界总产量的31%,消费量约占世界总消费量的29.7%。我国现有氮肥企业500多家(其中尿素生产企业170多家),多数为小氮肥企业;大型氮肥企业25个,大型合成氨装置(年产30万吨)30套,其中有28套最终产品为尿素;中氮肥企业52个,其中最终产品为尿素的有37个,目前平均规模合成氨为14万吨/年,尿素为20万吨/年。

2005年底、2006年上半年,国内尿素行业将进入产能扩张期,产能扩张幅度较大。行业正经历进口替代转为出口导向。产能扩张,单位规模提高,淘汰小企业的行业升级是产业发展必然趋势。

㈡国内尿素供需与消费情况

国内尿素消费绝大多数用作化肥,1997-2004年国内农用尿素表观

消费量年均增长3.9%,需求增长慢于工业尿素10%的增长速度。

2004年以来,农作物种植面积和单位施肥水平提高拉动尿素需求旺盛。替代效应,以及在三聚氰胺等工业领域应用也拉动尿素需求,这也成为消化产量增长的重要因素之一。

⑴农用尿素方面

随着我国人口的不断增加,对粮食的需求量也在不断增加,而从国家安全角度考虑,我国绝大多数粮食供给都只能依赖于国内解决,而不能依赖进口,要增加粮食产量,就必须增加化肥施用量。尿素是化肥中最主要的一个化肥品种,占我国氮肥使用量的60%以上,据有关专家分析预测,近5年来我国农业尿素的需求量每年都将以5%以上的速度增长。

⑵工业尿素方面

三聚氰胺、脲醛胶等尿素下游产品生产规模的不断扩大也是我国尿素需求将继续增长的重要原因,我国三聚氰胺市场需求年均增长率超过10%。按生产每吨三聚氰胺需消耗尿素3.8t计算,2005年仅三聚氰胺消耗的尿素(实物)就将超过115万t,2010年将超过200万t。

⑶其它行业

塑料,涂料,油漆,医药及反刍动物饲料等行业对工业尿素的用量虽不是很大,但也都保持较高速度的增长。

㈢我省尿素生产优势

山西作为煤炭大省,用煤生产尿素的优势是显而易见的:

首先是资源优势。全国70%以煤为原料的氮肥企业,主要依靠晋城

和阳泉的无烟煤供应,每年有1500万吨以上的无烟煤供应全国26个省市中小氮肥企业。

山西省既是煤炭资源大省,又是电力资源大省,目前我省化肥优惠用电价格约0.25元/千瓦时,外省电价均在0.35元/千瓦时以上。

其次是财务成本低的优势。山西省部分原小化肥企业,从20世纪90年代初改产尿素,在原有生产设施的基础上通过挖潜改造、填平补齐,走滚动发展道路,生产规模不断扩大,产品结构进行了调整。

第三是规模优势。山西省现有尿素生产企业11家,2004年产尿素282万吨(实物量),增幅达138%,居全国之首。山西的尿素产量也一跃为全国排名第四。目前全省尿素在建项目5个,到2005年底可新增尿素生产能力205万吨。十一五规划中的改扩建和新建项目6项,新增尿素生产能力280万吨,总投资约在60亿元以上。如果这些投资项目能按期投产,达到800万吨没有问题。业内人士分析,按照目前的规划和建设速度,到2010年,山西尿素总能力将到达800万吨,占到全国尿素总能力的20%左右,成为全国尿素第一大省。

2.2.3尿素市场前景分析

在相当长一段时间内,我国一直是个缺肥国家。但近年来,由于国家大力发展化肥工业,化肥产量、特别是尿素产量增长很快。目前我国氮肥供需平衡,略有富余。“十一五”期间,我国经济仍将保持一个较高的发展速度,化肥市场总体趋势可以基本保持稳定,价格不会出现大起大落。综合分析尿素的市场前景,主要体现在以下几个方面:

一是生产成本:尿素的生产可以天然气、煤炭、重油等为原料。目前,除中国以外的全球产能的80%以天然气为原料。中国的能源储备具有缺油、少气、有煤的特点,与之相适应,国内尿素产业也形成了独特的工艺路线结构:中、东部企业的生产原料以煤炭为主,而西部大型装置的原料则多为天然气。近年来,原料价格的变动对不同企业的盈利水平有着较大的影响。目前尿素企业处于生产成本高位上扬、产品价格和出口又被国家限制的双重夹击下。国家为减轻尿素企业的困难,决定自7月1日起对尿素产品实行增值税100%全免政策,从而在某种程度上抵消成本的上扬,有利于部分化解尿素生产成本,维持尿素产、供、销环节稳定,维持企业正常利润水平。从总的发展趋势上看,随着国际油气资源的日益紧张,以煤为原料尿素生产的成本优势将日趋显著。

二是供求关系:近年来,我国尿素产量不断增加,供大于求的矛盾越来越突出,市场竞争越来越激烈,国内尿素行业集中度还不高,中小企业众多,整体竞争力弱。入世后国外化肥会更容易进入国内市场,将进一步加剧市场竞争,弱小型企业将在市场竞争中被吃掉。这样,尿素生产行业的结构将进一步优化,具有规模和技术优势的企业将获得更大的发展空间。

三是国际市场:我国尿素工业快速发展,产量增加,使中国的尿素尿素企业具有一定的国际竞争优势:一是煤化工路线的成本优势,二是天然气的低价格优势,加上国际海运价格的迅速上升也使我国的尿素企业到东南亚等地距离较短的优势被放大。从世界燃料储量来看,煤的储量约为石油、天然气总和的10倍,近几年国际原油价格一路走高,导致

以油为原料生产合成氨的成本大增,我国石油资源有限,加上天然气资源缺乏,有62%的企业以煤为原料。化肥原料运输受铁路严重制约,山西作为煤炭大省,以煤为原料生产尿素的资源优势显而易见。加入WTO 后,国内尿素市场与国际尿素市场的接轨步伐大大加快,彼此之间的相互影响越来越大,高涨的国际油气价格,将使我国具有尿素出口优势。

“十一五”期间化肥行业的发展战略仍将以结构调整为主题,国家将继续鼓励发展尿素、磷铵等高浓度基础肥料,2010年尿素在氮肥产量中的比例要达70%以上。可见,随着我国农业生产对尿素需求的不断增加,具有原料优势、成本优势、技术先进的大型尿素企业,必然有着良好的市场前景。

2.2.4产品价格分析

2005年由于油气价格上涨、出口增加以及工业用需求的增长使得国内尿素价格涨幅相当可观。进入2006年,推动尿素价格上涨的因素并没有消除,虽然国家为保证国内尿素供应、降低国内尿素价格,保护农民利益,对出口尿素征收临时性出口关税,但由于一季度历来就是国内的销售旺季,出口比重本来就不大,因而上半年尿素市场呈现明显的强势,需求旺盛,产销量增加,价格持续在高位运行,是近几年来市场状况最好的时间段之一。从价格上看,除了大氮企业始终执行1650元/吨的国家限价外,大多数中小尿素企业的出厂价均在1700元/吨以上。

推动尿素价格变化的因素有:

⑴粮食价格。

⑵政策因素。

⑶生产成本。

⑷国内尿素产量的大幅增加。

⑸国际尿素价格高低。

2.2.5本项目产品价格确定

根据国内市场对尿素的需求,本方案中尿素市场价格按1650元/吨(含税)进行经济评价。

2.3 甲醇性质及用途

2.3.1甲醇性质

甲醇是无色、透明、易挥发的有毒易燃液体,能完全溶解于水、丙酮、醇类、酯类及卤代烷类,其主要性质如下:

分子式 CH3OH

分子量 32.04

自燃点 473℃(空气中)

比重 0.7913(d4)

密度 0.81 g/ml(0℃)

比热 2.470~2.533 J/g℃(20~25℃) 粘度 0.5945厘泊(20℃)

燃烧热 727.038 KJ/mol(25℃液体)

生成热 238.79 KJ/mol(25℃液体)

爆炸极限 6~36.5体积%(空气中)

2.3.2甲醇用途

甲醇在化工、医药、轻工、纺织、建材、燃料等领域中具有非常重要的地位和极其广泛的用途。主要用于生产甲醛、醋酸、甲基叔丁基醚(MTBE)等多种有机产品;也是农药(西维因、呋喃丹、杀虫剂、杀螨剂)、医药(硫酸二甲酯、甲醇钠、合霉素)的原料;另外,甲醇的酯化物(对苯二甲酸二甲酯DMT、甲基丙烯酸甲酯MMA)、卤代物(氯甲烷)及甲胺类产品应用领域也非常广泛。甲醇的主要应用领域是生产甲醛,甲醛可用来生产胶粘剂,主要用于木材加工业,其次是用作模塑料、涂料、纺织物及纸张等的处理剂,其中用作木材加工的胶粘剂约占其消费总量的80%。

甲醇不仅是重要的化工原料,而且还是性能优良的能源和汽车用燃料。

2.3.3国内外市场供需现状和主要消费去向

2.3.3.1世界甲醇生产情况

2004年国外已建成的大型甲醇项目有三个两个100万吨,一个170万吨。2004年全球甲醇产量能达4060万吨/年,预计2005年产量能达到4294万吨/年,2005年到2009年全球将会新增甲醇产能1800万吨/年,主要增长区为南美、中东和澳大利亚。

2.3.3.2世界甲醇供求和消费情况

世界甲醇的需求总量在逐年增加,年均增长率约4.8%。其中甲醛领域对甲醇的需求量最大,占消费总量的34%~37%,由于世界建筑业的快速发展,在今后一段时间内仍将居第一位;MTBE是仅次于甲醛的甲醇消费大户,占消费总量的27.0%,MTBE曾经是甲醇需求快速增长的主要带动者,但现在有逐年减弱的趋势;甲醇羰基化制醋酸新工艺对甲醇的需求增长比较快,消费甲醇份额占7~8%,其年均增长率达到8.98%,最高年增长率达到16.1%。

2.3.3.3我国甲醇装置的生产现状

目前我国甲醇生产能力已达600万吨/年,现有10万吨/年以上规模甲醇生产企业共17家,8万吨/年规模有6家。截止到2004年底,我国较大的甲醇生产厂家产能已达389万吨/年,占全国甲醇产能的3/4,改变了原有装置规模过小,能耗高,缺乏市场竞争力的状况。

考虑到我国甲醇需求强劲,建设大型甲醇生产装置并对有条件的现有装置进行扩能改造势在必行。近年来我国陆续新建了一些大型甲醇生产装置,使得我国甲醇生产技术有了明显提高,但与国外相比差距仍然十分明显。国内的拟在建甲醇项目,按年产规模大致可以分为两类:一类以60万吨/年为代表,但只占极少数;另一类以10~20万吨/年为代表,占绝大多数。除此之外,部分项目年产规模不到10万吨/年。

2.3.3.4国内甲醇需求概况

2004年,我国甲醇产量达到441万吨,比上年增长34.9%,连续两年均为高速增长,2004年甲醇进口量为136万吨,同比下降5.36%,出口3万吨,下降35%,表观消费量达到创记录的573万吨,比上年增长

30.2%。

我国甲醇主要用于化学合成,其次是燃料和溶剂,近年来增长最迅速的是化学品生产,而医药和燃料市场增长平稳,农药和溶剂在总量中所占比例有所下降。2004年,我国甲醇下游产品消耗量为:甲醛31.1%、冰醋酸6.6%、甲胺5.1%、农药4.7%、甲基叔丁基醚8.4%、燃料12.6%、医药7.9%。在甲醇消费量中,目前甲醛是消耗甲醇最多的产品,由于建筑业的快速增长,使得以甲醛为原料的粘合剂行业保持快速增长。因此,预计甲醇在甲醛领域的消费量在未来5年仍会以10%以上的速度递增,到2010年,预计甲醛消耗甲醇量将达到300万吨/年以上。冰醋酸和MTBE 也是我国甲醇消费增长最快的两大领域。2004年,我国醋酸产量为115万吨,比上年增长16%,其中羰基合成醋酸68万吨,增长22%,其它生产方法仅增长了8%,预计醋酸领域的消费量在未来5年将以15%的速度增长,到2010年,生产醋酸需消耗甲醇100万吨以上。

2.3.4 产品价格分析

1997年以前,国内甲醇的市场价格变化趋势与国外相似。在那段时间内,甲醇由于供应量缺口较大,价格曾上涨到4350元/吨。从1998年以后大量进口甲醇,使得国内市场价格与国外完全接轨。受国外产品的冲击,甲醇价格最低跌到1200元/吨左右。2000年,甲醇价格逐步反弹,价格在2000~2200元/吨左右。2001年由于大量进口低价甲醇冲击市场,以及受国际市场的影响,国内甲醇价格从年初的2150元/吨下跌至1300元/吨。进入2002年,甲醇价格开始反弹,年终比年初涨幅90%。2002年我国甲醇价格持续走高的原因,一是国际价格上涨,带动国内行

情升温;二是资源不足,产品供不应求;三是下游产品价格走势坚挺直接刺激甲醇价格上涨。2003年全年甲醇价格均在高位运行,国内甲醇价格比2002年平均上涨400元/吨以上。 10月初多数地区为2400~2800元/吨。2004年由于受到下游需求强劲、国际甲醇价格持续高位、生产成本上升以及整体化工产品市场全面回暖等多种因素的影响,2004年甲醇价格始终在高位运行。价格最高时接近3000元/吨,最低时也有1900~2000元/吨,大多数时间在2200~2700元/吨之间,即使是最低价也是近几年来比较高的价位,价格比较理想。另外2004年甲醇价格波动幅度比较小,全年价格波动只有20%左右,是近几年来波动幅度最小的一年。2005甲醇价格稳中有升,2005年12月份国内甲醇的市场价在2600-2900间运行.展望后市,影响甲醇后市走向的主要因素,一是宏观经济对甲醇市场的影响,2002年以来,我国国民经济继续保持良好增长势头,为国内甲醇市场提供了良好的环境,另外世界原油价格上涨,也在一定程度上支撑着甲醇市场价格,也为甲醇渗烧汽油创造了条件。二是进口量的多少、价格的高低,将会影响国内甲醇市场走势。中国加入WTO后,尽管为国内甲醇市场提供了更加广阔的空间,但同时面临低成本进口产品冲击。综合分析以上各种因素,预计目前甲醇市场的高位强势将维持一段时间,但未来涨跌空间都不大。未来几年国内甲醇市场必将趋于世界一体化.

根据以上国际和国内甲醇市场需求预测和市场价格情况,结合国内化工市场行情,确定本项目甲醇价格为1980元/吨。

3 产品方案及生产规模

3.1 产品方案的选择

本工程原料拟采用XXXXXX煤气化有限公司的焦炭,采用采用固定层常压间歇气化生产合成氨;水溶液全循环法生产尿素。该产品方案符合国家的产业政策和环保政策,符合规模化生产的要求,也符合倡钰鑫煤气化有限公司的发展规划。

甲醇作为一种清洁燃料是能源替代的重要措施,也是化工生产中的基本原料,在化学工业中占有重要的地位,在各种基本有机原料中仅次于乙烯,丙烯和苯而居第四位,本工程中选择了清洁文明生产工艺——双甲工艺,可将对合成氨有害的气体CO、CO2转化为甲醇,起到了既保证了合成氨工艺的净化目的,同时付产了甲醇。

3.2 生产规模

年操作7200小时

年产18万吨总氨

其中:年产15万吨合成氨

年产3万吨甲醇

年产26万吨大颗粒尿素

3.3 产品质量指标

3.3.1尿素

本项目以浓度96%(wt)的尿液为原料,产品为2—4mm或5—8mm 的大颗粒尿素,其规格如下:

表3-1 大颗粒尿素生产规格Ⅰ

表3-2 大颗粒尿素产品规格Ⅱ

3.3.2甲醇

本装置产品精甲醇质量指标符合国家标准GB338-92的优等品要求,外观为无色透明液体,无特殊异臭气味,无可见杂质,具体质量指标见下表。

年产18万吨合成氨、30万吨尿素项目建议书

一、项目概况 1、项目名称:年产18万吨合成氨、30万吨尿素项目 2、合作方式:独资、合资、合作、贷款等均可 3、建设单位:XX煤业有限责任公司及合作单位 4、建设性质:新建 5、建设范围:内蒙古自治区XX自治旗XX矿区 6、建设内容及规模:以XX矿区丰富的褐煤资源为依托,建设年产合成氨18万吨、尿素 30 万吨的项目。可联产轻质油4752吨/年、煤焦油 14454吨/年,氨水(16%)27720吨/年、粗酚1980吨/年 7、建设期限:项目建设期为4年,即2005年4月-2008年9月。 8、投资估算及资金筹措: 投资规模:总投资为147215万元,其中建设投资 138703万元,流动资金8512万元。 本项目资金来源可以是贷款、风险投资等。 9、经济评价 经济评价一览表

二、项目区基本情况 1.地理位置 XX矿区位于内蒙古自治区呼伦贝尔市XX自治旗境内的东北部,地处大兴安岭西麓。其地理坐标是东经120°24′~120°38′、北纬49°09′~49°16′。矿区西连海拉尔区,东接牙克石市,南临巴彦嵯岗苏木,北至海拉尔河,与陈巴尔虎旗隔河相望,南北宽约13.7Km,东西长约46.1Km,总面积385.7Km2。XX火车站东距牙克石18Km,西距呼伦贝尔市64Km,滨州铁路线由东向西穿过XX矿区,北有301国道,铁路经过牙克石可达齐齐哈尔,哈尔滨乃至全国各地,经海拉尔可达满州里市,民航经海拉尔机场可达北京、呼和浩特等地,交通十分方便。 2.煤炭资源及煤质情况 ⑴资源情况 XX煤业公司拥有XX矿区、扎尼河矿区、伊敏河东区、陈旗巴彦哈达矿区、莫达木吉矿区五大矿区。煤炭储量丰富,XX矿区精查储量17.3亿吨;扎尼河矿区预计储量15.8亿吨;伊敏河东区普查储量58.4亿吨,其中详查储量6.1亿吨,精查储量2.3亿吨;巴彦哈达区预计储量49.0亿吨;莫达木吉矿区普查储量30.0亿吨。煤田内煤层集中,赋存稳定,构造较简单,倾角小,沼气含量低,埋藏较深,适宜于井工大型机械集约化连续生产。 ⑵煤质情况

年产19万吨合成氨合成工段初步工艺设计

合成工段初步工艺设计 湖南科技大学 毕业设计(论文) 题目年产19万吨合成氨合成工段初步工艺设计 作者宋宏友 学院化学化工学院 专业化学工程与工艺 学号1106040306 指导教师曾令玮唐丽(湘电集团)

二〇一五年六月七日

湖南科技大学 毕业设计(论文)任务书 化学化工学院化工系(教研室) 系(教研室)主任:(签名)年月日 学生姓名: 宋宏友学号: 1106040306 专业: 化学工程与工艺 1 设计(论文)题目及专题:年产19万吨合成氨合成工段初步工艺设计 2 学生设计(论文)时间:自2015年3月01 日开始至2015 年5 月30 日止 3 设计(论文)所用资源和参考资料: [1] 万鹏.《中国科技纵横》2011年第7期285-285页 [2] 赵育祥编.《合成氨工艺》[M]. 1985, 化学工业出版社 [3] 林玉波编.《合成氨生产工艺》[M]. 2006 化学工业出版社3-4页 [4] 赵忠祥.《氮肥生产概论》[M]. 1995,化学工业出版社 [5] 江苏化学石油工业厅组织.《小型氮肥厂安全操作技术》[M].1981,化学工业出版社 [6] 方伟阳. 年产3万吨合成氨合成工段设计[D].福州:福州大学本科生毕业设计(论文),2007. [7] 张岩. 化学沉淀—A/ O 工艺处理合成氨废水[J] . 中国给水排水,2004,20 :77-79 [8] 张炳标. 膜分离法回收合成氨弛放气中氢气[J].低温与特气,2003,21 (1) :23-25 [9] 王新杰. 合成氨厂两气回收技术的应用[J] .中氮肥2006 ,(1):13-14 [10] 王敏. 合成氨生产中的废气利用与节能效益[J] .江西能源,2001 (3) :26-27 [11] 《小型氮肥厂生产氨的合成(工人读物)》[M]1969年10月第1版 4 设计(论文)应完成的主要内容: 了解产品的生产现状;合理选择设计方案;工艺计算(物料衡算与能量衡算);安全技术与经济评价发展趋势;主要设备的设计计算与选型;绘制工艺流程图、平面布置图和主要设备图。 5 提交设计(论文)形式(设计说明与图纸或论文等)及要求: (1)形式:设计说明书1本;图纸3张(带控制点的工艺流程图、平面布置图及主要设备图,图用CAD制作)。 (2)要求:设计说明书字数不少于8000字;图纸符合国家有关标准;写作格式按湖南科技大学教务处有关规定执行;设计说明书按学校统一标准装订。 6 发题时间:2015年3月1日 指导教师:(签名) 学生:(签名)

合成氨工艺流程简述

合成氨工艺流程简述 1、粘结剂制备 先将水加入到粘结剂提取罐内,然后向罐内微通蒸汽,加热温度应≤40℃,开动搅拌机在不断搅拌的情况下投入液体烧碱(30%Na0H),待碱液温度达一定时继续搅拌,投入筛好的褐煤(含腐植酸约35%),含量低的褐煤应适当多投,可根据腐植酸含量高低而调整加入量,边投料边通蒸汽,同时不停搅拌,此时由于化学反应而放出热量产生少量气体、液位有所升高,为防止冒槽现象应酌情减少蒸汽加入量,维护反应温度,时间约2小时反应基本完全,可取少量提取液检查,其颜色为黑褐色,有粘结性,用母指和食指捏后拉开有连丝,冷却后粘结性增大,流动性变差,视为提出制液结束。此时停蒸汽,不停搅拌待用。 2、原料煤的粉碎和粘结剂的加入 原料煤先送入一级粉碎机,粉至3毫米以下,后经皮带机送入鼠笼粉碎机粉至1毫米以下,经皮带机送入双轴搅拌机内,此时由操作工视其送入的煤量酌情控制加液阀加入已提取好的粘结剂,在双轴搅拌机内不断的搅拌推进混匀后落入斜皮带机,送至分仓平皮带机,分仓堆沤备用(粘结剂的加入量是根据经验判断掌握调节,一般加液后的煤屑用手抓一把捏得拢,两指能捏散较为合适)。 3、煤棒制备 沤化合格的原料煤送煤棒机挤压成型后经皮带机输送到煤棒烘干炉中,利用吹风气回收锅炉的尾气(温度~160℃)将煤棒烘干,再经皮带机输送到造气车间供造气炉制取半水煤气用。 4、半水煤气制取 以空气和蒸汽为气化剂,在常压、高温下与煤棒中的炭作用,通过固定床(造气炉)蓄热间歇制气法得到半水煤气,根据氨合成必需的氢、氮气体比例调整空气和蒸汽加入量,保证合成氨系统的循环氢含量,造气过程由微机控制,分为五个阶段: ①吹风 ②上吹制气 ③下吹制气 ④二次上吹

年产30万吨合成氨脱碳工段工艺设计

年产30万吨合成氨脱碳 工艺项目 可行性研究报告 指导教师:姚志湘 学生:魏景棠

目录 第一章总论 (3) 1.1 概述 (3) 1.1.1 项目名称 (3) 1.1.2 合成氨工业概况 (3) 1.2 项目背景及建设必要性 (4) 1.2.1 项目背景 (4) 1.2.2 项目建设的必要性 (4) 1.2.3 建设意义............................................................................. 错误!未定义书签。 1.2.4 建设规模 (4) 第二章市场预测 (6) 2.1国内市场预测 (6) 2.2 产品分析 (6) 第三章脱碳方法及种类.. (7) 3.1 净化工序中脱碳的方法. (7) 3.1.1 化学吸收法 (7) 3.1.2 物理吸收法 (8) 3.1.3 物理化学吸收法................... (8) 3.1.4 固体吸收法 (10) 3.2碳酸丙烯酯(PC)法脱碳基本原理 (10) 3.2.1 PC法脱碳技术国内外的情况 (10) 3.2.2 发展过程 (10) 3.2.3 技术经济 (11) 3.2.4 工艺流程 (11) 3.2.5 存在的问题及解决方法 (12) 3.2.6 PC脱碳法发展趋势 (13)

第一章项目总述 2.1 概述 1.1.1项目名称 年产30万吨合成氨脱碳工段工艺设计 1.1.2合成氨工业概况 1898年,德国A.弗兰克等人发现空气中的氮能被碳化钙固定而生成氰氨化钙(又称石灰氮),进一步与过热水蒸气反应即可获得氨: CaCN2+3H2O(g)→2NH3(g)+CaCO3 在合成氨工业化生产的历史中,合成氨的生产规模(以合成塔单塔能力为依据)随着机械、设备、仪表、催化剂等相关产业的不断发展而有了极大提高。50年代以前,最大能力为200吨/日,60年代初为400吨/日,美国于1963年和1966年分别出现第一个600t/d 和1000t/d的单系列合成氨装置,在60-70年代出现1500-3000t/d规模的合成氨。 世界上85%的合成氨用做生产化肥,世界上99%的氮肥生产是以合成氨为原料。虽然全球一体化的发展减少了用户的选择范围,但市场的稳定性却相应地增加了,世界化肥生产的发展趋势是越来越集中到那些原料丰富且价格便宜的地区,中国西北部有蕴藏丰富的煤炭资源,为发展合成氨工业提供了极其便利的条件。 2.2 项目背景及建设必要性 1.2.1 项目背景 我国是一个人口大国,农业在国民经济中起着举足轻重的作用,而农业的发展离不开化肥。氮肥是农业生产中需要量最大的化肥之一,合成氨则是氮肥的主要来源,因而合成氨工业在国民经济中占有极为重要的位置。 我国合成氨工业始于20世纪30年代,经过多年的努力,我国的合成氨工业得到很大的发展,建国以来合成氨工业发展十分迅速,从六十年代末、七十年代初至今,我国陆续引进了三十多套现代化大型合成氨装置,已形成我国特有的煤、石油、天然气原料并存和大、中、小规模并存的合成氨生产格局。目前我国合成氨产能和产量己跃居世界前列。 但是,由于在我国合成氨工业中,中小型装置多,技术基础薄弱,国产化水平低,远远不能满足农业生产和发展的迫切需要,因此,开发新技术的同时利用计算机数学模型来提高设汁、生产、操作和管理等的核算能力,促进设计、管理和生产操作的优化,从而推动合成氨工业发展,提升整体技术水平,己成为国内当前化学工程科研、工程设计的重要课题。

年产20万吨合成氨项目可行性研究报告

年产20万吨合成氨项目 可行性研究报告 第一章总论 1.1概述 1.1.1项目名称、主办单位名称、企业性质及法人 项目名称:20万吨/年合成氨项目 主办单位:X 企业性质:股份制 企业法人: 邮编: 电话: 传真: 1.1.2可行性研究报告编制的依据和原则 1.1. 2.1编制依据 1.原化工部化计发(1997)426号文“化工建设项目可行性研究报告内容和深度的规定”(修订本); 2.《中华人民共和国工程建设标准强制性条文》; 3.《建设项目环境保护设计规定》[(87)国环字第002号]及国务院

(98)253号文; 4.《建设项目环境保护管理办法》; 5. 污水综合排放标准:(GB8978-96); 6.大气污染物综合排放标准:(GB1629-1996); 7.合成氨工业水污染物排放标准:(GB13458-2001); 8. 环境空气质量标准:(GB3095-1996); 9.锅炉大气污染物排放标准(GB13271-2001); 10.恶臭污染物排放标准(GB14554-93); 11.城市区域环境噪声标准(GB3096-93); 12..工业企业厂界噪声标准(GB12348-90); 1.1. 2.2编制原则 1.实事求是的研究和评价,客观地为上级主管部门审议该项目提供决策依据。 2.坚持可持续发展战略,企业生态环境建设,实现社会、经济、环境效益的统一。 3.坚持以人为本的原则,创造优美的企业环境。 4.合理有序的安排用地结构,用地功能布局考虑产业用地与生态环境协调发展。 5.根据工厂的区域位臵及性质,严格控制污染,污水的排放应遵循大集中小分散的原则。 6.在满足生产工艺及兼顾投资的前提下,尽可能地推广新技术、新工艺、新设备新材料的应用,以体现本工程的先进性。

30万吨合成氨项目实施建议书

30万吨合成氨联产尿素 项目建议书 湖滨区大项目办公室 2006年9月27日 1总论 一、工艺技术状况 来自厂的焦炉煤气,压力300mmH2O柱,温度35℃,进入罗茨鼓风机,加压后依次进入两台串联的脱硫塔与自上而下的与PDS脱硫液逆流接触,吸收气体中的H2S及部分有机硫,出塔后经气液分离器分离液体后,至焦炉气压缩工序。 吸收了H2S及部分在同硫的脱硫液进入循环槽与溶液槽反应救分钟后,由半贫液泵或富液泵打至再生液混合器,经再生喷

射器与自吸空气混合,进行强化氧化反应,然后进入喷射再生槽,这硫泡沫及溶液从喷射再生槽迅速返上,在再生槽顶部,浮选出的硫泡沫自流入硫泡沫混和槽,再由空压罐压送至硫泡沫高位槽,用蒸汽加热至85℃左右,自流入熔硫釜,继续用蒸汽加热至95℃左右,不断排出清液,待浓度达到45%左右时,加热至135℃熔融后放入硫磺冷却盘,自然冷却后得副产品硫磺。 从再生槽分离出来的清液经液位调节器进入贫液槽,经贫液泵加压至0.5MPa后,分两股进入脱硫塔。 脱硫过程中所消耗的碱,以及需要补充的ADA、偏钒酸钠、PDS等试剂,均在溶液制备槽配制成溶液后,用溶液泵送反应槽或事故槽而进入系统。 当循环溶液中的硫氰酸钠及硫代硫酸钠积累到一定程度后,从贫液泵出口抽取部分溶液去回收楼提取硫氰酸钠和硫代硫酸钠。 来自贫液泵后的贫脱硫液,流入回收楼的母液槽,由母液泵定期抽入真空蒸发器用蒸汽加热浓缩,待蒸发结束后通过旋转的溜槽将料液放至真空吸滤器,热过滤除Na2CO3等杂质。滤渣在滤渣溶解槽中用脱硫溶解后予以回收,滤液至结晶槽用夹套冷却水(冷冻水)冷至5℃左右,加入同质晶种使其结晶,最后在离心机中分离得至粗制Na2S2O3产品。 分离得到Na2S2O3的滤液(或NaCNS/Na2 S2O3>5的脱硫清液)经中间槽用压缩空气压入真空蒸发器,用蒸汽加热浓缩,待

年产合成氨30万吨

目录 一、绪论 (1) 、概述 (3) 、设计任务的依据 (1) 二、装置流程及说明 (2) 、生产工艺流程说明 (2) 、粗苯洗涤 (4) 、粗苯蒸馏 (4) 三、吸收工段工艺计算 (7) 、物料衡算 (7) 、气液平衡曲线 (8) 、吸收剂的用量 (9) 、塔底吸收液 (10) 、操作线 (10) 、塔径计算 (10) 、填料层高度计算 (13) 、填料层压降计算 (16) 四、脱苯工段工艺计算 (17) 、管式炉 (17) 、物料衡算 (18) 、热量衡算 (22)

五、主要符号说明 (25) 六、设计心得 (26) 七、参考文献 (27)

一、绪论 概述 氨是重要的化工产品之一,用途很广。在农业方面,以氨为主要原料可以生产各种氮素肥料,如尿素、硝酸铵、碳酸氢氨、氯化铵等,以及各种含氮复合肥料。液氨本身就是一种高效氮素肥料,可以直接施用。目前,世界上氨产量的85%—90%用于生产各和氮肥。因此,合成氨工业是氮肥工业的基础,对农业增产起着重要的作用。合成氨工业对农业的作用实质是将空气中游离氮转化为能被植物吸收利用的化合态氮,这一过程称为固定氮。 氨也是重要的工业原料,广泛用于制药、炼油、纯碱、合成纤维、合成树脂、含氮无机盐等工业。将氨氧化可以制成硝酸,而硝酸又是生产炸药、染料等产品的重要原料。生产火箭的推进剂和氧化剂,同样也离不开氨。此外,氨还是常用的冷嘲热讽冻剂。 合成氨的工业的迅速发展,也促进了高压、催化、特殊金属材料、固体燃料气化、低温等科学技术的发展。同时尿素的甲醇的合成、石油加氢、高压聚合等工业,也是在合成氨工业的基础上发展起来的。所以合成氨工业在国民经济中占有十分重要的地位,氨及氨加工工业已成为现代化学工业的一个重要部门。 在合成氨工业中,脱硫倍受重视。合成氨所需的原料气,无论是天然气、油田气还是焦炉气、半水煤气都人含有硫化物,这些硫化物主要是硫化氢(S H 2)、二硫化碳(2CS )、硫氧化碳(COS )、硫醇(SH -R )和噻吩(S H C 44)等。其中硫化氢属于无机化合物,常称为“无机硫”。 合成氨在生产原料气中硫化物虽含量不高,但对生产的危害极大。 ①腐蚀设备、管道。含有S H 2的原料气,在水分存在时,就形成硫氢酸(HSH ),腐蚀金属设备。其腐蚀程度随原料气中S H 2的含量增高而加剧。 ②使催化剂中毒、失活。当原料气中的硫化物含量超过一定指标时,硫化物与催化剂活性中心结合,就能使以金属原子或金属氧化物为活性中心的催化剂中毒、失活。包括转化催化剂、高温变换催化剂、低温变换催化剂、合成氨催化剂

年产18万吨合成氨厂合成工段工艺设计

计算基准按1000Nm 3新鲜原料气。 本工段计算中全部采用绝对压力,为简便计算,下文中的压力单位中“绝对”二字略去不写。 1、工艺流程: 3、压力: ①系统压力为30MPa ; ②废热锅炉产蒸汽压力为2.5MPa ; ③计算循环机进出口气体温升时,其进出口压差取2.5MPa ; ④系统压力降忽略不计。 4、温度: ①新鲜气温度为35℃; ②合成塔底进气温度190℃; ③合成塔出口(至废热锅炉)气体温度约为320℃; ④废热锅炉出口气体温度195℃,进入合成塔前预热器; ⑤入水冷器气体温度80℃; ⑥水冷器出口气体温度为35℃; ⑦废热锅炉进口软水温度约为122℃; ⑧冷却水供水温度为30℃,冷却回水温度为40℃; ⑨进循环机气体温度28℃; ⑩氨库来源氨温度20℃。 5、气体组成: ①合成塔进出口气体中氨含量为3%; 塔前预热器 去氢回收

②合成塔出口气体中氨含量为16.7%; ③循环气中H 2/N 2为3; ④循环气中(CH 4+Ar )含量为15%; ⑤各气体组分在液氨中的溶解量忽略不计。 6、年操作日:285。 7、参考书: ①《小氮肥工艺设计手册》 ②《合成氨工艺》 二、物料衡算 基准:1000Nm 3新鲜气为基准 1、 合成物料衡算: ?、放空气体量V 1及其组成 V 1= 15% 0.38%) (1.21%1000+?=106Nm 3 查手册查得35℃时,气相中平衡氨含量为:y*NH3=9.187%,取过饱和度为10%,则: y NH3=9.187%?(100%+10%)=10.11% y H2= %17.56%)15%11.10%100(43 =--? y N2=72.18%)15%44.10%100(4 1 =--?% y CH4=15%%42.1138.0%21.1% 21.1=+? y Ar =15%%58.3% 38.0%21.1% 38.0=+? (2)、氨产量V 4 由气量平衡:V 2-V 0=V 3-V 1-V 4 ① 由于氨合成时体积减少,故:V2-V 3=V 4+10.11%V 1 ② 式中:V 0——补充新鲜气 Nm 3 V 1——放空气体积 Nm 3 V 2——进入合成塔混合气体积 Nm 3 V 3——出合成塔混合气体体积 Nm 3 V 4——冷凝成产品氨(液氨)的体积 Nm 3 301000Nm V = 31106Nm V = 由①、②解得:V4= 31064.4412 106 1011.1100021011.1Nm V V =?-=- (3)、合成塔出口气体3V 及其组成(进入循环机中氨含量控制在3%)

60万吨醇氨I期50万吨合成氨工程可行性实施报告

60万吨醇氨(I期50万吨合成氨)工程可行性研究报告

目录 1 总论 1.1 概述 1.2 项目提出的背景 1.3 项目投资的必要性 1.4 项目建设的意义 1.5 项目建设的有条件 1.6 研究指导思想 1.7 项目研究围 1.8 研究结论 2 市场预测 2.1 国际液氨的市场 2.2 国市场 2.3省市场 2.4产品价格分析 3 产品方案及生产规模 3.1 产品方案的选择与比较 3.2 产品方案 3.3 产品生产规模及操作时间 3.3 产品的质量指标 4 技术方案 4.1 原料路线和工艺方案的确定 4.2 全厂工艺物料平衡和消耗定额 4.3 空分装置 4.4气化 4.5 变换 4.6 低温甲醇洗 4.7 液氮洗 4.8压缩和氨合成

4.9硫回收 4.10 冷冻站 4.11 空压站 4.12自控技术方案 4.13主要设备一览表 4.14 引进设备一览表 5 主要原材料和动力供应 5.1 原材料规格、来源和运输 5.2 水、电、汽动力供应 6 建厂条件和厂址方案 6.1 厂址方案 6.2 建厂条件 6.3 地区和城镇社会经济的现状及发展规划6.4 交通运输条件 6.5 水源、供排水、防洪、排涝情况 6.6 供热、供电及电讯 6.7 当地施工和协作条件 6.8 与城镇、地区规划的关系和生活福利条件 6.9 拟选厂址目前土地使用现状 7 公用工程和辅助设施方案 7.1 总图运输 7.2 给排水 7.3 供电及电讯 7.4 供热 7.5固体原料、产品贮运 7.6工厂外管 7.7采暖通风及空气调节 7.8 中央化验室 7.9 维修设施 7.10 土建 8 环保、安全卫生和消防

合成氨工作原理与工艺流程

合成氨工作原理与工艺流程 摘要:氨合成的基本原理氨是由气态氢和氮在氨触媒的作用下反应生成的,其反应式为3H2+N2=2NH3+热量这是一个可逆、放热、体积缩... 合成氨工艺包括:往复循环机工艺流程,透平循环机工艺流程,合成塔工艺流程。一.往复循环机工艺流程经合成反应,水冷器冷却、氨分离器分离后的混合气体,进入循环机气缸压缩提高压力,再送入系统与新鲜气混合进入合成塔。 关键词:氨工作;原理;工艺流程 Abstract: The basic principle of ammonia synthesis, ammonia by gaseous hydrogen and nitrogen in ammonia catalyst under reaction, the reaction equation: 3H2+N2 =2NH3 + heat which is a reversible exothermic, volume shrinkage... In synthetic ammonia process includes: reciprocating circulation machine process, turbine circulation machine process, synthetic tower process. Key words: ammonia; principle; technical process 一、氨合成的基本原理 氨是由气态氢和氮在氨触媒的作用下反应生成的,其反应式为:3H2+N2=2NH3+热量这是一个可逆、放热、体积缩小的反应,对其反应机理存在着不同的观点,一般认为:氮在铁催化剂上被活性吸附,离解为氮原子,然后逐步加氢,连续生成NH、NH2和NH3。即: N2(扩散)→2N(吸附)→2NH(吸附)→2NH2(吸附)→ 2NH3(脱附)→2NH3(扩散到气相)由质量作用定律和平衡移动原理可知:1.温度升高,不利于反应平衡而有利于反应速度。2.压力愈高愈有利于反应平衡和速度。3.氢氮气(比例3:1)含量越高越有利于反应和速度。4.触媒不影响反应平衡,但可以加快反应速度。 二、温度对氨合成反应的影响 1、氨合成反应是一个可逆放热反应。当反应温度升高时,平衡向着氨的分解方向移动;温度降低反应向着氨的生成方向移动。因此,从平衡观点来看,要使氨的平衡产率高,应该采取较低的反应温度。 2、但是从化学反应速度的观点来看,提高温度总能使反应的速度加快,这是因为温度升高分子的运动加快,分子间碰撞的机率增加,同时又使化合时分子克服阻力的能力加大,从而增加分子有效结合的机率。 3、总之,温度低时,反应有利于向合成氨的方向进行,但是氨合成的反应

年产30万吨合成氨脱硫工段设计

目录 1. 总论......................................... 错误!未定义书签。 1.1.1栲胶的组成及性质............................................................................. 错误!未定义书签。 1.1.2栲胶脱硫的反应机理............................................................................ 错误!未定义书签。 1.1.3生产中副产品硫磺的应用 .................................................................... 错误!未定义书签。 2. 流程方案的确定............................... 错误!未定义书签。 2.1栲胶脱硫法的理论依据................................................. 错误!未定义书签。 2.2工艺流程方框图.............................................................. 错误!未定义书签。 3. 生产流程的简述............................... 错误!未定义书签。 3.1简述物料流程 ............................................................... 错误!未定义书签。 3.1.1气体流程................................................................................................ 错误!未定义书签。 3.1.2溶液流程................................................................................................ 错误!未定义书签。 3.1.3硫磺回收流程........................................................................................ 错误!未定义书签。 3.2工艺的化学过程.............................................................. 错误!未定义书签。 3.3反应条件对反应的影响 ............................................... 错误!未定义书签。 3.3.1 影响栲胶溶液吸收的因素 ................................................................... 错误!未定义书签。 3.3.2 影响溶液再生的因素 ........................................................................... 错误!未定义书签。 3.4工艺条件的确定............................................................. 错误!未定义书签。 3.4.1 溶液的组成........................................................................................... 错误!未定义书签。 3.4.2 喷淋密度和液气比的控制 ................................................................... 错误!未定义书签。 3.4.3 温度....................................................................................................... 错误!未定义书签。 3.4.4再生空气量............................................................................................ 错误!未定义书签。 4. 物料衡算和热量衡算........................... 错误!未定义书签。 4.1物料衡算[6-10] ............................................................... 错误!未定义书签。 4.2热量衡算(以0℃为计算基准) ................................. 错误!未定义书签。 5. 车间布置说明.................................. 错误!未定义书签。 6. 三废治理及利用............................... 错误!未定义书签。 6.1废水的处理 ................................................................... 错误!未定义书签。 6.1.1废水的来源及特点................................................................................ 错误!未定义书签。 6.1.2废水处理工艺........................................................................................ 错误!未定义书签。

合成氨工艺流程

工艺流程说明: 将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到1.9~2.0Mpa,送入脱硫塔,用A.D.A.溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机12.09~13.0Mpa后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到30.0~32.0 MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。 吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。 上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。 二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。 CO变换:一氧化碳对氨催化剂有毒害,因此在原料气进入合成氨工序之前必须将一氧

年产30万吨合成氨工艺设计毕业论文

年产30万吨合成氨工艺设计毕业论文 目录 摘要........................................................................ I Abstract................................................................... II ...................................................................... IV 1 综述.................................................................. - 1 - 1.1 氨的性质、用途及重要性.......................................... - 1 - 1.1.1 氨的性质................................................... - 1 - 1.1.2 氨的用途及在国民生产中的作用............................... - 1 - 1.2 合成氨生产技术的发展............................................ - 2 - 1.2.1世界合成氨技术的发展....................................... - 2 - 1.2.2中国合成氨工业的发展概况................................... - 4 - 1.3合成氨转变工序的工艺原理......................................... - 6 - 1.3.1 合成氨的典型工艺流程介绍................................... - 6 - 1.3.2 合成氨转化工序的工艺原理................................... - 8 - 1.3.3合成氨变换工序的工艺原理................................... - 8 - 1.4 设计方案的确定.................................................. - 9 - 1.4.1 原料的选择................................................. - 9 - 1.4.2 工艺流程的选择............................................. - 9 - 1.4.3 工艺参数的确定............................................ - 10 - 1.4.4 工厂的选址................................................ - 11 - 2 设计工艺计算......................................................... - 1 3 -

年产10万吨合成氨装置制工段

年产10万吨合成氨装置精制工段(烃化)设计 目录 1、前言 2、原料的选择 3、厂址的选择 4、工艺的确定 5、物料衡算 6、环境保护与安全措施 7、车间布置与设计 8、工程概算 9、设计总结与心得

前言 氨是最为重要的基础化工产品之一,主要用于制造氮肥和复料,作为工业原料和氨化饲料,用量约占世界产量的12%。硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原料,液氨常用作制冷剂。 合成氨工艺涉及众多工段,本设计为年产10万吨合成氨装置精制工段烃化设计,烃化的主要任务是利用烃化反应的方法来净化精制合成氨原料气,使合成氨原料气进入氨合成工段之前的气体中CO 、CO2(俗称气体中的“微量”指标)总量小于10ppm,以达到合成氨入塔要求。对烃化的工艺条件、反应原理及工艺流程作简要论述。

二、原料的选择 合成氨生产的原料有焦炭、煤、天然气、重油等。本设计以煤作为原料,因为我国煤炭资源丰富。在原料来源方面有着先天的优势,从而降低生产过程的成本。合成氨的生产需要氢气和氮气,氢气来源是以煤为原料经过造气、净化工序后,输出地精制气体(主要含量为H2)作为合成氨工段的生产原料。氮气的来源主要是空气中的氮气,可以在低温下将空气液化、分离而得到,作为合成氨工段的另一重要原料。 三、厂址的选择 本设计合成氨厂选址选于省六盘水市盘县两河新区。 1. 原料来源便捷 两河新区位于老屋基煤矿、山脚树煤矿、红果镇煤矿、火铺煤矿等几大煤矿的中心地带,以煤为原料的合成氨工厂建立在此具有先天优势。 2.交通便利 新区沪昆高速公路在沙坡和两河两地出入,即将通车的毕水兴高速公路水盘段与沪昆高速公路在区海铺呈十字交汇,正在修建的长昆快速铁路家庄站紧挨海铺交汇点和沪昆两河出口,320国道贯穿全境。

合成氨工艺和项目

XXXXXXXXXXXXXXXXX潘塔业绩情况XXXXXXXXXXXXXXXXX 大庆石化甲醇厂合成氨 中国石油大庆石化化肥厂合成氨装置扩能改造工程 XXXXXXXXXXXXXXXX马各文业绩情况XXXXXXXXXXXXXXXX 大庆油田甲醇厂合成氨技术改造工程 本溪1830(18吨尿素和30万吨合成氨)锅炉部分里面的高压蒸汽项目 中国石油天然气股份有限公司宁夏石化分公司宁化二化肥合成氨扩能改造 湖北双环合成氨装置 中石化湖北化肥分公司合成氨装置氨合成回路增产节能改造项目 中石化湖南岳阳巴陵分公司煤代油工程第二批 中石化安徽安庆石化化肥项目 四川泸天化股份有限公司合成二大修项目 云南沾化年产50万吨合成氨项目煤气化装置 XXXX福瑞克(闸阀、截至阀、止回阀、角阀)业绩XXXX 云天化50万合成氨 本溪35万吨尿素62万吨合成氨项目 本溪1830(18吨尿素和30万吨合成氨)锅炉部分里面的高压蒸汽项目XXXXXXXXXXXXXXXXX要跟踪项目XXXXXXXXXXXXXXXXXXX 安徽20万吨/年合成氨原料路线改造工程(壳牌粉煤加压气化)项目=吴迪 所属地区:阜阳市 项目建设内容和规模: 公司现有合成氨装置生产能力为20万吨/年,生产工艺采用常压固定床气化。采用壳牌粉煤加压气化技术改造后能力如下:煤气化装置生产能力,煤气(CO+H2)55000Nm 3 /h,可产合成氨630t/d(20万吨/年),气化炉原料煤处理能力820t/d;空分装置生产能力,18000Nm 3/h(以99.6%O 2 计),最大20000Nm 3 /h,年操作7920小时。 合作方式:合资、合作经营。 项目建设条件及当前工作进展情况:本项目采用皖北谢桥煤矿及刘二矿煤作为煤气化装置设计煤种,项目建设在原厂区内,不需新增土地。项目建设场地已完成三通一平。 项目建设单位:安徽昊源化工集团有限公司 邮政编码:236023 通讯地址:安徽省阜阳市阜康路1号 联系电话: 传真: E-mail: 网址: 河南省新郑市年产18万吨合成氨项目=吴迪 项目分类:石化医药 项目概算: 82796万元 建设地点:河南 建设周期和单位: 2007年-2009年新郑市韩春化工有限公司 主要设备及要求:

年产30万吨合成氨工艺设计

年产30万吨合成氨工艺设计 作者姓名000 专业应用化工技术11-2班 指导教师姓名000 专业技术职务副教授(讲师)

目录 摘要 (4) 第一章合成氨工业概述 (5) 1.1氨的性质、用途及重要性 (5) 1.1.1氨的性质 (5) 1.1.2 氨的用途及在国民生产中的作用 (6) 1.2 合成氨工业概况 (6) 1.2.1发展趋势 (6) 1.2.2我国合成氨工业发展概况 (7) 1.2.3世界合成氨技术的发展 (9) 1.3合成氨生产工艺 (11) 1.3.1合成氨的典型工艺流程 (11) 1.4设计方案确定 (13) 1.4.1原料的选择 (13) 1.4.2 工艺流程的选择 (14) 1.4.3 工艺参数的确定 (14) 第二章设计工艺计算 2.1 转化段物料衡算 (15) 2.1.1 一段转化炉的物料衡算 (16) 2.2 转化段热量衡算 (24) 2.2.1 一段炉辐射段热量衡算 (24) 2.2.2 二段炉的热量衡算 (32) 2.2.3 换热器101-C、102-C的热量衡算 (34) 2.3 变换段的衡算 (35) 2.3.1 高温变换炉的衡算 (35) 2.3.2 低温变换炉的衡算 (38) 2.4 换热器103-C及换热器104-C的热负荷计算 (41) 2.4.1 换热器103-C热负荷 (41) 2.4.2 换热器104-C热负荷 (42)

2.5 设备工艺计算 (42) 2.6 带控制点的工艺流程图及主要设备图 (46) 2.7 生产质量控制 (46) 2.8 三废处理 (47)

摘要 氨是重要的基础化工产品之一,在国民经济中占有重要地位。合成氨生产经过多年的发展,现已发展成为一种成熟的化工生产工艺。 本设计是以天然气为原料年产三十万吨合成氨的设计。近年来合成氨工业发展很快,大型化、低能耗、清洁生产均是合成氨设备发展的主流,技术改进主要方向是开发性能更好的催化剂、降低氨合成压力、开发新的原料气净化方法、降低燃料消耗、回收和合理利用低位热能等方面上。 设计采用的工艺流程简介:天然气经过脱硫压缩进入一段转化炉,把CH4和烃类转化成H2,再经过二段炉进一步转化后换热进入高变炉,在催化剂作用下大部分CO和水蒸气反应获H2和CO2,再经过低变炉使CO降到合格水平,去甲烷化工序。 关键词:合成氨天然气 ABSTRACT Ammonia is one of the important basic chemical products, occupies an important position in national economy. Ammonia production after years of development, has now developed into a mature chemical production process. This design is the design of the natural gas as raw material to produce three hundred thousand tons of synthetic ammonia. Synthetic ammonia industry develops very fast in recent years, large scale, low energy consumption, clean production is the mainstream in the development of synthetic ammonia equipment, technical improvement is the main direction of development of better performance of catalyst, reducing ammonia synthesis pressure, the development of new materials gas purification methods, reduce fuel consumption, recovery and rational utilization of low heat, etc. Introduction to the design process used: compressed natural gas after desulfurization enter reformer, the CH4 and hydrocarbons into H2, and then further transformed after Sec furnace heat exchanger into the hypervariable furnace, most CO and water

相关主题
文本预览
相关文档 最新文档