当前位置:文档之家› 场效应管与晶体管的比较

场效应管与晶体管的比较

场效应管与晶体管的比较

? 1、场效应晶体管具有较高输入阻抗和低噪声等优点,因而也被广

泛应用于各种电子设备中。尤其用场效管做整个电子设备的输入级,可以获得一般晶体管很难达到的性能。

? 2、场效应管分成结型和绝缘栅型两大类,其控制原理都是一样的。如图1-1-1是两种型号的表示符号:

?3、场效应管与晶体管的比较

?(1)场效应管是电压控制元件,而晶体管是电流控制元件。在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管。

?(2)场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电。被称之为双极型器件。

?(3)有些场效应管的源极和漏极可以互换使用,栅压也可正可负,灵活性比晶体管好。

?(4)场效应管能在很小电流和很低电压的条件下工作,而且它的制造工艺可以很方便地把很多场效应管集成在一块硅片上,因此场效应管在大规模集成电路中得到了广泛的应用。

场效应管放大电路13912

场效应管放大电路 一、选择填空(只填①、②…字样) 1.晶体管是依靠 ⑤ 导电来工作的 ⑦ 器件;场效应管是依靠 ① 导电来工作的 ⑥ 器件(①多数载流子,②少数载流子,③电子,④空穴,⑤多数载流子和少数载流子,⑥单极型,⑦双极型,⑧无极型)。 2.晶体管是 ② ;场效应管是 ① (①电压控制器件;②电流控制器件) 3.晶体管的输入电阻比场效应管的输入电阻 ③ (①大得多;②差不多;③小得多)。 4.晶体管的集电极电流 ② ;场效应管的漏极电流 ① (①穿过一个PN 结,② 穿过两个PN 结,③不穿过PN 结) 5.放大电路中的晶体管应工作在 ② ;场效应管应工作在 ① (①饱和区,②放大区,③截止区,④夹断区,⑤可变电阻区)。 6.绝缘栅型场效应管是利用改变 栅源两极 的大小来改变 沟道电阻 的大小,从而 达到控制 漏极电流 的目的;根据 栅源两极电压为零 时,有无 漏极电流 的差别,MOS 管可分为 耗尽 型和 增强 型两种类型。 7.NMOS 管最大的优点是 输入电阻较大 ;其栅—源电压的极性 为负 ,漏—源电压的极性 为正 ;对于增强型NMOS 管,这两种电压的极性 为正 ,对增强型PMOS 管这两种电压的极性为 负 。 8.耗尽型场效应管在恒流区的转移特性方程为()D GS DS i f u u ==常数,它们都是反映 栅源两端电 压 对 漏极电流 控制特性的。 9、当场效应管的漏极直流电流I D 从2mA 变为4mA 时,它的低频跨导g m 将 。 A.增大 B.不变 C.减小 答案:A 二、解答题 2.已知场效应管的输出特性曲线如图P1.22所示,画出它在恒流区的转移特性曲线。 图P1.22 解:在场效应管的恒流区作横坐标的垂线〔如解图P1.22(a )所示〕,读出其与各条曲线交点的纵坐标值及U GS 值,建立i D =f (u GS )坐标系,描点,连线,即可得到转移特性曲线,如解图P1.22(b )所示。

场效应管放大器实验报告

实验六场效应管放大器 一、实验目的 1、了解结型场效应管的性能和特点 2、进一步熟悉放大器动态参数的测试方法 二、实验仪器 1、双踪示波器 2、万用表 3、信号发生器 三、实验原理 实验电路如下图所示: 图6-1

场效应管是一种电压控制型器件。按结构可分为结型和绝缘栅型两种类型。由于场效应管栅源之间处于绝缘或反向偏置,所以输入电阻很高(一般可达上百兆欧)又由于场效应管是一种多数载流子控制器件,因此热稳定性好,抗辐射能力强,噪声系数小。加之制造工艺较简单,便于大规模集成,因此得到越来越广泛的应用。 1、结型场效应管的特性和参数 场效应管的特性主要有输出特性和转移特性。图6-2所示为N沟道结 图6-2 3DJ6F的输出特性和转移特性曲线 型场效应管3DJ6F的输出特性和转移特性曲线。其直流参数主要有饱和漏极电 流I DSS ,夹断电压U P 等;交流参数主要有低频跨导 常数 U △U △I g DS GS D m = = 表6-1列出了3DJ6F的典型参数值及测试条件。 表6-1 参数名称饱和漏极电流 I DSS (mA) 夹断电压 U P (V) 跨导 g m (μA/V) 测试条件U DS =10V U GS =0V U DS =10V I DS =50μA U DS =10V I DS =3mA f=1KHz 参数值1~3.5 <|-9|>100

2、场效应管放大器性能分析 图6-1为结型场效应管组成的共源级放大电路。其静态工作点 2 P GS DSS D )U U (1I I - = 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D 式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U (1U 2I g P GS P DSS m -- = 计算。但要注意,计算时U GS 要用静态工作点处之数值。 3、输入电阻的测量方法 场效应管放大器的静态工作点、电压放大倍数和输出电阻的测量方法,与实验二中晶体管放大器的测量方法相同。其输入电阻的测量,从原理上讲,也可采用实验二中所述方法,但由于场效应管的R i 比较大,如直接测输入电压U S 和U i ,则限于测量仪器的输入电阻有限,必然会带来较大的误差。因此为了减小误差,常利用被测放大器的隔离作用,通过测量输出电压U O 来计算输入电阻。测量电路如图3-3所示。 图3-3 输入电阻测量电路 在放大器的输入端串入电阻R ,把开关K 掷向位置1(即使R =0),测量放大器的输出电压U 01=A V U S ;保持U S 不变,再把K 掷向2(即接入R ),测量放大器的输出电压U 02。由于两次测量中A V 和U S 保持不变,故 S D DD g2 g1g1 S G GS R I U R R R U U U -+= -=

场效应管的选型及应用概览

场效应管的选型及应用概览 场效应管广泛使用在模拟电路与数字电路中,和我们的生活密不可分。场效应管的优势在于:首先驱动电路比较简单。场效应管需要的驱动电流比BJT则小得多,而且通常可以直接由CMOS或者集电极开路TTL驱动电路驱动;其次场效应管的开关速度比较迅速,能够以较高的速度工作,因为没有电荷存储效应;另外场效应管没有二次击穿失效机理,它在温度越高时往往耐力越强,而且发生热击穿的可能性越低,还可以在较宽的温度范围内提供较好的性能。场效应管已经得到了大量应用,在消费电子、工业产品、机电设备、智能手机以及其他便携式数码电子产品中随处可见。 近年来,随着汽车、通信、能源、消费、绿色工业等大量应用场效应管产品的行业在近几年来得到了快速的发展,功率场效应管更是备受关注。据预测,2010-2015年中国功率MOSFET市场的总体复合年度增长率将达到13.7%。虽然市场研究公司 iSuppli 表示由于宏观的投资和经济政策和日本地震带来的晶圆与原材料供应问题,今年的功率场效应管市场会放缓,但消费电子和数据处理的需求依然旺盛,因此长期来看,功率场效应管的增长还是会持续一段相当长的时间。 技术一直在进步,功率场效应管市场逐渐受到了新技术的挑战。例如,业内有不少公司已经开始研发GaN功率器件,并且断言硅功率场效应管的性能可提升的空间已经非常有限。不过,GaN 对功率场效应管市场的挑战还处于非常初期的阶段,场效应管在技术成熟度、供应量等方面仍然占据明显的优势,经过三十多年的发展,场效应管市场也不会轻易被新技术迅速替代。 五年甚至更长的时间内,场效应管仍会占据主导的位置。场效应管也仍将是众多刚入行的工程师都会接触到的器件,本期内容将会从基础开始,探讨场效应管的一些基础知识,包括选型、关键参数的介绍、系统和散热的考虑等为大家做一些介绍。 一.场效应管的基础选型 场效应管有两大类型:N沟道和P沟道。在功率系统中,场效应管可被看成电气开关。当在N沟道场效应管的栅极和源极间加上正电压时,其开关导通。导通时,电流可经开关从漏极流向源极。漏极和源极之间存在一个内阻,称为导通电阻RDS(ON)。必须清楚场效应管的栅极是个高阻抗端,因此,总是要在栅极加上一个电压。如果栅极为悬空,器件将不能按设计意图工作,并可能在不恰当的时刻导通或关闭,导致系统产生潜在的功率损耗。当源极和栅极间的电压为零时,开关关闭,而电流停止通过器件。虽然这时器件已经关闭,但仍然有微小电流存在,这称之为漏电流,即IDSS。 作为电气系统中的基本部件,工程师如何根据参数做出正确选择呢?本文将讨论如何通过四步来选择正确的场效应管。 1)沟道的选择。为设计选择正确器件的第一步是决定采用N沟道还是P沟道场效应管。在典型的功率应用中,当一个场效应管接地,而负载连接到干线电压上时,该场效应管就构成了低压侧开关。在低压侧开关中,应采用N沟道场效应管,这是出于对关闭或导通器件所需电压的考虑。当场效应管连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P沟道场效应管,这也是出于对电压驱动的考虑。

场效应管特性

根据三极管的原理开发出的新一代放大元件,有3个极性,栅极,漏极,源极,它的特点是栅极的内阻极高,采用二氧化硅材料的可以达到几百兆欧,属于电压控制型器件 -------------------------------------------------------------- 1.概念: 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管.由多数载流子参与导电,也称为单极型晶体管.它属于电压控制型半导体器件. 特点: 具有输入电阻高(100000000~1000000000Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者. 作用: 场效应管可应用于放大.由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器. 场效应管可以用作电子开关. 场效应管很高的输入阻抗非常适合作阻抗变换.常用于多级放大器的输入级作阻抗变换.场效应管可以用作可变电阻.场效应管可以方便地用作恒流源. 2.场效应管的分类:

场效应管分结型、绝缘栅型(MOS)两大类 按沟道材料:结型和绝缘栅型各分N沟道和P沟道两种. 按导电方式:耗尽型与增强型,结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管,而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类.见下图: 3.场效应管的主要参数: Idss —饱和漏源电流.是指结型或耗尽型绝缘栅场效应管中,栅极电压UGS=0时的漏源电流. Up —夹断电压.是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压. Ut —开启电压.是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压. gM —跨导.是表示栅源电压UGS —对漏极电流ID的控制能力,即漏极电流ID变化量与栅源电压UGS变化量的比值.gM 是衡量场效应管放大能力的重要参数. BVDS —漏源击穿电压.是指栅源电压UGS一定时,场效应管正常工作所能承受的最大漏源电压.这是一项极限参数,加在场效应管上的工作电压必须小于BVDS. PDSM —最大耗散功率,也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率.使用时,场效应管实际功耗应小于PDSM并留有一定余量. IDSM —最大漏源电流.是一项极限参数,是指场效应管正常工作时,漏源间所允许通过的最大电流.场效应管的工作电流不应超过IDSM Cds---漏-源电容 Cdu---漏-衬底电容 Cgd---栅-源电容 Cgs---漏-源电容 Ciss---栅短路共源输入电容 Coss---栅短路共源输出电容 Crss---栅短路共源反向传输电容 D---占空比(占空系数,外电路参数) di/dt---电流上升率(外电路参数) dv/dt---电压上升率(外电路参数) ID---漏极电流(直流) IDM---漏极脉冲电流 ID(on)---通态漏极电流 IDQ---静态漏极电流(射频功率管)

MOS管i-v特性

一、实验目的 分析mos晶体管i-v特性分析 二、实验要求 了解结型场效应管和MOS管的工作原理、特性曲线及主要参数 三、实验内容 1、MOS器件的结构介绍 2、MOS的工作原理 3、i-v特性曲线 图1 原理图

1.特性曲线和电流方程 输出特性曲线 与结型场效应管一样,其输出特性曲线也可分为可变电阻区、饱和区、截止 区和击穿区几部分。 转移特性曲线 转移特性曲线如图1(b)所示,由于场效应管作放大器件使用时是工作在饱和 区(恒流区),此时i D 几乎不随v DS 而变化,即不同的v DS 所对应的转移特性曲线几乎是重合的,所以可用v DS 大于某一数值(v DS >v GS -V T )后的一条转移特性曲线代替饱和区的所有转移特性曲线. i D 与v GS 的近似关系 与结型场效应管相类似。在饱和区内,i D 与v GS 的近似关系式为 ( v GS > V T ) 式中I DO 是v GS =2V T 时的漏极电流i D 。 2.参数 2 GS DO D )1(-=T V v I i

MOS管的主要参数与结型场效应管基本相同,只是增强型MOS管中不用夹断电压V P,而用开启电压V T表征管子的特性。 MOS管 1. 基本结构 原因:制造N沟道耗尽型MOS管时,在SiO2绝缘层中掺入了大量的碱金属正离子Na+或K+(制造P沟道耗尽型MOS管时掺入负离子),如图1(a)所示,因此即使v GS=0时,在这些正离子产生的电场作用下,漏-源极间的P型衬底表面也能感应生成N沟道(称为初始沟道),只要加上正向电压v DS,就有电流i D。 如果加上正的v GS,栅极与N沟道间的电场将在沟道中吸引来更多的电子,沟道加宽,沟道电阻变小,i D增大。反之v GS为负时,沟道中感应的电子减少,沟道变窄,沟道电阻变大,i D减小。当v GS负向增加到某一数值时,导电沟道消失,i D趋于零,管子截止,故称为耗尽型。沟道消失时的栅-源电压称为夹断电压,仍用V P表示。与N沟道结型场效应管相同,N沟道耗尽型MOS管的夹断电压V P也为负值,但是,前者只能在v GS<0的情况下工作。而后者在v GS=0,v GS>0,V P

场效应管放大电路习题答案

第3章场效应管放大电路 3-1判断下列说法是否正确,用“√”和“×”表示判断结果填入空内。 (1)结型场效应管外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证其R GS 大的特点。(?) (2)若耗尽型N沟道MOS管的U GS大于零,则其输入电阻会明显变小。(?) 3-2选择正确答案填入空内。 (1)U GS=0V时,不能够工作在恒流区的场效应管有 B 。 A. 结型管 B. 增强型MOS管 C. 耗尽型MOS管 (2)当场效应管的漏极直流电流I D从2mA变为4mA时,它的低频跨导g m将 A 。 A.增大 B.不变 C.减小 3-3改正图P3-3所示各电路中的错误,使它们有可能放大正弦波电压。要求保留电路的共源接法。 图P3-3 解:(a)源极加电阻R S。 (b)漏极加电阻R D。 (c)输入端加耦合电容。 (d)在R g支路加-V G G,+V D D改为-V D D 改正电路如解图P3-3所示。

解图P3-3 3-4已知图P3-4(a)所示电路中场效应管的转移特性和输出特性分别如图(b)(c)所示。 A 、R i和R o。(1)利用图解法求解Q点;(2)利用等效电路法求解 u 图P3-4

解:(1)在转移特性中作直线u G S =-i D R S ,与转移特性的交点即为Q 点;读出坐标值,得出I D Q =1mA ,U G S Q =-2V 。如解图P3-4(a )所示。 解图P3-4 在输出特性中作直流负载线u D S =V D D -i D (R D +R S ),与U G S Q =-2V 的那条输出特性曲线的交点为Q 点,U D S Q ≈3V 。如解图P3-4(b )所示。 (2)首先画出交流等效电路(图略),然后进行动态分析。 mA/V 12DQ DSS GS(off)GS D m DS =-=??=I I U u i g U Ω ==Ω==-=-=k 5 M 1 5D o i D m R R R R R g A g u & 3-5 已知图P3-5(a )所示电路中场效应管的转移特性如图(b )所示。求解 电路的Q 点和u A &。 图P3-5 解:(1)求Q 点: 根据电路图可知, U G S Q =V G G =3V 。 从转移特性查得,当U G S Q =3V 时的漏极电流 I D Q =1mA

常用场效应管和晶体管参数大全

常用场效应管和晶体管参数大全 常用场效应管和晶体管参数大全 IRFU020 50V 15A 42W * * NMOS场效应IRFPG42 1000V 4A 150W * * NMOS场效应IRFPF40 900V 4.7A 150W * * NMOS场效应IRFP9240 200V 12A 150W * * PMOS场效应IRFP9140 100V 19A 150W * * PMOS场效应IRFP460 500V 20A 250W * * NMOS场效应IRFP450 500V 14A 180W * * NMOS场效应IRFP440 500V 8A 150W * * NMOS场效应IRFP353 350V 14A 180W * * NMOS场效应IRFP350 400V 16A 180W * * NMOS场效应IRFP340 400V 10A 150W * * NMOS场效应IRFP250 200V 33A 180W * * NMOS场效应IRFP240 200V 19A 150W * * NMOS场效应IRFP150 100V 40A 180W * * NMOS场效应IRFP140 100V 30A 150W * * NMOS场效应IRFP054 60V 65A 180W * * NMOS场效应IRFI744 400V 4A 32W * * NMOS场效应IRFI730 400V 4A 32W * * NMOS场效应IRFD9120 100V 1A 1W * * NMOS场效应IRFD123 80V 1.1A 1W * * NMOS场效应IRFD120 100V 1.3A 1W * * NMOS场效应IRFD113 60V 0.8A 1W * * NMOS场效应IRFBE30 800V 2.8A 75W * * NMOS场效应IRFBC40 600V 6.2A 125W * * NMOS场效应IRFBC30 600V 3.6A 74W * * NMOS场效应IRFBC20 600V 2.5A 50W * * NMOS场效应IRFS9630 200V 6.5A 75W * * PMOS场效应IRF9630 200V 6.5A 75W * * PMOS场效应IRF9610 200V 1A 20W * * PMOS场效应IRF9541 60V 19A 125W * * PMOS场效应IRF9531 60V 12A 75W * * PMOS场效应IRF9530 100V 12A 75W * * PMOS场效应IRF840 500V 8A 125W * * NMOS场效应IRF830 500V 4.5A 75W * * NMOS场效应IRF740 400V 10A 125W * * NMOS场效应IRF730 400V 5.5A 75W * * NMOS场效应IRF720 400V 3.3A 50W * * NMOS场效应IRF640 200V 18A 125W * * NMOS场效应IRF630 200V 9A 75W * * NMOS场效应IRF610 200V 3.3A 43W * * NMOS场效应IRF541 80V 28A 150W * * NMOS场效应

常用全系列场效应管MOS管型号参数封装资料

场效应管分类DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET 型号简介封装2N7000 2N7002 IRF510A IRF520A IRF530A IRF540A IRF610A IRF620A IRF630A IRF634A IRF640A IRF644A IRF650A IRF654A IRF720A 60V,0.115A 60V,0.2A 100V,5.6A 100V,9.2A 100V,14A 100V,28A 200V,3.3A 200V,5A 200V,9A 250V,8.1A 200V,18A 250V,14A 200V,28A 250V,21A 400V,3.3A TO-92 SOT-23 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220

DISCRETE MOS FET IRF730A 400V,5.5A TO-220 DISCRETE MOS FET IRF740A 400V,10A TO-220 DISCRETE MOS FET IRF750A 400V,15A TO-220 DISCRETE MOS FET IRF820A 500V,2.5A TO-220 DISCRETE MOS FET IRF830A 500V,4.5A TO-220 DISCRETE MOS FET IRF840A 500V,8A TO-220 DISCRETE MOS FET IRF9520 DISCRETE MOS FET IRF9540 DISCRETE MOS FET IRF9610 DISCRETE MOS FET IRF9620 DISCRETE MOS FET IRFP150A 100V,43A TO-3P DISCRETE MOS FET IRFP250A 200V,32A TO-3P DISCRETE MOS FET IRFP450A 500V,14A TO-3P DISCRETE MOS FET IRFR024A 60V,15A D-PAK DISCRETE MOS FET IRFR120A 100V,8.4A D-PAK TO-220 TO-220 TO-220 TO-220

场效应管和三极管的区别

场效应管是场效应晶体管(Field Effect Transistor,FET)的简称。它属于电压控制型半导体器件,具有输入电阻高、噪声小、功耗低、没有二次击穿现象、安全工作区域宽、受温度和辐射影响小等优点,特别适用于高灵敏度和低噪声的电路,现已成为普通晶体管的强大竞争者。 普通晶体管(三极管)是一种电流控制元件,工作时,多数载流子和少数载流子都参与运行,所以被称为双极型晶体管;而场效应管(FET)是一种电压控制器件(改变其栅源电压就可以改变其漏极电流),工作时,只有一种载流子参与导电,因此它是单极型晶体管。 场效应管和三极管一样都能实现信号的控制和放大,但由于他们构造和工作原理截然不同,所以二者的差异很大。在某些特殊应用方面,场效应管优于三极管,是三极管无法替代的,三极管与场效应管区别见下表。 场效应管是电压控制元件,而三极管是电流控制元件。在只允许从信号源取较少电流的情况下,应选用场效应管。而在信号源电压较低,又允许从信号源取较多电流的条件下,应用三极管。 场效应管靠多子导电,管中运动的只是一种极性的载流子;三极管既用多子,又利用少子。由于多子浓度不易受外因的影响,因此在环境变化较强烈的场合,采用场效应管比较合适。 场效应管的输入电阻高,适用于高输入电阻的场合。场效应管的噪声系

数小,适用于低噪声放大器的前置级。 1.场效应管的源极s、栅极g、漏极d分别对应于三极管的发射极e、基极b、集电极c,它们的作用相似。 2.场效应管是电压控制电流器件,由vGS控制iD,其放大系数gm一般较小,因此场效应管的放大能力较差;三极管是电流控制电流器件,由iB(或iE)控制iC。 3.场效应管栅极几乎不取电流(ig?0);而三极管工作时基极总要吸取一定的电流。因此场效应管的输入电阻比三极管的输入电阻高。 4.场效应管只有多子参与导电;三极管有多子和少子两种载流子参与导电,而少子浓度受温度、辐射等因素影响较大,因而场效应管比晶体管的温度稳定性好、抗辐射能力强。在环境条件(温度等)变化很大的情况下应选用场效应管。 5.场效应管在源极水与衬底连在一起时,源极和漏极可以互换使用,且特性变化不大;而三极管的集电极与发射极互换使用时,其特性差异很大,b值将减小很多。 6.场效应管的噪声系数很小,在低噪声放大电路的输入级及要求信噪比较高的电路中要选用场效应管。 7.场效应管和三极管均可组成各种放大电路和开路电路,但由于前者制造工艺简单,且具有耗电少,热稳定性好,工作电源电压范围宽等优点,因而被广泛用于大规模和超大规模集成电路中。 8。三极管导通电阻大,场效应管导通电阻小,只有几百毫欧姆,在现在的用电器件上,一般都用场效应管做开关来用,他的效率是比较高的。 场效应管G极必须有一个对地的放电电阻,不然上电就烧,而三极管基极不需要 在只允许从信号源取较少电流的情况下,应选用场效应管; 而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管. 晶体三极管与场效应管工作原理完全不同,但是各极可以近似对应以便于理解和设计: 晶体管:基极发射极集电极 场效应管:栅极源极漏极 要注意的是,晶体管(NPN型)设计发射极电位比基极电位低(约0.6V),场效应管源极电位比栅极电位高(约0.4V)。 场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电,被称之为双极型器件.

场效应管在开关电路中的应用

场效应管在开关电路中的应用 场效应管在mpn中,它的长相和我们前面讲的三极管极像,所以有不少修mpn的朋友好长时间还分不清楚,统一的把这些长相相同的三极管、场效应管、双二极管、还有各种稳压IC统统称作“三个脚的管管”,呵呵,如果这样麻木不分的话,你的维修技术恐怕很难快速提高的哦! 好了,说到这里场效应管的长相恐怕我就不用贴图了,在电路图中它常用 表示,关于它的构造原理由于比较抽象,我们是通俗化讲它的使用,所以不去多讲,由于根据使用的场合要求不同做出来的种类繁多,特性也都不尽相同;我们在mpn 中常用的一般是作为电源供电的电控之开关使用,所以需要通过电流比较大,所以是使用的比较特殊的一种制造方法做出来了增强型的场效应管(MOS型),它的电路图符号: 仔细看看你会发现,这两个图似乎有差别,对了,这实际上是两种不同的增强型场效应管,第一个那个叫N沟道增强型场效应管,第二个那个叫P沟道增强型场效应管,它们的的作用是刚好相反的。前面说过,场效应管是用电控制的开关,那么我们就先讲一下怎么使用它来当开关的,从图中我们可以看到它也像三极管一样有三个脚,这三个脚分别叫做栅极(G)、源极(S)和漏极(D),mpn中的贴片元件示意图是这

个样子: 1脚就是栅极,这个栅极就是控制极,在栅极加上电压和不加上电压来控制2脚和3脚的相通与不相通,N沟道的,在栅极加上电压2脚和3脚就通电了,去掉电压就关断了,而P沟道的刚好相反,在栅极加上电压就关断(高电位),去掉电压(低电位)就相通了! 我们常见的2606主控电路图中的电源开机电路中经常遇到的就是P沟道MOS管: 这个图中的SI2305就是P沟道MOS管,由于有很多朋友对于检查这一部分的故障很茫然,所以在这里很有必要讲一下它的工作原理,来加深一下你的印象! 图中电池的正电通过开关S1接到场效应管Q1的2脚源极,由于Q1是一个P沟道管,它的1脚栅极通过R20电阻提供一个正电位电压,所以不能通电,电压不能继续通过,3v稳压IC输入脚得不到电压所以就不能工作不开机!这时,如果我们按下SW1开机按键时,正电通过按键、R11、R23、D4加到三极管Q2的基极,三极管Q2的基极得到一个正电位,三极管导通(前面讲到三极管的时候已经讲过),由于三极管的发射极直接接地,三极管Q2导通就相当于Q1的栅极直接接地,加在它上面的通过R20电阻的

常用场效应管参数大全

常用场效应管参数大全 型号材料管脚用途参数 3DJ6NJ 低频放大20V0.35MA0.1W 4405/R9524 2E3C NMOS GDS 开关600V11A150W0.36 2SJ117 PMOS GDS 音频功放开关400V2A40W 2SJ118 PMOS GDS 高速功放开关140V8A100W50/70nS0.5 2SJ122 PMOS GDS 高速功放开关60V10A50W60/100nS0.15 2SJ136 PMOS GDS 高速功放开关60V12A40W 70/165nS0.3 2SJ143 PMOS GDS 功放开关60V16A35W90/180nS0.035 2SJ172 PMOS GDS 激励60V10A40W73/275nS0.18 2SJ175 PMOS GDS 激励60V10A25W73/275nS0.18 2SJ177 PMOS GDS 激励60V20A35W140/580nS0.085 2SJ201 PMOS n 2SJ306 PMOS GDS 激励60V14A40W30/120nS0.12 2SJ312 PMOS GDS 激励60V14A40W30/120nS0.12 2SK30 NJ SDG 低放音频50V0.5mA0.1W0.5dB 2SK30A NJ SDG 低放低噪音频50V0.3-6.5mA0.1W0.5dB 2SK108 NJ SGD 音频激励开关50V1-12mA0.3W70 1DB 2SK118 NJ SGD 音频话筒放大50V0.01A0.1W0.5dB 2SK168 NJ GSD 高频放大30V0.01A0.2W100MHz1.7dB 2SK192 NJ DSG 高频低噪放大18V12-24mA0.2W100MHz1.8dB 2SK193 NJ GSD 高频低噪放大20V0.5-8mA0.25W100MHz3dB 2SK214 NMOS GSD 高频高速开关160V0.5A30W 2SK241 NMOS DSG 高频放大20V0.03A0.2W100MHz1.7dB 2SK304 NJ GSD 音频功放30V0.6-12mA0.15W 2SK385 NMOS GDS 高速开关400V10A120W100/140nS0.6 2SK386 NMOS GDS 高速开关450V10A120W100/140nS0.7 2SK413 NMOS GDS 高速功放开关140V8A100W0.5 (2SJ118) 2SK423 NMOS SDG 高速开关100V0.5A0.9W4.5 2SK428 NMOS GDS 高速开关60V10A50W45/65NS0.15 2SK447 NMOS SDG 高速低噪开关250V15A150W0.24可驱电机2SK511 NMOS SDG 高速功放开关250V0.3A8W5.0 2SK534 NMOS GDS 高速开关800V5A100W4.0 2SK539 NMOS GDS 开关900V5A150W2.5 2SK560 NMOS GDS 高速开关500V15A100W0.4 2SK623 NMOS GDS 高速开关250V20A120W0.15 2SK727 NMOS GDS 电源开关900V5A125W110/420nS2.5 2SK734 NMOS GDS 电源开关450V15A150W160/250nS0.52 2SK785 NMOS GDS 电源开关500V20A150W105/240nS0.4 2SK787 NMOS GDS 高速开关900V8A150W95/240nS1.6 2SK790 NMOS GDS 高速功放开关500V15A150W0.4 可驱电机

MOS 场效应管的工作原理及特点

MOS 场效应管的工作原理及特点 场效应管是只有一种载流子参与导电,用输入电压控制输出电流的半导体器件。有N沟道器件和P 沟道器件。有结型场效应三极管JFET(Junction Field Effect Transister)和绝缘栅型场效应三极管IGFET( Insulated Gate Field Effect Transister) 之分。IGFET也称金属-氧化物-半导体三极管MOSFET (Metal Oxide SemIConductor FET)。 MOS场效应管 有增强型(Enhancement MOS 或EMOS)和耗尽型(Depletion)MOS或DMOS)两大类,每一类有N沟 道和P沟道两种导电类型。场效应管有三个电极: D(Drain) 称为漏极,相当双极型三极管的集电极; G(Gate) 称为栅极,相当于双极型三极管的基极; S(Source) 称为源极,相当于双极型三极管的发射极。 增强型MOS(EMOS)场效应管 道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。在源极和漏极之间的绝缘层上镀一层金属铝作为栅极G。P型半导体称为衬底(substrat),用符号B表示。 一、工作原理 1.沟道形成原理

当Vgs=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压,不会在D、S间形成电流。当栅极加有电压时,若0<Vgs<Vgs(th)时(VGS(th) 称为开启电压),通过栅极和衬底间的电容作用,将靠近栅极下方的P型半导体中的空穴向下方排斥,出现了一薄层负离子的耗尽层。耗尽层中的少子将向表层运动,但数量有限,不足以形成沟道,所以仍然不足以形成漏极电流ID。 进一步增加Vgs,当Vgs>Vgs(th)时,由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。如果此时加有漏源电压,就可以形成漏极电流ID。在栅极下方形成的导电沟道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层(inversion layer)。随着Vgs的继续增加,ID将不断增加。 在Vgs=0V时ID=0,只有当Vgs>Vgs(th)后才会出现漏极电流,这种MOS管称为增强型MOS管。 VGS对漏极电流的控制关系可用iD=f(vGS)|VDS=const这一曲线描述,称为转移特性曲线,见图。 转移特性曲线斜率gm的大小反映了栅源电压对漏极电流的控制作用。gm 的量纲为mA/V,所以gm也 称为跨导。 跨导的定义式如下: gm=△ID/△VGS| (单位mS) 2.Vds对沟道导电能力的控制 当Vgs>Vgs(th),且固定为某一值时,来分析漏源电压Vds对漏极电流ID的影响。Vds的不同变化对沟 道的影响如图所示。 根据此图可以有如下关系 VDS=VDG+VGS= —VGD+VGS VGD=VGS—VDS 当VDS为0或较小时,相当VGD>VGS(th),沟道呈斜线分布。在紧靠漏极处,沟道达到开启的程度以上,

常用场效应管和晶体管参数大全

常用场效应管和晶体管参数大全 关键字: 常用场效应管和晶体管参数大全 IRFU020 50V 15A 42W * * NMOS场效应 IRFPG42 1000V 4A 150W * * NMOS场效应 IRFPF40 900V 4.7A 150W * * NMOS场效应 IRFP9240 200V 12A 150W * * PMOS场效应 IRFP9140 100V 19A 150W * * PMOS场效应 IRFP460 500V 20A 250W * * NMOS场效应 IRFP450 500V 14A 180W * * NMOS场效应 IRFP440 500V 8A 150W * * NMOS场效应 IRFP353 350V 14A 180W * * NMOS场效应 IRFP350 400V 16A 180W * * NMOS场效应 IRFP340 400V 10A 150W * * NMOS场效应 IRFP250 200V 33A 180W * * NMOS场效应 IRFP240 200V 19A 150W * * NMOS场效应

IRFP150 100V 40A 180W * * NMOS场效应IRFP140 100V 30A 150W * * NMOS场效应IRFP054 60V 65A 180W * * NMOS场效应IRFI744 400V 4A 32W * * NMOS场效应IRFI730 400V 4A 32W * * NMOS场效应IRFD9120 100V 1A 1W * * NMOS场效应IRFD123 80V 1.1A 1W * * NMOS场效应IRFD120 100V 1.3A 1W * * NMOS场效应IRFD113 60V 0.8A 1W * * NMOS场效应IRFBE30 800V 2.8A 75W * * NMOS场效应IRFBC40 600V 6.2A 125W * * NMOS场效应IRFBC30 600V 3.6A 74W * * NMOS场效应IRFBC20 600V 2.5A 50W * * NMOS场效应IRFS9630 200V 6.5A 75W * * PMOS场效应IRF9630 200V 6.5A 75W * * PMOS场效应

MOS管特性(经典)

MOS管开关 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。包括MOS管的介绍,特性,驱动以及应用电路。 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。

MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC 时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 3,MOS开关管损失

场效应管放大器

实验四 场效应管放大器 一、实验目的 1、了解结型场效应管的性能和特点 2、进一步熟悉放大器动态参数的测试方法 二、实验原理 场效应管是一种电压控制型器件。按结构可分为结型和绝缘栅型两种类型。由于场效应管栅源之间处于绝缘或反向偏置,所以输入电阻很高(一般可达上百兆欧)又由于场效应管是一种多数载流子控制器件,因此热稳定性好,抗辐射能力强,噪声系数小。加之制造工艺较简单,便于大规模集成,因此得到越来越广泛的应用。 1、结型场效应管的特性和参数 场效应管的特性主要有输出特性和转移特性。图3-1所示为N 沟道结 图3-1 3DJ6F 的输出特性和转移特性曲线 型场效应管3DJ6F 的输出特性和转移特性曲线。 其直流参数主要有饱和漏极电流I DSS ,夹断电压U P 等;交流参数主要有低频跨导

常数U △U △I g DS GS D m == 表3-1列出了3DJ6F 的典型参数值及测试条件。 表3-1 2、场效应管放大器性能分析 图3-2为结型场效应管组成的共源级放大电路。其静态工作点 2 P GS DSS D )U U (1I I - = 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D 式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U (1U 2I g P GS P DSS m -- = 计算。但要注意,计算时U GS 要用静态工作点处之数值。 S D DD g2 g1g1 S G GS R I U R R R U U U -+= -=

常用场效应管型号参数管脚识别及检测表

. 常用场效应管型号参数管脚识别及检测表 场效应管管脚识别 场效应管的检测和使用 场效应管的检测和使用一、用指针式万用表对场效应管进 行判别 (1)用测电阻法判别结型场效应管的电极 根据场效应管的PN结正、反向电阻值不一样的现象,可以 判别出结型场效应管的三个电极。具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值。当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。也可以将万用表的黑表笔(红表笔也行)任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值。当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极。若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。

1 / 19 . (2)用测电阻法判别场效应管的好坏 测电阻法是用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1与栅极G2之间的电阻值同场效 应管手册标明的电阻值是否相符去判别管的好坏。具体方法:首先将万用表置于R×10或R×100档,测量源极S与漏 极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的),如果测 得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大,可能是内部断极。然后把万用表置于R×10k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极 之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。要注意,若两个栅极在管内断极,可用元件代换法进行检测。 (3)用感应信号输人法估测场效应管的放大能力 具体方法:用万用表电阻的R×100档,红表笔接源极S, 黑表笔接漏极D,给场效应管加上1.5V的电源电压,此时 表针指示出的漏源极间的电阻值。然后用手捏住结型场效应管的栅极G,将人体的感应电压信号加到栅极上。这样,由于管的放大作用,漏源电压VDS和漏极电流Ib都要发生变化,也就是漏源极间电阻发生了变化,由此可以观察到表针

相关主题
文本预览
相关文档 最新文档