当前位置:文档之家› 最新4静定结构的位移计算汇总

最新4静定结构的位移计算汇总

最新4静定结构的位移计算汇总
最新4静定结构的位移计算汇总

4静定结构的位移计

第4章静定结构的位移计算

4.1 计算结构位移的目的

结构在荷载作用下会产生内力,同时使其材料产生应变,以致结构发生变形。由于变形,结构上各点的位置将会发生改变。杆件结构中杆件的横截面除移动外,还将发生转动。这些移动和转动称为结构的位移。此外,结构在其他因素如温度改变、支座位移等的影响下,也都会发生位移。

例如图4—1a所示简支梁,在荷载作用下梁的形状由直变弯,如图4—1b 所示。这时,横截面的形心移动了一个距离,称为点的线位移。同时截面还转动了一个角度,成为截面的角位移或转角。

又如图4—2a所示结构,在内侧温度升高的影响下发生如图中虚线所示的变形。此时,C点移至C'点,即C点的线位移为C C'。若将C C'沿水平和竖向分解(图4—2b),则分量C''C'和CC''分别称为C点的水平位移和竖向位移。同样,截面C还转动了一个角度,这就是截面C的角位移。

在结构设计中,除了要考虑结构的强度外,还要计算结构的位移以验算其刚度。验算刚度的目的,是保证结构物在使用过程中不致发生过大的位移。

计算结构位移的另一重要目的,是为超静定结构的计算打下基础。在计算超静定结构的反力和内力时,除利用静力平衡条件外,还必须考虑结构的位移条件。这样,位移的计算就成为解算超静定结构时必然会遇到的问题。

此外,在结构的制作、架设等过程中,常须预先知道结构位移后的位置,以便采取一定的施工措施,因而也须计算其位移。

本章所研究的是线性变形体系位移的计算。所谓线性变形体系是位移与荷载成比例的结构体系,荷载对这种体系的影响可以叠加,而且当荷载全部撤除时,由何在引起的位移也完全消失。这样的体系,变形应是微小的,且应力与应变的关系符合胡克定律。由于变形是微小的,因此在计算结构的反力和内力时,可认为结构的几何形状和尺寸,以及荷载的位置和方向保持不变。

4.2 功广义力和广义位移

在力学中,功的定义是:一个不变的集中力所作的功等于该力的大小与其作用点沿力作用线方向所发生的分位移的乘积。

例如在图4—3a所示结构中,A点处作用一个集中力F,待达到平衡以后,假设由于某种其他原因结构继续发生如图4—3b所示的变形,力F的作用点由A移动到A'。在移动过程中,如果力F的大小和方向均保持不变,则力F所作之功为

W

=F

?

式中是A点的线位移AA'在力作用线方向的分位移,也称为与力F相应的位移。为了清晰,在图4—3a中没有标明由于力F作用而使结构发生的变形,在图4—3b中则没有标明使结构发生变形的原因。

对于其他形式的力或力系所作的功,也常用两个因子的乘积来表示,其中与力相应的因子称为广义力,而另一个与位移相应的因子称为广义位移。这样,便可用统一而紧凑的形式将功表示为广义力与广义位移的乘积。下面对几种力系所作的功加以说明。

如图4—4a 所示结构,在A 、B 两点受有一对大小相等、方向相反并沿AB 连线作用的力F 。当此结构由于某种其他原因发生图4—4b 中虚线所示的变形时,A 、B 两点分别移至A '和B '。设以A ?和B ?分别代表A 、B 两点沿AB 连线方向的分位移,则这一对力F 所作之功(作功过程中二力大小和方向保持不变)为

()?=?+?=?+?=F F F F W B A B A

式中?=A ?+B ?代表A 、B 两点沿其连线方向的相对线位移。由上式可见,广义力是作用于A 、B 两点并沿该两点连线作用的一对等值而反向的力,在式中以F 来代替,而取A 、B 两点沿力的方向的相对线位移作为广义位移。

又如图4-5a 所示结构,在C 、D 两结点上作用着与CD 相垂直的等值而反向的两个力F 。设由于某种其他原因使结构发生位移时,C 、D 两点分别移至'C 、'D 的位置(图4-5b ),并用C ?和D ?分别表示C 、D 两点沿力F 方向的分位移,则这两个力F 所作之功(作功过程中二力大小和方向保持不变)为

()d

d F F F F W D C D C D C ?+??=?+?=?+?= 式中d 为CD 杆长,所以Fd 即代表两个等值而反向的力F 所形成的力偶矩Fd M =。又注意到在微小变形假设的前提下,结构变形的位移是微小的。因此,在图4-5b 中,当CD 杆的转角为?时,则有

d EC ED D C ?+?≈≈'

'? 故二力所作总功可写为

?M W =

因而在目前情况下,所取的广义力为力偶矩M ,广义位移为CD 杆的转角?。

再看图4-6a所示两端受等值而反力的力矩M作用的简支梁AB,当由于某种其他原因发生图4-6b中虚线所示的变形时,其两端力矩所作总功(作功过程中M的大小保持不变)为

()?

αM

β

α

β

=

+

=

+

M

M

M

W=

由上式可知,可取作用于A、B两端等值而反力的力矩M作为广义力,而取A、B两端截面的相对转角?作为广义位移。

由以上例子可见,作功时广义力与相应广义位移的乘积具有相同的量纲,即功的量纲。

4.3 计算结构位移的一般公式

4.3.1 外力虚功和虚应变能

由上节可知,功包含两个要素——力和位移。当作功的力与其相应的位移彼此独立无关时,就把这种功称为虚功。作用在结构上的外力(包括荷载和支承反力)所作的虚功,称为外力虚功,以W 表示。

由于在虚功中,力和位移是彼此独立无关的两个因素,例如上节讨论的功,其中作功的力是取自图4—3a 至图4—6a ,而位移因素是取自图4—3b 至图4—6b 。因此,可将虚功中的两个因素看成是分别属于同一结构的两种彼此无关的状态,其中力系所属状态称为力状态(如图4—3a 至图4—6a),位移因素所属状态称为位移状态(如图4—3b 至图4—6b)。

当结构的力状态的外力因结构的位移状态的位移作虚功时,力状态的内力也因位移状态的相对变形而作虚功,这种虚功称为虚应变能,以v 表示。

对于杆件结构,设力状态(图4—7a)中杆件任一微段dx 的内力为1N F 、

1Q F 、1M (图4—7c);而位移状态(图4—7b)中杆件对应微段的相对变形,即正应变2ε、切应变2γ和曲率2κ分别如图4-7d 、e 、f 所示。当略去高阶微量后,微段上的虚应变能可表为

212121?d M dv F du F dV Q N ++=

将上式表示的微段虚应变能沿杆长进行积分,然后对结构的全部杆件求

和,即得杆件结构的虚应变能为

212121?d M dv F du F V Q N ∑?∑?∑?++=

dx M dx F dx F V Q N 212121κγε∑?∑?∑?++= (4—1)

4.3.2 虚功原理

变形体系的虚功原理可表述为:没变形体系在力系作用下处于平衡状态(力状态),又设该变形体系由于别的原因产生符合约束条件的微小的连续变形(位移

状态),则力状态的外力在位移状态的位移上所作的虚功,恒等于力状态的内力在位移状态的变形上所作的虚功,即等于虚应变能。或简写为

外力虚功W=虚应变能V

对于杆件结构虚功原理可用下式表达

212121?d M dv F du F W Q N ∑?∑?∑?++=

或 dx M dx F dx F W Q N 212121κγε∑?∑?∑?++= (4—2)

式(4—2)称为杆件结构的虚功方程。

虚功原理有两种用法:

1.虚设位移状态——可求实际力状态的未知力。这是在给定的力状态与虚设的位侈状态之间应用虚功原理,这种形式的应用即为虚位移原理。

2.虚设力状态——可求实际位移状态的位移。这是在给定的位移状态与虚设的力状态之间应用虚功原理,这种形式的应用即为虚力原理。

4.3.3 利用虚功原理计算结构的位移

下面将从虚力原理出发,利用成功方程(4—2)导出计算杆件结构位移的一般公式。

图4—8a 所示为某一结构,由于荷载1P F 和2P F 、支座A 的位移1c 和2c 等各种因素的作用而发生如图中虚线所示的变形,这一状态称为结构的实际状态。现要求出实际状态中D 点的水平位移?,所以应将实际状态作为结构的位移状态。

为了利用虚功方程求得D 点的水平位移,应选取如图4—8b 所示虚设的力状态,即在该结构的D 点处沿水平方向加上一个单位荷载1=P F 。这时,A 处虚

拟状态中的支座反力为1R 、2R ,B 处的反力为By F ,结构在单位力和相应的各支座反力的作用下维持平衡,其内力用M 、N F 、Q F 来表示。由于结构的力状态是虚设的,故称为虚拟状态。虚设力系的外力(包括反力)对实际状态的位移所作的总虚功为 22111c R c R W ++??=

一般可写为 c R W ∑+?= 式中R 表示虚拟状态中的广义支座反力,c 表示实际状态中的广义支座位移,c R ∑表示支座反力所作虚功之和。

以?d 、du 、dv 表示实际状态中微段的变形,则总虚应变能为 dv F du F d M V l

Q l N l ∑?∑?∑?++=? 由杆件结构的虚功方程(4-2)可得 dv F du F d M R l

Q l N l c ∑?∑?∑?∑++=+?? 即 ∑∑?∑?∑?-++=?c l

Q l N l R dv F du F d M ? 这就是计算结构位移的一般公式。

这种利用虚力原理求结构位移的方法称为单位荷载法。应用这个方法每次只能求得一个位移。在计算时,虚拟单位荷载的指向可以任意假定,若按上式计算出来的结果是正的,就表示实际位移的方向与虚拟单位荷载的方向相同,否则相反。这是因为公式中的左边一项 实际上为虚拟单位荷载所作的虚功,若计算结果为负,则表示虚拟单位荷载的虚功为负,即位移的方向与虚拟单位荷载的方向相反。

单位荷载法不仅可用来计算结构的线位移,而且可用来计算其他性质的位移,只要虚拟状态中的单位荷载为与所求位移相应的广义力即可。现举出几种典型的虚拟状态如下:

当求结构的某两点A 、B 沿其连线方向的相对线位移时,可在该两点沿其连线加上两个方向相反的单位荷载(图4—9a 及b)。

当求梁或刚架某一截面K 的角位移时,可在该截面处加上一个单位力矩(图4—9c);但求桁架中某一杆件i 的角位移时,则应加—个单位力偶(图4—9d),构成单位力偶的每一个集中力为

i

l 1,各作用于该杆的两端并须与该杆垂直,这里的i l 为杆件i 的长度。

当求梁或刚架上两个截面的相对角位移时,可在这两个截面上加两个方向相反的单位力矩,例如图4—9e 所示为求铰C 处左右两侧截面的相对角位移的虚拟状态;当求桁架中两根杆件的相对角位移时,则应加两个方向相反的单位力偶,例如图4—9f 所示为求i 、j 两杆的相对转角的虚拟状态。

4.4 静定结构由于荷载所引起的位移

如果结构只受到荷载作用的影响,以P M 、NP F 、QP F 表示结构实际状态的内力,则在实际状态下微段的变形为

dx EI

M dx d P ==κ? dx EA

F dx du NP ==ε dx GA

kF dx dv QP

==γ

式中EI 、EA 和GA 分别是杆件的抗弯、抗拉和抗剪刚度;k 为截面的切应力分布不均匀系数,它只与截面的形状有关,当截面为矩形时,k =1.2。将式(a)代入式(4—3)并注意到无支座移动(即c =0),得 dx GA

F F k dx EA F F dx EI M M l QP Q l NP N l P ∑?∑?∑?++=? (4—4) 式中M 、N F 、Q F 代表虚拟状态中由于单位荷载所产生的内力。在静定结构中,上述内力均可通过静力平衡条件求得,故不难利用式(4—4)求出相应的位移。

在梁和刚架中,轴向变形和剪切变形的影响甚小,可以略去,其位移的计算只考虑弯曲变形一项的影响已足够精确。这样,式(4—4)可简化为 dx EI

M M l P ∑?=? 在一般的的实体拱中,其位移的计算只考虑弯曲变形一项的影响也足够精确。但在扁平拱中,除弯矩外,有时尚须考虑轴向变形对位移的影响。

在衍架中,只有轴力的作用,且每一杆件的内力及截面都沿杆长l 不变,故其位移的计算公式成为 ∑?=?l NP N EA

l F F 应该指出,在计算由于内力所引起的变形时,我们没有考虑杆件的曲率对变形的影响,这只是对直杆才是正确的,应用于曲杆的计算则是近似的。不过,在常用的结构中,例如拱结构或具有曲杆的刚架等,其曲率对变形的影响都很微小,可以略去不计。

[例4—1] 试求图4—10a 所示等截面简支梁中点C 的竖向位移CV ?。已知EI =常数。

解:在C 点加一竖向单位荷载作为虚拟状态(图4—10b),分别求出实际荷载和单位荷载作用下梁的弯矩。设以A 为坐标原点,则当20l x ≤

≤时,有 x M 21=,()

22x lx q M P -= 因为对称,所以由式(4—5)得 ()()

()↓=-=-??=???EI ql dx x lx EI q dx x lx q x EI l

l

CV 38452221242

03222

0 计算结果为正,说明C 点竖向位移的方向与虚拟单位荷载的方向相同,即为向下。

[例4—2] 试求图4—11a 所示单阶柱柱顶B 的水平位移BH ?。

解:因所求位移是柱顶的水平位移,所以在B 点加一水平单位荷载作为虚拟状态〔图4—11b)。设以B 为坐标原点,暂规定弯矩M 以使柱的左侧受拉为正,则有

x M =, 22

1x M P = 因该柱上、下两段的抗弯刚度不同,所以将以上M 和P M 代入式(4—5)求位移时,应分段进行积分,于是得

dx x x EI dx x x EI dx EI M M h h h h P BH ????+?==?2112

212122021

0 ))((81882

41421412414214

1→-+=-+=I h h I h E EI h h EI h 结果为正,表示B 点水平位移向右。

[例4—3] 试求图4—12a 所示结构C 端的水平位移CH ?和C ?角位移。已知EI 为一常数。

解:略去轴向变形和剪切变形的影响,只计算弯曲变形一项。在荷载作用下,弯矩的变化如图4—12b 所示。

1.求C 端的水平位移时,可在C 点加上一水平单位荷载作为虚拟状态,其方向取为向左,如图4—12c 所示。

两种状态的弯矩为 横梁BC 上 0=M , 22

1qx M P -= 竖柱AB 上 x M =, 22

1ql M P -= 代入公式(4—5),得C 端水平位移为 ()→-=??

? ??-?==??∑?EI ql dx ql x EI dx EI M M l P CH 4211402 计算结果为负,表示实际位移与所设虚拟单位荷载的方向相反,即为向右。

2.求C 端的角位移时,可在C 点加一单位力矩作为虚拟状态,其方向设为顺时针方向,如图4—12d 所示。

两种状态的弯矩为

横梁BC 上 1-=M , 22

1qx M P -= 竖柱AB 上 1-=M , 22

1ql M P -= 代入公式(4—5),得C 端角位移为 ()()()?=??? ??--+??? ??--=??EI ql dx ql EI dx qx EI l

l C 322111211132020?

计算结果为正,表示C 端转动的方向与虚拟力矩的方向相同,为顺时针方向转动。

[例4—4] 试求图4—13a 所示圆弧形曲杆B 点的竖向位移,I 及A 都为常数。曲率的影响忽略不计。 解:在与OB 成θ角的截面K 上,各内力如图4—13b 所示,其值为

θsin r F M P P =,θcos P QP F F =,θsin P NP F F =

由于是求B 点的竖向位移,所以虚拟状态为在B 点加一向下的单位载荷,因此只需要在图4—13a 中令1=P F 即得虚拟状态,于是在P M 、QP F 、NP F 的表达式中令1=P F ,即得虚拟状态的内力为

θsin r M =, θcos =Q F , θsin =N F

利用式(4—4)计算位移时,对于曲杆,应令ds dx =,由图4—13a 知

θrd ds =,所以有

???++=?A B NP N A B QP Q A

B P ds EA F F ds GA F F k ds EI M M BV

θθθθθθπππ

d EA r F d GA r F k d EI r F P P P ???++=2022022023

sin cos sin ??

????++=EA r F GA r F k EI r F P P P 3

4π 截面为矩形(h b ?),则

k=1.2 2312

1121Ah bh I == 或 212h

I A = 另外,设G=0.4E ,于是 ()↓???????

???? ??+=??????????? ??+??? ??+=?23

22331141214114r h EI r F r h r h EI r F BV P P ππ 截面厚度h 一般远较r 为小,因此上式方括号中第二项远小于1,由此可见剪切变形及轴向变形的影响甚微,因而在受弯杆件中通常可略而只求计算弯曲变形一项的影响。

[例4—5] 试求图4—14a 所示木桁架(与例题3—5同)下弦中间结点5的挠度。设各杆的截面面积均为20144.012.012.0m m m A =?=,

Pa E 710850?=。

解:虚拟状态如图4—14b 所示。实际状态和虚拟状态所产生的杆件内力均列在表4—1中,根据式(4—6) ∑=?EA

l F F NP N 可列成表4—1进行计算。由此可得所求结点5的挠度为 ()↓==???+?=?cm m V 44.00044.00144

.010850102601051257335

结构力学习题集——静定结构位移计算

第三章 静定结构的位移计算 一、判断题: 1、虚位移原理等价于变形谐调条件,可用于求体系的位移。 2、按虚力原理所建立的虚功方程等价于几何方程。 3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。 4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取: A. ; ; B. D. C. M =1 5、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。 6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。 M k M p 2 1 y 1 y 2 * * ωω ( a ) M =1 7、图a 、b 两种状态中,粱的转角?与竖向位移δ间的关系为:δ=? 。 8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。 A a a 9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。 二、计算题: 10、求图示结构铰A 两侧截面的相对转角?A ,EI = 常数。 q l l l /2 11、求图示静定梁D 端的竖向位移 ?DV 。 EI = 常数 ,a = 2m 。

a a a 10kN/m 12、求图示结构E 点的竖向位移。 EI = 常数 。 l l l l /3 2 /3 /3 q 13、图示结构,EI=常数 ,M =?90kN m , P = 30kN 。求D 点的竖向位移。 P 3m 3m 3m 14、求图示刚架B 端的竖向位移。 q 15、求图示刚架结点C 的转角和水平位移,EI = 常数 。 q 16、求图示刚架中D点的竖向位移。EI = 常数 。 l l l/2 17、求图示刚架横梁中D点的竖向位移。 EI = 常数 。

静定结构的位移计算

第4章 静定结构的位移计算 4.1 结构位移的概念 4.1.1 结构位移 结构都是由变形材料制成的,当结构受到外部因素的作用时,它将产生变形和伴随而来的位移。变形是指形状的改变,位移是指某点位置或某截面位置和方位的移动。 如图4.1(a)所示刚架,在荷载作用下发生如虚线所示的变形,使截面A 的形心从A 点移动到了A ′点,线段AA ′称为A 点的线位移,记为A ?,它也可以用水平线位移Ax ?和竖向线位移Ay ?两个分量来表示如图4.1(b)。同时截面A 还转动了一个角度,称为截面A 的角位移,用A ?表示。又如图4.2所示刚架,在荷载作用下发生虚线所示变形,截面A 发生了A ?角位移。同时截面B 发生了B ?的角位移,这两个截面的方向相反的角位移之和称为截面A 、B 的相对角位移,即B A AB ???+=。同理,C 、D 两点的水平线位移分别为 C ?如 D ?,这两个指向相反的水平位移之和称为C 、D 两点的水平相对线位移,既D C CD ?+?=?。 除上述位移之外,静定结构由于支座沉降等因素作用,亦可使结构或杆件产生位移,但结构的各杆件并不产生内力,也不产生变形,故把这种位移称为刚体位移。 一般情况下,结构的线位移、角位移或者相对位移,与结构原来的几何尺寸相比都是极其微小的。 图4.1 图4.2

引起结构产生位移的主要因素有:荷载作用、温度改变、支座移动及杆件几何尺寸制造误差和材料收缩变形等。 4.1.2 结构位移计算的目的 1. 验算结构的刚度 结构在荷载作用下如果变形太大,即使不破坏也不能正常使用。既结构设计时,要计算结构的位移,控制结构不能发生过大的变形。让结构位移不超过允许的限值,这一计算过程称为刚度验算。 2. 解算超静定 计算超静定结构的的反力和内力时,由于静力平衡方程数目不够,需建立位移条件的补充方程,所以必须计算结构的位移。 3. 保证施工 在结构的施工过程中,也常常需要知道结构的位移,以确保施工安全和拼装就位。 4. 研究振动和稳定 在结构的动力计算和稳定计算中,也需要计算结构的位移。 可见,结构的位移计算在工程上是具有重要意义的。 4.1.3 位移计算的有关假设 在求结构的位移时,为使计算简化,常采用如下假定: (1) 结构的材料服从胡克定律,既应力应变成线性关系。 (2) 结构的变形很小,不致影响荷载的作用。在建立平衡方程时,仍然用结构原有几何尺寸进行计算;由于变形微小,应力应变与位移成线性关系。 (3) 结构各部分之间为理想联结,不需要考虑摩擦阻力等影响。 对于实际的大多数工程结构,按照上述假定计算的结果具有足够的精确度。满足上述条件的理想化的体系,其位移与荷载之间为线性关系,常称为线性变形系。当荷载全部去掉后,位移即全部消失。对于此种体系,计算其位移可以应用叠加原理。 位移与荷载之间呈非线性关系的体系称为非线性变形体系。线性变形体系和非线性变形体系统称为变形体系。本书只讨论线性变形体系的位移计算。 4.2 变形体系的虚功原理 4.2.1 虚功和刚体系虚功原理 实功:若力在自身引起的位移上做功,所做的功称为实功。 虚功:若力在彼此无关的位移上做功,所做的功称为虚功。 虚功有两种情况:其一,在做功的力与位移中,有一个是虚设的,所做的功是虚功;

静定结构位移计算练习题(答案在后)

静定结构的位移计算 一、判断题: 1、虚位移原理等价于变形谐调条件,可用于求体系的位移。 2、按虚力原理所建立的虚功方程等价于几何方程。 3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生力,但会有位移且位移只与杆件相对刚度有关。 4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取: A. ; ; B. D. C. =1 5、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。 6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。 M k M p 2 1 y 1 y 2 * * ωω ( a ) M =1 7、图a 、b 两种状态中,粱的转角?与竖向位移δ间的关系为:δ=? 。 二、计算题: 10、求图示结构铰A 两侧截面的相对转角?A ,EI = 常数。 q l l l /2 11、求图示静定梁D 端的竖向位移 ?DV 。 EI = 常数 ,a = 2m 。

a a a 10kN/m 12、求图示结构E 点的竖向位移。 EI = 常数 。 l l l /3 2 /3 /3 q 14、求图示刚架B 端的竖向位移。 q 15、求图示刚架结点C 的转角和水平位移,EI = 常数 。 17、求图示刚架横梁中D点的竖向位移。 EI = 常数 。 18、求图示刚架中D 点的竖向位移。 E I = 常数 。 q l l l/l/22

19、求图示结构A、B两截面的相对转角,EI=常数。 23 l/ l/3 20、求图示结构A、B两点的相对水平位移,E I = 常数。 l l 26、求图示刚架中铰C两侧截面的相对转角。 27、求图示桁架中D点的水平位移,各杆EA 相同。 a 30、求图示结构D点的竖向位移,杆AD的截面抗弯刚度为EI,杆BC的截面抗拉(压)刚度为EA。

超静定结构的计算

§1.3超静定结构的计算 超静定结构是具有多余约束的几何不变体系,仅根据静力平衡条件 不能求出其全部支座反力和内力,还须考虑变形协调条件。 计算超静定结构的基本方法是力法和位移法。这两种基本方法的解 题思路,都是设法将未知的超静定结构计算问题转换成已知的结构计算 问题。转换的桥梁就是基本体系,转换的条件就是基本方程,转换后要 解决的关键问题就是求解基本未知量。 1.3.1力法 力法是以多余未知力为基本未知量、一般用静定结构作为基本结构,以变形协调条件建立基本方程来求解超静定结构内力的计算方法。 (一)超静定次数的确定一 超静定结构多余约束(或多余未知力)的数目称为超静定次数,用 n表示。 确定超静定次数的方法是:取消多余约束法,即去掉超静定结构中 的多余约束,使原结构变成静定结构,所去掉的多余约束的数目即为原 结构的超静定次数。 在结构上去掉多余约束的方法,通常有如下几种: ●切断一根链杆,或者移去一个支座链杆,相当于去掉一个约束; ●将一个固定支座改成固定铰支座,或将受弯杆件某处改成铰接,相当于去掉一个抗转动约束; ●去掉一个联结两刚片的铰,或者撤去一个固定铰支座,相当于 去掉两个约束; ●将一梁式杆切断,或者撤去一个固定支座,相当于去掉三个约束。 (二)力法的基本原理法 现以图1-26a所示一次超静定结构为例,说明力法的基本原理。其中,要特别重视力法的三个基本概念。

图1-26 1、力法的基本未知量:取超静定结构中的多余未知力(如图1-26a 中的X1)作为力法的基本未知量,以X i表示。多余未知力在超静定结构内力分析中处于关键的地位,因此,有必要将其突出出来,作为主攻目标。力法这个名称也因此而得。 2、力法的基本体系:将原结构中的多余约束(如图1-26a中的支 座B)去掉,所得到的无任何外加因素的结构,称为力法的基本结构(图1-26b);基本结构在荷载和多余未知力共同作用下的体系,称为力法的基本体系(图1-26c)。在基本体系中,仍然保留原结构的多余约束反力X1,只是把它由被动力改为主动力,因此基本体系的受力状态与 原结构完全相同。由此看出,基本体系本身既是静定结构(可方便计算),又可用它代表原来的超静定结构。因此,它是由静定结构过渡到超静定结构的一座桥梁。 3、力法的基本方程:为求多余未知力,除平衡条件外,还须补充 新的条件,即利用原结构的已知变形条件。在本例中,基本体系沿多余未知力X1方向的位移Δ1应与原结构支座B处的竖向位移相同,即 Δ1=0 (a) 由图1-26d和e可知,变形条件(a)可表示如下: (b) 根据叠加原理,,于是可进一步将变形条件写成显含多余未知力X1的展开形式为

建筑力学常见问题解答5静定结构位移计算

建筑力学常见问题解答 5 静定结构位移计算 1.为什么要计算结构的位移? 答:结构位移计算的目的有两个。一个目的是验算结构的刚度。在结构设计中,除了应该满足结构的强度要求外,还应该满足结构的刚度要求,即结构的变形不得超过规范规定的容许值(如屋盖和楼盖梁的挠度容许值为梁跨度的1/200~1/400,而吊车梁的挠度容许值规定为梁跨度的1/600)。另一个目的是为超静定结构的内力计算做准备。因为在超静定结构计算中,不仅要考虑结构的平衡条件,还必须满足结构的变形协调条件。 2. 产生位移的主要因素有哪些? 答:产生位移的主要因素有下列三种: (1)荷载作用;(2)温度变化和材料的热胀冷缩;(3)支座沉降和制造误差。 3.结构位移有哪两类? 答:结构变形时,结构上某点产生的移动或某个截面产生的移动或转动,称为结构的位移。 结构的位移可分为两类:一类是线位移,指结构上某点沿直线方向移动的距离。另一类是角位移,指结构上某点截面转动的角度。 4. 线性变形体系的应用条件是什么? 答:线性变形体系的应用条件是: (1) 材料处于弹性阶段,应力与应变成正比关系; (2) 结构变形微小,不影响力的作用。

线性变形体系也称为线性弹性体系,它的应用条件也是叠加原理的应用条件,所以,对线性变形体系的计算,可以应用叠加原理。 5.应怎样理解虚功中作功的力和位移的对应关系? 答:功包含了两个要素——力和位移。 当做功的力与相应于力的位移彼此独立无关时,就把这种功称为虚功。在虚功中,力与位移是彼此独立无关的两个因素。不仅可以把位移状态看作是虚设的,也可以把力状态看作是虚设的,它们各有不同的应用。 6. 何谓虚功原理? 答:变形体虚功原理表明:第一状态的外力在第二状态的位移上所做的外力虚功,等于第一状态上的内力在第二状态上的变形上所做的内力虚功。即外力虚功W12=内力虚功W/12 7.何谓广义力?何谓广义位移? 答:如果一组力经历相应的位移作功。即一组力可以用一个符号F表示,相应的位移也可用一个符号Δ表示,这种扩大了的力和位移分别称为广义力和广义位移。 8.何谓单位荷载法? 答:利用虚功原理建立结构在荷载作用下的位移计算公式时,首先要确定力状态和位移状态。 由于实际荷载作用下结构产生位移和变形,所以是位移状态,也可以称为实际状态。 为用虚功原理,还必须建立力状态。由于力状态和位移状态除了结构形式

2006典型例题解析--第3章-静定结构位移计算

第3章 静定结构位移计算 §3 – 1 基本概念 3-1-1 虚拟单位力状态构造方法 ●虚拟单位力状态构造方法: (1)去掉所有荷载重画一个结构; (2)标出所求位移矢量; (3)该矢量变成单位力,即得虚拟单位力状态。 如图3-1a 刚架求C 点竖向位移CV ?和C 截面转角 C ?,图3-1b 和图3-1c 为求相应位移所构造的虚拟单位 力状态。 3-1-2 位移计算公式 虚拟单位力作用下,引起的内力和支座反力: N Q ,,,Ri F M F F 实际荷载作用下,引起的内力: NP P QP ,,F M F ●位移计算一般公式 N Q Ri i F du Md F ds F c ??γ=++-∑∑∑∑??? ●荷载作用产生位移的计算公式 Q N QP NP P k F F F F M M ds ds ds EA EI GA ?=++∑∑∑? ?? 1、梁或刚架结构 P M M ds EI ?=∑? 2、桁架结构 N NP F F ds EA ?=∑? 图3-1虚拟单位力状态 ) a () b () c (

2 结构力学典型例题解析 3、混合结构 N NP P F F MM ds ds EA EI ?=+∑∑? ? ●支座移动引起位移计算公式 Ri i F c ?=-∑ ●温度引起位移计算公式 ()N 0t F t dx M dx h α??α=+±∑∑?? ()N 0M t t lF A h α??α=+±∑∑ 式中:0,,t t α?为线膨胀系数形心温度温差,h 截面高度 M A 虚拟状态弯矩图面积 ●有弹性支座情况的位移计算公式 ()P RP R 0RP R M M F ds F EI k Ay F F EI k ?=+?±=+? ∑∑? ∑∑ 3-1-3 图乘法 图乘法公式: 0P ()Ay MM dx EI EI ±?==∑∑? 图乘法公式条件: ●等截面直杆且EI=常数 ●求 y 0图形必须为一条直线 正负号确定: 面积A 与y 0同侧取“+”号 注意:求面积的图形要会求面积和形心位置。 为使计算过程简洁、明了,先将面积和形心处对应弯矩求出标在弯矩图一侧,然后直接代入图乘法公式求得位移。 图3-2 图乘法示意图

结构的位移计算和刚度校核

第6章 结构位移计算和刚度校核 到上节课为止,我们把五种静定杆件结构的计算问题全讨论过了。我们知道内力计算问题属强度问题→是结力讨论的首要任务。 讲第一章时,结力的第二大任务:刚度问题,而要解决…,首先应该… 杆件结构位移计算 (结构变形+刚度位移) → { 刚度校核 截面设计 确定P max 又是超静定结构计算的基础(双重作用)。另外本章主要讨论各种杆件结构的位移 计算问题。 结构位移计算的依据是虚功原理,所以本章先讨论刚体、变形体的虚功原理,然后推导出杆件结构位移计算的一般公式,再讨论各种具体结构的位移计算。 §6-1概述 一、 结构的位移 画图:梁、刚架、桁架 (内力N 、Q 、M ——拉伸、剪切、弯曲) 截面C 线位移:C ? 角位移:C ? 结点的线位移: 两点(截面)相对线位移: 杆件的角位移: AB ? 两截面相对角位移: 两杆件相对角位移: 1、位移定义:由于结构变形或其它原因使结构各点的位置产生(相对)移动(线位移),使杆件横截面产生(相对)转动(角位移)。 截面C 线位移:C ?。一般 分解 成水平、垂直两方向: CH ?、CV ? 角位移:C ?

2、位移的分类:6种 绝对位移:点(截面)线位移——分解成水平、垂直两方向 截面角位移: 杆件角位移: 相对位移:两点(截面)相对线位移——沿连线方向 两截面相对角位移: 两杆件相对角位移: 统称为: 广义位移:角、线位移;相对、绝对位移 Δki:k:产生位移的方向;i:引起位移原因。如ΔA P、Δat、ΔA C 广义力:集中力、力偶、分布荷载,也可以是上述各种力的综合 二、引起位移的原因 1、荷载作用:(荷载→内力→变形→位移) 2、温度改变:静定结构,温度改变,→0应力非0应变→结构变形 (材料胀缩引起的位移性质同) 3、支座移动;(无应力,无应变,但几何位置发生变化) {刚体位移(制造误差同) 变形位移 三、计算位移的目的 1)刚度验算:最大挠度的限制 (框架结构弹性层间位移限值1/450) 2)为超静定结构的弹性分析打下基础 3)预先知道变形后的位置,以便作出一定的施工措施: (起重机吊梁、板)(屋架安装)(建筑起拱)(屋窗、门、过梁)(结构要求高,精密)四、计算位移的有关假定(简化计算) 1)弹性假设 2)小变形假设 建立平衡、应变与位移、位移与荷载成线性关系 3)理想约束(联结,不考虑阻力摩擦) 变形体系{ 线性变形体系(线弹性体系) 荷载和位移呈线性关系,且荷载全撤除后位移将全部消 失,无残余变形,(可用位移叠加原理) 非线形变形体系 (分段线形叠加) 4)位移叠加原理(类似内力、反力叠加)

结构力学:自测题4 结构位移计算

结构力学自测题4(第六章) 结构位移计算 姓名 学号 一、是 非 题(将 判 断 结 果 填 入 括 弧 :以 O 表 示 正 确 ,以 X 表 示 错 误 ) 1、用 图 乘 法 可 求 得 各 种 结 构 在 荷 载 作 用 下 的 位 移 。( ) 2、图 示 简 支 梁 ,当 P 11= ,P 20= 时 ,1 点 的 挠 度 为 0.01653l EI / ,2 点 挠 度 为 0.0773l EI /。当 P 10=,P 21= 时 ,则 1 点 的 挠 度 为 0.0213 l EI / 。 ( ) l 3、已 知 图 a 所 示 刚 架 的 M P 图 如 图 b ,各 杆EI = 常 数,则 结 点 B 的 水 平 位 移 为:?BH = [ 1 /(EI )]×[20×4×(1/2)×4 + (1/3)×4×48×(3/4)×4]=352/(EI ) ( 。( ) (kN m) ( a ) ( b ) 4、在 非 荷 载 因 素 ( 支 座 移 动 , 温 度 变 化 , 材 料 收 缩 等 ) 作 用 下 , 静 定 结 构 不 产 生 内 力 , 但 会 有 位 移 , 且 位 移 只 与 杆 件 相 对 刚 度 有 关 。 ( ) 5、图 示 为 刚 架 的 虚 设 力 系 , 按 此 力 系 及 位 移 计 算 公 式 可 求 出 杆 A C 的 转 角 。 ( ) C 1 P 6、图 示 梁 的 跨 中 挠 度 为 零 。 ( ) 7、图 示 梁 A B 在 所 示 荷 载 作 用 下 的 M 图 面 积 为 ql 33 。 ( ) l A l /2 8、图 示 桁 架 结 点 C 水 平 位 移 不 等 于 零 。 ( ) 9、图 示 对 称 桁 架 各 杆 E A 相 同 , 结 点 A 和 结 点 B 的 竖 向 位 移 均 为 零 。 ( ) 10、图 示 桁 架 中 , 结 点 C 与 结 点 D 的 竖 向 位 移 相 等 。 ( ) 二、选 择 题( 将 选 中 答 案 的 字 母 填 入 括 弧 内 ) 1、图 示 结 构 A 截 面 转 角(设 顺 时 针 为 正)为 : A .22Pa EI / ; B .-Pa EI 2 / ; C .542 Pa EI /() ; D .-542 Pa EI /() 。 ( ) a a 2、图 a 所 示 结 构 的 M P 图 示 于 图 b , B 点 水 平 位 移 ()→ 为 : A . 5244ql EI ; B . 25484 ql EI ; C . 4854ql EI ; D . 16324 ql EI 。 ( ) l 2 ql /ql 2 3、图 示 刚 架 l a >>0 , B 点 的 水 平 位 移 是 : A . 不 定 , 方 向 取 决 于 a 的 大 小; B . 向 左 ; C . 等 于 零 ; D . 向 右 。( ) 4、图 示 静 定 多 跨 粱 , 当 EI 2 增 大 时 , D 点 挠 度 : A . 不 定 , 取 决 于 EI EI 12;B . 减 小 ; C . 不 变 ; D . 增 大 。 ( ) 5、图 示 刚 架 中 杆 长 l , EI 相 同 ,A 点 的 水 平 位 移 为: A. ()2302M l EI /→; B. ()M l EI 02 3/→; C. ()2302M l EI /←; D. ()02 3M l EI /←。 ( ) l M A 6、图 示 为 结 构 在 荷 载 作 用 下 的 M P 图 , 各 杆 EI =常 数 ,支 座 B 截 面 处 的 转 角 为: A. 16/(EI ) ( 顺 时 针 ); B. 0; C. 8/(EI ) ( 顺 时 针 ); D. 18/(EI ) ( 顺 时 针 )。 ( ) 12kN.m B 7、图 示 桁 架 各 杆 EA =常 数 , 则 结 点K 的 水 平 位 移 ( → ) 等 于 : A. 2( 1+2 )Pa / (EA ) ; B. ( 4Pa ) / (EA ) ;

静定结构的位移计算

静定结构的位移计算

第4章 静定结构的位移计算 4.1 结构位移的概念 4.1.1 结构位移 结构都是由变形材料制成的,当结构受到外部因素的作用时,它将产生变形和伴随而来的位移。变形是指形状的改变,位移是指某点位置或某截面位置和方位的移动。 如图 4.1(a)所示刚架,在荷载作用下发生如虚线所示的变形,使截面A 的形心从A 点移动到了A ′点,线段AA ′称为A 点的线位移,记为A ?,它也可以用水平线位移Ax ?和竖向线位移Ay ?两个分量来表示如图4.1(b)。同时截面A 还转动了一个角度,称为截面A 的角位移,用A ?表示。又如图4.2所示刚架,在荷载作用下发生虚线所示变形,截面A 发生了A ?角位移。同时截面B 发生了B ?的角位移,这两个截面的方向相反的角位移之和称为截面A 、B 的相对角位移,即B A AB ???+=。同理,C 、D 两点的水平线位移分别为C ?如D ?,这两个指向相反的水平位移之和称为 C 、 D 两点的水平相对线位移,既D C CD ?+?=?。 除上述位移之外,静定结构由于支座沉降

第4章静定结构的位移计算70 等因素作用,亦可使结构或杆件产生位移,但结构的各杆件并不产生内力,也不产生变形,故把这种位移称为刚体位移。 一般情况下,结构的线位移、角位移或者相对位移,与结构原来的几何尺寸相比都是极其微小的。 4.1 图

71 第4章静定结构的位移计算 引起结构产生位移的主要因素有:荷载作用、温度改变、支座移动及杆件几何尺寸制造误差和材料收缩变形等。 4.1.2 结构位移计算的目的 1. 验算结构的刚度 结构在荷载作用下如果变形太大,即使不破坏也不能正常使用。既结构设计时,要计算结构的位移,控制结构不能发生过大的变形。让结构位移不超过允许的限值,这一计算过程称为刚度验算。 2. 解算超静定 计算超静定结构的的反力和内力时,由于静力平衡方程数目不够,需建立位移条件的补充方程,所以必须计算结构的位移。 3. 保证施工 在结构的施工过程中,也常常需要知道结构的位移,以确保施工安全和拼装就位。 4. 研究振动和稳定 在结构的动力计算和稳定计算中,也需要计算结构的位移。 可见,结构的位移计算在工程上是具有重

结构力学自测题(第六单元位移法解超静定结构)

结构力学自测题(第六单元位移法解超静定结构) 姓名 学号 一、是 非 题(将 判 断 结 果 填 入 括 弧 :以 O 表 示 正 确 ,以 X 表 示 错 误 ) 1、图 示 结 构 ,?D 和 ?B 为 位 移 法 基 本 未 知 量 ,有 M i l ql AB B =-682 ?// 。 ( ) l D ? 2、图 a 中 Z 1, Z 2 为 位 移 法 的 基 本 未 知 量 , i = 常 数 , 图 b 是 Z Z 2110== , 时 的 弯 矩 图 , 即 M 2 图 。 ( ) a b l ( ) ( ) 3、图 示 超 静 定 结 构 , ?D 为 D 点 转 角 (顺 时 针 为 正), 杆 长 均 为 l , i 为 常 数 。 此 结 构 可 写 出 位 移 法 方 程 111202 i ql D ?+=/ 。 ( ) 二、选 择 题 ( 将 选 中 答 案 的 字 母 填 入 括 弧 内 ) 1、位 移 法 中 ,将 铰 接 端 的 角 位 移 、滑 动 支 承 端 的 线 位 移 作 为 基 本 未 知 量 : A. 绝 对 不 可 ; B. 必 须; C. 可 以 ,但 不 必 ; D. 一 定 条 件 下 可 以 。 ( ) 2、AB 杆 变 形 如 图 中 虚 线 所 示 , 则 A 端 的 杆 端 弯 矩 为 : A.M i i i l AB A B AB =--426???/ ; B.M i i i l AB A B AB =++426???/ ; C.M i i i l AB A B AB =-+-426???/ ; D.M i i i l AB A B AB =--+426? ??/。 ( ) ?A B 3、图 示 连 续 梁 , 已 知 P , l ,?B , ?C , 则 : A . M i i BC B C =+44?? ; B . M i i BC B C =+42?? ; C . M i Pl BC B =+48?/ ; D . M i Pl BC B =-48?/ 。 ( ) l l l l /2/2

第四章 静定结构的位移计算

第四章静定结构的位移计算 一. 教学内容 理解广义力和广义位移的概念、虚功原理、单位荷载法、图乘法、互等定理。 能利用单位荷载法正确的计算结构在荷载作用及支座移动下和温度变化下 的位移。 掌握图乘法及应用条件,能用图乘法计算粱和刚架的位移;能够计算桁架的位移。 一. 教学目的 掌握各种静定结构的位移计算,为超静定结构的内力和位移计算打好基础。 二. 主要章节 第一节、概述 第二节、功和虚功原理 第三节、单位荷载法计算位移的 第四节、结构在荷载作用下的位移计算 第五节、图乘法 第六节、温度作用时静定结构的位移计算 第七节、支座移动时静定结构的位移计算 第八节、线性变形体系的互等定理 §6-9 小结 §6-10 思考与讨论 §6-11 习题 §6-12 测验 三. 学习指导 本章是静定结构与超静定结构的联结部分,一方面有相对的独立性,另一方面又是学习超静定结构的基础,因此应当有一个正确的学习态度。本章的理论基础是虚功原理,重点是单位荷载法和图乘法的应用,因此应当加强学习和练习。 四. 参考资料 《建筑力学教程》P61~80 第一节、概述

一. 教学目的 了解位移的概念。 二. 主要内容 . 结构位移计算概述 三. 学习指导 本节是静定结构与超静定结构的联结部分,本节的关键是概念的理解,应在理解虚力原理的基础上掌握计算静结构在支座移动时的位移,因而加深单位荷载法的理解,为今后的学习打下一个良好的基础。 四. 参考资料 《建筑力学》P61 6.1.1位移的概念: 结构在荷载、温度变化、支座移动与制造误差等各种因素作用下发生变形,因而结构上个点的位置会有变动。这种位置的变动称为位移。 结构的位移通常有两种(图6-1):截面的移动----线位移;截面的转动----角位移。 图6-1 结构位移计算的目的: (1) 验算结构的刚度,校核结构的位移是否超过允许限值,以防止构件和结构产生过大的变形而影响结构的正常使用。 (2) 为超静定结构的内力计算打下基础。因为,位移计算是计算超静定结构的一个组成部分。 6.1.2.产生位移的原因:

超静定计算

一. 用力法计算超静定结构 (一)复习重点 1. 理解超静定结构及多余约束的概念,学会确定超静定次数 2. 理解力法原理 3. 掌握用力法计算超静定梁和刚架(一次及二次超静定结构) 4. 掌握用力法计算超静定桁架和组合结构(一次及二次超静定结构) 5. 了解温度变化、支座移动时超静定结构的计算(一次超静定结构) (二)小结 1. 超静定结构、多余约束、超静定次数 (1)超静定结构 从几何组成角度,结构分为静定结构和超静定结构。 静定结构:几何不变,无多余约束。 超静定结构:几何不变,有多余约束。 (2)多余约束 多余约束的选取方案不唯一,但是多余约束的总数目是不变的。 (3)超静定次数 多余约束的个数是超静定次数。 判断方法:去掉多余约束使原结构变成静定结构。

2. 力法原理 力法是计算超静定结构最基本的方法 (1)将原结构变为基本结构 (2)位移条件: (3)建立力法方程

3.用力法求解超静定梁和刚架例:二次超静定结构 (1)原结构变为基本结构 (2)位移条件 (3)力法方程

(3)绘弯矩图 4. 用力法计算超静定桁架和组合结构 注意各杆的受力特点:二力杆只有轴力,受弯杆的内力有弯矩、剪力和轴力。 例:超静定组合结构 (1)原结构变为基本结构 (2)位移条件

(3)力法方程 (4)绘弯矩图 5. 了解温度变化、支座移动时超静定结构的内力计算 (1)温度变化时,超静定结构的内力计算 原结构变为基本结构 位移条件 力法方程

(2)支座移动时,超静定结构的内力计算 原结构变为基本结构 位移条件 二. 用位移法计算超静定结构 (一)复习重点 1. 了解位移法基本概念及位移法与力法的区别 2. 掌握用位移法计算超静定结构(具有一个及两个结点位移) 3. 掌握计算对称结构的简化方法 (二)小结 1. 了解位移法基本概念及位移法与力法的区别 位移法是求解超静定结构的又一基本方法,适用于求解超静定次数较高的连续梁和刚架。 位移法的前提假设:对于受弯的杆件,可略去轴向变形和剪切变形的影响,且弯曲变形是微 2. 掌握用位移法求解超静定结构(具有一个及两个结点位移的结构) 例:求连续梁的内力 解:(1)确定基本未知量及基本体系

结构力学自测题4 结构位移计算

结构力学自测题4(第六章) 结构位移计算 姓名 学号 一、是 非 题(将 判 断 结 果 填 入 括 弧 :以 O 表 示 正 确 ,以 X 表 示 错 误 ) 1、用 图 乘 法 可 求 得 各 种 结 构 在 荷 载 作 用 下 的 位 移 。( ) 2、图 示 简 支 梁 ,当 P 11= ,P 20= 时 ,1 点 的 挠 度 为 0.01653l EI / ,2 点 挠 度 为 0.0773l EI /。当 P 10=,P 21= 时 ,则 1 点 的 挠 度 为 0.0213 l EI / 。 ( ) l 3、已 知 图 a 所 示 刚 架 的 M P 图 如 图 b ,各 杆EI = 常 数,则 结 点 B 的 水 平 位 移 为:?BH = [ 1 /(EI )]×[20×4×(1/2)×4 + (1/3)×4×48×(3/4)×4]=352/(EI ) ( 。( ) (kN m) ( a )( b ) 4、在 非 荷 载 因 素 ( 支 座 移 动 , 温 度 变 化 , 材 料 收 缩 等 ) 作 用 下 , 静 定 结 构 不 产 生 内 力 , 但 会 有 位 移 , 且 位 移 只 与 杆 件 相 对 刚 度 有 关 。 ( ) 5、图 示 为 刚 架 的 虚 设 力 系 , 按 此 力 系 及 位 移 计 算 公 式 可 求 出 杆 A C 的 转 角 。 ( ) C 1 P 6、图 示 梁 的 跨 中 挠 度 为 零 。 ( ) 7、图 示 梁 A B 在 所 示 荷 载 作 用 下 的 M 图 面 积 为 ql 33 。 ( ) l A l /2 8、图 示 桁 架 结 点 C 水 平 位 移 不 等 于 零 。 ( ) 9、图 示 对 称 桁 架 各 杆 E A 相 同 , 结 点 A 和 结 点 B 的 竖 向 位 移 均 为 零 。 ( ) 10、图 示 桁 架 中 , 结 点 C 与 结 点 D 的 竖 向 位 移 相 等 。 ( ) 二、选 择 题( 将 选 中 答 案 的 字 母 填 入 括 弧 内 ) 1、图 示 结 构 A 截 面 转 角(设 顺 时 针 为 正)为 : A .22Pa EI / ; B .-Pa EI 2 / ; C .542Pa EI /() ; D .-542 Pa EI /() 。 ( ) a a A 2、图 a 所 示 结 构 的 M P 图 示 于 图 b , B 点 水 平 位 移 ()→ 为 : A . 5244ql EI ; B . 25484 ql EI ; C . 4854ql EI ; D . 16324 ql EI 。 ( ) l 2 ql /ql 2 3、图 示 刚 架 l a >>0 , B 点 的 水 平 位 移 是 : A . 不 定 , 方 向 取 决 于 a 的 大 小; B . 向 左 ; C . 等 于 零 ; D . 向 右 。( ) 4、图 示 静 定 多 跨 粱 , 当 EI 2 增 大 时 , D 点 挠 度 : A . 不 定 , 取 决 于 EI EI 12;B . 减 小 ; C . 不 变 ; D . 增 大 。 ( ) 5、图 示 刚 架 中 杆 长 l , EI 相 同 ,A 点 的 水 平 位 移 为: A. ()2302 M l EI /→; B. ()M l EI 02 3/→; C. ()2302 M l EI /←; D. ()02 3M l EI /←。 ( ) l M A 6、图 示 为 结 构 在 荷 载 作 用 下 的 M P 图 , 各 杆 EI =常 数 ,支 座 B 截 面 处 的 转 角 为: A. 16/(EI ) ( 顺 时 针 ); B. 0; C. 8/(EI ) ( 顺 时 针 ); D. 18/(EI ) ( 顺 时 针 )。 ( ) 4m 2m 12kN.m B 7、图 示 桁 架 各 杆 EA =常 数 , 则 结 点K 的 水 平 位 移 ( → ) 等 于 : A. 2( 1+2 )Pa / (EA ) ; B. ( 4Pa ) / (EA ) ; C. ( 2+2 )Pa / ( EA ) ; D. ( 3Pa ) / (EA ) 。 ( ) a a

建筑力学基本计算4结构的位移计算

建筑力学基本计算4 结构的位移计算 1、基本概念和计算要求 在学习结构的位移计算时,应注意下列几点: 1) 位移计算的目的主要是考虑结构的刚度计算和为力法打下基础,后一个更为重要。 2) 虚功原理是位移计算的基础,在学习时,着重要考虑由虚功原理得出的位移求解公式及其每一项的物理意义。 3) 在用单位荷载法计算位移时,关键是虚设单位力(广义力)的位置、方向和性质都必须与所求位移一一对应。 2、基本计算方法 结构位移的计算方法主要有积分法和图乘法两种: 1) 积分法:在用积分法计算结构位移的时候,着重考虑梁和刚架的位移计算,所以位移计算公式为∑??=?ds EI M M P k ,从而,只需要分段建立弯矩方程,就可以利用积分公 式求出位移。 2) 图乘法:对于利用图乘法求结构的位移这是一个最重要也是最常用的方法。最后公式为 ∑?=?EI y C ω,从而,需要分别画出荷载作用下的M P 图和虚设单位荷载作用下的M 图,就可以利用图乘公式求位移。 3、计算步骤和常用方法 考试要求一般为求解常见荷载作用下梁和刚架的位移,积分法作为基础,而图乘法是最常用的方法和手段。计算过程中要注意: 1) 图乘法的三个适用条件,只要有一条不满足,就不能使用图法。 2) 在使用图乘法的基本公式时,要理解图乘法是以一个弯矩图的面积ω乘以其形心所对应的另一个直线弯矩图上的竖标y C ,再除以EI 。特别注意竖标y C 必须从直线弯矩图上取得。 3) 要学会能正确灵活使用图乘的公式,首先要熟练掌握图乘法的计算步骤,包括支座反力的计算、弯矩图的绘制、基本图形的面积和形心、图乘时的正负号取舍等等;其次要灵活运用图乘法的技巧(即图乘法中图形叠加概念的灵活运用)。 4) 学会掌握标准抛物线的判别方法,即看抛物线顶点处的切线是否与基线相平行。 5) 用图乘法计算位移时所求位移的方向须按计算结果的正负判定,当计算结果为正,说明所求位移的方向与虚设单位力的方向一致,否则相反。 4、举例 试求图(a )所示刚架结点B 的水平位移ΔBx ,EI 为常数。 [解] 先作出M P 图和1M 图,如图(b )、(c )所示。M P 图为荷载单独作用下的弯矩图;1M 图为在B 点水平方向虚设单位力F P =1情况下结构的弯矩图。 由图乘法,可得 ∑++=?=?)(1332211y y y EI EI y C Bx ωωωω

结构力学位移法题及答案

> 超静定结构计算——位移法 一、判断题: 1、判断下列结构用位移法计算时基本未知量的数目。 (1) (2) (3) (4) (5) (6) EI EI EI EI 2EI EI EI EI EA EA a b EI= EI=EI= 24442 @ 2、位移法求解结构内力时如果P M 图为零,则自由项1P R 一定为零。 3、位移法未知量的数目与结构的超静定次数有关。 4、位移法的基本结构可以是静定的,也可以是超静定的。 5、位移法典型方程的物理意义反映了原结构的位移协调条件。 二、计算题: 12、用位移法计算图示结构并作M 图,横梁刚度EA →∞,两柱线刚度 i 相同。 2 * 13、用位移法计算图示结构并作M 图。E I =常数。

l l /2l /2 14、求对应的荷载集度q 。图示结构横梁刚度无限大。已知柱顶的水平位移为 ()5123/()EI →。 12m 12m 8m q 15、用位移法计算图示结构并作M 图。EI =常数。 l l l l — 16、用位移法计算图示结构,求出未知量,各杆EI 相同。 4m 19、用位移法计算图示结构并作M 图。 q l l

20、用位移法计算图示结构并作M 图。各杆EI =常数,q = 20kN/m 。 6m 6m | 23、用位移法计算图示结构并作M 图。EI =常数。 l l 2 24、用位移法计算图示结构并作M 图。EI =常数。 q 29、用位移法计算图示结构并作M 图。设各杆的EI 相同。 q q l l /2/2 * 32、用位移法作图示结构M 图。 E I =常数。

典型例题解析-_静定结构位移计算

第5章 静定结构位移计算 §5 – 1 基本概念 5-1-1 虚拟单位力状态构造方法 ●虚拟单位力状态构造方法: (1)去掉所有荷载重画一个结构; (2)标出所求位移矢量; (3)该矢量变成单位力,即得虚拟单位力状态。 如图3-1a 刚架求C 点竖向位移CV ?和C 截面转角 C ?,图3-1b 和图3-1c 为求相应位移所构造的虚拟单位 力状态。 5-1-2 位移计算公式 虚拟单位力作用下,引起的内力和支座反力: N Q ,,,Ri F M F F 实际荷载作用下,引起的内力: NP P QP ,,F M F ●位移计算一般公式 N Q Ri i F du Md F ds F c ??γ=++-∑∑∑∑??? ●荷载作用产生位移的计算公式 Q N QP NP P k F F F F M M ds ds ds EA EI GA ?=++∑∑∑? ?? 1、梁或刚架结构 P M M ds EI ?=∑? 2、桁架结构 N NP F F ds EA ?=∑? 图3-1虚拟单位力状态 ) a () b () c (

2 结构力学典型例题解析 3、混合结构 N NP P F F MM ds ds EA EI ?=+∑∑? ? ●支座移动引起位移计算公式 Ri i F c ?=-∑ ●温度引起位移计算公式 ()N 0t F t dx M dx h α??α=+±∑∑?? ()N 0M t t lF A h α??α=+±∑∑ 式中:0,,t t α?为线膨胀系数形心温度温差,h 截面高度 M A 虚拟状态弯矩图面积 ●有弹性支座情况的位移计算公式 ()P RP R 0RP R M M F ds F EI k Ay F F EI k ?=+?±=+? ∑∑? ∑∑ 5-1-3 图乘法 图乘法公式: 0P ()Ay MM dx EI EI ±?==∑∑? 图乘法公式条件: ●等截面直杆且EI=常数 ●求 y 0图形必须为一条直线 正负号确定: 面积A 与y 0同侧取“+”号 注意:求面积的图形要会求面积和形心位置。 为使计算过程简洁、明了,先将面积和形心处对应弯矩求出标在弯矩图一侧,然后直接代入图乘法公式求得位移。 图3-2 图乘法示意图

4.结构位移计算

第16讲:计算结构位移的目的;功的有关概念;计算结构位移的一般公式。 要求:了解计算位移的目的及虚功原理等概念;理解计算位移的一般公式。 重点:计算结构位移的一般公式的推导 第四章结构位移计算 1、计算结构位移的目的 ⑴计算结构的位移以验算其刚度,保证使用过程中不致发生过大的位移。 ⑵为超静定结构计算打下基础。计算超静定结构时,除利用静力平衡条件外,还必须考虑结构的位移条件。 2、产生位移的原因 ⑴荷载作用;⑵温度变化和材料胀缩;⑶支座沉陷和制造误差。 3、结构位移与应变 ⑴如图4-1所示,多跨静定梁支座A有给定位移c A时,各杆只发生刚体运动,而应变等于零(支座反力和各杆内力为零)。 ⑵如图4-2所示,简支梁在荷载q作用下各点产生线位移(挠度ω),同时梁内因承受弯矩M而产生曲率κ(曲率半径R=1/κ)和应变ε(一边纤维拉伸,一边纤维压缩)。 *4、结构位移的度量 如图所示 ⑴线位移:△A ~水平分位移△Ax,竖向分位移△Ay。 ⑵角位移(转角):θA 。 位移计算是一个几何问题,但最好的解法是虚功法。本章中先应用刚体虚功原理计算刚体体系的位移,再讨论变形体虚功原理和应用变形体虚功原理求变形体体系的位移。 §4-1 虚力原理求刚体体系的位移 对于具有理想约束的刚体体系,其虚功原理可表述如下:设体系上作用一任意的平衡力系,又设体系发生符合约束条件的无限小刚体体系位移,则主动力在位移上所作虚功总和恒等于零。 强调指出:体系上的力系与位移二者是独立无关的。因此在应用中,可以把位移看作虚设的,也可以把力系看作虚设的。虚设位移与给定力系之间应用虚功原理的形式称为虚位移原理,可利用虚设位移的几何关系求给定力系中的未知力。虚设力系与实际位移之间应用虚功原理的形式称为虚力原理,可用于求实际位移中的未知位移。 1、虚力原理 如图4-3a所示简支梁,A支座向上移动c1,现拟求B点竖向位移Δ。 为此,对如图4-3a中的位移状态应用虚功原理。这里,位移状态是给定的,力系则可根据需要来虚设。 在拟求位移Δ方向设置单位荷载,这个 '

相关主题
文本预览
相关文档 最新文档