当前位置:文档之家› 染色质免疫共沉淀(ChIP)实验

染色质免疫共沉淀(ChIP)实验

染色质免疫共沉淀(ChIP)实验
染色质免疫共沉淀(ChIP)实验

染色质免疫共沉淀(ChIP)

染色质免疫共沉淀可以:(1)组蛋白修饰酶的抗体作为“生物标记”;(2)转录调控分析;(3)药物开发研究;(4)DNA损失与凋亡分析。

1实验方法原理:

在保持组蛋白和DNA联合的同时,通过运用对应于一个特定组蛋白标记的生物抗体,染色质被切成很小的片断,并沉淀下来。

IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“prorein A”特异性地结合到免疫球蛋白的FC片段的现象活用开发出来的方法。

目前多用精制的prorein A预先结合固化在argarose的beads上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原达到精制的目的。

2实验材料、试剂、仪器耗材:

细胞样品

甲醛、甘氨酸、PBS、SDS、Lysis Buffer、洗脱液、RNaseA、蛋白酶K、omega胶回收试剂盒等

离心管、超声仪、电泳仪、离心机等

3实验步骤:

一、细胞的甲醛交联与超声破碎(第一天)

1. 取出1平皿细胞(10 cm平皿),加入243 ul 37%甲醛,使得甲醛的终浓度为1%(培养基共有9 ml)。

2. 37℃孵育10 min。

3. 终止交联:加甘氨酸至终浓度为0.125 M。450 ul 2.5 M甘氨酸于平皿中。混匀后,在室温下放置5 min即可。

4. 吸尽培养基,用冰冷的PBS清洗细胞2次。

5. 细胞刮刀收集细胞于15 ml离心管中(PBS依次为5 ml,3 ml和3 ml)。预冷后2 000 rpm 5 min收集细胞。

6. 倒去上清。按照细胞量,加入SDS Lysis Buffer。使得细胞终浓度为每200ul含2×106个细胞。这样每100 ul溶液含1×106个细胞。再加入蛋白酶抑制剂复合物。假设MCF7长满板为5×106个细胞。本次细胞长得约为80%。即为4×106个细胞。因此每管加入400 ul SDS Lysis Buffer。将2管混在一起,共800 ul。

7. 超声破碎:VCX750,25%功率,4.5 s冲击,9 s间隙。共14次。

二、除杂及抗体哺育(第一天)

1. 超声破碎结束后,10 000 g 4℃离心10 min。去除不溶物质。

2. 留取300ul做实验,其余保存于-80℃。

3. 300 ul中,100 ul加抗体做为实验组;100 ul不加抗体做为对照组;100 ul加入4 ul 5 M NaCl(NaCl终浓度为0.2 M),65℃处理3 h解交联,跑电泳,检测超声破碎的效果。

4. 在100 ul的超声破碎产物中,加入900 ul ChIP DilutionBuffer和20 ul的50×PIC。再各加入60 ul ProteinA Agarose/SalmonSpermDNA。4℃颠转混匀1 h。

5. 1 h后,在4℃静置10 min沉淀,700 rpm离心1 min。

6. 取上清。各留取20 ul做为input。一管中加入1 ul抗体,另一管中则不加抗体。4℃颠转过夜。

三、检验超声破碎的效果(第一天)

1. 取100 ul超声破碎后产物,加入4 ul 5M NaCl,65℃处理2 h解交联。

2. 分出一半用酚/氯仿抽提。电泳检测超声效果。

四、免疫复合物的沉淀及清洗(第二天)

1. 孵育过夜后,每管中加入60 ul ProteinA Agarose/SalmonSperm DNA。4℃颠转2 h。

2. 4℃静置10 min后,700 rpm离心1 min。除去上清。

3. 依次用下列溶液清洗沉淀复合物。清洗的步骤:加入溶液,在4℃颠转10 min,4℃静置10 min沉淀,700 rpm离心1 min,除去上清。

洗涤溶液:

(1)low salt wash buffer-one wash

(2)highsalt wash buffer-one wash

(3)LiCl wash buffer-one wash

(4)TE buffer-two wash

4. 清洗完毕后,开始洗脱。

洗脱液的配方:100 ul 10%SDS,100 ul1M NaHCO3,800 ul ddH2O,共1 ml。

每管加入250 ul洗脱buffer,室温下颠转15 min,静置离心后,收集上清。重复洗涤一次。最终的洗脱液为每管500 ul。

5. 解交联:每管中加入20 ul 5M NaCl(NaCl终浓度为0.2 M)。

6. 混匀,65℃解交联过夜。

五、DNA样品的回收(第三天)

1. 解交联结束后,每管加入1 ul RNaseA(MBI),37℃孵育1 h。

2. 每管加入10 ul 0.5 M EDTA,20 ul1M Tris.HCl(PH6.5),2 ul 10 mg/ml蛋白酶K。45℃处理2 h。

3. DNA片段的回收----omega胶回收试剂盒。最终的样品溶于100 ul ddH2O。

六、PCR分析(第三天)

ChIP-chip技术对于大规模挖掘顺式调控信息成绩卓著,同时它可以用于胚胎干细胞和一些疾病如癌症、心血管疾病和中央神经紊乱的发生的机制。研究人员还可以利用这项技术开发一些治疗方法。目前ChIP-chip技术研究主要集中于两个领域:及转录因子的结合和条件特异性;组蛋白的修饰,组蛋白修饰蛋白和染色体重建。

ChIP-chip在描述转录结合因子动力学中的研究、染色体结构组分的分布、在组蛋白的修饰、组蛋白修饰蛋白和染色体重建中的应用也十分广泛。ChIP-chip 技术的优点是,可以在体内进行反应;在给定的检验细胞环境的模式下得到DNA相互关系的简单影像;使用特异性修正抗体鉴定与包含有一个特异性后转录修正的蛋白质的相关位点;直接或者间接(通过蛋白质与蛋白质的相互作用)的鉴别基因组与蛋白质的相关位点。缺点是:需要一个特异性蛋白质抗体,有时难于获得;为了获得高丰度的结合片段,必须实验演示胞内条件下靶标蛋白质的表达情况;调控蛋白质的基因的获取可能需要限制在组织来源中。

总之,ChIP-chip 技术的发展为析活细胞或组织中DNA与蛋白质的相互关系提供了一个极为有力的工具。在未来的研究中,将对芯片的构建进行改进,提高其实用性。使用易于获得抗体,增加这种方法的可用性。

在PCR分析这一块,比较传统的做法是半定量-PCR。但是现在随着荧光定量PCR的普及,大家也越来越倾向于Q-PCR了。此外还有一些由ChIP衍生出来的方法。例如RIP(其实就是用ChIP的方法研究细胞内蛋白与RNA的相互结合,具体方法和ChIP差不多,只是实验过程中要注意防止RNase,最后分析的时候需要先将RNA逆转录成为cDNA);还有ChIP-chip(其实就是ChIP富集得到的DNA-片段,拿去做芯片分析,做法在ChIP的基础上有所改变,不同的公司有不同的做法,要根据公司的要求来准备样品)。

4注意事项:

1. 注意抗体的性质。抗体不同和抗原结合能力也不同,免染能结合未必能用在IP反应。建议仔细检查抗体的说明书。特别是多抗的特异性是问题。

2. 注意溶解抗原的缓冲液的性质。多数的抗原是细胞构成的蛋白,特别是骨架蛋白,缓冲液必须要使其溶解。为此,必须使用含有强界面活性剂的缓冲液,尽管它有可能影响一部分抗原抗体的结合。另一面,如用弱界面活性剂溶解细胞,就不能充分溶解细胞蛋白。即便溶解也产生与其它的蛋白结合的结果,抗原决定族被封闭,影响与抗体的结合,即使IP成功,也是很多蛋白与抗体共沉的悲惨结果。

3. 为防止蛋白的分解,修饰,溶解抗原的缓冲液必须加蛋白每抑制剂,低温下进行实验。每次实验之前,首先考虑抗体/缓冲液的比例。抗体过少就不能检出抗原,过多则就不能沉降在beads上,残存在上清。缓冲剂太少则不能溶解抗原,过多则抗原被稀释。

5其他:

一、染色质免疫共沉淀简介

真核生物的基因组DNA以染色质的形式存在。因此,研究蛋白质与DNA在染色质环境下的相互作用是阐明真核生物基因表达机制的基本途径。染色质免疫沉淀技术(chromatin immunoprecipitation assay, CHIP)是目前唯一研究体内DNA与蛋白质相互作用的方法。它的基本原理是在活细胞状态下固定蛋白质-DNA复合物,并将其随机切断为一定长度范围内的染色质小片段,然后通过免疫学方法沉淀此复合体,特异性地富集目的蛋白结合的DNA片段,通过对目的片断的纯化与检测,从而获得蛋白质与DNA相互作用的信息。CHIP 不仅可以检测体内反式因子与DNA的动态作用,还可以用来研究组蛋白的各种共价修饰与基因表达的关系。而且,CHIP与其他方法的结合,扩大了其应用范围:CHIP与基因芯片相结合建立的CHIP-on-chip方法已广泛用于特定反式因子靶基因的高通量筛选;CHIP与体内足迹法相结合,用于寻找反式因子的体内结合位点;RNA-CHIP用于研究RNA在基因

表达调控中的作用。由此可见,随着CHIP的进一步完善,它必将会在基因表达调控研究中发挥越来越重要的作用。

二、ChIP的一般流程

甲醛处理细胞---收集细胞,超声破碎---加入目的蛋白的抗体,与靶蛋白-DNA复合物相互结合---加入ProteinA,结合抗体-靶蛋白-DNA复合物,并沉淀---对沉淀下来的复合物进行清洗,除去一些非特异性结合---洗脱,得到富集的靶蛋白-DNA复合物---解交联,纯化富集的DNA-片断---PCR分析。

染色质免疫沉淀技术实验指导

染色质免疫沉淀(ChIP) 染色质免疫沉淀技术是目前唯一研究体内DNA与蛋白质相互作用的方法。它的基本原理是在活细胞状态下固定蛋白质DNA复合物,并将其随机切断为一定长度范围内的染色质小片段,然后通过免疫学方法沉淀此复合体,特异性地富集目的蛋白结合的DNA片段,通过对目的片断的纯化与检测,从而获得蛋白质与DNA相互作用的信息。 近年来,这种技术得到不断的发展和完善,帮助研究者判断在细胞核中基因组的某一特定位置会出现何种组蛋白修饰,也可结合微阵列技术在染色体基因表达调控区域检查染色体活性,是深入分析癌症、心血管疾病以及中央神经系统紊乱等疾病的主要代谢通路的一种非常有效的工具。 实验前准备 在实验开始前,先准备好本次实验所需的各种试剂盒和相关常规试剂,如本次实验分装Pierce Agarose ChIP Kit,此试剂盒,提供了简化的方法来实现交联反交联、蛋白消化、免疫沉淀和DNA纯化。相关试剂从冰箱里取出,室温解冻或冰上解冻待用。还需要16%甲醛,5M NaCl及RNase- free water等本次实验所需的耗材和仪器有:赛默飞公司的Thermo Scientific全波长扫描式多功能读数仪、QSP盒装吸头及冰盒,芬兰百得公司提供的各个量程单通道移液器,离心机,恒温水浴锅等。 接下来进入实验部分,本实验操作流程为:首先用甲醛处理细胞,使蛋白质与DNA交联,然后用微球菌核酸酶进行消化,进行免疫反应之后,解除蛋白质DNA的交联,最后回收得到的DNA。 甲醛处理使蛋白质与DNA交联 在实验前需将待用细胞,用胰酶消化,进行细胞计数后,调整细胞密度到所需的密度后,方可进行实验。在含相应细胞数量的细胞悬液中,根据细胞培养基的体积,加入16%的甲醛至终浓度为1%。 轻柔颠倒混匀,通风橱中室温孵育10min。在含1%甲醛的培养基中加入10×Glycine Solution至终浓度为1×,混匀,室温孵育5min,目的是终止交联。3000 ×g离心5min,弃掉培养基,用适量预冷的PBS洗细胞,离心去除废液。

免疫共沉淀实验原理与方法

免疫共沉淀实验原理及方法 免疫共沉淀(CoIP)概述及原理 免疫共沉淀(Co-Immunoprecipitation,CoIP)是研究蛋白-蛋白间相互作用的经典方法,属于免疫沉淀技术的一类,常被用于鉴定特定蛋白复合物的中未知蛋白组分。免疫共沉淀的设计理念是,假设一种已知蛋白是某个大的蛋白复合物的组成成员,那么利用这种蛋白的特异性抗体,就可能将整个蛋白复合物从溶液中“拉”下来(常说的“pull-down”),进而可以用于鉴定这个蛋白复合物中的其他未知成员。免疫共沉淀的特点可以概括为两点,第一是天然状态,第二是蛋白复合物。 免疫共沉淀的优势: 与其他研究蛋白质相互作用技术(如GST-Pull down、酵母双杂交等)相比,免疫共沉淀鉴定的相互作用蛋白是在细胞内与目的蛋白发生的天然结合,避免了人为的影响,因此符合体内实际情况,得到的蛋白可信度更高。 免疫共沉淀的局限性和注意事项: 1. 免疫共沉淀是建立在蛋白复合物成员间彼此紧密结合的基础上,意味着松散结合的蛋白组分很可能检测不到; 2. 由于蛋白质形成复合物以后,某些表位就会被掩盖,因此可能导致使用某一种pull-down抗体,无论怎么增加抗体浓度,也极少能将不到一半的目标蛋白复合物沉淀出来,如有必要最好使用多种不同抗体分别进行CoIP;

3. 由于检测的是天然状态,因此在不同的时间和不同的处理下,CoIP拉下来的蛋白复合物都可能是不同的,当然随着实验次数的增加,得到的蛋白复合物成员也会越来越庞大; 4. 如果使用Western Blot的方法检测的蛋白复合物中的目标蛋白,则需要在试验前进行预测,具有一定的冒险性;当然如果将蛋白复合物直接进行质谱分析就不存在上述问题,但需要得到较高纯度和浓度的蛋白复合物样品也非易事,并且成本较高; 5. CoIP鉴定得到的蛋白间相互作用可能是直接作用也可能是间接作用,进一步区分还需要进行GST-Pull down等实验检测; 6. 为了保证CoIP实验的可靠性和严谨性,需要使用复合物的不同成员分别独立进行CoIP实验,并且结果应该能够彼此验证,因为原则上使用复合物的任一成员进行CoIP都会得到其他所有成员[1] 免疫共沉淀的一般操作流程(中英文对照):

关于染色质免疫共沉淀ChIP实验原理及实验总结

关于染色质免疫共沉淀ChIP实验原理及实验总结 ChIP实验原理 在活细胞状态下固定蛋白质-DNA复合物,并将其随机切断为一定长度范围内的染色质小片段,然后通过免疫学方法沉淀此复合体,特异性地富集目的蛋白结合的DNA片段,通过对目的片断的纯化与检测,从而获得蛋白质与DNA相互作用的信息。 可以利用ChIP研究转录因子(transcription factor, TF)与启动子(promoter)的关联性。由于ChIP采用甲醛固定活细胞或者组织的方法,所以能比较真实的反映细胞内TF与Promoter的结合情况。这个优势是EMSA这个体外研究核酸与蛋白相互结合的实验方法所不能比拟的。当用甲醛处理时,相互靠近的蛋白与蛋白,蛋白与核酸(DNA或RNA)之间会产生共价键。细胞内,当TF与Promoter相互结合(生物意义上的结合)时,它们必然靠的比较近,或者契合在一起,这个时候用甲醛处理,能使它们之间产生共价键。 一般ChIP的流程是:甲醛处理细胞——收集细胞,超声破碎——加入目的蛋白的抗体,与靶蛋白-DNA复合物相互结合——加入Protein A,结合抗体-靶蛋白-DNA复合物,并沉淀——对沉淀下来的复合物进行清洗,除去一些非特异性结合——洗脱,得到富集的靶蛋白-DNA复合物——解交联,纯化富集的DNA-片断——PCR分析。 ChIP实验步骤 第一天:

(一)、细胞的甲醛交联与超声破碎。 1、取出1平皿细胞(10cm平皿),加入243ul 37%甲醛,使得甲醛的终浓度为1%。(培养基共有9ml) 2、37摄氏度孵育10min。 3、终止交联:加甘氨酸至终浓度为0.125M。 450ul 2.5M甘氨酸于平皿中。混匀后,在室温下放置5min即可。 4、吸尽培养基,用冰冷的PBS清洗细胞2次。 5、细胞刮刀收集细胞于15ml离心管中(PBS依次为5ml,3ml和3ml)。预冷后2000rpm 5min收集细胞。 6、倒去上清。按照细胞量,加入SDS Lysis Buffer。使得细胞终浓度为每200ul含2×106个细胞。这样每100ul溶液含1×106个细胞。再加入蛋白酶抑制剂复合物。 假设MCF7长满板为5×106个细胞。本次细胞长得约为80%。即为4×106个细胞。因此每管加入400ul SDS Lysis Buffer。 将2管混在一起,共800ul。 7、超声破碎:VCX750,25%功率,4.5S冲击,9S间隙。共14次。当然,如果实验室有Bioruptor这种神器的话那就轻松了。 (二)、除杂及抗体哺育。 8、超声破碎结束后,10,000g 4度离心10min。去除不溶物质。 留取300ul做实验,其余保存于-80度。 300ul中,100ul加抗体做为实验组;100ul不加抗体做为对照组;100ul 加入4ul 5M NaCl (NaCl终浓度为0.2M),65度处理3h解交联,跑电泳,

免疫共沉淀实验流程--chip

染色体免疫共沉淀(Chip)实验报告 步骤一:样品准备 试剂和仪器: Biopulverizer(biospec) 37% formaldehyde 甘氨酸(Glycine) PBS protease inhibitors 步骤二:细胞交联 1. 向客户提供的细胞沉淀中加入1ml 细胞培养基,混匀细胞后转移到15ml离心管中。 2. 向15ml离心管中加入270ul 37%甲醛溶液,使得甲醛的终浓度为1%,室温温育10min。 3. 向反应体系中各加入505ul 2.5M甘氨酸到终浓度为125mM,室温温育5min以终止交联反应。 4. 135x g,4°C离心10min,去上清,并用冰冷的10ml 1XPBS迅速漂洗两次。 5. 吸净PBS后,加入1ml PBS+protease inhibitors混合液,并转移到1.5ml离心管中。800Xg,4°C离心 5min,小心去掉上清。 步骤三:细胞裂解 试剂: 裂解缓冲液1: 50mM Hepes-KOH pH7.5; NaCl 140mM; EDTA 1mM; glycerol 10%;NP-40 0.5%; Tritonx -100 0.25%。 裂解缓冲液2: 10mM Tris-HCl pH8.0; NaCl 100mM; EDTA 1mM pH8.0; Na-Deoxycholate 0.1% Protease inhibitors。 步骤: 1. 加入蛋白酶抑制剂(终浓度为1x) 到所有的裂解缓冲液中。 2. 用1ml的裂解缓冲液1重悬上述处理的样品,4°C旋转混合10min后,800g,4°C离心5min,弃上清。 3. 用300ul 裂解缓冲液2重悬样品,冰上放置30min。 步骤四:超声破碎DNA 仪器: Bioruptor(Diagenode) 步骤: (1)、将超声仪器Bioruptor 调到中档“Mid”(M)。 (2)、在超声池中注入一定量的冰水。 (3)、将上述1.5ml Ep管置于超声固定架中。 (4)、将带有Ep管的固定架放入已注入冰水的超声池中,超声10分钟。(30 seconds “ON” & 30 seconds “OFF”。) (5)、超声完成后,各取25ul直接接交联和纯化(具体操作见后洗脱和纯化步骤)后于2%琼脂糖凝胶电泳。超声后电泳图附件1。

ChIP试剂盒染色质免疫共沉淀全套解决方案

https://www.doczj.com/doc/d35438074.html, 染色质免疫共沉淀全套解决方案——ChIP试剂盒 染色质免疫沉淀技术(chromatin immunoprecipitation assay, ChIP)作为最佳的研究体内DNA与蛋白质相互作用的方法,它的基本原理是在活细胞状态下固定蛋白质-DNA复合物,并将其随机切断为一定长度范围内的染色质小片段,然后通过免疫学方法沉淀此复合体,特异性地富集目的蛋白结合的DNA片段,通过对目的片断的纯化与检测,从而获得蛋白质与DNA相互作用的信息。 ChIP不仅可以检测体内反式因子与DNA的动态作用,还可以用来研究组蛋白的各种共价修饰与基因表达的关系。而且,ChIP与其他方法的结合,扩大了其应用范围:ChIP与基因芯片相结合建立的ChIP-on-chip方法已广泛用于特定反式因子靶基因的高通量筛选;ChIP与体内足迹法相结合,用于寻找反式因子的体内结合位点;RNA-ChIP用于研究RNA在基因表达调控中的作用。由此可见,随着ChIP的进一步完善,它必将会在基因表达调控研究中发挥越来越重要的作用。 当前国内科研情况而言,研究分化,转录,发育,iPS,肿瘤干细胞,表观遗传学等等领域的老师都会做ChIP实验,还有部分老师会自己买抗体,手工配置试剂。但由于这个实验本身实验步骤比较繁琐而且其中很多步骤都非常关键,所需的试剂较多,容易造成配置间的误差,实验周期较长,若未设置阴性和阳性对照,更会导致结果无法分析,从而进入无休的困惑。 经典染色质免疫共沉淀(ChIP)试剂盒(p-2002):提供了对细胞样品进行染色质免疫沉淀反应所需的所有试剂。并且本试剂盒中含有一种阳性对照抗体(RNA聚合酶II抗体)、一种阴性对照抗体(正常小鼠的IgG)、GAPDH引物(可以作为阳性对照来保证试剂盒中试剂和操作步骤没出现问题)。在大多数生长期的哺乳动物细胞中,RNA聚合酶II会在GAPDH基因启动子上富集,准备起始转录,因此该启动子能与RNA聚合酶II发生免疫沉淀反应,而不能与正常小鼠IgG发生。在本染色质免疫沉淀反应中,细胞耦合了甲醛,提取出其中的染色质。染色质进行适当的打断,然后加入到微孔中与其表面上吸附的抗体发生免疫反应。特异性结合到微孔上的DNA从抗体-捕获蛋白-DNA复合物上释放出来,翻转后,通过本公司专门设计的高速离心柱纯化。洗脱下来的DNA可直接用于随后的各种分析。本试剂盒是基于96孔板的,市场上同类产品中最快捷的试剂盒,对CHIP过程进行了彻底的简化,操作简捷,方便易学整个处理过程不到5小时,同时可拆卸式的96孔板模式使研究人员能根据自己需要选择手工或是高通量分析。

染色质免疫共沉淀(ChIP)实验具体方法及步骤

染色质免疫共沉淀(ChIP)实验具体方法及步骤 在保持组蛋白和DNA联合的同时,通过运用对应于一个特定组蛋白标记的生物抗体,染色质被切成很小的片断,并沉淀下来。 IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“prorein A”特异性地结合到免疫球蛋白的FC片段的现象活用开发出来的方法。 目前多用精制的prorein A预先结合固化在argarose的beads上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原达到精制的目的。 一、细胞的甲醛交联与超声破碎(第一天) 1. 取出1平皿细胞(10 cm平皿),加入243 ul 37%甲醛,使得甲醛的终浓度为1%(培养基共有9 ml)。 2. 37℃孵育10 min。 3. 终止交联:加甘氨酸至终浓度为0.125 M。450 ul 2.5 M甘氨酸于平皿中。混匀后,在室温下放置5 min即可。 4. 吸尽培养基,用冰冷的PBS清洗细胞2次。 5. 细胞刮刀收集细胞于15 ml离心管中(PBS依次为5 ml,3 ml和3 ml)。预冷后2 000 rpm 5 min收集细胞。 6. 倒去上清。按照细胞量,加入SDS Lysis Buffer。使得细胞终浓度为每200ul含2x106个细胞。这样每100 ul溶液含1x106个细胞。再加入蛋白酶抑制剂复合物。假设MCF7长满板为5x106个细胞。本次细胞长得约为80%。即为 4x106个细胞。因此每管加入400 ul SDS Lysis Buffer。将2管混在一起,共800 ul。 7. 超声破碎:VCX750,25%功率,4.5 s冲击,9 s间隙。共14次。 二、除杂及抗体哺育(第一天) 1. 超声破碎结束后,10 000 g 4℃离心10 min。去除不溶物质。 2. 留取300ul做实验,其余保存于-80℃。 3. 300 ul中,100 ul加抗体做为实验组;100 ul不加抗体做为对照组;100 ul加入4 ul 5 M NaCl(NaCl终浓度为0.2 M),65℃处理3 h解交联,跑电泳,检测超声破碎的效果。

染色质免疫沉淀(ChIP)技术自我总结

染色质免疫沉淀(ChIP)技术自我总结 实验原理: ChIP是一项比较流行的研究转录因子(transcription factor, TF)与启动子(promoter)相互结合的实验技术。由于ChIP采用甲醛固定活细胞或者组织的方法,所以能比较真实的反映细胞内TF与Promoter的结合情况。这个优势是EMSA这个体外研究核酸与蛋白相互结合的实验方法所不能比拟的。当用甲醛处理时,相互靠近的蛋白与蛋白,蛋白与核酸(DNA或RNA)之间会产生共价键。细胞内,当TF与Promoter相互结合(生物意义上的结合)时,它们必然靠的比较近,或者契合在一起,这个时候用甲醛处理,能使它们之间产生共价键。 ChIP的流程是: 甲醛处理细胞——收集细胞,超声破碎——加入目的蛋白的抗体,与靶蛋白-DNA复合物相互结合——加入Protein A,结合抗体-靶蛋白-DNA复合物,并沉淀——对沉淀下来的复合物进行清洗,除去一些非特异性结合——洗脱,得到富集的靶蛋白-DNA复合物——解交联,纯化富集的DNA-片断——PCR分析。 PCR验证: 在PCR分析这一块,比较传统的做法是半定量-PCR。但是现在随着荧光定量PCR的普及,大家也越来越倾向于Q-PCR了。此外还有一些由ChIP衍生出来的方法。例如RIP(其实就是用ChIP的方法研究细胞内蛋白与RNA的相互结合,具体方法和ChIP差不多,只是实验过程中要注意防止RNase,最后分析的时候需要先将RNA 逆转录成为cDNA);还有ChIP-chip(其实就是ChIP富集得到的DNA-片段,拿去做芯片分析,做法在ChIP的基础上有所改变,不同的公司有不同的做法,要根据公司的要求来准备样品)。 具体实验步骤: 第一天: (一)、细胞的甲醛交联与超声破碎。 1、取出1平皿细胞(10cm平皿),加入243ul 37%甲醛,使得甲醛的终浓度为1%。(培养基共有9ml) 2、37摄氏度孵育10min。 3、终止交联:加甘氨酸至终浓度为0.125M。 450ul 2.5M甘氨酸于平皿中。混匀后,在室温下放置5min即可。 4、吸尽培养基,用冰冷的PBS清洗细胞2次。 5、细胞刮刀收集细胞于15ml离心管中(PBS依次为5ml,3ml和3ml)。预冷后2000rpm 5min收集细胞。 6、倒去上清。按照细胞量,加入SDS Lysis Buffer。使得细胞终浓度为每200ul含2×106个细胞。这样每100ul 溶液含1×106个细胞。再加入蛋白酶抑制剂复合物。 假设MCF7长满板为5×106个细胞。本次细胞长得约为80%。即为4×106个细胞。因此每管加入400ul SDS Lysis Buffer。 将2管混在一起,共800ul。 7、超声破碎:VCX750,25%功率,4.5S冲击,9S间隙。共14次。 (二)、除杂及抗体哺育。 8、超声破碎结束后,10,000g 4度离心10min。去除不溶物质。 留取300ul做实验,其余保存于-80度。 300ul中,100ul加抗体做为实验组;100ul不加抗体做为对照组;100ul加入4ul 5M NaCl (NaCl终浓度为0.2M),65度处理4h解交联,跑电泳,检测超声破碎的效果。

免疫共沉淀Co-IP实验操作步骤

免疫共沉淀Co-IP实验操作步骤 一、原理: 免疫共沉淀(Co-Immunoprecipitation)是以抗体和抗原之间的专一性作用为基础的用于研究蛋白质相互作用的经典方法。是确定两种蛋白质在完整细胞内生理性相互作用的有效方法。其原理是:当细胞在非变性条件下被裂解时,完整细胞内存在的许多蛋白质-蛋白质间的相互作用被保留了下来。如果用蛋白质X的抗体免疫沉淀X,那么与X在体内结合的蛋白质Y也能沉淀下来。目前多用精制的prorein A预先结合固化在argarose的beads 上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原达到精制的目的。这种方法常用于测定两种目标蛋白质是否在体内结合;也可用于确定一种特定蛋白质的新的作用搭档。 其优点为:(1)相互作用的蛋白质都是经翻译后修饰的,处于天然状态;(2)蛋白的相互作用是在自然状态下进行的,可以避免人为的影响;(3)可以分离得到天然状态的相互作用蛋白复合物。缺点为:(1)可能检测不到低亲和力和瞬间的蛋白质-蛋白质相互作用;(2)两种蛋白质的结合可能不是直接结合,而可能有第三者在中间起桥梁作用;(3)必须在实验前预测目的蛋白是什么,以选择最后检测的抗体,所以,若预测不正确,实验就得不到结果,方法本身具有冒险性。 二、准备工作: 预冷PBS,RIPA Buffer,细胞刮子(用保鲜膜包好后,埋冰下),离心机 1. 用预冷的PBS洗涤细胞两次,最后一次吸干PBS;

2. 加入预冷的RIPA Buffer(1ml/107个细胞、10cm培养皿或150cm2培养瓶, 0.5ml/5×106个细胞、6cm培养皿、75cm2培养瓶) 3. 用预冷的细胞刮子将细胞从培养皿或培养瓶上刮下,把悬液转到1.5EP管中,4℃,缓慢晃动15min(EP管插冰上,置水平摇床上) 4. 4℃,14000g离心15min,立即将上清转移到一个新的离心管中 5. 准备Protein A agarose,用PBS 洗两遍珠子,然后用PBS配制成50%浓度,建议减 掉枪尖部分,避免在涉及琼脂糖珠的操作中破坏琼脂糖珠 6. 每1ml总蛋白中加入100μl Protein A琼脂糖珠(50%),4℃摇晃10min(EP管插 冰上,置水平摇床上),以去除非特异性杂蛋白,降低背景 7. 4℃,14000g离心15min,将上清转移到一个新的离心管中,去除Protein A珠子 8. (Bradford 法)做蛋白标准曲线,测定蛋白浓度,测前将总蛋白至少稀释1:10倍以上,以减少细胞裂解液中去垢剂的影响(定量,分装后,可以在-20℃保存一个月) 9. 用PBS将总蛋白稀释到约1 μg/μl,以降低裂解液中去垢剂的浓度,如果兴趣蛋白 在细胞中含量较低,则总蛋白浓度应该稍高(如10 μg/μl) 10. 加入一定体积的兔抗到500μl总蛋白中,抗体的稀释比例因兴趣蛋白在不同细胞系中的多少而异 11. 4℃缓慢摇动抗原抗体混合物过夜或室温2h,激酶或磷酸酯酶活性分析建议用2 h 室温孵育

染色质免疫共沉淀技术的发展

染色质免疫共沉淀技术的发展 姚汪劲松发育生物学2013级2013110046 摘要:本文主要介绍了染色质免疫沉淀技术的发展历程、基本原理和优缺点,并且介绍了反向染色质免疫沉淀技术,并对两种方法进行了比较。 关键词:染色质免疫共沉淀;反向染色质免疫共沉淀;应用,研究前景。 目前,不断发展的DNA和蛋白质相互作用的方法和技术已经成为研究DNA复制、重组、修复和转录的核心。其中凝胶阻滞实验(EMSA),报告基因分析,DNA微阵列,质谱分析法MS,酵母单杂交系统和染色质免疫共沉淀技术(ChIP)是被广泛应用于研究DNA 和蛋白质相互作用的方法。 真核生物基因组DNA以染色质形式存在,研究蛋白质与DNA在染色质环境下的相互作用是阐明真核生物基因表达调控机制的基本途径。生物体内基因表达调控主要发生在转录过程中,转录调控是顺式作用元件(Cis-acting elements)如启动子(Promoter)、增强子(Enhancer)与反式作用因子(Trans-acting factors)相互作用的结果。基因组DNA的甲基化、组蛋白甲基化、乙酰化和磷酸化修饰,核小体重新定位及染色体结构重建都影响调控。转录调控具有细胞类型、发育阶段和外界环境刺激的差异性,哺乳动物转录调控序列分散在较大区域,组蛋白修饰状态达100多种,这些因素都增加了转录调控的复杂性。 ChIP是一种在体内研究转录因子和靶基因启动子区域直接相互作用的方法,可以在体内直接确定它们之间相互作用方式的动态变化,能够得到转录因子结合位点的信息,确定其直接靶基因。它早期多被用于研究核小体上的DNA和组蛋白的相互作用以及组蛋白的修饰等方面。近年来,随着生物技术的迅速发展,ChIP技术不断发展和完善,被广泛应用于体内转录调控因子与靶基因启动子上特异核苷酸序列结合方面的研究,并成为在染色质水平研究基因表达调控的有效方法。特别是,此技术与DNA芯片和分子克隆技术相结合,可用于高通量筛选已知蛋白因子的未知DNA靶位点和研究反式作用因子在整个基因组上的分布情况,这将有助于深入研究DNA与蛋白质相互作用的调控网络。 ChIP技术由Orlando等于1997年创立。其基本原理为将处于适当生长时期的活细胞用甲醛交联后将细胞裂解,染色体分离并打碎为一定大小的片段;然后用特异性抗体免疫沉淀目标蛋白与DNA交联的复合物,对特定靶蛋白与DNA片段进行富集。采用低pH值条件反交联,DNA与蛋白质之间的Schiff键水解,释放DNA片段。通过对目标片段的纯化与检测,获得DNA与蛋白质相互作用的序列信息。在上述ChIP过程中,甲醛能够进入细胞并使蛋白质与DNA或蛋白质与蛋白质之间通过希弗(Scihff)键交联,形成稳定结合的复合物。如果交联效果不太好,可以先用交联剂DMA(Dimethyl adipimidate)或DSG (Disuccnimidyl glutarate)处理细胞,以加强后续甲醛交联的效果。破碎DNA可采用超声物理破碎或特定酶切消化,以获得所需长度的DNA片段。由于DNA片段长度将影响抗体免疫沉淀效率,因此破碎DNA是ChIP实验成功与否的重要因素。超声效果与细胞裂解是否充分、细胞浓度及裂解液成分等因素有关。超声处理后的液体应从浑浊状态变为透明状态。选择专一性及亲和力较高的抗体是ChIP成功的关键。非特异性抗体将增加大量的非目标靶点DNA片段信息,从而掩盖了真实的蛋白质结合位点信息;而亲和力较差的抗体,则无法获得高信噪比靶点DNA片段。另一方面,在甲醛交联过程中可能会掩盖一些蛋白质的表位,这会影响到一部分蛋白质和DNA复合体的免疫沉淀反应。因此,用Western印迹或免疫组化等常用的实验方法证明的能够对目标蛋白质进行免疫结合的抗体,并不能保证一定能够成功地进行ChIP实验。例如,Weitsman 等检验了不同的雌激素受体β抗体在ChIP中的免疫沉淀能力,发现有的抗体虽然能够在标准免疫沉淀条件下与抗原结合,但不适合ChIP条件下使用,并

免疫共沉淀与Western Blot

免疫共沉淀与Western Blot 实验步骤: 1.以60mm细胞培养皿为例,细胞转染后24-36小时后,吸净培养液(可用PBS 小心漂洗一次)。 2.加入500μl预冷的1×lysis buffer,于4℃或冰上放置裂解细胞5分钟。 3.将细胞裂解液转移到1.5ml eppondorf管内,于冷冻离心机4℃,13000g离心30分钟。 4.将离心后的上清液分为两份:一份35μl,加入等体积的2×SDS sample buffer,混匀后于100℃煮10分钟,做为总细胞裂解液(total cell lysate,TCL)于-20℃保存,或取6-10μl进行SDS-PAGE电泳,Western blot检测目的蛋白的表达水平(接第5步)。另一份用于免疫沉淀,具体操作如下: 1)分A/G beads:按每管(一个免疫沉淀样品)加入5μl Agrose A/G beads 及5μl(1μg)抗体计算一次实验所用beads及抗体的总量,将抗体和beads混合,补充lysis buffer(补充的lysis buffer的量能使每管能均匀分配到50μl beads 及抗体的混合物),将beads及抗体的混合物按每管50μl(含5μl beads及5μl抗体)分配到1.5ml Eppendorf管中,再加入400μl1×lysis buffer,备用; 2)从步骤4中另一份用于免疫沉淀的上清液中取400μl加入到上一步(步骤1))已分好的beads中,使终体积达到850μl,将管子固定到混匀器上使混匀器匀速旋转(15rpm)免疫沉淀3小时; 3)将免疫沉淀后的溶液于4℃3000rpm离心3分钟,去上清,加入500μl 1×lysis buffer洗涤beads,于冷冻离心机4℃3000rpm离心3分钟,弃上清,共洗涤三次。 4)最后一次洗涤完毕,弃上清,管中只剩Beads,加入35μl1×lysis buffer与等体积2×SDS sample buffer混合,于100℃煮沸10分钟,稍离心后取10μl左右上样到PAGE胶,进行电泳,或-20℃冻存。 5.电泳完毕,取下PAGE胶,与PVDF膜做成"三明治"形状,用湿转法进行电转1小时。 6.电转完毕,取下PVDF膜,加入5%脱脂奶粉,于脱色摇床摇荡(75rpm)封闭1小时以消除非特异背景。

免疫共沉淀详细步骤

免疫共沉淀详细步骤 实验原理 当细胞在非变性条件下被裂解时,完整细胞内存在的许多蛋白质-蛋白质间的相互作用被保留了下来。如果用蛋白质X的抗体免疫沉淀X,那么与X在体内结合的蛋白质Y也能沉淀下来。目前多用精制的prorein A预先结合固化在argarose的beads上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原达到精制的目的。这种方法常用于测定两种目标蛋白质是否在体内结合;也可用于确定一种特定蛋白质的新的作用搭档。 其优点为:(1)相互作用的蛋白质都是经翻译后修饰的,处于天然状态;(2)蛋白的相互作用是在自然状态下进行的,可以避免人为的影响;(3)可以分离得到天然状态的相互作用蛋白复合物。缺点为:(1)可能检测不到低亲和力和瞬间的蛋白质-蛋白质相互作用;(2)两种蛋白质的结合可能不是直接结合,而可能有第三者在中间起桥梁作用;(3)必须在实验前预测目的蛋白是什么,以选择最后检测的抗体,所以,若预测不正确,实验就得不到结果,方法本身具有冒险性。 实验试剂 1. RIPA Buffer配制:

基础成分: Tris-HCl(缓冲液成分,防止蛋白变性) NaCl(盐份,防止非特异蛋白聚集) NP-40(非离子去污剂,提取蛋白;用H2O配制成10%储存液) 去氧胆酸钠(离子去污剂,提取蛋白;用H2O配制成10%储存液;避光保存) 注意:准备激酶(致活酶)实验时,不要加去氧胆酸钠,因为离子型去污剂能够使酶变性,导致活性丧失。 RIPA蛋白酶抑制剂 苯甲基磺酰氟(PMSF)(用异丙醇配制成200mM的储存液,室温保存) EDTA(钙螯合剂;用H2O配制成100mM的储存液,PH 7.4) 亮抑酶肽(Leupeptin)(用H2O配制成1mg/ml的储存液,分装,-20℃保存) 抑蛋白酶肽(Aprotinin)(用H2O配制成1mg/ml的储存液,分装,-20℃保存) 胃蛋白酶抑制剂(Pepstatin)(用甲醇配制成1mg/ml的储存液,分装,-20℃保存) RIPA磷酸(酯)酶抑制剂 激活的Na3VO4(用H2O配制成200mM的储存液,见Sodium Orthovanadate Activation Protoco) NaF(200mM的储存液,室温保存)

组织染色质免疫沉淀技术(chip)-步骤

Chip步骤 组织裂解: 1.新鲜组织。切成1-3 mm3小块。 2.转移组织到50ML试管里。加入10 ml of 1X PBS. 3.加甲醛至终浓度为1%。室温下转动15—20mins。(10ul) 4.加2.5 M Glycine至终浓度为0.125 M(终止交联)。4°C下转动10mins。(0.5ml) 5.100 g, 4°C 离心样本5mins。 6.弃上清,取沉淀。用45 ml 冰冻1X PBS和25 ml 冰冻1X PBS各洗一次。离心弃上清。 7.再加入2 ml 冰冻1X PBS。匀浆机裂解组织。1000 rpm,4°C ,离心5 min。弃上清。 8.细胞裂解液重悬细胞。加入蛋白酶抑制剂PMSF (10 ul per ml), aprotinin (1 ul per ml) and leupeptin (1 ul per ml).冰上孵育10-15mins 9.5,000 rpm ,4°C离心5分钟。取沉淀 10.细胞核裂解液重悬细胞加入(8)中的蛋白酶抑制剂。冰上孵育10-20mins。 11.接下来就进去超声过程了。(接下来第一天的5) 第一天 1.细胞中加入1%的甲醛,8ml的培养液加入216 ul的甲醛,37度十分钟。 2.配制含有蛋白酶抑制剂的PBS 20 ml和含有蛋白酶抑制剂的SDS溶液1ml 3.将细胞拿出来,迅速的移除含甲醛的培养基,加入含蛋白酶抑制剂的PBS洗两遍。胰酶 消化20秒,加入含蛋白酶抑制剂的PBS 1ml。用细胞刮刀把细胞刮下,收集到1.5ml的离心管里面。 4.4度2000rpm离心10min,弃上清液,加入200ul含蛋白酶抑制剂的SDS溶液。吹打 重悬细胞,冰上孵育10分钟。 5.超声切割DNA,总切割时间4min30sec,超声10sec,间隙10sec。 6.4度13000rpm离心10min,转移上清液到一个新的2ml的离心管,弃沉淀。 7.稀释超声后的上清液到10X的CHIP稀释液,200ul的上清液加入1.8ml的CHIP稀释液, 达到最终体积2ml。 8.为去除非特异性,加入75ul的Salmon Sperm DNA/Protein A Agarose-50% Slurry,4度旋 转30分钟。 9.1000rpm离心3min沉淀Salmon Sperm DNA/Protein A Agarose-50% Slurry,收集上清液。 10.上清液加入1抗,4度振荡过夜。(5—10大概一个小时) 第二天(1—8大概两个半小时) 1.加60ul的Salmon Sperm DNA/Protein A Agarose-50% Slurry,沉淀抗体/抗原复合物,4度 旋转一小时。 2.1000rpm 4度3min收集沉底,移除上清液,开始洗脱过程。 3.低盐免疫复合物洗脱液,旋转5min,1000rpm离心3min收集沉淀 4.高盐免疫复合物洗脱液,旋转5min,1000rpm离心3min收集沉淀 5.Licl免疫复合物洗脱液,旋转5min,1000rpm离心3min收集沉淀 6.TE Buffer,旋转5min,1000rpm离心3min收集沉淀,两次 7.现在得到的是protein A/antibody/histone/DNA complex,新制备elution buffer (1%SDS, 0.1M NaHCO3)。加250ul elution buffer到沉淀,混匀后室温旋转15min。1000rpm离心 3min沉淀,移上清液到新的离心管,重复上面的过程,最后上清液体积大约500ul。8.加入20ul的5M的nacl反转交联,65度过夜。 第三天(大概3个小时)

染色质免疫共沉淀技术

知无不“研”|一文读懂染色质免疫共沉淀技术(ChIP) 染色质免疫共沉淀技术(ChIP) 基于体内分析而发展的染色质免疫沉淀分析(Chromatin immunoprecipitation assay kit,ChIP)技术可以真实、完整地反映结合在DNA序列上的调控蛋白。由于ChIP采用甲醛固定活细胞或者组织的方法,因此能比较真实的反映细胞内TF与Promoter的结合情况,还可以用来研究组蛋白的各种共价修饰与基因表达的关系。近年来,这种技术得到不断的发展和完善。采用结合微阵列技术在染色体基因表达调控区域检查染色体活性,是深入分析癌症、心血管病以及中央神经系统紊乱等疾病主要通路的一种非常有效的工具。 染色质免疫沉淀分析(ChIP)的基本原理是在活细胞状态下,当用甲醛处理时,相互靠近的蛋白与蛋白、蛋白与核酸(DNA或RNA)之间会产生共价键。细胞内,当TF与Promoter相互结合时,它们必然靠的比较近或者契合在一起,这个时候用甲醛处理,能使它们之间产生共价键。固定的蛋白质-DNA复合物通过超声或酶处理将其随机切断为一定长度范围内的染色质小片段,然后通过抗原抗体的特异性识别反应沉淀此复合体,特异性地富集目的蛋白结合的DNA片段,通过对目的片断的纯化与检测,从而获得蛋白质与DNA相互作用的信息。通过qPCR或二代测序,筛选与目的蛋白互作的未知DNA信息。 今天小编将珍藏多年的ChIP实验心得拿出来与大家一同探讨。 应用领域 1、判断DNA链的某一特定位置会出现何种组蛋白修饰 2、检测RNA polymerase II及其它反式因子在基因组上结合位点的精确定位 3、研究组蛋白共价修饰与基因表达的关系 4、转录因子研究 技术流程

染色质免疫共沉淀(ChIP)实验

染色质免疫共沉淀(ChIP) 染色质免疫共沉淀可以:(1)组蛋白修饰酶的抗体作为“生物标记”;(2)转录调控分析;(3)药物开发研究;(4)DNA损失与凋亡分析。 1实验方法原理: 在保持组蛋白和DNA联合的同时,通过运用对应于一个特定组蛋白标记的生物抗体,染色质被切成很小的片断,并沉淀下来。 IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“prorein A”特异性地结合到免疫球蛋白的FC片段的现象活用开发出来的方法。 目前多用精制的prorein A预先结合固化在argarose的beads上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原达到精制的目的。 2实验材料、试剂、仪器耗材: 细胞样品 甲醛、甘氨酸、PBS、SDS、Lysis Buffer、洗脱液、RNaseA、蛋白酶K、omega胶回收试剂盒等 离心管、超声仪、电泳仪、离心机等 3实验步骤: 一、细胞的甲醛交联与超声破碎(第一天) 1. 取出1平皿细胞(10 cm平皿),加入243 ul 37%甲醛,使得甲醛的终浓度为1%(培养基共有9 ml)。 2. 37℃孵育10 min。 3. 终止交联:加甘氨酸至终浓度为0.125 M。450 ul 2.5 M甘氨酸于平皿中。混匀后,在室温下放置5 min即可。

4. 吸尽培养基,用冰冷的PBS清洗细胞2次。 5. 细胞刮刀收集细胞于15 ml离心管中(PBS依次为5 ml,3 ml和3 ml)。预冷后2 000 rpm 5 min收集细胞。 6. 倒去上清。按照细胞量,加入SDS Lysis Buffer。使得细胞终浓度为每200ul含2×106个细胞。这样每100 ul溶液含1×106个细胞。再加入蛋白酶抑制剂复合物。假设MCF7长满板为5×106个细胞。本次细胞长得约为80%。即为4×106个细胞。因此每管加入400 ul SDS Lysis Buffer。将2管混在一起,共800 ul。 7. 超声破碎:VCX750,25%功率,4.5 s冲击,9 s间隙。共14次。 二、除杂及抗体哺育(第一天) 1. 超声破碎结束后,10 000 g 4℃离心10 min。去除不溶物质。 2. 留取300ul做实验,其余保存于-80℃。 3. 300 ul中,100 ul加抗体做为实验组;100 ul不加抗体做为对照组;100 ul加入4 ul 5 M NaCl(NaCl终浓度为0.2 M),65℃处理3 h解交联,跑电泳,检测超声破碎的效果。 4. 在100 ul的超声破碎产物中,加入900 ul ChIP DilutionBuffer和20 ul的50×PIC。再各加入60 ul ProteinA Agarose/SalmonSpermDNA。4℃颠转混匀1 h。 5. 1 h后,在4℃静置10 min沉淀,700 rpm离心1 min。 6. 取上清。各留取20 ul做为input。一管中加入1 ul抗体,另一管中则不加抗体。4℃颠转过夜。 三、检验超声破碎的效果(第一天) 1. 取100 ul超声破碎后产物,加入4 ul 5M NaCl,65℃处理2 h解交联。 2. 分出一半用酚/氯仿抽提。电泳检测超声效果。 四、免疫复合物的沉淀及清洗(第二天)

免疫共沉淀实验方案

免疫共沉淀实验方案 一、实验试剂和材料 Dynabeads? Protein G(novex by life technologies) PBS pH7.4(含0.01%Tween-20) 0.1M Na-phosphate(Washing Buffer) 50mM Glycine pH2.8(Elution Buffer) 二、实验步骤 (一)准备磁珠 1.将瓶子倾斜旋转5min左右,使瓶中磁珠悬浮; 2.吸取50ul磁珠液于离心管中; 3.将离心管置于磁铁架上,磁珠吸附到管壁上,弃上清; 4.从磁铁架上取下离心管; (二)结合抗体 1.加入200ul用PBS(含0.01%Tween-20)稀释的抗体; 2.室温旋转孵育10min; 3.将离心管置于磁铁架上,磁珠吸附到管壁上,弃上清; 4.从磁铁架上取下离心管,用200ul PBS(含0.01%Tween-20)温和吹吸并重悬磁珠-抗体复合体; (三)免疫沉淀抗原 1.将离心管置于磁铁架上,磁珠吸附到管壁上,弃上清; 2.从磁铁架上取下离心管,加入抗原样品并温和吹吸,重悬磁珠-抗体复合物; 3.室温旋转孵育10min,使抗原结合到磁珠-抗体复合物上; 4.将离心管置于磁铁架上,磁珠吸附到管壁上,弃上清;

5.用washing buffer 3次洗涤磁珠-抗体-抗原复合物,弃上清; 6.用100ul washing buffer重悬磁珠-抗体-抗原复合物,并将磁珠悬浮液转移到干净的离心管中,以避免蛋白抗原粘附在管壁上。 (四)洗脱抗原 1.将离心管置于磁铁架上,磁珠吸附到管壁上,弃上清; 2.加入200ul Elution Buffer至离心管中,温和吹吸并重悬磁珠-抗体-抗原复合物;(不要吹打出气泡) 3.室温旋转孵育2min; 4.将离心管置于磁铁架上,并将洗脱液(含有洗脱的抗原、抗体)转移到干净的离心管中,用于后续的SDS-PAGE蛋白凝胶电泳分析。

染色质免疫共沉淀技术(ChIP)

染色质免疫共沉淀技术(ChIP) 真核生物的基因组DNA以染色质的形式存在。因此,研究蛋白质与DNA在染色质环境下的相互作用是阐明真核生物基因表达机制的基本途径。染色质免疫沉淀技术(chromatin immunoprecipitation assay, CHIP)是目前唯一研究体内DNA 与蛋白质相互作用的方法。它的基本原理是在活细胞状态下固定蛋白质-DNA 复合物,并将其随机切断为一定长度范围内的染色质小片段,然后通过免疫学方法沉淀此复合体,特异性地富集目的蛋白结合的DNA片段,通过对目的片断的纯化与检测,从而获得蛋白质与DNA相互作用的信息。CHIP不仅可以检测体内反式因子与DNA的动态作用,还可以用来研究组蛋白的各种共价修饰与基因表达的关系。而且,CHIP与其他方法的结合,扩大了其应用范围:CHIP与基因芯片相结合建立的CHIP-on-chip方法已广泛用于特定反式因子靶基因的高通量筛选;CHIP与体内足迹法相结合,用于寻找反式因子的体内结合位点;RNA-CHIP 用于研究RNA在基因表达调控中的作用。由此可见,随着CHIP的进一步完善,它必将会在基因表达调控研究中发挥越来越重要的作用。 染色体免疫共沉淀(Chromatin Immunoprecipitation,ChIP)是基于体内分析发展起来的方法,也称结合位点分析法,在过去十年已经成为表观遗传信息研究的主要方法。这项技术帮助研究者判断在细胞核中基因组的某一特定位置会出现何种组蛋白修饰。ChIP不仅可以检测体内反式因子与DNA的动态作用,还可以用来研究组蛋白的各种共价修饰与基因表达的关系。近年来,这种技术得到不断的发展和完善。采用结合微阵列技术在染色体基因表达调控区域检查染色体活性,是深入分析癌症、心血管疾病以及中央神经系统紊乱等疾病的主要代谢通路的一种非常有效的工具。 它的原理是在保持组蛋白和DNA联合的同时,通过运用对应于一个特定组蛋白标记的生物抗体,染色质被切成很小的片断,并沉淀下来。IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“prorein A”特异性地结合到免疫球蛋白的FC片段的现象活用开发出来的方法。目前多用精制的prorein A预先结合固化在argarose的beads上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原达到精制的目的。实验最需要注意点就是抗体的性质。抗体不同和抗原结合能力也不同,免染能结合未必能用在IP反应。建议仔细检查抗体的说明书。特别是多抗的特异性是问题。其次,要注意溶解抗原的缓冲液

免疫共沉淀原理及步骤

免疫共沉淀原理及步骤 免疫沉淀(Immunoprecipitation, IP)原理 IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“protein A/G"特异性地结合到抗体(免疫球蛋白)的FC片段的现象开发出来的方法。目前多用protein A/G预先结合在argarose beads上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A/G就能达到吸附抗原的目的。通过低速离心,可以从含有目的抗原的溶液中将目的抗原与其它抗原分离。 免疫沉淀实验的操作步骤比较多,同时由于在非变性条件下进行实验,所以要得到一个完美的实验结果,不仅需要高质量的抗体,同时对免疫沉淀体系也需要有严格的控制指标。免疫沉淀实验从:蛋白样品处理;抗体-agarose beads孵育;抗体-agarose beads复合物洗涤到最后的鉴定,每步都非常关键,需要严格控制实验流程中每个关键步骤的质量,才能最终达到你的实验目的。 IP实验步骤 基本实验步骤 (1)收获细胞,加入适量细胞IP裂解缓冲液(含蛋白酶抑制剂),冰上或者4℃裂解30min, 12,000g 离心30 min后取上清; (2) 取少量裂解液以备Western blot分析,剩余裂解液将1μg相应的抗体和10-50 μl protein A/G-beads加入到细胞裂解液,4°C缓慢摇晃孵育过夜; (3)免疫沉淀反应后,在4°C 以3,000 g速度离心5 min,将protein A/G-beads离心至管底;将上清小心吸去,protein A/G-beads用1ml裂解缓冲液洗3-4次;最后加入15μl的2×SDS 加样缓冲液,沸水煮10分钟; (4)SDS-PAGE, Western blotting或进行质谱分析。一、样品处理: 免疫沉淀实验成功与否,第一步处理样品非常关键。免疫沉淀实验本质上是处于天然构象状态的抗原和抗体之间的反应,而样品处理的质量决定了抗原抗体反应中的抗原的质量,浓度以及抗原

相关主题
文本预览
相关文档 最新文档