当前位置:文档之家› 材料疲劳裂纹扩展研究综述

材料疲劳裂纹扩展研究综述

材料疲劳裂纹扩展研究综述
材料疲劳裂纹扩展研究综述

材料疲劳裂纹扩展研究综述

摘要:疲劳裂纹扩展行为是现代材料研究中重要的内容之一。论述了组织结构、环境温度、腐蚀条件以及载荷应力比、频率变化对材料疲劳裂纹扩展行为的影响。总结出疲劳裂纹扩展研究的常用方法和理论模型,并讨论了“塑性钝化模型”和“裂纹闭合效应”与实际观察结果存在的矛盾温度、载荷频率和应力比是影响材料疲劳裂纹扩展行为的主要因素。发展相关理论和方法,正确认识影响机理,科学预测疲劳裂纹扩展行为一直是人们追求的目标。指出了常用理论的不足,对新的研究方法进行了论述。

关键词: 温度; 载荷频率; 应力比; 理论; 方法; 疲劳裂纹扩展

1 前言

19世纪40年代随着断裂力学的兴起,人们对于材料疲劳寿命的研究重点逐渐由不考虑裂纹的传统疲劳转向了主要考察裂纹扩展的断裂疲劳。尽量准确地估算构件的剩余疲劳寿命是人们研究材料疲劳扩展行为的一个重要目的。然而,材料的疲劳裂纹扩展研究涉及了力学、材料、机械设计与加工工艺等诸多学科,材料、载荷条件、使用环境等诸多因素都对疲劳破坏有着显著的影响,这给研究工作带来了极大困难。正因为此,虽然对于疲劳的研究取得了大量有意义的研究成果,但仍有很多问题存在着争议,很多学者还在不断的研究和探讨,力求得到更加准确的解决疲劳裂纹扩展问题的方法和理论。

经过几十年的发展,人们已经认识到断裂力学是研究结构和构件疲劳裂纹扩展有力而现实的工具。现代断裂力学理论的成就和工程实际的迫切需要,促进了疲劳断裂研究的迅速发展。如Rice的疲劳裂纹扩展力学分析(1967年) ,Elber的裂纹闭合理论(1971年) ,Wheeler 等的超载迟滞模型

(1970年) ,Hudak等关于裂纹扩展速率标准的测试方法,Sadananda和Vasudevan ( 1998年)的两参数理论等都取得了一定成果。本文将对其研究中存在问题、常用方法和理论模型、以及温度、载荷频率和应力比对疲劳裂纹扩展影响的研究成果和新近发展起来的相关理论进行介绍。

2 疲劳裂纹扩展研究现存问题

如今,人们在分析材料裂纹扩展问题时最常用到的是“塑性钝化模型”和裂纹尖端因“反向塑性区”等原因导致的“裂纹闭合效应”理论。而它们是否正确,却一直在人们的验证和争论之中。

根据现有的研究结果,有学者提出,若按照“塑性钝化模型”理论,强度高的材料应具有较低的裂纹扩展速率,但实验结果却不能证实这一预测。另外,该“模型”认为的“裂纹尖端的钝化是在拉应力达到最大值时完成的”这一观点在理论上不妥,也与实测结果不符。观察结果表明,裂纹尖端钝化是一个渐进的过程,钝化半径与外载荷大小成正比。

而疲劳裂纹在扩展过程中的“裂纹闭合效应”在什么情况下存在,能否对材料的裂纹扩展速率产生重要影响,考虑“裂纹闭合”的实验室数据能否用于工程中等问题也一直在人们的争论之中。由于“裂纹闭合效应”理论推出的结论是:“对载荷比的依赖性不是材料的内在行为,而是源于裂纹表面提前闭合后应力强度因子幅(△K) 的变化”,所以早在1984年S.Suresh等人就指出[1],“裂纹闭合”不是一个力学参数,它受构件形状、载荷、环境和裂纹长度等因素的影响。因此,除非在实际使用过程中测量构件的裂纹闭合情况,否则在实验室里做出来的试验结果不能用来预测构件中的裂纹扩展速率。1970年,Ritchie研究钢中裂纹扩展的近门槛值时发现:在真空环境下,应力比R对门槛值几乎没有影响,首度质疑了裂纹闭合的存在性和所起的作用。在前人研究的基础上,美国海军实验室的

K.Sadanada和 A.K.Vasudevan等人经过多年的研究[2],从理论上证明了“不论在平面应变还是平面应力条件下,在裂纹张开过程中产生的塑性区不能导致裂纹的闭合”,并且指出,由表面粗糙度、氧化等因素导致的裂纹的提前闭合虽然存在,但在大部分情况下对裂纹尖端应力只有小的影响。

3 现有研究方法和常用理论模型

近20年来,我国在材料疲劳裂纹扩展领域的研究主要以实际应用为背景,针对广泛应用的各种合金钢和铝合金进行。研究内容主要包括: ①材料组织、力学性能[3-4]、应力比、低温环境[5]、盐水环境、载荷波形以及随机因素[6]在对裂纹扩展行为的影响;②通过建立各种数学模型对裂纹扩展的寿命进行估算,对裂纹扩展曲线进行拟合,对各影响参数( 如疲劳裂纹扩展门槛值) 和裂纹扩展速率的关系进行描述[7-8]③疲劳变形机理和小裂纹的扩展机理。

在研究方法上,人们通常使用线弹性断裂力学方法来研究裂纹的扩展问题。实践证明,对绝大部分材料而言,用这种方法处理的裂纹扩展速率试验结果可完全适用于工程中对含缺陷构件裂纹扩展寿命的预测。

根据疲劳裂纹扩展的一般特性,d a /d N ( 裂纹扩展速率)和△K的关系如图1 所示。除了可以用Paris-Erdogan公式分3个区域分别描述这种关系外,还可以利用已有的模型表达全范围的d a /d N—△K关系,如三分量模型和反双曲正切模型。

虽然用全范围的d a /d N—△K关系可以更加精确地预测含缺陷构件的裂纹扩展寿命,但一般计算零件的疲劳寿命时,只考虑裂纹稳定扩展的第二阶段已完全能够满足实际需要,只有对于核动力设备之类的设计中,才需要做非常精确的计算。因此,大部分文献中的研究工作都是针对构件中由拉应力控制的裂纹扩展的第二阶段进行的,也就是研究裂纹的亚临界扩

展行为。

图1 疲劳裂纹扩展速率d a /d N随应力强度因子幅△K变化示意图

现有的疲劳裂纹扩展的定量模型都是建立在连续介质力学基础上。在线弹性范围内,可以用应力强度因子来描述应力—应变场的全部特征。对此,已形成了很多较成熟的理论表达式和测试方法,但应用最为广泛的还是Paris-Erdogan公式(d a /d N=C (△K ) m) 、Forman 方程d a /d N =[ C (△K ) m/ [ ( 1-R )K IC-△K],以及由郑修麟教授和Hirr教授提出的考虑了裂纹扩展门槛值的裂纹扩展速率方程d a /d N=B(△K -△K th) 。这3 个方程都可以很好的对裂纹在第二阶段的扩展特性进行描述,但也有一部分科学家进一步将应力比、温度、频率等因素对材料裂纹扩展的影响转化为一些表示具体含义的参数,使裂纹扩展表达式更能直观的表现出影响裂纹扩展的具体内在因素。比如,研究温度对材料裂纹扩展的影响时,F.Jeglie考虑到在温度变化条件下的裂纹扩展是一种具有体扩散机制的热激活过程,Paris-Erdogan公式中的C和n 应该是激活能的函数,从而提出了改进的裂纹扩展表达式( 1 ),并且认为表观激活能Q =Q0—C2ln△K可由每一个恒定

△K下的lg ( da / dN)-1/T关系曲线的斜率求出.

式中,C1和C2为常数,T为温度,R为气体普适常数,Q0为体扩散激活能。如果进一步考虑高温下材料的蠕变对裂纹扩展的影响,还可借助于G.A.Webster基于弹塑性断裂力学中J积分的概念提出的,控制蠕变裂纹扩展速率的断裂力学参数C*来分析。由于C*具有明确的物理意义,因此在许多蠕变裂纹扩展过程中得以应用,并且能获得良好的效果。

从上述的裂纹扩展模型看到,当载荷条件和工作环境发生变化时,材料的裂纹扩展速率就会发生变化。为了能较准确地估计出含裂纹构件的疲劳寿命,需要对构件材料裂纹扩展行为的变化规律有一定的了解。但作者总结了以往对铝、钢、钛等金属材料的裂纹扩展行为研究结果发现,相同的载荷和环境变化对不同材料的裂纹扩展行为的影响程度差别很大;即使是同一种材料( 比如钛合金) ,不同的成分或成分相同但组织不同也会表现出完全不同的裂纹扩展特性。

4 温度对金属材料疲劳裂纹扩展行为的影响

对大部分合金钢,铝,铌、镍基高温合金以及一些钛合金而言,Paris-Erdogan公式( da /dN=C(△K ) m )中的C和m值随温度升高向相反方向变化:m值减少,C值增加。分析结果表明,m和C值还有着进一步的关系,蕴涵着更加深刻的含意。20世纪70年代,Kitagawa广泛地研究了不同材料、不同试验条件下的Paris-Erdogan公式中的C和m之间的关系,提出了它们的关系表达式:

m=a+b I n C (1)

暗示了材料在不同状态下的ln(da/dN)-ln(△K)曲线将交于一点P ,并由Tanaka和Matsuoka[9]提出了整体裂纹扩展速率和这一点P的裂纹扩展速率、

应力强度因子幅值的关系表达式:

da /dN=C(△K ) m = (da /dN) p (△K / △K p) m( 2 )

将式( 1 ) 和( 2 ) 联立就可以得出用a和b表达的P点处的裂纹扩展速率和应力强度因子幅:

(da /dN) p= e x p ( -a / b ) ; △K p = e x p ( -1/b ) ( 3 ) 此后,人们广泛研究了脆性钢、塑性钢、铝合金和钛合金在温度变化下的裂纹扩展规律,发现在上述材料中都存在l n ( d a / d N ) - l n (△K ) 曲线交于一点P的现象[10]。

从不同角度出发,Jeglic在Paris-Erdogan关系的基础上利用激活能Q0和表观激活能( ApparentActivation Energy ) Q (Q =Q0—C2ln△K)提出了裂纹扩展速率经验性的Arrhenius型关系式:

(4.5)

他的工作显示了温度对裂纹扩展第二阶段速率的典型相关性,并指出Paris-Erdogan关系中,裂纹扩展速率拟合直线截距和m值都是和温度相关的参数,可分别用C l exp(-Qo/RT )和( (C2/RT)-2)表达。Lost A 则分别利用式( 1 )和式( 5 )计算了a、b值以及在交点处的裂纹扩展速率和应力强度因子幅值△K,发现虽然两式的计算方法不同,但结果极为相似。在不考虑式( 1 )中的a 和b 与试验温度的相关性前提下,Lost A利用( 1 )和( 5 )式结合Paris-Erdogan公式da /dN=C(△K ) m,得到了用C 1 ,C 2和Qo 表达的m , a和b, 计算式:

( 6 )

从而得出了用C 1 ,C 2和Qo表达的材料在不同温度下裂纹扩展速率曲线交点处的( d a / d N ) p和(△K p):

( 7 )

此外,Yokobori从材料的位错动力学角度出发提出的裂纹扩展速率表达式也表明,Paris-Erdogan公式中的m 值和温度T 是有明确相关性的。表达式计算出的 F C P( 裂纹扩展速率)结果也显示了不同温度下的裂纹扩展速率在P点处( d a/d N ) p 和(△K ) p 不受温度影响的规律。同时,Jizhouand Shaolun , Radhakrishnan, James和Liaw等在针对具体合金如高合金钢、高温钢、Ni基高温合金等合金的研究时总结出的经验公式也都表明:对一些材料而言,确实存在着一点P ,在这点P上,某一具体材料在不同温度条件下的裂纹扩展速率和应力强度因子幅度都是相同的。

5 频率对金属材料疲劳裂纹扩展行为的影响分析

大量研究表明,频率对合金裂纹扩展是有影响的,同样的频率变化对不同合金的裂纹扩展行为的影响是不同的。这种差别并不是非同类合金间的差别( 比如对β钛合金的影响可能和某类型的钢是一样的,或和某类型的铝是一样的) ,而是具体某个材料之间的差别[11],而这种影响的表现之一就是随频率变化,裂纹扩展曲线da /dN—△K 的变化规律不同。在周期频率对合金裂纹扩展的影响已经成为众多疲劳行为研究者关注的问题的情况下,Solomon等人首先提出了高温环境下,由于频率的影响,可从试件断口形貌特征将疲劳行为分为周期相关性、时间相关性和周期—时间相关性3 种类型,并做出了图2 所示的疲劳行机制图。Takezono S 则在20世纪80年代初将应变速率和粘—塑性应变速率以及相应的应力值作为基本参数,利用有限元法,对长裂纹扩展行为进行模拟,研究了载荷频率对疲劳裂纹扩展的影响。他认为室温、干燥条件下,由于氧化等化学反应因素的影响比高温下微弱得多,频率对Ti40合金裂纹扩展速率的影响主要源于

裂纹尖端载荷方向上的应变幅值或粘—塑性应变幅值( StrainRange or Visco - Plastic Strain Range ) ,且和粘—塑性应变幅的大小关系更加密切。模拟结果表明,频率越低,相同△K下应变幅度值和粘—塑性应变幅度值越大; △K随裂纹尖端应变幅度尤其是粘—塑性应变幅度值单调增加,△K 较低时,频率的变化对应变幅以及粘—塑性应变幅的影响很小,而△K较高时,影响变大。这种变化规律如图2 所示。

己有实验证实[12],上述理论可从另外一个角度用频率对裂纹扩展过程中裂纹尖端区域显微组织的影响来解释。和低频载荷的作用相比,由于高频可以导致塑性材料高密度滑移,因此裂尖塑性区小,有效屈服应力高(有效屈服应力和1 / r y1 / 2 ) ; 而低频率有助于滑移更广泛的分布,从而裂尖塑性区大,有效屈服应力低。外力作用时,低的有效屈服应力易于产生大的应变速率变化,从而裂纹扩展速率快。

图2不同频率对裂纹尖端塑性应变幅△εy和粘—塑

性应变幅△εvp的影响

6 应力比对金属材料疲劳裂纹扩展行为的影响分析

“断裂力学”认为,对于线弹性模型中的裂纹扩展,如果两个不同的裂纹具有相同的应力场,就会有相同的裂纹扩展速度。裂纹每周的扩展量d a /d N取决于应力强度因子的范围△K 。在材料本身的性质没有发生变化的条件下( 比如:试验所用材料组织相同,屈服强度、弹性模量、粘—塑性应变性质等相同) ,如果△K保持不变,裂纹就以恒定的速率扩展。但是,当改变周期载荷的应力比时发现,虽然应力比没有改变材料的性质,但是在大多数情况下,虽然△K值相同,材料的裂纹扩展速率却有着显著的不同。

解释应力比对合金裂纹扩展速率的影响,通常是从“平均应力”和“裂纹闭合效应”两个方面进行的。前者的实质是裂纹扩展不仅由△K决定,最大应力强度因子Kmax也是不可忽略的。而后者是Elber 对于“最小载荷没有限制,而最大载荷给定不同应力比也会导致材料裂纹扩展速率不同”这种现象提出了新参数△K eff ,引入了广为人知的“塑性导致闭合效应”的新观点。

自“裂纹闭合效应”这一概念提出以后,研究“裂纹闭合”成为了一个非常活跃的研究领域,许多实验证明了“裂纹提前闭合”的情况是存在的[13],并且应用这个观点,很多试验现象都得到较为完美的解释。但是Elber A的观点表明:“应力比对裂纹扩展的影响,不是材料的本质行为,而是来源于由于裂纹表面的提前闭合导致的应力强度因子幅度的变小。”所以“裂纹闭合”不是断裂力学参数。正因如此,“表面相似原理”不能使用,也就是在实验室中测得的裂纹扩展速率不能用于实际之中,这已经被很多实验证实。为了解决这样的问题,相继开发了一些以“裂纹闭合”为基础的模拟实际裂纹扩展的计算机软件,在这些软件中,假设的前提条件是“裂纹闭合”主要来源于塑性,它的变化幅度用Kugdale模型模拟预测。实际应用表明,软件对平面应力条件下的裂纹扩展是非常适用的,但当将这种模

型应用到平面应变条件下时,必须引入一个约束参数a ,而这a 却又是从实验室数据估计的。

在人们不断的研究过程中,还相继发现了如下问题:1 )所使用的测量技术和测量定位技术不同测得的张开应力Pop就不相同; 2 ) 张开应力Pop 会因合金热处理态的不同而发生变化; 3 ) James C指出,裂纹闭合的实验结果通常包括一些非正确机制的贡献,同时以柔度为基础的裂纹闭合的测量解释是不明确的、主观的; 4 ) 在最大载荷给定的情况下,在真空中经常观察不到应力比对裂纹扩展的影响,也就是说反向塑性区可能不存在,即使存在影响也是非常的小。

可见“裂纹闭合”应用时,只能凭借经验估计实际使用环境中构件的裂纹扩展行为,而不能进行准确的描述。针对这一缺陷,很多科学家试图从断裂力学着手,通过各种模型,建立所选参数和裂纹扩展的关系,从而解释不同应力比乃至不同频率、温度等对材料裂纹扩展的影响。美国海军实验室的Sadananda和Vasudevan于1993年根据多年来( 自1981年起)所做的以及收集到的包括各种型号钢、钛合金、铝合金、镁合金、复合材料、陶瓷等材料的疲劳裂纹扩展数据进行研究和分析后,提出了解释应力比、温度、频率等因素对材料裂纹扩展影响的“Unified Approach ”方法( 两参数法) ,得到了人们很多的关注,也有很多科学家按照他们提出的思路进一步进行了研究和论证。结果表明:" Unified Approach”方法确实可以在一定程度上成功地描述应力比对FCG( 疲劳裂纹扩展)的影响”。

Sadananda和Vasudevan认为,对线弹性条件下的裂纹扩展来讲," Unified Approach”中的参数就是△K和Kmax 。从原理上来讲,Kmax 或它的非线性等式对各种断裂过程来讲都是基本的。对单纯的断裂来讲,这个参数就是K IC ;对时间相关的裂纹扩展过程,包括应力腐蚀、持续载荷裂纹扩展或蠕变裂纹扩展,控制参数就是Kmax 。因此,相似的,周期载荷

下的裂纹扩展中也需要Kmax。然而,由于疲劳载荷是周期性的,周期性载荷会对材料的损伤产生另外一种不同的影响,所以需要用另外一个参数来描述疲劳载荷下裂尖区域受力状态变化的幅度。因此描述裂纹扩展行为,除了Kmax 外,还需要△K, Kmax和△K同时提供了裂纹扩展所需的动力。已经表明,这两个参数对裂纹扩展来讲,Kmax的值远大于△K的值,因此是最主要的参数,并且如果存在的裂纹闭合被修正了的话,裂纹的扩展速率确实更敏感于Kmax . " Unified Approach”方法中的Kmax、控制着材料直接断裂,使裂纹扩展进行下去,受显微组织的影响很大;△K控制着裂纹尖端所需的周期损伤程度,基体材料滑移不可逆程度越高,越不容易产生损伤。Kmax和单调塑性区相关联,而△K和周期塑性区有关。

关于“裂纹闭合”现象,Sadananda和Vasudevan认为“裂纹闭合”现象会因为断裂表面粗糙度、氧化层等因素而存在,但这种情况发生在裂纹尖端的后面,对裂纹尖端的损伤影响很小,并且正如Garrett and Knott 推出的那样,塑性导致的裂纹闭合在平面应变条件下只有小的影响,不能充分的解释所观察到的R对疲劳裂纹扩展速率( FCG Rate )的影响。因此,既然闭合的贡献在大多数情况下是小的,或者是可以忽略的,△K和Kmax对解释裂纹扩展的行为就足够了。这两个因素,除了是必不可少的以外,还是断裂力学参数。在保留了断裂力学特征的同时,从内在本质上描述了疲劳裂纹的扩展,因此是一个描述裂纹扩展强有力的工具,即使实际构件的形状和试验件的形状大不一样,实验室的数据也完全有效。对于上述的裂纹扩展模型和传统的裂纹闭合模型的关系,有关文献认为,Kmax、驱动模型和闭合模型其实是相容的,Kmax驱动模型是闭合模型的一个扩展集。Kmax驱动模型在近门槛区和Paris区从数学角度讲,和现有的闭合模型是一致的,如可用下面一个式子来表明他们之间的一致性:

虽然裂纹闭合和Kmax模型建立在非常不同的微机制模型上( Micro - Mechanical Model ) ,但是它们各自拥有的在实验室测得的数据和观察到的裂纹扩展速率上差别非常小。在和应力比相关的疲劳裂纹门槛值上,两种模型都解释了普通的实验现象:最小门槛值随应力比的提高而减小;在高应力比下门槛值是常数,并在临界R值下e 随着R降低线性增加。总的来说,应力比对裂纹扩展的门槛影响非常复杂。门槛和R的关系并不总是线性的。虽然Doker和Vasude vanand , Sadananda 定出了应力比影响的一些可能界限,McEvily 和Ritchie 指出,大部分Sadananda,Vasudevan提出的第III类型的偏离都可以用裂纹闭合解释。

另外Sadananda和Vasudevan的试验表明,用两参数法可以解释所有归为裂纹闭合的现象,如:1 ) 应力比影响; 2 ) 过载迟滞效应; 3 ) 卸载加速;

4 )短裂纹表面不规则行为;

5 )尖缺口处初始裂纹的非扩展行为;

6 )单纯断裂的叠加效应;

7 ) 环境和温度的影响。可见,裂纹闭合和两参数法对解释实验室中的试验数据都是有效的手段。但考虑到实际中的应用,和排除不同材料在裂纹闭合测试中存在不同的测试不可靠性,“两参数法”是较优的分析、试验数据的手段

7 结语

金属材料的疲劳裂纹扩展行为受温度、载荷频率和应力比的影响较大。材料的疲劳失效曾给人类带来了巨大的损失。为了能够对材料的疲劳裂纹扩展行为有更加准确的认识,从而对其疲劳失效有更加科学的预测,必需不断对已有的理论和研究方法进行验证和发展。只有这样,才能不断提高人类防止疲劳失效的能力。

参考文献

[1] Su r e s h S,R i t c h i e R O .Propagation of short Fatigue,Cracks[J].International metals review,1984 ,29 : 445 ~476

[2]Ritchie R O.Near—Threshold Fatigue-Crack in steels[J]. International metals review,1979,24(5):205-230;

[3]liu xiji ang(刘锡江) ,zhang Baochang ( 张宝昌) .TC11钛合金的组织及塑性与其断裂韧性及裂纹扩展速率的关系[J]. 《航空学报》,1 992 ,13 ( 7 ) : B221 —226;

[ 4] Liu shu qi ( 李树棋) ,xie xi shan( 谢锡善) . GH169合金显微组织对合金裂纹扩展速率的影响[J]。《材料工程》, 1 9 8 5 ( 5 ) : 2 6 一 2 7

[ 5] Lu Minxu ( 路民旭) ,Deng yanping ( 邓彦平) ,zheng xiulin ( 郑修麟) . GC-超高强度钢腐蚀疲劳裂纹扩展的温度效应[J] .《中国腐蚀与防护学报》,1993 ,3 ( 1 ) : 41 -47;

[ 6] Xue Hong jun ( 薛红军) ,Lu gouzh i ( 吕国志) . 随机因素对疲劳裂纹扩展分散性影响的探讨[J]. 《机械强度)》,2001 ,2 3 ( 1 ) : 35 -37;[ 7] Li zhen(李臻) . 一种带可靠性的疲劳裂纹扩展速率表达式. ,《西安石油学院学报》,2003 ,1 8 ( 6 ) : 6 7 一7 0

[ 8] ling chao (凌超) ,zheng xiulin ( 郑修麟). 根据拉伸性能预测铝合金板材的疲劳裂纹扩展速率IJ]. 《西北工业大学学报》,1990,8 ( 1 ) : 115 -120;[ 9] T a n a k a K , Ma t s u o u k a . S .I n t J F r a c t u r e [ J ] , 1 9 7 7 , 1 3 : 5 6 3

[ 10]T a n a k a K , Ma s u d a C , N i s h i j i m a S .S c r i p t a M e t a l l[ J ] , 1 9 8 1 ,1 5 : 2 5 9

[ 1 1 ]H a r d t S , Ma i e r H J , C h r i s t H J .I n t e r a t i o n a l J o u r n a l o f F a t i g u e [ J ] , 1 9 9 9 , 2 1 :7 7 9

[12] G h o n e m H , F o e t c h R .Ma t e r i a l s S c i e n c e a n d E n g i n e e r i n g [ J ] ,1 9 9 1 ,

A1 3 8 : 6 9

[13 ]M c E v i l y A J ,R i t c h i e R O . F a t i g u e F r a c t E n g M a t e r S t r u c t [ J ] , 1 9 9 8 , 2 1 : 8 4 7

疲劳裂纹扩展.

第五章疲劳裂纹扩展 §5.1 概述 前面介绍的内容为静载荷作用下的断裂准则。构件在交变应力作用下产生的破坏为疲劳破坏,疲劳破坏的应力远比静载应力低。 一、疲劳破坏的过程 1)裂纹成核阶段 交变应力→滑移→金属的挤出和挤入→形成微裂纹的核(一般出现于零件表面)。 2)微观裂纹扩展阶段 微裂纹沿滑移面扩展,这个面是与正应力轴成45°的剪应力作用面,是许 沿滑移带的裂纹,此阶段裂纹的扩展速率是缓慢的,一般为10-5mm每循环,裂纹尺寸<0.05mm。 3)宏观裂纹扩展阶段 裂纹扩展方向与拉应力垂直,为单一裂纹扩展,裂纹尺寸从0.05mm扩展至临a,扩展速率为10-3mm每循环。 界尺寸 c 4)断裂阶段 a时,产生失稳而很快断裂。 当裂纹扩展至临界尺寸 c 工程上一般规定:①0.1mm~0.2mm裂纹为宏观裂纹;②0.2mm~0.5mm,深 0.15mm表面裂纹为宏观裂纹。 N)宏观裂纹扩展阶段对应的循环因数——裂纹扩展寿命。( p N) 以前阶段对应的循环因数——裂纹形成寿命。( i 二、高周疲劳和低周疲劳 高周疲劳:当构件所受的应力较低,疲劳裂纹在弹性区内扩展,裂纹的疲劳寿命较长。(应力疲劳) 低周疲劳:当构件所受的局部应力已超过屈服极限,形成较大的塑性区,裂纹在塑性区中扩展,裂纹的疲劳寿命较小。(应变疲劳) 工程中一般规定N ≤105为低周疲劳。 f 三、构件的疲劳设计

1、总寿命法 测定S-N曲线(S为交变应力,N为应力循环周次)。 经典的疲劳设计方法是循环应力范围(S-N)曲线法或塑性总应变法来描述导致疲劳破坏的总寿命。 在这些方法中通过控制应力幅或应变幅来获得初始无裂纹的实验室试样产生疲劳破坏所需的应力循环数和应变循环数。 N=N i +N p (N i 萌生寿命,N p 扩展寿命) 2、损伤容限法(疲劳设计的断裂力学方法) 容许构件在使用期内出现裂纹,但必须具有足够的裂纹亚临界扩展寿命,以保证在使用期内裂纹不会失稳扩展而导致构件破坏。 疲劳寿命定义为从某一裂纹尺寸扩展至临界尺寸的裂纹循环数。

材料疲劳裂纹扩展设计研究综述

材料疲劳裂纹扩展研究综述 摘要:疲劳裂纹扩展行为是现代材料研究中重要的内容之一。论述了组织结构、环境温度、腐蚀条件以及载荷应力比、频率变化对材料疲劳裂纹扩展行为的影响。总结出疲劳裂纹扩展研究的常用方法和理论模型,并讨论了“塑性钝化模型”和“裂纹闭合效应”与实际观察结果存在的矛盾温度、载荷频率和应力比是影响材料疲劳裂纹扩展行为的主要因素。发展相关理论和方法,正确认识影响机理,科学预测疲劳裂纹扩展行为一直是人们追求的目标。指出了常用理论的不足,对新的研究方法进行了论述。 关键词: 温度; 载荷频率; 应力比; 理论; 方法; 疲劳裂纹扩展 1 前言 19世纪40年代随着断裂力学的兴起,人们对于材料疲劳寿命的研究重点逐渐由不考虑裂纹的传统疲劳转向了主要考察裂纹扩展的断裂疲劳。尽量准确地估算构件的剩余疲劳寿命是人们研究材料疲劳扩展行为的一个重要目的。然而,材料的疲劳裂纹扩展研究涉及了力学、材料、机械设计与加工工艺等诸多学科,材料、载荷条件、使用环境等诸多因素都对疲劳破坏有着显著的影响,这给研究工作带来了极大困难。正因为此,虽然对于疲劳的研究取得了大量有意义的研究成果,但仍有很多问题存在着争议,很多学者还在不断的研究和探讨,力求得到更加准确的解决疲劳裂纹扩展问题的方法和理论。 经过几十年的发展,人们已经认识到断裂力学是研究结构和构件疲劳裂纹扩展有力而现实的工具。现代断裂力学理论的成就和工程实际的迫切需要,促进了疲劳断裂研究的迅速发展。如Rice的疲劳裂纹扩展力学分析(1967年) ,Elber的裂纹闭合理论(1971年) ,Wheeler 等的超载迟滞模

型(1970年) ,Hudak等关于裂纹扩展速率标准的测试方法,Sadananda和Vasudevan ( 1998年)的两参数理论等都取得了一定成果。本文将对其研究中存在问题、常用方法和理论模型、以及温度、载荷频率和应力比对疲劳裂纹扩展影响的研究成果和新近发展起来的相关理论进行介绍。 2 疲劳裂纹扩展研究现存问题 如今,人们在分析材料裂纹扩展问题时最常用到的是“塑性钝化模型”和裂纹尖端因“反向塑性区”等原因导致的“裂纹闭合效应”理论。而它们是否正确,却一直在人们的验证和争论之中。 根据现有的研究结果,有学者提出,若按照“塑性钝化模型”理论,强度高的材料应具有较低的裂纹扩展速率,但实验结果却不能证实这一预测。另外,该“模型”认为的“裂纹尖端的钝化是在拉应力达到最大值时完成的”这一观点在理论上不妥,也与实测结果不符。观察结果表明,裂纹尖端钝化是一个渐进的过程,钝化半径与外载荷大小成正比。 而疲劳裂纹在扩展过程中的“裂纹闭合效应”在什么情况下存在,能否对材料的裂纹扩展速率产生重要影响,考虑“裂纹闭合”的实验室数据能否用于工程中等问题也一直在人们的争论之中。由于“裂纹闭合效应”理论推出的结论是:“对载荷比的依赖性不是材料的内在行为,而是源于裂纹表面提前闭合后应力强度因子幅(△K) 的变化”,所以早在1984年S.Suresh等人就指出[1],“裂纹闭合”不是一个力学参数,它受构件形状、载荷、环境和裂纹长度等因素的影响。因此,除非在实际使用过程中测量构件的裂纹闭合情况,否则在实验室里做出来的试验结果不能用来预测构件中的裂纹扩展速率。1970年,Ritchie研究钢中裂纹扩展的近门槛值时发现:在真空环境下,应力比R对门槛值几乎没有影响,首度质疑了裂纹闭合的存在性和所起的作用。在前人研究的基础上,美国海军实验室的

复合型疲劳裂纹研究的现状与展望

鞍钢技术 复合型疲劳裂纹研究的现状与展望 田常海 (鞍钢技术中心) 摘要 介绍了国内外有关学者对复合型疲劳裂纹扩展的研究情况及试验结果,并对他们的理论加以详细论述,同时提出了今后这一领域的研究方向。 关键词 疲劳裂纹 扩展 Now aday Sit uation and Perspective of the Invest igation of Composite Fatig ue Crack Tian Changhai (AISC Technolog y Center) Abstract T his a rticle intr oduces t he situation of the study on co mposite fatigue cr ack spread-ing by the fo reign ex per ts and the ex per iment results,gives t he detail discussion o n their theo ry, and point s o ut the direction of t he study in t his f ield as w ell. Key Words fatig ue crack spr ead 1 引 言 疲劳裂纹的扩展取决于部件所用的材料性质、几何形状及受载情况等,过去对于疲劳裂纹扩展的描述在工程上一般都基于Paris 公式,它对描述纯Ⅰ型疲劳裂纹扩展是成功的。但是,实际工程中的大多数情况并非是纯Ⅰ型的,而往往是复合型受载,在复合型加载条件下,含有Ⅱ型裂纹的复合型裂纹往往改变原裂纹的扩展方向,含有Ⅲ型裂纹的复合 田常海 工学博士 鞍钢技术中心金检室 邮编 114001型裂纹往往发生裂纹面的扭转,对这一情况, Paris公式便无能为力。于是一些学者进行了Ⅰ-Ⅱ、Ⅰ-Ⅲ复合型裂纹扩展试验,提出了描述复合型裂纹扩展的理论。 2 Ⅰ-Ⅱ复合型疲劳裂纹的扩展 2.1 Ⅰ-Ⅱ复合型疲劳裂纹门槛值试验 Qao H ua〔1〕等人利用单边缺口试样(受非对称的四点弯曲循环加载和含倾斜裂纹板试样承受循环双轴拉伸)进行了大量的铁合金和有色合金疲劳裂纹门槛值试验,获得了Ⅰ-Ⅱ复合型裂纹门槛值分布图,如图1所示。图1中的实线表示下限门槛值,低于此值

疲劳裂纹扩展

疲劳裂纹扩展

不锈钢304L的疲劳裂纹扩展模拟 Feifei Fan, Sergiy Kalnaus, Yanyao Jiang (美国内华达大学机械工程学院) 摘要:一个基于最近发展的疲劳方法的实验用来预测不锈钢304L的裂纹扩展。这种疲劳方法包括两个步骤:(1)材料的弹塑性有限元分析;(2)多轴疲劳标准在基于有限元分析的可输出的拉伸实验的裂纹萌生与扩展预测中的应用。这种有限元分析具有这样的特点:能够实现在先进循环塑性理论下扑捉材料在常幅加载条件下重要的循环塑性行为。这种疲劳方法是基于这样的理论:当累计疲劳损伤达到一个特定值时材料发生局部失效,而且这种理论同样适用于裂纹的萌生与扩展。所以,一组材料特性参数同时用来做裂纹的萌生与扩展预测,而所有的材料特性参数都是由平滑试样试验产生。这种疲劳方法适用于I型紧凑试样在不同应力比和两步高低加载顺序下等幅加载的裂纹扩展。结果显示,这种疲劳方法能够合理的模拟在试验上观察到的裂纹扩展行为,包括刻痕影响、应力比的影响和加载顺序的影响。另外,这种还方法能够模拟从刻痕到早期的裂纹扩展和疲劳全寿命,而且预测的结果和试验观察的结果吻合得很好。 关键词:累计损伤;疲劳裂纹扩展;疲劳标准 1 .简介 工程承压设备经常承受到循环加载,一般说来,疲劳过程有三个阶段组成:裂纹萌生和早期裂纹扩展、稳定裂纹扩展和最后的疲劳断裂。裂纹扩展速率dN da/通常被表示为重对数图尺在应力强度因素范围上的一个功能。在常幅加载下,不同应力比时稳定的裂纹扩展结果通常服从Paris公式和其修正公式。常幅疲劳加载下不同材料的行为不同。有些材料表现为应力比的影响:在相同应力比时,裂纹扩展速率曲线一致,但是,应力比增大时,裂纹扩展速率也增大。而其他金属材料没有表现出任何应力比的影响,而且在恒幅加载其裂纹扩展速率曲线在重对数图纸上重合。 在变幅加载条件下疲劳裂纹扩展行为作为另一个课题已经研究了若干年了。过载和变幅加载的应用对疲劳裂纹扩展研究产生了重大的影响。对于大多数金属材料而言,上述加载方法的应用导致疲劳裂纹扩展速率减慢。基于线弹性断裂力学的理论,这种过渡行为经常使用应力强度因子和通过引入在稳定裂纹扩展状态下的Paris公式的修

用现有疲劳试验数据确定疲劳裂纹扩展率

用现有疲劳试验数据确定疲劳裂纹扩展率 收录:《中国造船》 - 2003年,03期 作者:周驰 关键词:船舶 疲劳寿命的预报在船舶与海洋工程领域中相当重要,但其关键问题是要找到一种较科学的疲劳寿命预报方法.最近,本文第二作者提出了一种海洋结构物疲劳寿 命预报的统一方法.该方法是基于疲劳裂纹扩展理论而发展起来的,在其九个参 数模型的假设之下,能够较好地解释一些其它方法所不能解释的现象.采用该方 法的主要障碍在于需要确定疲劳裂纹扩展率.作者通过对不同的疲劳裂纹扩展率的比较研究,并推广McFvily模型后,提出了一个具有较宽适用范围的九个参数 疲劳裂纹扩展率模型(从门槛域一直到不稳定断裂域).本文的主要目的是解决如何根据一些现有的疲劳试验数据来确定这九个模型参数的问题.文中给出了通过实验数据确定裂纹扩展率模型中各个参数的方法,并进行了模型参数的灵敏度分析.通过对文献中一些试验数据的收集,给出了几种常用金属材料的裂纹扩展率 模型参数. Determination of Fatigue Crack Growth Rate Using Existing Data 正在加载... 确定疲劳裂纹扩展理论门槛值的方法 Methods of Determination of Fatigue Crack Growth Theoretical Threshold 疲劳裂纹扩展 疲劳裂纹扩展理论门槛值ΔKthT的方法,特别对利用疲劳裂纹扩展速率表达式、根据da/dN~ΔK试验数据外推确定ΔKthT的三种方法作了较为详细的介绍,并用四套试验数据进行评估,结果显示,如果所采用的表达式能够正确反映近

金属材料疲劳研究综述

金属材料疲劳研究综述 摘要:人会疲劳,金属也会疲劳吗?早在100多年前,人们就发现了金属也是会疲劳的,并且发现了金属疲劳带给人们各个方面的危害,所以研究金属材料的疲劳是非常有必要的。本文主要讲述了国内外关于金属疲劳的研究进展,概述了金属产生疲劳的原因及影响因素,以及金属材料疲劳的试验方法。 关键词:金属材料疲劳裂纹疲劳寿命 一.引言 金属疲劳的概念,最早是由J.V.Poncelet 于1830 年在巴黎大学讲演时采用的。当时,“疲劳”一词被用来描述在周期拉压加载下材料强度的衰退。引述美国试验与材料协会( ASTM) 在“疲劳试验及数据统计分析之有关术语的标准定义”( EZ06-72) 中所作的定义: 在某点或某些点承受挠动应力,且在足够多的循环挠动作用之后形成裂纹或完全断裂时,材料中所发生的局部永久结构变化的发展过程,称为“疲劳”。金属疲劳是指材料、零构件在循环应力或循环应变作用下,在一处或几处逐渐产生局部永久性累积损伤,经一定循环次数后产生裂纹或突然发生完全断裂的过程。在材料结构受到多次重复变化的载荷作用后,应力值虽然始终没有超过材料的强度极限,甚至比弹性极限还低的情况下就可能发生破坏,这种在交变载荷重复作用下材料和结构的破坏现象,就叫做金属的疲劳破坏。据统计金属材料失效80%是由于疲劳引起的,且表现为突然断裂,无论材料为韧性材料还是塑性材料都表现为突然断裂,危害极大,所以研究金属的疲劳是

非常有必要的。 由于金属材料的疲劳一般难以发现,因此常常造成突然的事故。早在100多年以前,人们就发现了金属疲劳给各个方面带来的损害。由于但是条件的限制,还不能查明疲劳破坏的原因。在第二次世界大战期间,美国的5000艘货船共发生1000多次破坏事故,有238艘完全报废,其中大部分要归咎于金属的疲劳。2002 年 5 月,华航一架波音747-200 型客机在由台湾中正机场飞往香港机场途中空中解体,19 名机组人员及206名乘客全部遇难。调查发现,飞机后部的金属疲劳裂纹造成机体在空中解体,是导致此次空难的根本原因。直到出现了电子显微镜之后,人类在揭开金属疲劳秘密的道路上不断取得了新的成果,才开发出一些发现和消除金属疲劳的手段。 二.金属疲劳的有关进展 1839年巴黎大学教授在讲课中首先使用了“金属疲劳”的概念。1850一1860年德国工程师提出了应力-寿命图和疲劳极限的概念。1870一1890年间,Gerber研究了平均应力对疲劳寿命的影响。Goodman提出了考虑平均应力影响的简单理论。1920年Griffith发表了关于脆性材料断裂的理论和试验结果。发现玻璃的强度取决于所包含的微裂纹长度,Griffith理论的出现标志着断裂力学的开端。1945年Miner用公式表达出线性积累损伤理论。五十年代,力学理论上对提出应力强度因子K的概念。六十年代,Manson—Coffin公式概括了塑性应变幅值和疲劳寿命之间的关系。Paris在1963年提出疲劳裂纹扩展速率da/dN和应力强度因子幅值?k之间的关系。1974年,美

金属材料疲劳裂纹扩展速率实验

一. 《金属材料疲劳裂纹扩展速率实验》 实验指导书 飞机结构强度实验室 2007年3月

金属材料疲劳裂纹扩展速率实验 1 试验目的 1.了解疲劳裂纹扩展试验的基本原理 2.掌握金属材料疲劳裂纹扩展速率试验测定方法 3.掌握疲劳裂纹扩展试验测定装置的使用方法 4.掌握疲劳裂纹扩展数据处理方法 2 基本原理 结构在交变载荷的作用下,其使用寿命分为裂纹形成寿命和裂纹扩展寿命两部分。裂纹形成寿命为由微观缺陷发展到宏观可检裂纹所对应的寿命,裂纹扩展寿命则是由宏观可检裂纹扩展到临界裂纹而发生破坏这段区间的寿命,裂纹扩展由断裂力学方法确定。 2.1疲劳裂纹扩展速率 裂纹扩展速率dN da ,即交变载荷每循环一次所对应的裂纹扩展量,在疲劳裂纹扩展过程中,dN da 不断变化,每一瞬时的dN da 即为裂纹长度a 随交变载荷循环数N 变化的N a -曲线在该点的斜率。裂纹扩展速率dN da 受裂纹前缘的交变应力场的控制,主要是裂纹尖端的交变应力强度因子的范围K ?和交变载荷的应力比R 。线弹性断裂力学认为,在应力比不变的交变载荷的作用下,dN da 随K ?的变化关系在双对数坐标系上呈图1所示的形状。 Ⅰ Ⅱ Ⅲ log (?K ) ?K c ?K th log(d a /d N ) 图1 d d a N K -?曲线形状 K dN da ?-曲线分成三个阶段:低速扩展段I 、稳定扩展段II 和快速扩展段III ,阶段I 存在的垂直渐进线th K K ?=?称为裂纹扩展门槛值,当th K K ?

金属材料疲劳研究综述资料讲解

金属材料疲劳研究综 述

金属材料疲劳研究综述 摘要:人会疲劳,金属也会疲劳吗?早在100多年前,人们就发现了金属也是会疲劳的,并且发现了金属疲劳带给人们各个方面的危害,所以研究金属材料的疲劳是非常有必要的。本文主要讲述了国内外关于金属疲劳的研究进展,概述了金属产生疲劳的原因及影响因素,以及金属材料疲劳的试验方法。 关键词:金属材料疲劳裂纹疲劳寿命 一.引言 金属疲劳的概念,最早是由 J. V. Poncelet 于 1830 年在巴黎大学讲演时采用的。当时,“疲劳”一词被用来描述在周期拉压加载下材料强度的衰退。引述美国试验与材料协会( ASTM) 在“疲劳试验及数据统计分析之有关术语的标准定义”( EZ06-72) 中所作的定义: 在某点或某些点承受挠动应力,且在足够多的循环挠动作用之后形成裂纹或完全断裂时,材料中所发生的局部永久结构变化的发展过程,称为“疲劳”。金属疲劳是指材料、零构件在循环应力或循环应变作用下,在一处或几处逐渐产生局部永久性累积损伤,经一定循环次数后产生裂纹或突然发生完全断裂的过程。在材料结构受到多次重复变化的载荷作用后,应力值虽然始终没有超过材料的强度极限,甚至比弹性极限还低的情况下就可能发生破坏,这种在交变载荷重复作用下材料和结构的破坏现象,就叫做金属的疲劳破坏。据统计金属材料失效80%是由于疲劳引起的,且表现为突然断裂,无论材

料为韧性材料还是塑性材料都表现为突然断裂,危害极大,所以研究金属的疲劳是非常有必要的。 由于金属材料的疲劳一般难以发现,因此常常造成突然的事故。早在100多年以前,人们就发现了金属疲劳给各个方面带来的损害。由于但是条件的限制,还不能查明疲劳破坏的原因。在第二次世界大战期间,美国的5000艘货船共发生1000多次破坏事故,有238艘完全报废,其中大部分要归咎于金属的疲劳。2002 年 5 月,华航一架波音747-200 型客机在由台湾中正机场飞往香港机场途中空中解体,19 名机组人员及 206名乘客全部遇难。调查发现,飞机后部的金属疲劳裂纹造成机体在空中解体,是导致此次空难的根本原因。直到出现了电子显微镜之后,人类在揭开金属疲劳秘密的道路上不断取得了新的成果,才开发出一些发现和消除金属疲劳的手段。 二.金属疲劳的有关进展 1839年巴黎大学教授在讲课中首先使用了“金属疲劳”的概念。1850一1860年德国工程师提出了应力-寿命图和疲劳极限的概念。1870一1890年间,Gerber研究了平均应力对疲劳寿命的影响。Goodman提出了考虑平均应力影响的简单理论。1920年Griffith发表了关于脆性材料断裂的理论和试验结果。发现玻璃的强度取决于所包含的微裂纹长度,Griffith理论的出现标志着断裂力学的开端。1945年Miner用公式表达出线性积累损伤理论。五十年代,力学理论上对提出应力强度因子K的概念。六十年代,Manson—Coffin公

钢轨踏面疲劳裂纹扩展行为分析_王建西

第26卷第2期 华 东 交 通 大 学 学 报V o.l 26 N o .2 2009年4月Journa l o f East Ch i na Jiao tong U ni v ers it y A pr .,2009收稿日期:2009-01-13 基金项目:教育部博士点基金新教师项目资助课题(200802471003)作者简介:王建西(1979-),男,河南许昌人,博士研究生。 文章编号:1005-0523(2009)02-0001-07 钢轨踏面疲劳裂纹扩展行为分析 王建西,许玉德,曹 亮 (同济大学道路与交通工程教育部重点实验室,上海201804) 摘要:根据试验观察的裂纹尖端特征,建立了钝形疲劳裂纹模型,以裂纹尖端位移为断裂参量,分析了U 75V 钢弹塑性情况下踏面疲劳裂纹扩展特性。结果显示:踏面疲劳裂纹尖端有较大的塑性区,应采用弹塑性断裂力学理论分析踏面疲劳裂纹的扩展行为;裂纹尖端滑动位移受轮轨力、轮轨摩擦系数和裂纹面摩擦系数影响,其中裂纹面摩擦系数对裂纹尖端滑动位移影响最大。裂纹尖端张开位移主要受轮轨力和轮轨摩擦系数影响。利用塑性复合系数分析踏面疲劳裂纹扩展特性,认为踏面疲劳裂纹主要以?/ò复合型扩展方式扩展。 关 键 词:钢轨;弹塑性;钝形裂纹;裂纹尖端位移;复合裂纹 中图分类号:U 213.42 文献标识码:A 随着列车提速和重载列车的开行,钢轨轨面伤损成增加趋势 [1、2]。在钢轨轨面伤损中,钢轨踏面疲劳裂纹是其中一种重要的伤损形式。钢轨踏面疲劳裂纹的产生不仅影响行车品质,甚至可能导致断轨,危及行车安全 [3]。为了分析疲劳裂纹的扩展行为,很多学者进行了深入的研究。R ingsber g JW 等利用有限元[4、5],M akoto AKAMA 等利用边界元[6]采用线弹性断裂力学对疲劳裂纹的扩展行为进行了分析;李晓宇 等分析了轮轨接触位置对应力强度因子的影响[7]。这些研究中大都是分析了弹性状态下疲劳裂纹扩展 特性,但试验研究发现裂纹尖端存在明显的塑性变形,裂纹尖端钝化 [8、9]。本文建立了考虑材料弹塑性特点的钝形踏面疲劳裂纹模型,对踏面疲劳裂纹扩展特性进行了分析。这将为建立疲劳裂纹扩展速率模型 提供依据,为制定预防疲劳裂纹的措施提供理论指导。1 踏面疲劳裂纹模型 踏面裂纹是轮轨反复作用的结果,而随着轮轨反复接触,轮轨产生磨耗,轮轨接触表面不断发生变化,轨顶圆弧会被磨成平面形状,这样可以把轮轨接触看作是一圆柱体作用在平面上,因此,假设轮轨接触是一种平稳接触,建立二维滚动接触模型来分析疲劳裂纹扩展特性。文献[10]认为轮轨在轨顶接触时赫兹接触应力与采用弹塑性有限元计算的接触应力差异不大,因此,以移动荷载模拟车轮的滚动;轮轨接触应力为二维赫兹分布[11]: p (x )=P 01-x -e b 2(1)

综述-铝合金疲劳及断口分析

文献综述 (2011级) 设计题目铝合金疲劳及断口分析 学生姓名胡伟 学号201111514 专业班级金属材料工程2011级03班指导教师黄俊老师 院系名称材料科学与工程学院 2015年4月12日

铝合金疲劳及断口分析 1 绪论 1.1 引言 7系铝合金包括Al-Zn-Mg 系和Al-Zn-Mg-Cu 系合金,此类合金具有密度低、比强度高、良好的加工性能及优良的焊接性能等一系列优点。随着应用在铝合金上的热处理工艺及微合金化技术的不断改进,其力学性能被大幅度强化,综合性能也得到了全面提升。在航空航天、建筑、车辆、、桥梁、工兵装备和大型压力容器等方面都得到了广泛的应用。 现代工业的飞速发展,对7 系铝合金的强度、韧性以及抗应力腐蚀性能等提出了更高的要求。但是,存在另外一个现象,在各行各业的领域中,铝合金设备偶尔会出现难以察觉的断裂,在断裂之前很难甚至无法察觉到一点塑性变形。这种断裂形式,对人身以及财产安全造成了不可挽回的损失。经过大量实验表明,这些断裂是由于材料的疲劳引起,材料在交变载荷的长期作用下,表面或者内部,尤其是内部会产生微观裂纹。本文主要研究铝合金疲劳引起的裂纹以及疲劳断口分析,此类研究对于日后的生产安全,有重大意义。 1.2 7系铝合金的发展历史 在20世纪20年代,德国的科学家研制出Al-Zn-Mg系合金,由于该合金抗应力腐蚀性能太差,并未得到产业内应用。在20世纪30年代初一直到二战结束期间,各个国家在研究中发现,Cu元素可以提高铝合金的抗应力腐蚀性能。在此,开发了大量Al-Zn-Mg 系合金,因此忽视了对Al-Zn-Mg 系合金的研究。德、美、苏、法等国在Al-Zn-Mg-Cu 系合金基础上成功地开发了7075 、B93 和D。T。 D683 等合金。目前正广泛应用在航空航天事业上,但是强度、韧性、抗应力腐蚀性能三者之间未能实现最佳组合状态。20世纪50年代,德国

疲劳裂纹扩展

不锈钢304L的疲劳裂纹扩展模拟 Feifei Fan, Sergiy Kalnaus, Yanyao Jiang (美达大学机械工程学院) 摘要:一个基于最近发展的疲劳方法的实验用来预测不锈钢304L的裂纹扩展。这种疲劳方法包括两个步骤:(1)材料的弹塑性有限元分析;(2)多轴疲劳标准在基于有限元分析的可输出的拉伸实验的裂纹萌生与扩展预测中的应用。这种有限元分析具有这样的特点:能够实现在先进循环塑性理论下扑捉材料在常幅加载条件下重要的循环塑性行为。这种疲劳方法是基于这样的理论:当累计疲劳损伤达到一个特定值时材料发生局部失效,而且这种理论同样适用于裂纹的萌生与扩展。所以,一组材料特性参数同时用来做裂纹的萌生与扩展预测,而所有的材料特性参数都是由平滑试样试验产生。这种疲劳方法适用于I型紧凑试样在不同应力比和两步高低加载顺序下等幅加载的裂纹扩展。结果显示,这种疲劳方法能够合理的模拟在试验上观察到的裂纹扩展行为,包括刻痕影响、应力比的影响和加载顺序的影响。另外,这种还方法能够模拟从刻痕到早期的裂纹扩展和疲劳全寿命,而且预测的结果和试验观察的结果吻合得很好。 关键词:累计损伤;疲劳裂纹扩展;疲劳标准 1 .简介 工程承压设备经常承受到循环加载,一般说来,疲劳过程有三个阶段组成:裂纹萌生和早期裂纹扩展、稳定裂纹扩展和最后的疲劳断裂。裂纹扩展速率dN da/通常被表示为重对数图尺在应力强度因素围上的一个功能。在常幅加载下,不同应力比时稳定的裂纹扩展结果通常服从Paris公式和其修正公式。常幅疲劳加载下不同材料的行为不同。有些材料表现为应力比的影响:在相同应力比时,裂纹扩展速率曲线一致,但是,应力比增大时,裂纹扩展速率也增大。而其他金属材料没有表现出任何应力比的影响,而且在恒幅加载其裂纹扩展速率曲线在重对数图纸上重合。 在变幅加载条件下疲劳裂纹扩展行为作为另一个课题已经研究了若干年了。过载和变幅加载的应用对疲劳裂纹扩展研究产生了重大的影响。对于大多数金属材料而言,上述加载方法的应用导致疲劳裂纹扩展速率减慢。基于线弹性断裂力学的理论,这种过渡行为经常使用应力强度因子和通过引入在稳定裂纹扩展状态下的

疲劳裂纹扩展实验准备

疲劳裂纹扩展和热解碳复合材料的断裂 热解碳在人工心脏瓣膜上的成功应用已经有了很长一段时间的历史了。稳定疲劳裂纹扩展的证实使人们对于了解什么情况下会发生稳定疲劳裂纹扩展现象产生了浓厚的兴趣。在人工心瓣的许多应用中,制作材料都是采用的以石墨为核心,以热解碳为两侧表面的三层复合形式。这篇文章描述的实验就是针对研究石墨、整体热解碳和这种三层结构的石墨与热解炭的复合体进行的。 实验的主要目的是遵循ASTM标准E647的实验步骤来确定疲劳裂纹扩展率。此外,在疲劳测试完成之后,也可以通过相同的试样来确定平面应变断裂韧性K IC。其测试的步骤遵循ASTM标准E399. 试验样品 实验样品是一种对ASTM标准E399的圆盘紧凑拉伸样品DC(T)进行了改进的试样。这种样品与标准样品的稍微不同在于它没有被削平的部分也就是说没有尺寸c,形状上是一个完整的圆形。其公称直径为25.4mm,并且带着一个机械加工出来的4.8mm的裂纹,这个机械裂纹宽度为0.2mm,其尖端圆角半径为0.1mm。(样品的边缘是否可以有涂层,对结果会有什么影响?) 其中有一组复合试样,(这里所说的一组是复合样品的哪一组,还是所有的复合样品都是这种形式?)其试样中间有一个直径为3.2mm的孔,所以其机

械裂纹的长度名义上就变为8.0mm。这个机械加工缺口越过中间孔向试样背面延伸了大约0.5mm。(这里有孔样品与没有孔的样品在实验过程和结果上有区别没有?) 因为使用的试验样品和ASTM标准的E399DC(T)样品稍有不同,所以这里把K1值作为裂纹尺寸的函数,并采用有限元分析去确定K1值。(应力强度因子K1值与△K如何确定,可以直接读出还是需要自己计算?)结果显示,对于E399样品的描述同样适用于现在这种试验样品,并且误差在2%范围之内。这样的话,所有的计算过程都可以依据E399DC(T)样品的步骤来进行。 许多的实验圆片都是用中间是石墨、外围涂层是热解碳的三层复合材料制成。因为两种材料的弹性模量不同,所以在每一层上,给定的裂纹长度所对应的应力强度因子也不尽相同。在这篇文章中,假设所有的圆盘都具有一致的弹性模量,根据E399计算出了所有的应力强度因子的数据。 实验材料 石墨的样品是由半导体石墨股份有限公司利用石墨块切削加工制成的。根据钨的含量分为两个等级,AXF-5Q(含钨0%)和AXF-5Q10W(含钨10%)。(这里石墨样品的厚度为多少?) 单片热解碳样品是这样制成的:先在石墨圆盘两侧表面上涂覆0.69mm厚

变幅载荷下疲劳裂纹扩展规律试验研究综述

第14卷第5期船舶力学Vol.14No.5 2010年5月Journal of Ship Mechanics May2010文章编号:1007-7294(2010)05-0556-10 变幅载荷下疲劳裂纹扩展规律试验研究综述 钱怡1,2,崔维成2 (1江南大学机械工程学院,江苏无锡,214122;2中国船舶科学研究中心,江苏无锡,214082) 摘要:文章对最近10年来有关变幅载荷下材料疲劳裂纹扩展和失效规律的实验研究方面的最新成果进行了归纳总结。综述内容包括:过载、低载在疲劳裂纹扩展中的作用;过载-低载组合作用时裂纹扩展的情况;基线载荷的影响;块载大小、长度对疲劳裂纹扩展的影响;试件影响;低于应力强度因子门槛值的小应力在变载疲劳裂纹扩展中的表现等六个方面。通过这一综述,进一步验证了部分结论的正确性,同时也发现了部分结论的不完善性。 文中也提出了变幅载荷下疲劳裂纹扩展模型的初步设想。 关键词:疲劳裂纹扩展;疲劳寿命;变幅载荷;载荷次序效应;疲劳实验 中图分类号:0346.2文献标识码:A An overview on experimental investigation on variable amplitude fatigue crack growth rule QIAN Yi1,2,CUI Wei-cheng2 (1School of Mechanical Engineering,Jiangnan University,Wuxi214122,China 2China Ship Scientific Research Center,Wuxi214082,China) Abstract:An overview of the present state of the art is carried out for the experimental study of the vari-able amplitude fatigue problem in the last10years.The summary is divided into six categories:overload(un-derload)effects on fatigue crack growth;the combination effects of overloads and underloads;the role of baseline load;the effects of magnitude and length of block loads;the influence pattern specimen and the be-havior of small stress,etc.Through this overview,some former conclusions were further confirmed while some previous conclusions about fatigue crack growth rule were found incomplete.The general idea for de-veloping a new model of fatigue crack growth is proposed. K ey words:fatigue crack growth;fatigue life;variable amplitude loading;load interaction effects; fatigue tests 1引言 绝大多数工程结构在变幅载荷作用下工作,尤其是船舶、海洋结构物以及飞机部件等,疲劳损伤是它们失效的主要原因。迄今为止,关于结构在变幅载荷下的疲劳寿命预测研究已有80多年的历史,取得了大量的研究成果,其中最早期,也是最著名的如P覽lmgren-Miner的线性累积损伤理论,它以形式简单,便于使用而备受工程领域的欢迎,但该模型的不足之处也显而易见,即载荷的次序效应被忽略。随后的研究发现,除了材料自身的特性外,疲劳裂纹的扩展规律取决于所作用的载荷的大小和方式,载荷 收稿日期:2010-01-22 作者简介:钱怡(1962-),女,江南大学机械工程学院副教授; 崔维成(1963-),男,博士,中国船舶科学研究中心研究员,博士生导师。

使用疲劳裂纹扩展数据的疲劳裂纹扩展的可靠性分析方法

巷第?期机械科学与技术年‘月MECHANlCALSCIENCEAN【)TE(:HNoI,oGYVuI22N{).3Mciv2{Ⅲ3 张洪才文章编号:1003—8728(2003)03—0384—02 使用疲劳裂纹扩展数据的疲劳裂纹扩展 的可靠性分析方法 张洪才,陈举华,黄克正 (山东大学机械工程学院.济南25006” 摘要:利用现有的疲劳裂纹扩展数据或疲劳裂纹扩展试验的木完全数据,对疲劳裂纹随机扩展的可靠性进行了研究。基于疲劳裂纹扩展的确定性模型.导出了疲劳裂纹扩展的随机公式。利用现有的疲劳裂纹扩展数据或疲劳裂纹扩展试验的不完全数据.对疲劳裂纹扩展随机公式中的随机变量的分布进行了估计,得到了其分布的数字特征,用Moncecarl【J方法得到丁疲劳裂纹扩展寿命的失效概率的点估计。实例分析表明了本t方法的实用性和可行性。 关键词:疲劳裂纹扩展;随机扩展}疲劳寿命;失效概率 中围分类号:0346.1;()213.2文献标识码;A AMethodforEstjmati“gFatiguecrackGrow仙ReJiHb肺yu5ingFatiguecrackGrow曲Da伯 ZHAN(jI{o”g—cai.CHENJu—hua.HUANGKe—zhe“g (&h00lofMechanicalE“gineeri“g.Shando“gIJn;哪sIty?Jjnan25006n Abstr¨t{Inthispaper,thcrtl蛆bm‘y“fatlguecrackstochas“。gfowthisstudiedbymaki“guseufth㈣lstl“gda taortheexperimentalincompletedataoffatigu㈨ackg。。wth.Basedonthedet㈣lnedcrackgrowIhⅡIode{.{lstochasticequatlonisdeduced.Thedist“butionsofrandomvanablesinthestochasticequationareesnmat叫and nuTnbercharacteYsareobtam甜bymab“gu靴oftheeXtstl“gd8taortheexperimentali㈣pletedataoffatlgu}crackgrowt}1MonteCarlomethndIsusedtoe8tlmatethefailureprobab【li‘yoffat;gIJecrackgrowt}1life.Theex hmpleshowsthatt11。proposedprucedⅢkpracti阻landefkc¨ve. Keywords:Fatlguecrack91。wth}Randomprop89alio“;Fatlgue11k;Fa“叭pr。ba“【1ty 在工程结构,特别是航空结构等高性能结构的设计申.疲劳裂纹扩展是最受关注的问题之一。疲劳裂纹扩展受材料特眭、构件几何特性、载荷历程及环境条件等诸多因素控制.通常这些因素均具有随机性。因此,疲劳裂纹扩展行为常表现出较强的不确定性。即使是在控制良好的实验室条件下.承受完全相同的疲劳载荷,其裂纹扩展曲线的分散性 也很大。传统的确定性方法无法揭示疲劳裂纹扩展的统计规律.用隧机方法研究疲劳裂纹的扩展就显得非常重要。因此.考虑各种不确定嗣素影响的随机疲劳裂纹扩展的分析方法和疲劳可靠性评估受到人们的广泛重视.提出了许多随机裂纹扩展模型。文献[1]对近年来国外学者提出的主要疲劳裂纹扩展的臆机模型作了很好的论述。国内学者也提出了一些疲劳裂纹扩展的随机分析方法”州.但大多数随机模型均在一定假设下得出,模型参数不易得到,一般需专门试验确定.遗在一定程度上阻碍了随机模型的实际应用。众所阍知.疲劳试验是一项非常辛苦的工作.试件多、试验周期长、试验费用高。但通过十多年的研究,已经积累了许多材料的疲劳裂纹扩展数据,这些扩展数据包含裂纹扩展 收稿日期=2(J眦()609 作者筒介:张洪一(1963).男(汉),山东.酬教授.博士研究生E—m日11:hD“gcalzh@sdu.edu.cn的可靠性信息.利用这些扩展数据可对疲劳裂纹扩展进行可靠性分析。奉文利用现有的疲劳裂纹扩展数据或疲诗裂纹扩展试验的不完全数据.推导出裂纹扩展寿命的分布规律.对裂纹扩展的可靠性进行分析。可缩短产品的开发周期.具有实际的工程应用意义。 1失效撅事的可靠性模型 在疲劳裂纹扩展分析中.Pam方程是应用最普遍的裂纹扩展模型,其具体表达形式为 dⅡ/dⅣ=f(△K)4(】)式中:d4/dⅣ为裂纹扩展率,口为裂纹扩展长度,^『为循环次数ff和m为经验常数,”的取值一般为2~4;△K为应力强度因子范围。为便于分析,我耵j使用Par.s方程的一种特殊形式oj,即 出/d^rz(k6(2)对上式进行积分.并设裂纹初始长度为“¨、初始帕环次数为ot可得到裂纹扩展的表达式.即 日=日。[1—0(6—1)Ⅳd:。。]‘‘】(1) 对上式两边取对散,令y—lgo几。).吼=Q,吼6—1,上式 变为  万方数据

不同条件下300M钢的疲劳裂纹扩展行为

2017年6月第41卷第6期一V o l .41N o .6J u n .2017 D O I :10.11973/j x g c c l 201706005收稿日期:2016G06G07;修订日期:2017G05G04 作者简介:盛伟(1983-) ,男,山东济南人,工程师,硕士不同条件下300M 钢的疲劳裂纹扩展行为 盛伟,刘天琦,马少俊,陈天运 (中国航发北京航空材料研究院,北京100095 )摘一要:对300M 钢在空气和质量分数3.5%N a C l 水溶液中分别进行了疲劳裂纹扩展速率试 验,得到了其疲劳裂纹扩展速率G应力强度因子范围曲线,并分别利用P a r i s 公式和W a l k e r 公式对 曲线进行了拟合;分析了应力比二腐蚀环境二频率对疲劳裂纹扩展速率的影响.结果表明:300M 钢的疲劳裂纹扩展速率随应力比的增加而增大;在相同应力比下,300M 钢在N a C l 水溶液中的疲劳裂纹扩展速率在裂纹扩展前期比在空气中的快,在扩展后期则趋于一致;较低试验频率下300M 钢在裂纹扩展前期的疲劳裂纹扩展速率比在较高频率下的快. 关键词:300M 钢; 疲劳裂纹扩展;应力比;腐蚀疲劳中图分类号:T G 115.5一一一文献标志码:A一一一文章编号:1000G3738(2017)06G0017G03 F a t i g u eC r a c kG r o w t hB e h a v i o r o f 300MS t e e l u n d e rD i f f e r e n tC o n d i t i o n s S H E N G W e i ,L I UT i a n q i ,M AS h a o j u n ,C H E NT i a n y u n (A E C CB e i j i n g I n s t i t u t e o fA e r o n a u t i c a lM a t e r i a l s ,B e i j i n g 1 00095,C h i n a )A b s t r a c t :T h e f a t i g u e c r a c k g r o w t hr a t e t e s tw a sc o n d u c t e do n300M s t e e l i na i ra t m o s p h e r ea n d3.5w t %N a C l Gw a t e r s o l u t i o n ,a n d t h e f a t i g u e c r a c k g r o w t h r a t e Gs t r e s s i n t e n s i t y f a c t o r r a n g e c u r v e sw e r e o b t a i n e da n d f i t t e d u s i n g P a r i s a n d W a l k e r f o r m u l a s ,r e s p e c t i v e l y .T h e e f f e c t s o f s t r e s s r a t i o ,c o r r o s i o ne n v i r o n m e n t a n d f r e q u e n c y o n t h e f a t i g u e c r a c k g r o w t hr a t ew e r ea n a l y z e d .T h er e s u l t ss h o wt h a t t h ef a t i g u ec r a c k g r o w t hr a t eo f300M s t e e l i n c r e a s e dw i t h t h e i n c r e a s i n g s t r e s sr a t i o ;a t t h es a m es t r e s sr a t i o ,t h ec r a c k g r o w t hr a t eo f 300M s t e e l i n N a C l Gw a t e r s o l u t i o nw a sh i g h e r t h a n t h a t i na i r a t m o s p h e r e d u r i n g t h e e a r l y s t a g eo f c r a c k g r o w t h ,a n d t e n d e d t ob e t h e s a m e i n t h e l a t e r p r o p a g a t i o n s t a g e ;i n t h e e a r l y s t a g e o f c r a c k g r o w t h ,t h e c r a c k g r o w t hr a t eo f 300Ms t e e l u n d e r r e l a t i v e l y l o wf r e q u e n c y w a sh i g h e r t h a n t h a t u n d e r r e l a t i v e l y h i g h f r e q u e n c y .K e y w o r d s :300Ms t e e l ;f a t i g u e c r a c k g r o w t h ;s t r e s s r a t i o ;c o r r o s i o n f a t i g u e 0一引一言 300M 钢是20世纪60年代由美国研发的一种 低合金超高强度钢,因具有良好的强度二塑性和抗疲 劳性能而成为当今飞机起落架的首选材料[ 1 ].随着飞机结构损伤容限设计理念的发展,断裂韧性二疲劳裂纹扩展性能等也成为了评价飞机用材料性能的重要指标.文献[2G6]研究了30C r M n S i N i 2A 二G C G4二 A e r M e t 100等超高强度钢的疲劳裂纹扩展行为, 讨论了应力比二加载频率二试验环境二材料组织等因素对这些超高强度钢疲劳裂纹扩展性能的影响;李瑞 鸿等[7]研究了喷丸强化对300M 钢疲劳性能的影 响;张国栋等[8] 对300M 钢焊接接头的疲劳断裂机 制进行了研究.但有关300M 钢疲劳裂纹扩展行为的研究尚未见报道. 300M 钢的疲劳裂纹扩展速率反映了该钢在标 准条件下的抗疲劳裂纹扩展能力,是确定零件服役寿命的重要指标.因此,作者在不同条件下对300M 钢进行了疲劳裂纹扩展速率试验,分析了应力比二试验环境二频率等因素对中速(裂纹扩展速率d a /d N 在10-5~10-3mm 周次-1)扩展区疲劳裂纹扩展速率的影响,并用P a r i s 方程和W a l k e r 方程对中速扩展区曲线进行了拟合,为该钢的应用与评价提供数据参考. 1一试样制备与试验方法 试验用材料为300M 钢棒, 由抚顺特钢生产,规7 1万方数据

相关主题
文本预览
相关文档 最新文档