当前位置:文档之家› 大学原子物理知识点整理

大学原子物理知识点整理

大学原子物理知识点整理
大学原子物理知识点整理

考试前突击整理哦~ 免挂可供参考,求高分勿用

原子核式模型考点

Rutherford核式模型

散射公式:

有库伦散射公式:(点到点)

定义 库伦因子α

则有

面到点:(微分散射截面公式)

瞄向d σ的α粒子都被散射到d Ω立体角内,瞄向d σ的α粒子越多,被散射到d Ω立体角内的α粒子越多 面到面(Rutherford 公式)

α

πεπεE Ze mv Ze a 1422

114202

20

02=

=22θctg

a b =

面积为A ,厚度为t ,单位体积所含原子数为N

氢原子光谱和波尔模型考点 对于氢原子的Rydberg 公式:

波尔模型:

电子只能在一系列分立的轨道上绕核运动,且不辐射电磁波,能量稳定。

原子在不同定态之间跃迁,吸收或发射能量。

2

202

2

04412sin ???

? ?????? ??=Ωmv Ze Nnt d dn πεθH 221,2,3,1

111,2,3,m R n m m n νλ=?

?≡=- ?

-=??K %

K 2

011,2,3,24πn n

e E n r ε=-

=K

电子定态轨道角动量满足量子化条件:

e n n m r v n =h

轨道半径:

2

1,2,3,n n c r n a v n n α===K

(非相对论近似) 氢原子的定态能量:

Rydberg 常数:

)11()4(22

23204

2n m c h e m e -=πεπ

hc

E E m n -=ν~

量子力学初步考点:

普朗克的能量子假说和黑体辐射公式: 普朗克公式:

3

02

21

(,)1h kT

h r T c

e

νπνν=

?-

康普顿效应验证了光的粒子性 静止质量和能量的关系:

德布罗意物质波

1924年,de Broglie 将Einstein 的光量子概念推广,提出了物质波的概念。

所有的粒子都具有波动性,所有的波都具有粒子性 波函数:

微观体系的波粒二象性,可以用统计的观点理解 用波的表达式描述粒子的行为

()

247

1

e 2

3

02π 1.097373110m

4πm e

R h c

ε-∞=

=?

波的强度或复振幅,反映的是粒子在时刻t、空间点P处出现、或被发现的几率或几率幅,复振幅就是几率波幅

则经典意义下的描述波动的函数或复振幅就成了量子意义下描述粒子分布几率的函数—波函数

这是波动性的物理含义

态叠加原理:

双缝干涉实验

研究通过缝而到达接收屏的电子的状态

通过狭缝1的电子在接收屏上有一个分布函数,即波函数,记为Ψ1;概率分布为I1= |Ψ1||Ψ1|

通过狭缝2的电子在接收屏上有一个分布函数,即波函数,记为Ψ2;概率分布为I2= |Ψ2||Ψ2|

则电子通过两个狭缝的分布函数为Ψ=Ψ1 +Ψ2

也可以说,通过狭缝1的电子的状态为Ψ1;通过狭缝2的电子的状态为Ψ2;

定态Schr?dinger方程问题,就是求解势能不随时间改变条件下的Schr?dinger方程

不确定原理:

单电子原子的解: 单电子原子的波函数:

n ,l ,m 是量子数,为本征态的标志 计算核外电子到原子核的平均距离:

量子数的物理解释

主量子数:n 单电子原子的能级

1,2,3

,

,0,1,2

1n n l n ==

-

为正整数且对于每一个,1,,1,0,1,1,l l m l l l l =--+--为0或正整数

对于每一个,2

02

1(1){1[1]}2n a l l Z n +=+-2

42Ze n πε=

2

2222

2

222

0422e e m c Z m c Z e E c n

n απε???=-=- ???h

由S 方程,n 只能取分立正整数值,E 只能取分立值;原子的总能量取决于n ,n 给定,原子的总能量就确定了,n 称为主量子数。

,0,1,21n l n =-L 对于每一个

,,1,1,0,1,1,l m l l l l =--+--L L 对于每一个

轨道角动量量子数

2

01

,4137e

c απε=≈h 精细结构常数

不同的状态可以具有相同的能量--简

磁量子数:

用一组量子数描述原子的状态:

轨道磁矩:

21l Z l m

+对于具有相同量子数的角动量,它在轴的分量有

个不同e

e

l

m

eL

m L e iA 22=

==ττμ

Zeeman效应

当光源放在外磁场中,其原子所发出的光谱线发生分裂,原来的一条谱线分裂为多条,且均为偏振光—塞曼效应。

电子的自旋:

基态氢原子的自旋:

电子自旋与轨道运动的相互作用:

具有自旋磁距的电子处在由于轨道运动而产生的磁场中附加自旋的能量为:

轨道运动的磁场:

cos s E B μθ?=-

自旋—轨道耦合能 关于总角动量:

电子因其轨道运动而感受到一与轨道角动量成正比的磁场,且B 与L 同向23

011124e Ze B L m c r πε=r

v

多重态结构的原子态的符号表示

d S L J S L dt ?+=+r r r

r v ()=0,定义:J 自旋-轨道相互作用是原子内部的作用力,所以原子在不受外力距的情形下,

是一个守恒量

为使磁矩与角动量间有统一的关系式:

单电子原子的Land è因子:

2

l s j g L J g S J g J ?+?=v v v

v

运算:

2222

S J L S J +-?=

v v 2222

L J S L J +-?=

v

v

原子光谱的精细结构

原子核的自旋

I I i =原子核自旋角动量的大小是

为整数或半整数,是核的自旋量子数。

跃迁选择定则

多电子原子考点

电子组态:

LSLSL

原子物理知识点总结

原子物理 一、波粒二象性 1、热辐射:一切物体均在向外辐射电磁波.这种辐射与温度有关。故叫热辐射. 特点:1)物体所辐射的电磁波的波长分布情况随温度的不同而不同;即同时辐射各种波长的电磁波,但某些波长的电磁波辐射强度较强,某些较弱,分布情况与温 度有关。 2)温度一定时,不同物体所辐射的光谱成分不同。 2、黑体:一切物体在热辐射同时,还会吸收并反射一部分外界的电磁波。若某种物体,在热辐射的同时能够完全吸收入射的各种波长的电磁波,而不发生反射,这种物体叫做黑体(或绝对黑体)。在自然界中,绝对黑体实际是并不存在的,但有些物体可近似看成黑体,例如,空腔壁上的小孔. 热辐射特点吸收反射特点 一般物体辐射电磁波的情况与温度,材 料种类及表面状况有关既吸收,又反射,其能力与材料的种类及入射光波长等因素有关 黑体辐射电磁波的强度按波长的 分布只与黑体温度有关完全吸收各种入射电磁波,不反射 黑体辐射的实验规律: 1)温度一定时,黑体辐射的强度,随波长分布有一个极大值。 2)温度升高时,各种波长的辐射强度均增加。 3)温度升高时,辐射强度的极大值向波长较短方向移动。 4、能量子:上述图像在用经典物理学解释时与该图像存在严重的不符(维恩、瑞利的解释)。普朗克认为能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.ν εh =) 10 63 .6 (34叫普朗克常量 s J h? ? =-.由量子理论得出的结果与黑体的辐射强度图像吻合的非常完美,这印证了该理论的正确性.

5光电效应:在光的照射下,金属中的电子从金属表面逸出的现象.发射出来的电子叫光电子。光电效应由赫兹首先发现。 爱因斯坦指出: ① 光的能量是不连续的,是一份一份的,每一份能量子叫做一个光子.光子的能量为 ε=h ν,其中h=6。63×10-34 J ·s 叫普朗克常量,ν是光的频率; ② 当光照射到金属表面上时,一个光子会被一个电子吸收,吸收的过程是瞬间的(不超过10-9 s ).电子在吸收光子之后,其能量变大并向金属外逃逸,从而产生光电效应现象; ③ 一个电子只能吸收一个光子,不会有一个电子连续吸收多个光子的情况,该过程需要克服金属内部原子束缚做功(逸出功W 0,其大小与金属材料有关),然后才有可能从金属表面飞出。因此在只有当一个光子能量较大时,电子才会将其吸收并从金属内部飞出,否则电子无法克服原子束缚从金属中逸出。由能量守恒可得光电效应方程: 0W h E k -=ν ④ 决定能否发生光电现象的决定因素是极限频率而不是光的强度。光的强度只会影响从金属中逸出的电子数目。能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(极限频率).截止频率的大小与金属种类有关。光的强度:单位时间内垂直照射到金属表面单位面积上入射光中光子总数目. 若ν≥c ν,无论光照强度如何也会有光电效应现象产生 若ν<c ν,则无论怎样增加光照强度,也不会有光电效应产生 知识拓展之光电管的伏安特性曲线:在光照条件不变时,若正向电压升高,则电路中的光电流会随之变大,当正向电压调到某值后电路中的电流不再增加,该电流叫饱和电流。饱和电流大小反映了入射光的强度(光子数目)。在光照条件不变时,若反向电压升高,则电路中的光电流会随之变小,当反向电压达到某值后,电路中的电流变为零,这个电压叫遏止电压。遏止电压只与入射光频率有关. e W e h U c 0 -=ν0(W h E k -=ν由) 得出和00W h eU E eU c k c -=-=-ν

原子物理知识点汇总

高考考点:原子物理考 点分析一、历史人物及相关成就 1、汤姆生:发现电子,并提出原子枣糕模型——说明原子可再分 2、卢瑟福: 粒子散射实验— —说明原子的核式结构模型 发现质子 3、查德威克:发现中子 4、约里奥.居里夫妇:发现正电子 5、贝克勒尔:发现天然放射

现象——说明原子核可再分6、爱因斯坦:质能方程2mc E=, 2 mc E? = ? 7、玻尔:提出玻尔原子模型,解释氢原子线状光谱8、密立根:油滴实验——测 量出电子的电 荷量 二、核反应的 四种类型 类型可 控 性 核反应 例 衰 变 α衰 变 自 发 β衰 变 自 发

人工转变人 工 控 制 H o He N1 1 17 8 4 2 14 7 + → +卢 瑟福 发现质子 n C He Be1 12 6 4 2 9 4 + → +查 德威 克发现中子 n P He l1 30 15 4 2 27 13 A+ → +约里 奥.居里夫妇 e Si P0 1 30 14 30 15 + →发

重核裂变比较容易进行人工控制 轻核聚除 变氢 弹 外 无 法 控 制 提醒: 1、核反应过程一般都是不可逆的,所以核反

应方程只能用单箭头表示反应方向,不能用等号连接。2、核反应的生成物一定要以实验事实为基础,不能凭空只依据两个守恒定律杜撰出生成物来写出核 反应方程 3、核反应遵循质量数守恒而不是质量守恒,遵循电荷数守恒 三、三种射线比较 种 类

速 度 0.1c 0.99c C 在电磁场中偏转与a射 线反向 偏转 不偏转 贯穿本领最弱, 用纸能 挡住 较强, 穿透几 毫米的 铝板 最强, 穿透几 厘米的 铅板 对 空 气 的 电 离 作 用 很强较弱

原子物理知识点总结全

原子物理知识点总结全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

原 子 物 理 一、卢瑟福的原子模型——核式结构 1.1897年,_________发现了电子.他还提出了原子的______________模型. 2.物理学家________用___粒子轰击金箔的实验叫__________________。 3.实验结果: 绝大部分α粒子穿过金箔后________;少数α粒子发生了较大的偏转; 极少数的α粒子甚至被____. 4.实验的启示:绝大多数α粒子直线穿过,说明原子内部存在很大的空隙; 少数α粒子较大偏转,说明原子内部集中存在着对α粒子有斥力的正电荷; 极个别α粒子反弹,说明个别粒子正对着质量比α粒子大很多的物体运动时,受到该物体很大的斥力作用. 5.原子的核式结构: 卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋转. 例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,下列四个选项中哪一项属于实验得到的正确结果: A.α粒子穿过金箔时都不改变运动方向 B.极少数α粒子穿过金箔时有较大的偏转,有的甚至被反弹 C.绝大多数α粒子穿过金箔时有较大的偏转 D.α粒子穿过金箔时都有较大的偏转. 例2:根据α粒子散射实验,卢瑟福提出了原子的核式结构模型。如图1-1所示表示了原子核式结构模型的α粒子散射图景。图中实线表示α粒子的运动轨迹。其中一个α粒子在从a 运动到b 、再运动到c 的过程中(α 粒子在b 点时距原子核最近),下列判断正确的是( ) A .α粒子的动能先增大后减小 B .α粒子的电势能先增大后减小 C .α粒子的加速度先变小后变大 D .电场力对α粒子先做正功后做负功 二 玻尔的原子模型 能级 1.玻尔提出假说的背景——原子的核式结构学说与经典物理学的矛盾: ⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式结构将是不稳定的,而事实上是稳定的. ⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。 为解决原子的核式结构模型与经典电磁理论之间的矛盾,玻尔提出了三点假设,后人称之为玻尔模型. 2.玻尔模型的主要内容: ⑴定态假说:原子只能处于一系列__________的能量状态中,在这些状态中原子是_______的,电子虽然绕核运动,但不向外辐射能量.这些状态叫做________. ⑵ 跃迁假说:原子从一种定态跃迁到另一种定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两定态的能量差决定,即________________. ⑶轨道假说:原子的不同能量状态对应于______子的不同轨道.原子的定态是不连续的,因此电子的可能轨道也是不连续的. 3.氢原子的能级公式和轨道公式 原子各定态的能量值叫做原子的能级,对于氢原子,其能级公式为:______________; 对应的轨道公式为:12r n r n 。其中n 称为量子数,只能取正整数.E 1=-13.6eV ,r 1=0.53×10-10m . 原子的最低能量状态称为_______,对应电子在离核最近的轨道上运动; 图1-1 a b c 原子核 α粒子

原子物理知识点讲解

一、光电效应现象 1、光电效应: 光电效应:物体在光(包括不可见光)的照射下发射电子的现象称为光电效应。 2、光电效应的研究结论: ①任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频...............率.,才能产生光电效应;低于这个频率的光不能产生光电效应。②光电子的最.....大初动能与入射光的强度无关.............,只随着入射光频率的增大..而增大..。注意:从金属出来的电子速度会有差异,这里说的是从金属表面直接飞出来的光电子。③ 入射光照到金属上时,光电子的发射几乎是瞬时的............,一般不超过10-9 s ;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。 3、 光电效应的应用: 光电管:光电管的阴极表面敷有碱金属,对电子的束缚能力比较弱,在光的照射下容易发射电子,阴极发出的电子被阳极收集,在回路中形成电流,称为光电流。 注意:①光电管两极加上正向电压,可以增强光电流。②光电流的大小跟入射光的强度和正向电压有关,与入射光的频率无关。入射光的强度越大,光电流越大。③遏止电压U 0。回路中的光电流随着反向电压的增加而减小,当反 向电压U 0满足:02 max 2 1eU mv =,光电流将会减小到零,所以遏止电压与入射光的频率有关。 4、波动理论无法解释的现象: ①不论入射光的频率多少,只要光强足够大,总可以使电子获得足够多的能量,从而产生光电效应,实际上如果光的频率小于金属的极限频率,无论光强多大,都不能产生光电效应。 ②光强越大,电子可获得更多的能量,光电子的最大初始动能应该由入射光的强度来决定,实际上光电子的最大初始动能与光强无关,与频率有关。 ③光强大时,电子能量积累的时间就短,光强小时,能量积累的时间就长,实际上无论光入射的强度怎样微弱,几乎在开始照射的一瞬间就产生了光电子. 二、光子说 1、普朗克常量 普郎克在研究电磁波辐射时,提出能量量子假说:物体热辐射所发出的电磁波的能量是不连续的,只能是hv 的整数倍,hv 称为一个能量量子。即能量是一份一份的。其中v 辐射频率,h 是一个常量,称为普朗克常量。 2、光子说 在空间中传播的光的能量不是连续的,而是一份一份的,每一份叫做一个光子,光子的能量ε跟光的频率ν成正比。hv =ε,其中:h 是普朗克常量,v 是光的频率。

原子物理知识点总结全

原 子 物 理 一、卢瑟福的原子模型——核式结构 1.1897年,_________发现了电子.他还提出了原子的 ______________模型. 2.物理学家________用___粒子轰击金箔的实验叫 __________________。 3. 实验结果:绝大部分α粒子穿过金箔后________;少数α粒子发生了较大的偏转;极少数的α粒子甚至被____. 4. 实验的启示:绝大多数α粒子直线穿过,说明原子内部存在很大的空隙; 少数α粒子较大偏转,说明原子内部集中存 在着对 α粒子有斥力的正电荷; 极个别α粒子反弹,说明个别粒子正对着质量比 α粒子大很多的物体运动时,受到该物体很大的斥 力作用. 5.原子的核式结构: 卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小 的核,叫 ________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋 转. 例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,下列四个选项中哪一项属于实验得到的正确结果: A.α粒子穿过金箔时都不改变运动方向 B . 极少数α粒子穿过金箔时有较大的偏转 ,有的甚至被反 弹 C.绝大多数α粒子穿过金箔时有较大的 偏转 D. α粒子穿过金箔时都有较大的偏转. 例2:根据α粒子散射实验,卢瑟福提出了原子的核式结构模 型。如图 1-1所示表示了 原子核式结构模型的 α粒子散射图景。图中实 线表示 α粒子的运动轨迹。其中一个 c α粒子在从a 运动到b 、再运动到c 的过程中(α粒子在b 点时距原子核最近),下 列判断正确的是 ( ) a b A .α粒子的动能先增大后减小 原子核 B .α粒子的电势能先增大后减小 C .α粒子的加速度先变小后变大 α粒子 D .电场力对α粒子先做正功后做负功 图1-1 二玻尔的原子模型 能级 1.玻尔提出假说的背景——原子的核式结构学说与经典物理学的矛盾:⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式结构将是不稳定的,而事实上是稳定的.⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。 为解决原子的核式结构模型与经典电磁理论之间的矛盾,玻尔提出了三点假设,后人称之为玻尔模型. 2.玻尔模型的主要内容: ⑴定态假说:原子只能处于一系列 __________的能量状态中,在 这些状态中原子是 _______的,电子虽然绕核运动, 但不向外辐射能量.这些状态叫做 ________. ⑵跃迁假说:原子从一种定态跃迁到另一种定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两定态的能量差决定,即________________. ⑶轨道假说:原子的不同能量状态对应于 ______子的不同轨道 .原子的定态是不连续的,因此电子的可能轨道也是不 连续的. 3.氢原子的能级公式和轨道 公式 原子各定态的能量值叫做原子的能级,对于氢原子,其能级 公式为 :______________; 对应的轨道公式为: r n n 2 r 1。其中n 称为量子数,只能取正.E1=-13.6eV ,r1=0.53×10-10m .

原子物理知识点总结全

原 子 物 理 一、卢瑟福的原子模型-—核式结构 1.1897年,_________发现了电子.他还提出了原子的______________模型。 2。物理学家________用___粒子轰击金箔的实验叫__________________。 3.实验结果: 绝大部分α粒子穿过金箔后________;少数α粒子发生了较大的偏转; 极少数的α粒子甚至被____. 4。实验的启示:绝大多数α粒子直线穿过,说明原子内部存在很大的空隙; 少数α粒子较大偏转,说明原子内部集中存在着对α粒子有斥力的正电荷; 极个别α粒子反弹,说明个别粒子正对着质量比α粒子大很多的物体运动时,受到该物体很大的斥力作用. 5.原子的核式结构: 卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋转. 例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,下列四个选项中哪一项属于实验得到的正确结果: A.α粒子穿过金箔时都不改变运动方向 B.极少数α粒子穿过金箔时有较大的偏转,有的甚至被反弹 C.绝大多数α粒子穿过金箔时有较大的偏转 D 。α粒子穿过金箔时都有较大的偏转。 例2:根据α粒子散射实验,卢瑟福提出了原子的核式结构模型。如图1—1所示表示了原子核式结构模型的α粒子散射图景.图中实线表示α粒子的运动轨迹。其中一个 α粒子在从a 运动到b 、再运动到c 的过程中(α粒子在b 点时距原子核最近),下列判断正确的是( ) A .α粒子的动能先增大后减小 B .α粒子的电势能先增大后减小 C .α粒子的加速度先变小后变大 D .电场力对α粒子先做正功后做负功 二 玻尔的原子模型 能级 1.玻尔提出假说的背景——原子的核式结构学说与经典物理学的矛盾: ⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式结构将是不稳定的,而事实上是稳定的. ⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。 为解决原子的核式结构模型与经典电磁理论之间的矛盾,玻尔提出了三点假设,后人称之为玻尔模型. 2.玻尔模型的主要内容: ⑴定态假说:原子只能处于一系列__________的能量状态中,在这些状态中原子是_______的,电子虽然绕核运动,但不向外辐射能量.这些状态叫做________. ⑵ 跃迁假说:原子从一种定态跃迁到另一种定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两定态的能量差决定,即________________。 ⑶轨道假说:原子的不同能量状态对应于______子的不同轨道.原子的定态是不连续的,因此电子的可能轨道也是不连续的. 3.氢原子的能级公式和轨道公式 原子各定态的能量值叫做原子的能级,对于氢原子,其能级公式为:______________; 对应的轨道公式为:12r n r n =。其中n 称为量子数,只能取正整数。E 1=-13。6eV ,r 1=0。53×10-10 m . 原子的最低能量状态称为_______,对应电子在离核最近的轨道上运动; 原子的较高能量状态称为_______,对应电子在离核较远的轨道上运动. 4.氢原子核外的电子绕核运动的轨道与其能量相对应 核外电子绕核做圆周运动的向心力,来源于库仑力(量子化的卫星运动模型) 由r v m r e k F 222 ==库得动能r ke mv E k 2 22121==, 即r 越大时,动能________。 又因为12r n r n =,21 n E E n = 即量子数n 越大时,动能_______,势能______,总能量_______. 5.用玻尔量子理论讨论原子跃迁时释放光子的频率种数 氢原子处于n=k 能级向较低激发态或基态跃迁时,可能产生的光谱线条数的计算公式为:2 ) 1(2 -= =k k C N k 例1:氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道的过程中 ( ) A .原子要吸收光子,电子的动能增大,原子的电势能增大 图1-1 c 原子核 α粒子

原子物理知识点

原子物理知识点 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一、光电效应现象 1、光电效应: 光电效应:物体在光(包括不可见光)的照射下发射电子的现象称为光电效应。 2、光电效应的研究结论: ①任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频...............率.,才能产生光电效应;低于这个频率的光不能产生光电效应。②光电子的最.....大初动能与入射光的强度无关.............,只随着入射光频率的增大..而增大..。注意:从金属出来的电子速度会有差异,这里说的是从金属表面直接飞出来的光电子。③入射光照到金属上时,光电子的发射几乎是瞬时的............,一般不超过10-9s ;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。 3、 光电效应的应用: 光电管:光电管的阴极表面敷有碱金属,对电子的束缚能力比较弱,在光的照射下容易发射电子,阴极发出的电子被阳极收集,在回路中形成电流,称为光电流。 注意:①光电管两极加上正向电压,可以增强光电流。②光电流的大小跟入射光的强度和正向电压有关,与入射光的频率无关。入射光的强度越大,光电流越大。③遏止电压U 0。回路中的光电流随着反向电压的增加而减小,当反 向电压U 0满足:02 max 2 1eU mv ,光电流将会减小到零,所以遏止电压与入射光的频率有关。 4、波动理论无法解释的现象: ①不论入射光的频率多少,只要光强足够大,总可以使电子获得足够多的能量,从而产生光电效应,实际上如果光的频率小于金属的极限频率,无论光强多大,都不能产生光电效应。 ②光强越大,电子可获得更多的能量,光电子的最大初始动能应该由入射光的强度来决定,实际上光电子的最大初始动能与光强无关,与频率有关。 ③光强大时,电子能量积累的时间就短,光强小时,能量积累的时间就长,实际上无论光入射的强度怎样微弱,几乎在开始照射的一瞬间就产生了光电子. 二、光子说

原子物理知识点总结

、波粒二象性 1、热辐射: 一切物体均在向外辐射电磁波。这种辐射与温度有关。故叫热辐射。 特点: 1)物体所辐射的电磁波的波长分布情况随温度的不同而不同;即同时辐射各种 波长 的电磁波,但某些波长的电磁波辐射强度较强,某些较弱,分布情况与 温度有关。 2)温度一定时,不同物体所辐射的光谱成分不同。 2、黑体: 一切物体在热辐射同时,还会吸收并反射一部分外界的电磁波。若某种物体,在 热辐射的同时能够完全吸收入射的各种波长的电磁波, 而不发生反射, 这种物体叫做黑体 ( 或 绝对黑体 )。在自然界中,绝对黑体实际是并不存在的,但有些物体可近似看成黑体,例如, 空腔壁上的小孔。 注意,黑体并不一定是黑色的。 热辐射特点 吸收反射特点 一般物体 辐射电磁波的情况与温度, 材 料种类及表面状况有关 既吸收,又反射,其能力与材 料的种类及入射光波长等因 素 有关 黑体 辐射电磁波的强度按波长的 分布只与黑体温度有关 完全吸收各种入射电磁波, 不 反射 黑体辐射的强度,随波长分布有一个极大值。 各种波长的辐射强度均增加。 辐射强度的极大值向波长较短方向移动。 4、能量子 :上述图像在用经典物理学解释时与该图像存在严重的不符 (维恩、 瑞利的解释) 普朗克认为能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值 ε 叫做能 量子. h (h 6.63 10 34 J s 叫普朗克常量 ) 。 由量子理论得出的结果与黑体的辐射强度 图像吻合的非常完美,这印证了该理论的正确性。 原子物理 黑体辐射的实验规 律: 1)温度一定 时, 2)温度升高

5 光电效应: 在光的照射下,金属中的电子从金属表面逸出的现象。 射出 来的电子叫光电子。光电效应由赫兹首先发现。 爱因斯坦指出 : ① 光的能量是不连续的, 是一份一份的, 每一份能量子叫做一个光 子. 光子的能量为 ε= h ν ,其中 h= 6.63× 10- 34 J · s 叫普朗克常量, ν是光的频率; ② 当光照射到金属表面上时, 一个光子会被一个电子吸收, 吸收的过程是瞬间的 (不 -9 超过 10-9 s )。电子在吸收光子之后,其能量变大并向金属外逃逸,从而产生光电效应现象; ③ 一个电子只能吸收一个光子, 不会有一个电子连续吸收多个光子的情况, 该过程需 要克服金属内部原子束缚做功(逸出功 W 0,其大小与金属材料有关),然后才有可能从金 属表面飞出。因此在只有当一个光子能量较大时,电子才会将其吸收并从金属内部飞出, 否则电子无法克服原子束缚从金属中逸出。 由能量守恒可得 光电效应方程 : E k h W 0 ④ 决定能否发生光电现象的决定因素是极限频率而不是光的强度。 光的强度只会影响 从金属中逸出的电子数目。 能使某种金属发生光电效应的最小频率叫做该种金属的截止频率 (极限频 率 ).截止频率的大小与金属种类有关。光的强度:单位时间内垂直照射到金属表面 单位面积上入射光中光子总数目。 若ν≥ c ,无论光照强度如何也会有光电效应现象产生 若ν< c ,则无论怎样增加光照强度,也不会有光电效应产生 知识拓展之 光电管的伏安特性曲线: 在光照条件不变时, 若正向电压升高, 则电路中的光电 流会随之变大, 当正向电压调到某值后电路中的电流不再增加, 该电流叫饱和电流。 饱和电 流大小反映了入射光的强度(光子数目)。在光照条件不变时,若反向电压升高,则电路中 的光电流会随之变小, 当反向电压达到某值后, 电路中的电流变为零, 这个电压叫遏止电压。 遏止电压只与入射光频率有关。 h W 0 e e (由E k h W 0 和 eU c 0 E k 得出 eU c h W 0) U c

(完整版)原子物理知识点汇总

高考考点:原子物理考点分析 一、 历史人物及相关成就 1、 汤姆生:发现电子,并提出原子枣糕模型 ——说明原子可再分 2、 卢瑟福:α粒子散射实验——说明原子的核式结构模型 发现质子 3、 查德威克:发现中子 4、 约里奥.居里夫妇:发现正电子 5、 贝克勒尔:发现天然放射现象——说明原子核可再分 6、 爱因斯坦:质能方程2mc E =,2 mc E ?=? 7、 玻尔:提出玻尔原子模型,解释氢原子线状光谱 8、 密立根:油滴实验——测量出电子的电荷量 二、 核反应的四种类型 提醒: 1、 核反应过程一般都是不可逆的,所以核反应方程只能用单箭头表示反应方向,不能用等号连 接。 2、 核反应的生成物一定要以实验事实为基础,不能凭空只依据两个守恒定律杜撰出生成物来写 出核反应方程 3 、 核反应遵循质量数守恒而不是质量守恒,遵循电荷数守恒 提醒: 1、 半衰期:表示原子衰变一半所用时间 2、 半衰期由原子核内部本身的因素据顶,跟原子所处的物理状态(如压强、温度)或化学状态(如 单质、化合物)无关

3、 半衰期是大量原子核衰变时的统计规律,个别原子核经多长时间衰变无法预测,对个别或极少 数原子核,无半衰期而言。 4、 放射性同位素的应用:(1)工业、摊上、农业、医疗等(2)作为示踪原子 四、 原子结构 1、 原子的核式结构模型 (1)α粒子散射实验结果: 绝大多数α粒子穿过金箔后仍沿原来的方向前进,少数α粒子发生了较大偏转,极少数α粒子甚至被反弹回来。 (2)原子的核式结构模型: 在原子中心有一个很小的原子核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。 (3)原子核的尺度:原子核直径的数量级为10-15 m ,原子直径的数量级约为10-10 m 。 (4)原子核的组成:原子核是由质子和中子组成的,原子核的电荷数等于核内的质子数。 2、玻尔原子模型 (1)原子只能处于一系列能量不连续的状态中,具有确定能量的未定状态叫定态。原子处于最低能级的状态叫基态,其他的状态叫激发态。 (2)频率条件: 高能m 到低能m 态:辐射光子λ c h E E hv n m =-= (3)原子的不同能量状态对应于电子的不同运行轨道。 五、氢原子光谱 1、氢原子光谱的实验规律 巴耳末系是氢光谱在可见光区的谱线,其波长公式 )为里德伯常量(1722101.01R ..R .,54,3n )n 1-21R(1 -?===m λ 2、 氢原子的能级和轨道半径 (1) 氢原子的能级公式:...)3,2,1(1 12==n E n En 其中E 1 =-3.6ev (2) 氢原子的半径公式:...)3,2,1(12 =?=n r n r n ,其中r1=0.53×10-10 m (3) 氢原子能级图: 提醒: A 、 原子跃迁条件:n m E E hv -=,只适用于光子和原 子作用而使原子在各定态之间跃迁的情况。对于光 子和原子作用而使原子电离时,只要入射光的能量 eV E 6.13≥,原子就能吸收,对于实物粒子与原子作用使原子激发时,粒子能量大于或 等于能级差即可。 B 、 原子跃迁发出的光谱线条数2 ) 1(2 -= =n n C N n ,是一群氢原子,而不是一个,因为某一个氢原子有固定的跃迁路径。 六、核力与核能 1、核力:原子核内核子间存在的相互作用力 2、特点:强相互作用、短程力,作用范围1.5×10-15 m 之内 3、核能 (1)质能方程:一定的能量和一定的质量相联系,物体的总能量和他的质量成正比。即2 mc E = 含义:物体具有的能量与他的质量之间存在简单的正比关系,物体的能量增大,质量也增大,物体的能量减小,质量也减小。 (2)核子在结合成核子时出现质量亏损m ?,吸收的能量也要相应减小。2 mc E ?=? 原子核分解成核子时要吸收一定的能量,相应的质量增加m ?,吸收能量2mc E ?=? (4) 获得方式:重核裂变和轻核聚变 聚变反应比裂变反应平均每个核子放出的能量大约要大3-4倍。 1 -13.61 2 -3.40 3 -1.51 4 -0.85 5 -0.54 ∞ 0 n E /eV 图3

原子物理知识学知识题目解析(褚圣麟)

1.原子的基本状况 1.1解:根据卢瑟福散射公式: 2 02 22 442K Mv ctg b b Ze Ze αθ πεπε== 得到: 21921501522 12619 079(1.6010) 3.97104(48.8510)(7.681010) Ze ctg ctg b K ο θαπεπ---??===??????米 式中2 12K Mv α=是 α粒子的功能。 1.2已知散射角为θ的α粒子与散射核的最短距离为 2202 1 21 ()(1)4sin m Ze r Mv θ πε=+ , 试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得: 2min 202 1 21()(1)4sin Ze r Mv θπε=+ 1929 619479(1.6010)1910(1)7.6810 1.6010sin 75ο --???=???+???143.0210-=?米 1.3 若用动能为1兆电子伏特的质子射向金箔。问质子与金箔。问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?

解:当入射粒子与靶核对心碰撞时,散射角为180ο。当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。 根据上面的分析可得: 22 0min 124p Ze Mv K r πε==,故有: 2 min 04p Ze r K πε= 192 9 13619 79(1.6010)910 1.141010 1.6010 ---??=??=???米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-?米。 1.4 钋放射的一种α粒子的速度为71.59710?米/秒,正面垂直入射于厚度为710-米、密度为41.93210?3/公斤米的金箔。试求所有散射在90οθ>的α粒子占全部入射粒子数的百分比。已知金的原子量为197。 解:散射角在d θθθ+之间的α粒子数dn 与入射到箔上的总粒子数n 的比是: dn Ntd n σ= 其中单位体积中的金原子数:0//Au Au N m N A ρρ== 而散射角大于090的粒子数为:2'dn dn nNt d ππ σ=?=?

原子物理知识点知识讲解

一、光电效应现象 1、光电效应: 光电效应:物体在光(包括不可见光)的照射下发射电子的现象称为光电效应。 2、光电效应的研究结论: ①任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频率 ................, 才能产生光电效应;低于这个频率的光不能产生光电效应。②光电子的最大初动 ........ 能与入射光的强度无关 ..........,只随着入射光频率的增大 ..而增大 ..。注意:从金属出来的电子速度会有差异,这里说的是从金属表面直接飞出来的光电子。③入射光照到 金属上时,光电子的发射几乎是瞬时的 ............,一般不超过10-9s;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。 3、光电效应的应用: 光电管:光电管的阴极表面敷有碱金属,对电子的束缚能力比较弱,在光的照射下容易发射电子,阴极发出的电子被阳极收集,在回路中形成电流,称为光电流。 注意:①光电管两极加上正向电压,可以增强光电流。②光电流的大小跟入射光的强度和正向电压有关,与入射光的频率无关。入射光的强度越大,光电流越大。③遏止电压U0。回路中的光电流随着反向电压的增加而减小,当反向电压 U 0满足: 2 max 2 1 eU mv=,光电流将会减小到零,所以遏止电压与入射光的频率有 关。 4、波动理论无法解释的现象: ①不论入射光的频率多少,只要光强足够大,总可以使电子获得足够多的能量,从而产生光电效应,实际上如果光的频率小于金属的极限频率,无论光强多大,都不能产生光电效应。 ②光强越大,电子可获得更多的能量,光电子的最大初始动能应该由入射光的强度来决定,实际上光电子的最大初始动能与光强无关,与频率有关。 ③光强大时,电子能量积累的时间就短,光强小时,能量积累的时间就长,实际上无论光入射的强度怎样微弱,几乎在开始照射的一瞬间就产生了光电子. 二、光子说 1、普朗克常量 普郎克在研究电磁波辐射时,提出能量量子假说:物体热辐射所发出的电磁波的能量是不连续的,只能是hv的整数倍,hv称为一个能量量子。即能量是一份一份的。其中v辐射频率,h是一个常量,称为普朗克常量。 2、光子说 在空间中传播的光的能量不是连续的,而是一份一份的,每一份叫做一个光子,光子的能量ε跟光的频率ν成正比。hv = ε,其中:h是普朗克常量,v是光的频率。 三、光电效应方程 1、逸出功W : 电子脱离金属离子束缚,逸出金属表面克服离子引力做的功。

3-5原子物理知识点总结Word 文档

检查重点: 1.光电效应 2.玻尔原子假设与能级跃迁规律 3.半衰期 4.爱因斯坦质能方程及其计算 5. 物理学史(物理学家的贡献) 第17章光电效应波粒二象性 一、黑体辐射与能量子 1.黑体辐射的实验规律 ①一般材料的物体,辐射的电磁波除与温度有关外,还与材料的种类及表面状况有关. ②黑体辐射电磁波的强度按波长的分布只与黑体的温度有关. a.随着温度的升高,各种波长的辐射强度都增加. b.随着温度的升高,辐射强度的极大值向波长较短的方向移动. 2.能量子 (1)定义:普朗克认为,带电微粒辐射或者吸收能量时,只能辐射或吸收某个最小能量值的整数倍.即能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子. (2)能量子的大小:ε=hν,其中ν是电磁波的频率,h称为普朗克常量.h=6.63×10-34 J·s. 二、光电效应 1.光电效应现象 光电效应:在光的照射下金属中的电子从金属表面逸出的现象,叫做光电效应,发射出来的电子叫做光电子.2.光电效应实验规律 (1)每种金属都有一个极限频率. (2)光子的最大初动能与入射光的强度无关,只随入射光的频率增大而增大. (3)光照射到金属表面时,光电子的发射几乎是瞬时的. (4)光电流的强度与入射光的强度成正比. 3.爱因斯坦光电效应方程 (1)光子说:空间传播的光的能量是不连续的,是一份一份的,每一份叫做一个光子.光子的能量为ε=hν,其中h是普朗克常量,其值为6.63×10-34 J·s. (2)光电效应方程:E k=hν-W0. 其中hν为入射光的能量,E k为光电子的最大初动能,W0是金属的逸出功. 4.遏止电压与截止频率 (1)遏止电压:使光电流减小到零的反向电压U c. (2)截止频率:能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(又叫极限频率).不同的金属对应着不同的极限频率. (3)逸出功:电子从金属中逸出所需做功的最小值,叫做该金属的逸出功. 5.由E k-ν图象(如图)可以得到的信息 (1)极限频率:图线与ν轴交点的横坐标νc. (2)逸出功:图线与E k轴交点的纵坐标的绝对值E=W0. (3)普朗克常量:图线的斜率k=h. 三、光的波粒二象性与物质波 1.光的波粒二象性 (1)光的干涉、衍射、偏振现象证明光具有波动性. (2)光电效应和康普顿效应说明光具有粒子性. (3)光既具有波动性,又具有粒子性,称为光的波粒二象性. 2.光的散射:光在介质中与物质微粒相互作用,因而传播方向发生改变的现象。 康普顿效应:在研究电子对X射线的散射时发现有些散射波的波长比入射波的波长略大,康普顿认为这是因为光子不仅有能量,还有动量;说明了光具有粒子性。

高中物理学史高考中常见知识点汇总

高考高中物理学史及热学、原子物理考点总结 一、力学: 1.1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一 样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2.1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动 定律)。 3.17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一 直运动下去;得出结论:力不是维持物体运动状态的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 4.20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运 动物体。 5.1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了 抛体运动。 6.人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼 提出了“日心说”,大胆反驳地心说。 7.17世纪,德国天文学家开普勒提出开普勒三大定律; 8.牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地 测出了引力常量; 二、相对论: 9.物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界),②热辐射实验 ——量子论(微观世界); 10.19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。 11.1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理——不同的惯性参考系中, 一切物理规律都是相同的;②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c 不变。 12.1900年,德国物理学家普朗克解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量 不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子; 三、电磁学: 13.1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静 电力常量k的值。 14.1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。

原子物理知识点总结

第17章 光电效应 波粒二象性 一.能量子 (1)定义:普朗克认为,带电微粒辐射或者吸收能量时,只能辐射或吸收某个最小能量值的整数倍.即能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子. (2)能量子的大小:ε=h ν,其中ν是电磁波的频率,h 称为普朗克常量.h =6.63×10- 34 J ·s. 二、光电效应 1.光电效应现象 光电效应:在光的照射下金属中的电子从金属表面逸出的现象,叫做光电效应,发射出来的电子叫做光电子. 2.光电效应实验规律 (1)每种金属都有一个极限频率. (2)光子的最大初动能与入射光的强度无关,只随入射光的频率增大而增大. (3)光照射到金属表面时,光电子的发射几乎是瞬时的. (4)光电流的强度与入射光的强度成正比. 3.爱因斯坦光电效应方程 (1)光子说:空间传播的光的能量是不连续的,是一份一份的,每一份叫做一个光子.光 子的能量为ε=h ν,其中h 是普朗克常量,其值为6.63×10- 34 J ·s. (2)光电效应方程:E k =h ν-W 0. 其中h ν为入射光的能量,E k 为光电子的最大初动能,W 0是金属的逸出功. 4.遏止电压与截止频率 (1)遏止电压:使光电流减小到零的反向电压U c . (2)截止频率:能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(又叫极限频率).不同的金属对应着不同的极限频率. (3)逸出功:电子从金属中逸出所需做功的最小值,叫做该金属的逸出功. 5.由E k -ν图象(如图)可以得到的信息 (1)极限频率:图线与ν轴交点的横坐标νc . (2)逸出功:图线与E k 轴交点的纵坐标的绝对值E =W 0. (3)普朗克常量:图线的斜率k =h . 6.用光电管研究光电效应 (两条线索 ①通过频率分析:光子频率高→光子能量大→产生光电子的最大初动能大. ②通过光的强度分析:入射光强度大→光子数目多→产生的光电子多→光电流大. 三、光的波粒二象性与物质波 1.光的波粒二象性 (1)光的干涉、衍射、偏振现象证明光具有波动性. (2)光电效应和康普顿效应说明光具有粒子性. (3)光既具有波动性,又具有粒子性,称为光的波粒二象性. 2.光的散射:光在介质中与物质微粒相互作用,因而传播方向发生改变的现象。 康普顿效应:在研究电子对X 射线的散射时发现有些散射波的波长比入射波的波长略大,康普顿认为这是因为光子不仅有能量,还有动量;说明了光具有粒子性。 光子的动量:由于光子的能量是h ν,由相对论知E=mc 2 ,因此m= 2 c h ν,动量p=c h ν=λh 。 3.物质波 (1)概率波 光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波又叫概率波. (2)物质波:也叫德布罗意波;任何一个运动的物体都有一种波与之对应,其波长λ= p h ;宏观物体也存在波动性,波长很小。 p 为运动物体的动量,h 为普朗克常量. 电子衍射实验说明实物粒子具有波动性

2020高考复习-原子物理知识点汇总

1 高考考点:原子物理考点分析 一、 历史人物及相关成就 1、 汤姆生:发现电子,并提出原子枣糕模型 ——说明原子可再分 2、 卢瑟福:α粒子散射实验——说明原子的核式结构模型 发现质子 3、 查德威克:发现中子 4、 约里奥.居里夫妇:发现正电子 5、 贝克勒尔:发现天然放射现象——说明原子核可再分 6、 爱因斯坦:质能方程2mc E =,2mc E ?=? 7、 玻尔:提出玻尔原子模型,解释氢原子线状光谱 8、 密立根:油滴实验——测量出电子的电荷量 二、 核反应的四种类型

提醒: 1、核反应过程一般都是不可逆的,所以核反应方程只能用单箭头表示反应方向,不能用等号连接。 2、核反应的生成物一定要以实验事实为基础,不能凭空只依据两个守恒定律杜撰出生成物来写出核反应方程 3、核反应遵循质量数守恒而不是质量守恒,遵循电荷数守恒 三、三种射线比较 2

提醒: 1、半衰期:表示原子衰变一半所用时间 2、半衰期由原子核内部本身的因素据顶,跟原子所处的物理状态(如压强、温度)或化学状态(如单质、化合物)无关 3、半衰期是大量原子核衰变时的统计规律,个别原子核经多长时间衰变无法预测,对个别或极少数原子核,无半衰期而言。 4、放射性同位素的应用:(1)工业、摊上、农业、医疗等(2)作为示踪原子 四、原子结构 1、原子的核式结构模型 (1)α粒子散射实验结果: 绝大多数α粒子穿过金箔后仍沿原来的方向前进,少数α粒子发生了较大偏转,极少数α粒子甚至被反弹回来。 (2)原子的核式结构模型: 在原子中心有一个很小的原子核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。 (3)原子核的尺度:原子核直径的数量级为10-15m,原子直径的数量级约为10-10m。 (4)原子核的组成:原子核是由质子和中子组成的,原子核的电荷数等于核内的质子数。 2、玻尔原子模型 3

相关主题
文本预览
相关文档 最新文档