当前位置:文档之家› 热油输送管道的温降计算

热油输送管道的温降计算

热油输送管道的温降计算
热油输送管道的温降计算

热油输送管路的温降计算

热油在埋地管路输送过程中因无法做到完全绝热,它会沿管线向四周传热,下面仅以纵向温降进行研究计算。

1·设热油输送管道,管外径为D ,周围介质温度为T 0,总传热系数为K ,输量

为G ,油品的比热为C ,出站油温为T Q ,油流流到距加热站出口X 米处时,温度降为T ℃。

注:(1)在稳定工况下:温度不随时间而变化,输量不随时间而变化;

(2)油流至周围介质的总传热系数K 沿线为常数; (3)沿线地温和油品的比热C 为常数; (4)油品沿管轴线温度不变。

2·在距输油站为X 处取一微元段dx ,设X 处断面油温为T ,油流经过dx 段的

温度变化为dt ,由能量方程推导温降公式,稳定流动的能量方程;

dx dQ g dx dv v dx

dP P h dx dT T h T p -

=++??? ????+??? ????θsin 忽略高差和速度变化的影响,则: dx dQ dx dP

P h dx dT T h T

p -=??? ????+?

??

???? 另外由热力学知识可知:

h p T P T T h P h ???

??????? ????-=??? ????

因此:

dx dQ dx

dP

P T T h dx dT T h h p p -=?

?? ??????? ????-??? ???? 由于: P p C T h =???

???? i h

D P T =???

???? 则:

dQ dp D C dT C i P P -=-

故在L+dL 断面上油温为T+dT ,稳定传热时,dL 上的热平衡方程为:

单位时间内管线向周围介质的散热量 = 油流温降放出的热量

dQ 表示单位质量液体在单位管长上的热量损失,由传热学关系可知: ()dx M

T T D K dQ 0-=

π

因此: ()dT C dp D C dx M

T T D K P i P -=-0π

令 P

MC D

K a π=

, 则:

()()dx

dp

D T T a dx T T d i

=-+-00 非齐次线性微分方程的通解为:

dx e dx

dp D e Ce T T ax

i ax ax ---?+=-0

由于: 0=x 时,Q T T =,所以:

()

dx e dx

dp e D e T T T T ax

ax i ax Q ---?

+-+=00 在热油液流中不考虑节流效应,则得到苏霍夫公式:

()

ax Q e T T T T --+=00

单位质量下取:P

GC D

K a π=

适用于流速低、温降大、摩阻热影响较小的情况下。正常运行工况选择此公式。

各参数的意义:

G ——油品的质量流量,kg/s ; M ——油品的单位质量,kg ; C ——油流比热容,J/(kg ·℃); D ——管道外径,m ;

X ——加热输送管道长度,m ;

K ——管道的总传热系数,W/(m 2·℃);

Q T ——加热站出站温度,℃;

T ——距加热站出口x 处油温,℃;

0T ——周围介质温度(埋地管道取管中心埋深处自然地温),℃。

例:一条D=426mm 的埋地热油输送管道,出站油温R T = 50 ℃,油品比热C=200 J/(kg ·℃),管道的总传热系数K=2.1W/(m 2·℃), 油品的质量流量G=10kg/s, 讨论周围介质温度分别为T 0=20℃, T 0=10℃ T 0=0℃ T 0=-10℃。

31040.1200

1014

.3426.01.2-?=???==

P GC D K a π 环境温度T 0=20℃时()x

x

e

e T 33

104.1104.130********--?-?-?+=?-+=

环境温度T 0=10℃时()x

x

e e T 3

3

10

4.1104.14010105010--?-?-?+=?-+=

环境温度T 0=0℃时()x

x

e e T 3

3

10

4.110

4.15000500--?-?-?+=?-+=

环境温度T 0=-10℃时()x

x

e

e T 33104.1104.16010105010--?-?-?+-=?++-=

4·输油管道纵向介质温度变化分布

1.输送管道沿线某一横截面温度T x ℃,自然地温T 0℃,管道内径D1,外径加上

防腐层和保温层为D2. 对埋地管道周围介质传热过程管道最外层至周围土壤的传热,管道的总传热系数K ,土壤导热系数λ,管道埋深h ,外部放热系数2a 。

2.管内流油至地表单位面积的传热量

q= K Δt = K (T x - T 0)

3.将管道与最外层看做一个整体作为内热源,散热量为Φ=q ,将土壤看做包

裹在管道外的圆柱体(管道相对土壤看做一条线),以管道埋深H 为半径r ,大圆柱体最外温度即竖直方向上土壤自然温度T 0。 圆柱坐标中的导热微分方程式:

0)(1=+λ

φ

dr dt r dr d r

对上式两边同乘以r 并积分得:12

21c r dr dt r =+λ

φ

边界条件:r=0 0=dr

dt

; r=r 1 t= T 0

由边界条件得:c 1 =0

两边再积分得:22

41c r t +-=λ

φ

由边界条件得:c 2 =2141r T λφ+

代入得2

024141H T r t λ

φλφ++-=

即就是将土壤看做包裹在管道外的圆柱体中的温度分布 2

2

02241)(41H T r t ααΦ++Φ-

= )(41222

0r H T -Φ

+

=α 随着r 的不同即就是随着管道距土壤的不同距离,竖直方向上温度t 随之变化。

某热油管道工艺设计课程设计

课程设计任务书 设计题目:某热油管道工艺设计 学生姓名 课程名称管道输送工艺课程设计专业班级 地点起止时间17-18周 设计内容及要求 某油田初期产量油180万吨/年,五年后原油产量达到350万吨/年,计划将原油输送到480km外的炼油厂,需要设计一条输油管道,采用密闭输送方式。设计要求:(1)确定管道材质及规格; (2)一期数量(180万吨/年)条件下,设备选型,确定运行方式; (3)布置热站和泵站 (4)一期条件下(180万吨/年)条件下,考虑翻越点,若存在翻越点给出解决措施;(5)绘制一期工程首站工艺流程图(2#)1张; (6)确定二期(350万吨/年)条件下,泵站数及热站数; (7)二期热站、泵站的布置、翻越点校核; (8)静水压以及动水压校核; (9)最小输量; (10)绘制二期工程中站站工艺流程图(2#)1张。 设计参数原油性质表1: 表1某原油性质 含蜡量,% 沥青质,% 密度,kg/m3初馏点,℃凝固点,℃粘度,50℃,mPa.s 36.87 5.78 8548.6 76 30.5 8.9 里程和高程见表2: 表2里程和高程表 里程,km 0 70 146 178 220 287 347 410 480 高程,m 210 270 208 237 170 280 215 250 236 地温资料见表3。 表3 管道经过地区的地温 月份 1 2 3 4 5 6 7 8 9 10 11 12 地温℃ 3 4 6 7 8 9 15 18 13 10 8 6 输送压力7.5MPa,最高输送压力9MPa,末站剩余压头70m,局部摩阻为沿程摩阻的1.2%计,20℃相对密度0.8546,50℃粘度8.9mPa.s。 粘温指数0.036。进站温度控制在38℃。保温层采用黄夹克,厚度35mm。土壤导热系数1.1W/(m﹒℃),埋地深度1.5m。最高输送温度68℃,最低输送温度36℃。 进度要求17周:周一上午:9:00-12:00:发任务书,讲解任务书内容和设计要求,然后学生查找相关设计手册,查资料,开始做课程设计;下午:14:00-5:00 答疑,指导; 周二~周四上午:9:00-12:00:个别指导;下午:14:00-5:00 集中答疑、指导;

蒸汽管道温度损失计算及分析

蒸汽管道温度损失计算 及分析 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

bw k p g f C G t t k l t ?-=?)(热水供热管道的温降 1.计算基本公式 温损计算公式为: 式中: g k —管道单位长度传热系数C m w ο?/ p t —管内热媒的平均温度 C ? k t —环境温度C ? G —热媒质量流量s Kg / C —热水质量比热容 C Kg J ??/ l ——管道长度 m 由于计算结果为每米温降,所以L 取1m .管道传热系数为 式中: n a ,w a —分别为管道内外表面的换了系数C m w ο?2/ n d ,w d —分别为管道(含保温层)内外径m i λ—管道各层材料的导热系数 C m w ο?/(金属的导热系数很高,自身热阻很小,可以忽略不计)。 i d —管道各层材料到管道中心的距离m 内表面换热系数的计算 根据的研究结果,管内受迫流动的努谢尔特数可由下式计算: Pr 为普朗特常数查表可得,本文主要针对供水网温度和回水网温度进行查找得: 90摄氏度时Pr=;在75摄氏度时Pr=; 外表面换热系数的计算 由于采用为直埋方式,管道对土壤的换热系数有: 式中: t λ—管道埋设处的导热系数。

t h —管道中心到地面的距离。 3.假设条件: A. 管道材料为碳钢(%5.1≈w ) B. 查表得:碳钢在75和90摄氏度时的导热系数λ都趋近于 C m w ο?/ C.土壤的导热系数t λ= C m w ο?/ D. 由于本文涉及到的最大管径为,所以取t h = E.保温材料为:聚氨酯,取λ= C m w ο?/ F. 保温层外包皮材料是:PVC ,取λ= C m w ο?/ G.在75到90摄氏度之间水的比热容随温度的变化很小,可以忽略不计。 4.电厂实测数据为: 管径为300mm 时,保温层厚度为:50mm ,保温外包皮厚度为:7mm ; 管径为400mm 时,保温层厚度为:51mm ,保温外包皮厚度为:; 管径为500mm 时,保温层厚度为:52mm ,保温外包皮厚度为:9mm ; 管径为600mm 时,保温层厚度为:54mm ,保温外包皮厚度为:12mm ; 蒸汽管道损失理论计算及分析 1、蒸汽管道热损失公式推导 稳态条件下,通过单位长度的蒸汽管道管壁的热流量q 1是相同的。 根据稳态导热的原理,可得出蒸汽保温管道的导热热流量式为: 2、总传热系数及其影响因素分析 总传热系数k 式中:h 1—蒸汽对工作钢管内壁的换热系数 λ1—蒸汽管道各层材料的导热系数 1 1 1 1 1 1 ln 2 1 1 1 ? ? ? ? ? ? ? n i i n i i d d d d h k ?? ?? ?

某热油管道工艺设计.

重庆科技学院 《管道输送工艺》 课程设计报告 学院:石油与天然气工程学院专业班级:油气储运专业08 学生姓名:马达学号: 2008254745 设计地点(单位)重庆科技学院K栋 设计题目:某热油管道工艺设计 完成日期: 2010 年 12 月 30 日 指导教师评语: ___________________________________________________________________________ ___________________________________________________________________________ ______________ 成绩(五级记分制): 指导教师(签字):

摘要 我国原油大部分都属于高粘高凝固点原油,在原油管道输送过程中一般都采取加热输送,目的是为了使管道中的原油具有流动性同时减少原油输送过程中的摩阻损失。热油管道输送工艺中同样要求满足供需压力平衡,在起伏路段设计管道输油关键因素是泵机组的选择和布置,要在满足热油管道输送压力平衡的条件下尽量使管道输送能力增大。 热油管道工艺设计中要根据具体输送原油的性质、年输量等参数确定加热参数,结合生产实际,由经济流速确定经济管径,设计压力确定所使用管材,加热参数确定热站数。然后计算管道水力情况,按照“热泵合一”原则布置泵站位置,选取泵站型号,并校合各泵进出站压力和沿线的压力分布是否满足要求,并按照实际情况调整泵机组组成。最后计算最小输量,确保热油管道运行过程中流量满足最小流量要求,避免管道低输量运行。 关键词:原油加热输送泵站压力平衡输量

管输工艺问答题

1、长输管道由哪两部分组成? 答:输油站和线路 2、长输管道分为哪两类? 答:原油管道和成品油管道 3.长距离输油管道的设计阶段一般分为哪三个阶段? 答:可行性研究、初步设计、施工图设计三个阶段 4、热含蜡原油管道、大直径轻质成品油管道,小直径轻质成品油管道,高粘原油和燃料油管道分别处于哪个流态? 答:热含蜡原油管道、大直径轻质成品油管道:水力光滑区。小直径轻质成品油管道:混合摩擦区。高粘原油和燃料油管道:层流区 5、旁接油罐输油方式的工作特点有哪些? 答:(1)各泵站的排量在短时间内可能不相等;(2)各泵站的进出口压力在短时间内相互没有直接影响。●每个泵站与其相应的站间管路各自构成独立的水力系统; ●上下游站输量可以不等(由旁接罐调节);●各站的进出站压力没有直接联系;●站间输量的求法与一个泵站的管道相同: 6、密闭输油方式的工作特点有哪些? 答:(1)各站的输油量必然相等;(2)各站的进、出站压力相互直接影响。●全线为一个统一的水力系统,全线各站流量相同;●输量由全线所有泵站和全线管路总特性决定; 7、管道纵断面图的横坐标和纵坐标分别表示什么? 答:横坐标表示管道的实际长度,常用的比例为1:10 000~1:100 000。 纵坐标为线路的海拔高程,常用的比例为1:500~1:1 000。 8、管道起点与翻越点之间的距离称为管道的计算长度。不存在翻越点时,管线计算长度等于管线全长。存在翻越点时,计算长度为起点到翻越点的距离,计算高差为翻越点高程与起点高程之差。当长输管道某中间站突然停运时,管道运行参数如何变化? 答:在较短时间内,全线运行参数随时间剧烈变化,属于不稳定流动。(间站停运后流量减少;停运站前面各站的进、出站压力均上升;停运站后面各站的进、出压力均下降。)① c 站停运后,其前面一站(c-1站)的进站压力上升。停运站

天然气物性参数及管线压降与温降的计算

整个计算过程的公式包括三部分: 一.天然气物性参数及管线压降与温降的计算 二.天然气水合物的形成预测模型 三.注醇量计算方法 一.天然气物性参数及管线压降与温降的计算 天然气分子量 标准状态下,1kmol 天然气的质量定义为天然气的平均分子量,简称分子量。 ∑=i i M y M (1) 式中 M —气体的平均分子量,kg/kmol ; y i —气体第i 组分的摩尔分数; M i —气体第i 组分的分子量,kg/kmol 。 天然气密度 混合气体密度指单位体积混合气体的质量。按下面公式计算: 0℃标准状态 ∑= i i M y 14.4221ρ (2) 20℃标准状态 ∑ = i i M y 055 241.ρ (3) 任意温度与压力下 ∑∑= i i i i V y M y ρ (4) 式中 ρ—混合气体的密度,kg/m 3 ; ρi —任意温度、压力下i 组分的密度,kg/m 3; y i —i 组分的摩尔分数; M i —i 组分的分子量,kg/kmol ; V i —i 组分摩尔容积,m 3 /kmol 。 天然气密度计算公式 g pM W ZRT ρ= (5) 天然气相对密度 天然气相对密度Δ的定义为:在相同温度,压力下,天然气的密度与空气密度之比。 a ρρ?= (6) 式中 Δ—气体相对密度; ρ—气体密度,kg/m 3; ρa —空气密度,kg/m 3,在P 0=101.325kPa ,T 0=273.15K 时,ρa =1.293kg/m 3; 在P 0=101.325kPa ,T 0=273.15K 时,ρa =1.293kg/m 3。

因为空气的分子量为28.96,固有 28.96 M ?= (7) 假设,混合气和空气的性质都可用理想气体状态方程描述,则可用下列关系式表示天然气的相对密度 28.96g g g a a pM W M W M W RT pM W M W RT ?= == (8) 式中 MW a —空气视相对分子质量; MW g —天然气视相对分子质量。 天然气的虚拟临界参数 任何气体在温度低于某一数值时都可以等温压缩成液体,但当高于该温度时,无论压力增加到多大,都不能使气体液化。可以使气体压缩成液态的这个极限温度称为该气体的临界温度。当温度等于临界温度时,使气体压缩成液体所需压力称为临界压力,此时状态称为临界状态。混合气体的虚拟临界温度、虚拟临界压力和虚拟临界密度可按混合气体中各组分的摩尔分数以及临界温度、临界压力和临界密度求得,按下式计算。 ∑=i ci i c T y T (9) ∑ =i ci i c P y P (10) ∑= i ci i c y ρρ (11) 式中 T c —混合气体虚拟临界温度,K ; P c —混合气体虚拟临界压力(绝),Pa ; ρc —混合气体虚拟临界密度,kg/m 3; T ci —i 组分的临界温度,K ; P ci —i 组分的临界压力(绝),Pa ; ρci —i 组分的临界密度,kg/m 3; y i —i 组分的摩尔分数。 天然气的对比参数 天然气的压力、温度、密度与其临界压力、临界温度和临界密度之比称为天然气对比压力、对比温度和对比密度。 c r P P P = (12) c r T T T = (13)

输油管道工艺设计

输油管道工艺设计

管道输送工艺设计

目录 1 总论............................................................................. 错误!未定义书签。 1.1 设计依据及原则................................................ 错误!未定义书签。 1.1.1 设计依据 .................................................. 错误!未定义书签。 1.1.2 设计原则 .................................................. 错误!未定义书签。 1.2 总体技术水平.................................................... 错误!未定义书签。 2 输油工艺..................................................................... 错误!未定义书签。 2.1 主要工艺参数.................................................... 错误!未定义书签。 2.1.1 设计输量 .................................................. 错误!未定义书签。 2.1.2 其它有关基础数据 .................................. 错误!未定义书签。 2.2 主要工艺技术.................................................... 错误!未定义书签。 3 工程概况..................................................................... 错误!未定义书签。 4 设计参数..................................................................... 错误!未定义书签。 4.1 管道设计参数.................................................... 错误!未定义书签。 4.2 原油物性 ........................................................... 错误!未定义书签。 4.3 其它参数 ........................................................... 错误!未定义书签。 5 工艺计算..................................................................... 错误!未定义书签。 5.1 输量换算 ........................................................... 错误!未定义书签。 5.2 管径规格选择.................................................... 错误!未定义书签。 5.2.1 选择管径 .................................................. 错误!未定义书签。 5.2.2 选择管道壁厚 .......................................... 错误!未定义书签。 5.3 热力计算 ........................................................... 错误!未定义书签。

管道总传热系数计算18

1管道总传热系数 管道总传热系数是热油管道设计和运行管理中的重要参数。在热油管道稳态运行方案的工艺计算中,温降和压降的计算至关重要,而管道总传热系数是影响温降计算的关键因素,同时它也通过温降影响压降的计算结果。1.1 利用管道周围埋设介质热物性计算K 值管道总传热系数K 指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递的热量,它表示油流至周围介质散热的强弱。当考虑结蜡 层的热阻对管道散热的影响时,根据热量平衡方程可得如下计算表达式: (1-1)1112ln 111ln 22i i n e n w i L L D D D KD D D D ααλλ-+???? ?????=+++????????∑式中:——总传热系数,W /(m 2·℃);K ——计算直径,m ;(对于保温管路取保温层内外径的平均值,对于e D 无保温埋地管路可取沥青层外径);——管道内直径,m ;n D ——管道最外层直径,m ;w D ——油流与管内壁放热系数,W/(m 2·℃);1α ——管外壁与周围介质的放热系数,W/(m 2·℃);2α ——第层相应的导热系数,W/(m·℃);i λi ,——管道第层的内外直径,m ,其中;i D 1i D +i 1,2,3...i n =——结蜡后的管内径,m 。L D 为计算总传热系数,需分别计算内部放热系数、自管壁至管道最外径K 1α的导热热阻、管道外壁或最大外围至周围环境的放热系数。 2α(1)内部放热系数的确定1α放热强度决定于原油的物理性质及流动状态,可用与放热准数、自然1αu N 对流准数和流体物理性质准数间的数学关系式来表示[47]。r G r P 在层流状态(Re<2000),当时:500Pr

一次管网温降及失水分析

一次管网温降及失水分析 1一次管网温降分析 1.1一次管网温降统计表 宣化集中供热一次管网温降统计表 见附1:一次管网系统实际运行温降分析报告 通过实验分析,宣化一次管网每公里温降为℃,热损失达22%,影响热耗,远高于十二五规划目标值℃,同时也高于设计计算值℃及规范估算值℃。良好的保温效果,热损失可控制在5%。 1.2设计值 根据华北设计院提供,宣化供热一次管网设计计算温降为:℃/km。 1.3供热管网改造规划目标 城市集中供热管网改造“十一五”规划编制提纲改造规划目标及相关地区城市集中供热管网改造“十二五”规划编制提纲改造规划目标,按照直埋管道能够达到的要求,热水管道散热损失应控制在每公里温降小于℃

(参考值)。 1.4规范 C JJ34-2002《城市热力网设计规范》中第11.1.2条:供热介质设计温度高于50℃的热力管道、设备、阀门应保温; 第11.1.4条:管道保温材料在平均工作温度下的导热系数值不得大于; 第11.2.2条:按规定的散热损失,……应选取满足技术条件的最经济的保温层厚度组合。 根据GB4272-92《设备及管道保温技术通则》第5.1.1条规定:对于季节运行工况允许最大散热损失≤116w/m2(保温层外表温度按50℃计)。 根据城镇建设行业标准CJT-140-2001《供热管道保温结构散热损失测试与保温效果评定方法》第5.4.1.2条,对于热水介质供热管道计算全程散热损失公式: Q=(c1t1- c2t2)----------------------公式1 式中:Q---管段的全程散热损失; G---热水质量流量; c1,c2---管段进出口热水比热容; t1,t2---管段进出口热水温度。 1.5计算 由于供热管网热水一次温度一般低于150℃,热水介质的温度对热水的比热容的影响可忽略不计。根据公式:Q=(c1t1- c2t2)可推导出每公里温差计算公式: △T≤Q/水)---------------------公式2 式中:Q---每公里管段的全程散热损失(w/s),Q= A×q(A:每公里管道

《输油管道设计与管理》期末复习题

《输油管道设计与管理》综合复习资料 一、填空题 1、长距离输油管道的设计阶段一般分为(可行性研究)、(初步设计)、(施工图设计)。 2、在管道纵断面图上,横坐标表示(管线长度)、纵坐标表示(高程)。 3、管道运输的主要优点是(运输量大)、(运输距离短)、(密闭安全)。 4、五大运输方式是指铁路、公路、航空、(水运)和(管道)运输。 5、管道输送中所遇到的流态一般为:热输含蜡原油管道为(水力光滑 区)、 小直径的轻质成品油管道为(混合摩擦区)、高粘原油和燃料油管道为(层流)。 6、“旁接油罐”工作的输油系统的优缺点是(便于操作,对自动化水平要求不高)、(增加投资、产生生油品的蒸发损耗和对环境的污染)、(剩余压力不能被应用)。 7、“旁接油罐”工作的输油系统的工作特点是(各泵站的排量在短时间内可能不相等)、(各泵站的进出口压力在短时间内相互没有直接影响)、()。 8、“从泵到泵”工作的输油系统的优点是(统一的水力系统,可以利用剩余压力)、(对自动化水平要求较高)、()。 9、“从泵到泵”工作的输油系统的工作特点是(各站的输油量必然相等)、(各站的进出站压力相互直接影响)、()。 10、翻越点可采用(解析法)和(图解法)两种方法判别。 11、解决动水压力超压的方法有(设立减压站)、()。 12、解决静水压力超压的方法有(增加壁厚)、(自控阀(或减压站)自动截断管道)。 13、翻越点后管道存在不满流的危害有(浪费能量)、(增大水击压 力)。 14、解决翻越点后管道不满流的措施有(换用小管径管路)、(终点或中途设减压站节流)。 15、线路上存在翻越点时,全线所需总压头应按(起点与翻越点)的高程差及(起点与翻越点)的距离计算。 16、选择输油泵机组的原则是()、()、()、()。 17、串联泵的优点是()、()、()、()、()。 18、长输管道工况变化的原因分为()、()。 19、当长输管道某中间站突然停运时,全线输量(减小),停运站前各站的进、出站压力均(增大),停运站后各站的进、出站压力均(减 小)。 20、当管道某处发生堵塞时,全线输量(减小),堵塞点前各站的进、出站压力均(增大),堵塞点后各站的进、出站压力均(减小)。21、当管道某处发生泄漏时,泄漏点前输量(增大),泄漏点后输量(减

供热管网压降温降计算

1.1.1 压降、温降计算公式 根据《动力管道手册》压降计算公式: )(10)(10215.11232 H H Ld L d w p -++?=?ρλ ρ 式中:1.15——安全系数; p ?——介质沿管道内流动总阻力,Pa ; L ——为管道直线长度m ; Ld ——为管道局部阻力当量长度m ; W ——蒸汽管道平均流速m/s ; d ——管道内径mm ; ρ——蒸汽介质平均密度kg/m 3; λ——管道摩擦阻力系数,根据管道绝对粗糙度K 值选择,对过热蒸汽管道,按管道绝对粗糙度K=0.1mm 取用; H2-H1——管道终端与始端的高差,m 。 根据《设备及管道绝热设计导则》GB/T8175-2008 单层保温的管道单位热损失计算公式: Do Di Do In Ta T R R Ta T q ?+-=+-=αλαπ2 1)(21 W/m.h 式中:T ——设备和管道的外表面温度(℃),T 应取管道蒸汽介质的平均温度即22 1t t T +=; t1——管道始端蒸汽温度℃; t2——管道终端蒸汽温度℃;

Ta ——环境温度,根据工程情况定℃; R1——保温层热阻 对管道(m.K )/W ;对平面:(m 2.K)/W ; R2——保温层表面热阻 对管道(m.K )/W ; λ——保温材料制品在平均温度下导热系数W/(m.K ); Do ——保温层外径 m ; Di ——保温层内径 m ; α——保温层外表面与大气的换热系数 W/(m 2.K ),w 36α+= GB/T8175-2008规范推荐 .K W/m .α26311= 此时风速w 为3.5m/s 。 管径计算是按照正常负荷计算管径,同时以最大负荷及最小负荷校核计算后综合选取的。

某热油管道工艺设计课——程设计

重庆科技学院 《油气管道输送技术》课程设计报告 学院:_石油与天然气工程学院_ 专业班级:油储 学生姓名:学号: 设计地点(单位)__ __________ ___ 设计题目:_某热油管道工艺计算____________________ _ 完成日期:年月日 指导教师评语: _______________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________ 成绩(五级记分制):______ __________ 指导教师(签字):________ ________

目录 1 总论 (1) 1.1 设计依据及准则 (1) 1.1.1 设计依据 (1) 1.1.2 设计准则 (1) 1.2 总体技术水平 (1) 2 设计参数 (2) 2.1工程概况 (2) 2.2管道设计参数 (2) 2.3原油的性质 (2) 2.4设计输量 (2) 2.5其他参数 (2) 3 基础工艺计算 (3) 3.1 采用的输送方式 (3) 3.2 管道规格 (3) 3.2.1 平均温度 (3) 3.2.2 油品密度 (3) 3.2.3流量计算 (3) 3.2.4 油品黏度 (4) 3.2.5 管道内径 (4) 3.2.6 管道壁厚和外径 (5) 3.2.7验证经济流速 (6) 3.3热力计算 (7) 3.3.1 确定流态 (7) 3.3.2 总传热系数 (7) 3.3.3 原油比热容 (9) 3.3.4 加热站布站 (9) 3.3.5水力计算 (11) 3.4 设备的选用 (12) 3.4.1泵及原动机的选用 (12) 3.4.2 加热设备选型 (13) 3.5 站场布置 (13)

天然气管道工艺设计

1 绪论 1.1引言 随着人类社会的发展,人类使用的燃料也经历了漫长的禾薪时代和燃煤时代,而现在已进入石油和天然气时代。气体燃料在能源结构中比例的升高,是人们生活水平、生活质量的提高和社会发展进步程度的重要标志。 天然气作为能源和化工原料,在国民经济发展中日益占有更重要的地位。天然气的热值高,介于32~353 / MJ m,不含灰份,扩散性好,容易燃烧完全,不污染环境,运输方便,价格低廉是理想的工业及民用燃料。用在发电方面可使火力发电站的投资较燃煤减少20%左右,而且管理方便,易于实现自动化,使发电成本大大下降;用在炼铁上,可使焦比下降15%以上,获得更好的经济效益;在民用方面,煤炉热效率一般只有20—25%,而一个构造良好的天然气炉灶热效率可达60%以上,而且使用方便,卫生,很受居民欢迎[1]。 天然气的主要成分是甲烷及少量的乙烷、丙烷、丁烷等。甲烷除用作燃料外,还可直接用于生产氢氰酸、二硫化碳、卤化甲烷、炭黑等;经裂解得到乙炔,从乙炔出发可以生产塑料,裂解后得到乙烯、丙烯、丁烯,也可生产合成橡胶、合成纤维、塑料及其他一系列产品。 天然气中有的还含有少量的硫化氢、二氧化碳、氮、氦等,也是极有用途的原料。硫化氢可用于生产硫磺,硫酸,二氧化碳可以制造成冰,氦更是国防和原子能工业需要的产品。 专家预测,在21世纪的能源结构中,天然气将占主导地位。我国天然气资源非常丰富,是今后很长时期内国民经济发展的重要因素之一;也是石油天然气工业新的经济增长点。目前,我国天然气工业已呈现出一派蓬勃发展的景象。管道输送是天然气输送的主要方式,管道输送具有能耗少、运费低、运量大、连续密闭输送、安全性好的优点。近年来天然气的经济和环保价值日益受到各国重视,探明储量已超过了石油,天然气工业发展面临新的机遇。 从以上这些可以发现,天然气不管对居民还是工业都具有很重要的意义。那么如何用最少的费用把天然气从气源地输送到用户集中的城市则是另一个更为严峻的问题。本设计将通过实例来讨论上面提出的问题,

某热油管道工艺设计

1 总论 1.1 设计依据 (1)国家的相关标准、行业的有关标准、规范; (2)相似管道的设计经验; (3)设计任务书。 1.2 设计原则 (1)严格执行现行国家、行业的有关标准、规范。 (2)采用先进、实用、可靠的新工艺、新技术、新设备、新材料,建立新的管理体制,保证工程项目的高水平、高效益,确保管道安全可靠,长期平稳运行。 (3)节约用地,不占或少占良田,合理布站,站线结合。站场的布置要与油区内各区块发展紧密结合。 (4)在保证管线通信可靠的基础上,进一步优化通信网络结构,降低工程投资。提高自控水平,实现主要安全性保护设施远程操作。 (5)以经济效益为中心,充分合理利用资金,减少风险投资,力争节约基建投资,提高经济效益。

2 工程概况 某油田初期产量油180万吨/年,五年后原油产量达到350万吨/年,计划将原油输送到480km外的炼油厂,需要设计一条输油管道,采用密闭输送方式。设计要求: (1)确定管道材质及规格; (2)一期数量(180万吨/年)条件下,设备选型,确定运行方式; (3)布置热站和泵站 (4)一期条件下(180万吨/年)条件下,考虑翻越点,若存在翻越点给出解决措施;(5)绘制一期工程首站工艺流程图(2#)1张。 2.1设计原始参数 表2.1 管道经过地区的地温 表2.2 里程和高程表 输送压力7.5 MPa,最高输送压力9Mpa,末站剩余压头70m,局部摩阻为沿程摩阻的1.2%计,进站温度控制在38℃,最高输送温度68℃,最低输送温度36℃,20℃相对密度0.8546,50℃粘度8.9mPa.s。 2.2 原油物性 粘温指数0.036 2.3 其它参数 保温层采用黄夹克,厚度35mm,土壤导热系数1.1) W,埋地深度1.5m。 m /(℃

管道温降计算

1管道总传热系数 管道总传热系数K 指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递的热量,它表示油流至周围介质散热的强弱。当考虑结蜡层的热阻对管道散热的影响时,根据热量平衡方程可得如下计算表达式: 1 112ln 111 ln 22i i n e n w i L L D D D KD D D D ααλλ-+???? ?????=+++???????? ∑ (1-1) 式中:K ——总传热系数,W/(m 2·℃); e D ——计算直径,m ; (对于保温管路取保温层内外径的平均值,对于无保温埋地管路可取沥青层外径); n D ——管道内直径,m ; w D ——管道最外层直径,m ; 1α——油流与管内壁放热系数,W/(m 2·℃); 2α——管外壁与周围介质的放热系数,W/(m 2·℃); i λ——第i 层相应的导热系数,W/(m·℃); i D ,1i D +——管道第i 层的内外直径,m ,其中1,2,3...i n =; L D ——结蜡后的管内径,m ; L λ——所结蜡导热系数。 为计算总传热系数K ,需分别计算内部放热系数1α、自管壁至管道最外径的导热热阻、管道外壁或最大外围至周围环境的放热系数2α。 (1)内部放热系数1α的确定 放热强度决定于原油的物理性质及流动状态,可用1α与放热准数u N 、自然对流准数r G 和流体物理性质准数r P 间的数学关系式来表示。 在层流状态(Re<2000),当500Pr ?Gr 时:

输油管道设计与管理复习题

输油管道设计与管理复习题 1、长距离输油管道的设计阶段。 2、在管道纵断面图上,横坐标和纵坐标各表示什么? 3、管道运输的主要优点。 4、五大运输方式指的是什么? 5、管道输送的常见流态。 6、“旁接油罐”工作的输油系统的优缺点。 7、“旁接油罐”工作的输油系统的工作特点。 8、“从泵到泵”工作的输油系统的优点。 9、“从泵到泵”工作的输油系统的工作特点。 10、翻越点的判别方法。 11、解决动水压力超压的方法。 12、解决静水压力超压的方法。 13、翻越点后管道存在不满流的危害。 14、解决翻越点后管道不满流的措施。 15、线路上存在翻越点时,全线所需总压头应按什么计算? 16、如果一条长输管道存在翻越点但设计中没有考虑,投产后管道的输量会怎样变化?为什么? 17、选择输油泵机组的原则。 18、串联泵的优点。 19、等温输油管道设计计算的步骤。 20、长输管道工况变化原因及运行工况分析方法。 21、当长输管道某中间站突然停运时,管道运行参数如何变化? 22、当管道某处发生堵塞时,管道运行参数如何变化? 23、当管道某处发生泄漏时,管道运行参数如何变化? 24、当管道系统的工况发生变化时,调节措施可以从哪些方面考虑? 25、改变离心泵特性的主要方法。 26、长输管道稳定性调节的主要方法。 27、长输管道输量调节的方法主要。 28、影响等温输油管道水力坡降的主要因素。 29、热油管不同于等温管的特点。 30、影响热油管道轴向温降的主要因素。 31、轴向温降公式的用途。 32、运行中反算总传热系数的目的是什么?如何根据总传热系数的变化判断管道散热和结蜡情况? 33、确定加热站的进出站温度时应考虑哪些因素? 34、热油管道摩阻计算的特点。 35、热油管道摩阻计算时,为什么要按一个加热站间距计算? 36、影响热油管道水力坡降的主要因素。 37、热油管道摩阻计算的方法。 38、输油站工艺流程设计的原则。 39、热泵站上先炉后泵流程的优点。 40、热泵站上站内循环流程的应用范围。 41、热泵站上反输流程的应用范围。 42、泵站上压力越站流程的应用范围。

管道总传热系数计算

1管道总传热系数 管道总传热系数就是热油管道设计与运行管理中得重要参数。在热油管道稳态运行方案得工艺计算中,温降与压降得计算至关重要,而管道总传热系数就是影响温降计算得关键因素,同时它也通过温降影响压降得计算结果。 1、1 利用管道周围埋设介质热物性计算K 值 管道总传热系数K 指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递得热量,它表示油流至周围介质散热得强弱。当考虑结蜡层得热阻对管道散热得影响时,根据热量平衡方程可得如下计算表达式: 1112ln 111ln 22i i n e n w i L L D D D KD D D D a a l l -+轾骣犏琪桫犏=+++犏犏犏臌? (1-1) 式中:K ——总传热系数,W /(m 2·℃); e D ——计算直径,m ;(对于保温管路取保温层内外径得平均值,对于无保温埋地管路可取沥青层外径); n D ——管道内直径,m ; w D ——管道最外层直径,m ; 1α——油流与管内壁放热系数,W/(m 2·℃); 2α——管外壁与周围介质得放热系数,W/(m 2·℃); i λ——第i 层相应得导热系数,W/(m·℃); i D ,1i D +——管道第i 层得内外直径,m ,其中1,2,3...i n =; L D ——结蜡后得管内径,m 。 为计算总传热系数K ,需分别计算内部放热系数1α、自管壁至管道最外径得 导热热阻、管道外壁或最大外围至周围环境得放热系数2α。(1)内部放热系数1α得确定 放热强度决定于原油得物理性质及流动状态,可用1α与放热准数u N 、自然对流准数r G 与流体物理性质准数r P 间得数学关系式来表示[47]。在层流状态(Re<2000),当Pr 500Gr

原油长输管道初步设计说明计算书

绪论 原油的运输作为能源利用技术的重要一环,越来越受到重视,而其中管道运输与铁路、水路、公路、航空相比,因其输送距离长、建设速度快、占地少、管径大、输量高、能耗低、不污染环境、受地理及气象条件影响小等优点,而得到快速发展,已成为世界主要的原油输送方法[1]。 原油按其油品性质来分,可以将原油分为轻质原油和高粘易凝原油,后者还可以分为含蜡量较高的含蜡原油和含胶质、沥青质较高高粘重质原油(即稠油)[2]。轻质原油的输送较为容易,一般常规输送工艺就能满足要求。含蜡原油的的凝点较高,管输过程中易出现析蜡、凝管、堵塞等事故,严重影响管输的能力和效率。而高粘重质原油的粘度非常高(通常是几百甚至是几万厘波[3]),因此管路的压降就相当大,这就大大增加了原始基建投资和运行费用。 现在原油管输工艺的种类很多,应用较多、技术比较成熟的传统管输工艺有火焰加热器的加热输工艺、热处理输送工艺、加剂(包括降凝剂、减阻剂、乳化剂)输送工艺[4~13]、稀释输送工艺[14]。另有相对来说应用较少、有待进一步研究开发的现代工艺,有保温结合伴热输送工艺、太阳能加热等特殊加热工艺[15]、低粘液环输送工艺、微波降粘输送工艺[16]、水悬浮输送工艺、气饱和输送工艺、磁处理输送工艺[17]、改质输送工艺[18]、管道内涂输送工艺[19]等。 由于我国生产的原油多属高含蜡、高凝固点、高粘度原油,因此我国多数管道仍采用加热输送。无论从输油成本以及设备投资方面都比常温输送高出很多,并且我国大部分输油管道都建在70年代,为了保证安全运行和提高企业经济效益,旧管输工艺的改进和新建管道先进技术研究开发是当前管输工作的重点。我国从事管道科研人员近年来在这方面取得了较大进展。

输油管道工艺设计

管道输送工艺设计

目录 1 总论 (3) 1.1 设计依据及原则 (3) 1.1.1 设计依据 (3) 1.1.2 设计原则 (3) 1.2 总体技术水平 (3) 2 输油工艺 (4) 2.1 主要工艺参数 (4) 2.1.1 设计输量 (4) 2.1.2 其它有关基础数据 (4) 2.2 主要工艺技术 (4) 3 工程概况 (4) 4 设计参数 (4) 4.1 管道设计参数 (4) 4.2 原油物性 (4) 4.3 其它参数 (5) 5 工艺计算 (5) 5.1 输量换算 (5) 5.2 管径规格选择 (6) 5.2.1 选择管径 (6) 5.2.2 选择管道壁厚 (6) 5.3 热力计算 (7) 5.3.1 计算K值 (7) 5.3.2 计算站间距 (10) 5.4 水力计算 (15) 5.4.1 计算输油平均温度下的原油运动粘度 (15) 5.4.2 判断流态 (16) 5.4.3 计算摩阻 (17) 6 设备选型 (18) 6.1 设备选型计算 (18) 6.1.1 泵的选型 (18) 6.1.2 原动机的选型 (19) 6.1.3 加热设备选型 (19) 6.2 站场布置 (20) 7 最小输量 (22) 8 设计结果 (23) 9 动态技术经济比较(净现值法) (25) 参考文献 (26)

1 总论 1.1 设计依据及原则 1.1.1 设计依据 (1)国家的相关标准、行业的有关标准、规范; (2)相似管道的设计经验; (3)设计任务书。 1.1.2 设计原则 (1)严格执行现行国家、行业的有关标准、规范。 (2)采用先进、实用、可靠的新工艺、新技术、新设备、新材料,建立新的管理体制,保证工程项目的高水平、高效益,确保管道安全可靠,长期平稳运行。 (3)节约用地,不占或少占良田,合理布站,站线结合。站场的布置要与油区内各区块发展紧密结合。 (4)在保证管线通信可靠的基础上,进一步优化通信网络结构,降低工程投资。提高自控水平,实现主要安全性保护设施远程操作。 (5)以经济效益为中心,充分合理利用资金,减少风险投资,力争节约基建投资,提高经济效益。 1.2 总体技术水平 (1)采用高压长距离全密闭输送工艺。 (2)采用原油变频调速工艺。 (3)输油管线采用先进的SCADA系统,使各站场主生产系统达到有人监护、自动控制的管理水平。既保证了正常工况时管道的平稳、高效运行,也保证了管道在异常工况时的超前保护,使故障损失降低到最小。 (4)采用电路传输容量大的光纤通信。给全线实现SCADA数据传输带来可靠的传输通道,给以后实现视频传输、工业控制及多功能信息处理提供了可能。 (5)在线路截断阀室设置电动紧急切断球阀,在SCADA中心控制室根据检漏分析的结果,确定管道泄漏位置,并可及时关闭相应泄漏段的电动紧急切断球阀。 (6)站场配套自成系统。

管输工艺问答题要点

《管输工艺》问答题 1、长输管道由哪两部分组成? 答:输油站和线路 2、长输管道分为哪两类? 答:原油管道和成品油管道 3.长距离输油管道的设计阶段一般分为哪三个阶段? 答:可行性研究、初步设计、施工图设计三个阶段 4、热含蜡原油管道、大直径轻质成品油管道,小直径轻质成品油管道,高粘原油和燃料油管道分别处于哪个流态? 答:热含蜡原油管道、大直径轻质成品油管道:水力光滑区。小直径轻质成品油管道:混合摩擦区。高粘原油和燃料油管道:层流区 5、旁接油罐输油方式的工作特点有哪些? 答:(1)各泵站的排量在短时间内可能不相等;(2)各泵站的进出口压力在短时间内相互没有直接影响。●每个泵站与其相应的站间管路各自构成独立的水力系统; ●上下游站输量可以不等(由旁接罐调节);●各站的进出站压力没有直接联系;●站间输量的求法与一个泵站的管道相同: 6、密闭输油方式的工作特点有哪些? 答:(1)各站的输油量必然相等;(2)各站的进、出站压力相互直接影响。●全线为一个统一的水力系统,全线各站流量相同;●输量由全线所有泵站和全线管路总特性决定; 7、管道纵断面图的横坐标和纵坐标分别表示什么? 答:横坐标表示管道的实际长度,常用的比例为1:10 000~1:100 000。 纵坐标为线路的海拔高程,常用的比例为1:500~1:1 000。 8、管道起点与翻越点之间的距离称为管道的计算长度。不存在翻越点时,管线计算长度等于管线全长。存在翻越点时,计算长度为起点到翻越点的距离,计算高差为翻越点高程与起点高程之差。当长输管道某中间站突然停运时,管道运行参数如何变化?

答:在较短时间内,全线运行参数随时间剧烈变化,属于不稳定流动。(间站停运后流量减少;停运站前面各站的进、出站压力均上升;停运站后面各站的进、出压力均下降。)① c 站停运后,其前面一站(c-1站)的进站压力上升。停运站愈靠近末站( c 越大),其前面一站的进站压力变化愈大。 ②c站停运后,其前面各站的进站压力均上升。距停运站越远,变化幅度越小。 ③停运站前面各站的出站压力均升高,距停运站越远,变化幅度越小 ④c 站后面一站的进站压力下降,且停运站愈靠近首站(c越小),其后面一站的进站压力变化愈大。 ⑤c站停运后,c站后面各站的进站压力均下降,且距停运站愈远,其变化幅度愈小。 ⑥停运站后面一站的出站压力下降。同理可得出停运站后各站的出站压力均下降,且变化趋势与进站压力相同 全线水力坡降线的变化 ①某站停运后,输量下降,因而水力坡降变小,水力坡降线变平,但停运站前后水力坡降仍然相同,即水力坡降线平行。 ②停运站前各站的进出站压力升高,因而停运站前各站的水力坡降线的起点和终点均比原来高(且出站压力升高幅度比进站压力大),且距停运站越近,高得越多。 ③停运站后各站的进出站压力下降,因此停运站后各站间的水力坡降线的起点和终点均比原来低(且出站压力下降幅度比进站压力小) ,且距停运站越近,低得越多。 9、当管道某处发生泄漏时,管道运行参数如何变化? 答:漏油后,漏点前面各站的进出站压力均下降,且距漏点越远的站变化幅度越小。漏点距首站越远,漏点前面一站的进出站压力变化愈大。即:也就是说漏点前面一站的出站压力也下降。漏点后面各站的进出站压力均下降,且漏点距首站愈近,其后面一站的变化幅度愈大。 总之,管道漏油后,漏点前的流量增大,漏点后流量减小,全线各站进出站压力均下降,且距漏点越近的站进出站压力下降幅度愈大。漏点距首站愈远,漏点前一站的压力变化愈大,反之漏点后面一站的进出站压力变化愈大。 10、长输管道输量调节的方法主要有?

相关主题
文本预览
相关文档 最新文档