当前位置:文档之家› 第6章智能聚合物微球

第6章智能聚合物微球

第6章智能聚合物微球

智能材料

?聚合物微球:两种或两种以上的粒子或组分经表面包覆或复合处理 后形成的颗粒

?聚合物微球的聚合物微球的形貌

形貌: raspberry-like currant bun core-shell(a) core-shell(b)细胞—代谢、增殖、兴奋、抑制等细胞膜—交换信息、转换能量、

传运物质、免疫、保护和运动等

智能材料

聚合物微球的特点

避免了单一纳米粒子的团聚问题

具有复合协同多功能效应

使一种微粒表面产生新的物理、化学、机械性能及新的功能降低成本(贵重纳米粒子复合到低廉粒子表面)

提高化学反应速率

聚合物

微球的应用

聚合物微球的应用

药物缓释

IBU:布洛芬(抗炎、镇痛药)

聚合物

微球的应用聚合物微球的应用

药物缓释

PCL:聚己酸内酯,疏水

NIPAM:T>32℃,疏水;T<32 ℃,亲水MBA:亚甲级双丙烯酰胺

主要内容

?微球及粒子设计和制备方法?微囊化微球智能化

?刺激响应性乳液与粉体

?电磁流变液

?生物医用功能高分子微球?分子识别聚合物微球

?分子印迹聚合物微球

聚合物

聚合物微球的制备方法

微球的制备方法

机械化学法液相法

固相法

搅拌混合法

研磨法

干式冲击复合法

表面化学反应法

俗称物理法

层层自组装法(LbL)

多相聚合法

表面sol-gel法

嵌段共聚物组装法

传统乳液聚合法

细乳液聚合

分散聚合

水分散聚合

异相凝聚法

1.机械化学法

1.1.母粒子母粒子母粒子;

2.;2.;2.子粒子子粒子子粒子((包覆粒子包覆粒子)

3.)3.)3.相互作用混合物相互作用混合物相互作用混合物

4.4.4.复合粒子复合粒子机械化学法:俗称物理法俗称物理法((搅拌混合搅拌混合,,研磨研磨,,干式冲击复合干式冲击复合)

)实质:采用机械作用激活超细粉体采用机械作用激活超细粉体((母粒子母粒子))和子粒子和子粒子,

,使其界面间发生 化学反应化学反应化学反应,,以达到改性效果以达到改性效果((机械能转为化学能机械能转为化学能)

)日本东京大学Honda 教授和南京理工大学超细粉体与表面科学技术研究所

机械化学法

机械化学法形成复合粒子的形态机械化学法形成复合粒子的形态:

:六方紧密包覆六方紧密包覆 随意包覆随意包覆随意包覆 理想随意包覆

理想随意包覆机械化学法优点: 处理时间短,反应过程易控制,可连续批量生产 缺点: ①容易造成无机粒子晶形破坏

②包覆不均匀,一般为随意包覆

③母粒子一般为亚微米级到微米级

④两种粒子都要事先准备,工艺稍繁琐

2.液相法

异相凝聚法))

液相法((异相凝聚法

异相凝聚法基本原理:带有不同电性的超细粒子会相互吸引而凝聚

条件:①一种超细粒子的粒径比另一种异号电荷的超细粒子粒径小得多

②通过调节p H值或事先制备不同表面电荷的粒子

缺点: ①结合不够牢固,一般如果包覆粒子玻璃化转变温度Te

②固含量较低

液相法液相法(

(LbL 法) 层层自组装法层层自组装法((LbL ) (PS/SiO 2)为例: 以均一粒径的PS PS微球作为模板,首先在其表微球作为模板,首先在其表面吸附三层电解(PDAD/PSS/PDAD PDAD/PSS/PDAD))组成的薄膜,最外层为带正电的PDAD 表面表面,,有利于带负电荷的二氧化硅纳米粒子的吸附硅纳米粒子的吸附. . . 反复进行反复进行一正一负的包覆操作一正一负的包覆操作,,就得到多层核层核--壳结构的复合微球。进一步煅烧或者溶剂刻蚀除去步煅烧或者溶剂刻蚀除去PS PS PS模模板粒子板粒子,,即可得到空心SiO 2微球微球..

液相法

液相法((LbL法制备PS/SiO2)

PS模版及吸附了一层,两层,五层纳米SiO2粒子的复合微球不同厚度SiO

2

空球

液相法

液相法((LbL法-直接吸附前驱体

直接吸附前驱体))

传统LbL法多次离心-水洗过程

有机/无机复合微球

直接吸附无机前驱体

简化过程

无机前驱体对水敏感

无机前驱体对水不敏感

液相法

直接吸附前驱体))液相法((LbL法-直接吸附前驱体

液相法液相法((LbL 法-直接吸附前驱体直接吸附前驱体))950℃煅烧,锐钛型TiO 2折光指数n=2.6-2.9

450℃煅烧, 晶红石型TiO 2折光指数n=2.5

前驱体溶于水:[CH 3CH(O)CO 2NH 4]2Ti(OH)2

液相法

直接吸附前驱体))液相法((LbL法-直接吸附前驱体前驱体对水敏感:钛酸正丁酯

Remarks on LbL method

①:可得到不同尺寸与厚度的有机可得到不同尺寸与厚度的有机-

-无机纳米复合微球和 空球空球空球((尺寸由模版粒子粒径控制尺寸由模版粒子粒径控制,,厚度由包覆层数决定厚度由包覆层数决定)

)②:除了单分散微球可作为模板粒子除了单分散微球可作为模板粒子,,其他不规则形状固其他不规则形状固

体颗粒也可作为模板粒也可作为模板((包埋药物、香精等包埋药物、香精等)

)③:可得到不同组分的有机可得到不同组分的有机--无机复合微球无机复合微球((聚合物聚合物/

/无机 氧化物氧化物氧化物,,聚合物聚合物//金属纳米粒子等金属纳米粒子等)

)④:离心离心--水洗水洗--分离过程繁琐复杂分离过程繁琐复杂((国外为机械手操作国外为机械手操作)

)

多相聚合法(传统乳液聚合)

通过改变工艺,聚合

条件,可得不同形态

的有机-无机纳米复

合微球

多相聚合法(细乳液聚合)

细乳液聚合原理

细乳液聚合原理::液滴成核

多相聚合法

分散聚合))

多相聚合法((分散聚合

S ol-gel法制备纳米

SiO2:EtOH/H2O中

为稳定剂,,St发

PVP为稳定剂

生分散聚合

a:a: 70nm

b:120nm

c:350nm

c:350nm

d:630nm

常用高分子聚合物名称缩写 中英文对照

常用高分子聚合物名称缩写 塑料原料名称中英文对照表(无忧塑料网https://www.doczj.com/doc/d21237479.html,版权所有) 塑料类别俗称中文学名英文学名英文简称主要用途 热 塑 性 塑 料 聚苯乙烯类硬胶通用聚苯乙烯General Purpose Polystyrene PS灯罩、仪器壳罩、玩具等 不脆胶高冲击聚苯乙烯High Impact Polystyrene HIPS日用品、电器零件、玩具等 改性聚苯乙烯类ABS料丙烯腈-丁二烯-苯乙烯Acrylonitrile Butadiene Styrene ABS电器用品外壳,日用品,高级玩具,运动用品 AS料(SAN料)丙烯腈-苯乙烯Acrylonitrile Styrene AS(SAN)日用透明器皿,透明家庭电器用品等 BS(BDS)K料丁二烯-苯乙烯Butadiene Styrene BS(BDS)特种包装,食品容器,笔杆等 ASA料丙烯酸-苯乙烯-丙烯睛Acrylonitrile Styrene acrylate copolymer ASA适于制作一般建筑领域、户外家具、汽车外侧视镜壳体 聚丙烯类PP(百折胶)聚丙烯Polypropylene PP包装袋,拉丝,包装物,日用品,玩具等 PPC氯化聚丙烯Chlorinated Polypropylene PPC日用品,电器等 聚乙烯类LDPE(花料,筒料)低密度聚乙烯Low Density Polyethylene LDPE包装胶袋,胶花,胶瓶电线,包装物等 HDPE(孖力士)高密度聚乙烯High Density Polyethylene HDPE包装,建材,水桶,玩具等 改性聚乙烯类EVA(橡皮胶)乙烯-醋酸乙烯脂Ethylene-Vinyl Acetate EVA鞋底,薄膜,板片,通管,日用品等 CPE氯化聚乙烯Chlorinated Polyethylene CPE建材,管材,电缆绝缘层,重包装材料 聚酰胺尼龙单6聚酰胺-6Polyamide-6PA-6轴承,齿轮,油管,容器,日用品 尼龙孖6聚酰胺-66Polyamide-66PA-66机械,汽车,化工,电器装置等 尼龙9聚酰胺-9Polyamide-9PA-9机械零件,泵,电缆护套 尼龙1010聚酰胺-1010Polyamide-1010PA-1010绳缆,管材,齿轮,机械零件 丙烯酸脂类亚加力聚甲基丙烯酸甲脂Polymethyl Methacrylate PMMA透明装饰材料,灯罩,挡风玻璃,仪器表壳 丙烯酸脂共聚物改性有机玻璃372#,373#甲基丙烯酸甲脂-苯乙烯Polymethyl Methacrylate-Styrene MMS高抗冲要求的透明制品 甲基丙烯酸甲脂-乙二烯Methyl Methacrylate-Butadiene MMB机器架壳,框及日用品等

聚合物微球深部调剖剂

聚合物微球深部调剖剂技术方案及说明 在油田注水开发过程中,由于地层非均质性的存在,注入水沿高渗层突进,油井产水率逐年上升。在水驱和聚合物驱过程中,注入水和聚合物溶液沿高渗透层不均匀推进,纵向上形成单层突进,横向上形成舌进,造成注入水和聚合物溶液提前突破,致使中低渗透层波及程度低、驱油效果差,严重影响了水驱和聚合物驱的开发效果,注水井调剖、油井堵水已成为油田稳产增产的重要措施。但随着常规调堵措施轮次的增加,近井地带剩余油饱和度下降,增油效果变差。只有通过深部调堵才能更有效地调整、改善油藏的非均质性,从而提高注入液体积波及系数,提高注水采油阶段的原油采收率。目前,现有深部调剖存在无机堵剂易沉淀,不能进入地层深部封堵;可动弱凝胶交联不可控性、成本高;水膨体聚合物凝胶颗粒大、存在注入深度与封堵强度之间的矛盾、破胶较快等缺点,导致现有调剖技术的深部调剖效果不佳。 针对如上情况,我公司开发了以AMPS、AM、氢氧化钠、特殊交联剂、司班、吐温、引发剂等合成的聚合物微球深部调剖剂。该聚合物微球深部调剖剂依靠纳米/微米级聚合物微球遇水膨胀来逐级封堵地层孔喉实现其深部调剖堵水的目的。该聚合物微球最外层是水化层,使微球在水中稳定存在,不会沉淀;微球具有弹性及变形性。由于聚合物微球机械封堵位置为渗水通道的孔喉,大幅度提高微球的使用效率。由于聚合物微球的初始尺寸小,且水相中呈溶胶状态,是稳定体系,可以实现进入地层深部。 该产品作为一种新型聚合物微球深部调剖剂,具有以下技术优势: 1、各项指标均达到标准要求 (1)外观:棕黄色半透明均相液体; (2)固含量≥45.0%; (3)密度(25℃):0.95—1.05g/cm3;

聚合物反应工程基础知识总结

聚合物反应工程基础知识总结 第一章(填空、选择、简答) 1.聚合物反应和聚合物生产的特点: ①反应机理多样,动力学关系复杂,重现性差,微量杂质影响大。 ②除了要考虑转化率外,还要考虑聚合度及其分布,共聚物组成及其分布和序列分布,聚合物结构和性能等。 ③要考虑反应时候的聚合物流动、混合、传热、传质等问题。 ④要考虑反应器放大的问题。 2.本课程研究内容: 1)聚合物反应器的最佳设计。 2)进行聚合反应操作的最佳设计和控制。 第二章(所有题型) 化学反应器:完成化学反应的专门容器或设备。 1、反应器分类: 1)按物料相态分类 2)按结构型式分类

3)按操作方式分类 间歇反应器:在反应之前将原料一次性加入反应器中,直到反应达到规定的转化率,即得反应物,通常带有搅拌器的釜式反应器。优点是:操作弹性大,主要用于小批量生产。 连续操作反应器:反应物连续加入反应器产物连续引出反应器,属于稳态过程,可以采用釜式、管式和塔式反应器。优点是:适宜于大规模的工业生产,生产能力较强,产品质量稳定易于实现自动化操作。 半连续操作反应器:预先将部分反应物在反应前一次加入反应器,其余的反应物在反应过程中连续或断连续加入,或者在反应过程中将某种产物连续地从反应器中取出,属于非稳态过程。优点是:反应不太快,温度易于控制,有利于提高可逆反应的转化率。 (PS:造成三种反应器中流体流动型态不同是由于物料在不同反应器中的返混程度不一样。返混:是指反应器内不同年龄的流体微元之间的混合,返混代表时间上的逆向混合。) 2、连续反应器中物料流动型态 平推流反应器: ⑴各物料微元通过反应器的停留时间相同。 ⑵物料在反应器中沿流动方向逐段向前移动,无返混。 ⑶物料组成和温度等参数沿管程递变,但是每一个截面上物料组成和温度等参数在时间进程中不变。 ⑷连续稳态操作,结构为管式结构。 理想混合流反应器: ⑴各物料微元在反应器的停留时间不相同。 ⑵物料充分混合,返混最严重。 ⑶反应器中各点物料组成和温度相同,不随时间变化。

高分子聚合物改性概述

高分子聚合物改性概述 1概述 高分子聚合物作为20世纪发展起来的新材料,因其综合性能优越、成形工艺相对简便以及应用领域极其广泛,因而获得了较为快速的发展。 然而.高分子材料又有诸多需要克服的缺点。以塑料为例,有许多塑科品种性脆而不耐冲击,有些耐热性差而不能在高温下使用。还有一些新开发的耐高温聚合物又因为加工流动性差而难以成形。再以橡胶为例,提高强度、改善耐老化性能、改善耐油性等都是人们关注的问题,诸如此类的同题都要求对聚合物进行改性。用以强化或展现聚合物某些或某一特定性能为目标的工艺方法.通称为聚合物改性(poly-mermodification)。可以说,聚合物科学与工程这门学科就是在不断对聚合钧进行改性中发展起来的。聚合物改性使聚合物材料的性能大幅度提高,或者被赋予新的功能,进一步拓克了高分子聚合物的应用领域.大大提高了聚合物的工业应用价值。 聚合物的改性方法多种多样,总体上可划分为共混改性、填充改性及纤维增强复合改性、化学改性、表面改性及其他方法改性。 聚合物改性的目标如下。

1)功能性使某一聚合物具有特定的功能性,而成为功能高分子材料,如磁性高分子、导电高分子、含能高分子、医用高分子、高分子分离膜等。 2)高性能使聚合物的力学性能.如拉伸强度、弹性模量、抗蠕变、硬度和韧性等,获得全面或大部分提高。 3)耐久性使聚合物的某些性能,如耐热性、耐寒性、耐油性、耐药溶剂性、耐应力开裂性、耐气候性等,得到持久的提高或改善。而成为特种高分子材料。 4)加工性许多高性能聚合物,因其熔融温度高,熔体流动性差,难以成形加工,采用改性技术,可成功地解决这一难题。 5)经济性在不影响使用性能的前题下,采用较低廉的有机材料或无机材料,与聚合物共混或填充改性,可降低材料成本,增强产品竞争能力;另外采用共混或填充改性手段,还可提高某些一般聚合物的工程特性.如采用聚烯烃与PA、ABS、PC等共混,或玻璃纤维填充PA、PP、PC等就是典型的范例。 2共混改性 聚合物的共混改性的产生与发展,与冶金工业的发展颇有相似之处。尽管已经合成的裹台物达到了数千种之多,但能够有工业应用价值的只有几百种,而能够大规模工业生产的以及广泛应用的只有

高分子微球

1.1 高分子微球概述 高分子微球应用几乎涉及到所有领域。高分子微球的起源非常悠久,最早的天然高分子微球来自天然的橡胶树的树液,被称为乳胶(Latex)。也许由于这个原因,最早的合成高分子微球被应用于橡胶制品或橡胶制品的添加剂,这些高分子微球都是由具有弹性的聚合物组成,如聚丁二烯、聚异戊二烯等。以后,随着微球制备技术的发展,聚合物微球又开始被应用于涂料、纸张的表面加工、胶粘剂、塑料添加物、建筑材料等领域。近十几年来,由于高分子微球应用领域又从以往的一般工业应用发展到高尖端技术领域,如医疗和医药领域、生物化学领域和电子信息领域等。在高分子微球应用方面,传统应用领域的产品得到进一步提升,如在涂料应用领域,产品的结构已经从大众化走向个性化,即品种多样化和少量化,但附加价值较高。高分子微球在药物输送系统的应用应该是近年来发展最为迅速的领域,这是因为人们对医疗质量的要求越来越高。 复合高分子微球又称核壳高分子微球,是制备共混高聚物的一种新技术。它是材料科学发展的重要方向,现已从宏观的聚合物共混物发展到亚微观的复合高分子乳胶。近年来,通过复合技术制备复合乳胶以及对复合型乳胶的研究十分活跃。其中,核壳结构乳胶聚合物尤其令人感兴趣。核壳结构乳胶聚合物属于异种高分子复合乳胶,是由性质不同的两种或多种单体分子在一定条件下进行聚合,即种子聚合或多阶段聚合,一般以先聚合的材料为中心,后形成的聚合物为外层,使乳胶粒子的内侧和外侧分别富集不同种成分,通过核壳的不同组合,得到不同形态的非均相乳胶,从而可赋予核、壳各不相同的功能,可获得一般无规共聚物、机械共混物难以具有的优异性能。 核壳高分子的性能与其结构关系十分密切。80年代初,Okubo等提出“粒子设计”的新方法,主要内容包括控制乳胶粒子的形状、异相结构、粒径分布及功能基的分布等。复合乳胶能有效改善材料的力学性能,在塑料、涂料和油漆方面有重要的应用。近年来,人们通过化学和物理的手段(如:交联、包埋、附着和反应)赋予乳胶颗粒以光导、电导、热敏和磁等功能,广泛应用于电子、生物、医药和照相工业[1~5]。 1.2 高分子微球的合成方法 1.2.1 乳液聚合 高分子微球的合成一般采用乳液聚合技术。乳液聚合是有单体和水在乳化剂作用下配制的乳液中进行的聚合,聚合体系主要有单体、水、乳化剂及溶于水的引发剂四种基本组分组成。该技术开发起始于本世纪早期,二十年代末已有和目前生产配方类似的乳液聚合过程的专利出现。二十世纪三十年代初,乳液聚合方

医用高分子微球

河北联合大学Hebei United University 2008级 《医用高分子》课程论文医用高分子微球 姓名陈朝阳 班级08应用化学 学号02 分数

医用高分子微球 陈朝阳 (河北联合大学化工与生物技术学院,唐山,063009) 摘要:本文对高分子微球的结构性能做了简要介绍,综述了生物医用高分子微球载体的制备方法、表面功能化途径以及生物活性物质的固定化方法,并对高分子微球在医学领域的应用作了概要介绍,最后对其性能及制备技术的改进和在生物医用及其他方面的应用发展前景做了简单预想。 关键词:高分子微球;功能化;生物活性物质;固定化;医学应用 高分子微球是指直径在纳米级至微米级形状为球形或其它几何体的高分子材料或高分子复合材料。生物医用高分子微球由载体、键合在微球表面上的功能基以及所固定的生物活性物质三部分组成。可分为天然高分子微球和合成高分子微球两大类。前者有聚多糖类和蛋白质后者多以苯乙烯、乙烯基吡啶、丙烯酸酯、丙烯酰胺及它们的衍生物为原料制备。 由于其分子结构的可设计性吸引了越来越多的科学工作者的兴趣,进而更加快了其开发应用的步伐。可以通过选择聚合单体和聚合水平上来设计合成和制备,并且可以比较方便地控制其尺寸的大小和均一性,使之具有所需要的特定性能与功能。这种微观结构和性能的可设计性,使得高分子微球在对材料特性要求较高的生物医学领域中显示出巨大的发展潜力。 与无机材料微球或来源于生物体的血球等相比,高分子微球除具有固相化载体特有的易于分离和提纯的优点外,还具有廉价、比表面积大、单分散性好、易于制备及功能化以及对生物体相容性可调、有利于研究与生物体成份相互作用等特点。 1. 高分子微球载体的制备 天然高分子微球本身带有反应性基团,可直接用于生物活性物质的固定化。合成高分子微球则必须通过如下方法引入功能基团:(1)功能单体共聚法。即少量功能单体与主单体进行共聚的方法,有时可以加入交联剂以获得交联的微球;(2)微球载体表面修饰法。其中,功能单体共聚由于易控制功能度及交联度,不易产生

高分子聚合物的表征方法及常用设备

高分子聚合物的表征方法及常用设备 高分子聚合物的结构形貌分为微观结构形貌和宏观结构形貌。微观结构形貌指的是高分子聚合物在微观尺度上的聚集状态,如晶态,液晶态或无序态(液态),以及晶体尺寸、纳米尺度相分散的均匀程度等。高分子聚合物的的微观结构状态决定了其宏观上的力学、物理性质,并进而限定了其应用场合和范围。宏观结构形貌是指在宏观或亚微观尺度上高分子聚合物表面、断面的形态,以及所含微孔(缺陷)的分布状况。观察固体聚合物表面、断面及内部的微相分离结构,微孔及缺欠的分布,晶体尺寸、性状及分布,以及纳米尺度相分散的均匀程度等形貌特点,将为我们改进聚合物的加工制备条件,共混组份的选择,材料性能的优化提供数据。 高分子聚合物结构形貌的表征方法及设备包括: 1.偏光显微镜(PLM) 利用高分子液晶材料的光学性质特点,可以用偏光显微镜观测不同高分子液晶,由液晶的织构图象定性判断高分子液晶的类型。 2.金相显微镜 金相显微镜可以观测高分子聚合物表面的亚微观结构,确定高分子聚合物内和微小缺陷。体视光学显微镜通常被用于观测高分子聚合物体表面、断面的结构特征,为优化生产过程,进行损伤失效分析提供重要的信息。 3、体视显微镜 使用体视显微镜时需要注意在取样时不得将进一步的损伤引入受观测的样品。使用金相显微镜时,受测样品需要首先在模具中固定,然后用树脂浇铸成圆柱形试样。圆柱的地面为受测面。受测面在打磨、抛光成镜面后放置于金相显微镜上。高分子聚合物亚微观结构形貌的清晰度取决于受测面抛光的质量。 4.X射线衍射 利用X射线的广角或小角度衍射可以获取高分子聚合物的晶态和液晶态组织结构信息。有关内容参见高分子聚合物的晶态和高分子聚合物液晶态栏目。 5.扫描电镜(SEM) 扫描电镜用电子束扫描聚合物表面或断面,在阴极射线管上(CRT)产生被测物表面的影像。对导电性样品,可用导电胶将其粘在铜或铝的样品座上,直接观察测量的表面;对绝缘性样品需要事先对其表面喷镀导电层(金、银或炭)。 用SEM可以观察聚合物表面形态;聚合物多相体系填充体系表面的相分离尺寸及相分离图案形状;聚合物断面的断裂特征;纳米材料断面中纳米尺度分散相的尺寸及均匀程度等有关信息。 6.透射电镜(TEM) 透射电镜可以用来表征聚合物内部结构的形貌。将待测聚合物样品分别用悬浮液法,喷物法,超声波分散法等均匀分散到样品支撑膜表面制膜;或用超薄切片机将高分子聚合物的固态样样品切成50nm薄的试样。把制备好的试样置于透射电子显微镜的样品托架上,用TEM可观察样品的结构。利用TEM可以观测高分子聚合物的晶体结构,形状,

高分子磁性微球

磁性微球 磁性高分子微球是近年发展起来的一种新型磁性材料,是通过适当方法将磁性无机粒子与有机高分子结合形成的具有一定磁性及特殊结构的复合微球。磁性复合微球不仅具有普通高分子微球的众多特性还具有磁响应性,所以不仅能够通过共聚及表面改性等方法赋予其表面功能基(如-OH、-COOH、-CHO、-NH2,等),还能在外加磁场作用下具有导向功能。目前,磁性复合微球已广泛用于生物医学、细胞学和分离工程等诸多领域。 一、功能化高分子磁性微球 具有生物活性的高分子生物材料是高分子功能团, 可以作为生物活性物质的载体,另一方科学与生命科学之间相互渗透而产生的一个重面又因其具有超顺磁性, 在外加磁场的作用下要的边缘领域, 是近50年以来高分子科学发展能快速、简单的分离, 使其在生物工程(固定化的一个重要特征。功能化的高分子磁性微球一酶)、生物医学(靶向药物、酶标、临床诊断)、细胞方面因其具有能够与生物活性物质反应的特殊学(细胞分离、细胞标记)等领域的研究日益活跃,并显示出较好的应用前景。 (1)功能化磁性微球与生物大分子的作用机理 包覆磁性颗粒的高分子材料带有多种具有反应活性的功能基团, 如羧基(—COOH)、羟基(—0H)、氨基(—N H2)、巯基(—SH)等, 这些功能基团能够与生物高分子(氨基酸、蛋白质、酶等)中的活性基团共价结合, 从而实现磁性微球作为生物载体的功能。同时通过磁性微球的功能基团也可在颗粒表面偶联特异性的靶向分子,如特异性配体、单克隆抗体等, 通过靶向分子与细胞表面特异性受体结合, 在细胞摄粒作用下进入细胞内, 可实现安全有效地用作靶向性药物、基因治疗、细胞表面标记、同位素标记等。 瑞典皇家理工学院的Mikhaylova等[ 3] 利用表面含有的—NH 2功能团的磁性微球运载BSA (牛血清蛋白), 先将功能基团—N H2 修饰到磁性纳米颗粒表面, 然后将BSA 中的—COOH 活化,利用—CO OH 和磁性微球表面的—NH2 形成肽键,从而实现磁性微球对BSA 的运载。红外光谱(FTIR)证实BSA 分子成功地联接到磁性纳米颗粒上;化学分析表明表面功能化的磁性纳米粒子对BSA 的运载能力远远大于未功能化的磁性纳米颗粒;磁性测试表明, 磁性微球表面包覆BS A 分子后, 仍呈超顺磁性,但饱和磁化强度有所降低。沈鹤柏等[ 4] 用微乳液的方法将SiO2 包覆在磁性粒子γ-Fe2 O3 表面, 通过脱水反应在纳米颗粒表面引入3-巯基丙基三甲氧基硅烷(M PTS)进行表面巯基化, 然后使修饰有过硫键的DNA 分子与M P TS 分子中的—SH 配位基形成-S-S-双键, 从而将磁性微球与生物大分子键合在一起。表面增强拉曼光谱(SERS)分析证实DN A 被有效地联接到磁性纳米粒子表面。 (2)磁性微球的功能化方法 磁性微球的功能化主要通过四种方法来实现:共混包埋法、界面吸附法、活化溶胀法和单体聚合法。 ○1共混包埋法:共混包埋法制备磁性高分子微球主要是通过范德华力、氢键、配位键或共价键等作用, 使溶解的高分子链缠绕在磁性纳米颗粒表面, 形成高分子包覆的磁性微球。Bahar 等[ 20] 通过共混包埋法将悬浮有Fe3 O4 的油相倒入水相, 经搅拌后在室温下蒸发出油相溶剂氯仿, 制得带有反应性醛基的磁性聚苯乙烯微球。 ○2界面吸附法是利用纳米颗粒本身的表面效应来制备磁性微球的一种方法。纳米颗粒由于表面原子的周围缺少相邻的原子, 导致了表面原子的晶体场环境和结合能与内部的原子不同, 具有很高的化学活性;并且, 纳米颗粒表面原子数与总原子数之比随着粒径的减小而急剧增大。这使得纳米颗粒表面能大大增加, 从而比较容易与其它原子相结合而稳定下来。生物大分子大都是两性分子, 因而当与纳米颗粒均匀混合后, 调节溶液的pH 值使生物大分子与纳

各类高分子聚合物的缩写

PA 聚酰胺(尼龙) PA-1010 聚癸二酸癸二胺(尼龙1010) PA-11 聚十一酰胺(尼龙11) PA-12 聚十二酰胺(尼龙12) PA-6 聚己内酰胺(尼龙6) PA-610 聚癸二酰乙二胺(尼龙610) PA-612 聚十二烷二酰乙二胺(尼龙612) PA-66 聚己二酸己二胺(尼龙66) PA-8 聚辛酰胺(尼龙8) PA-9 聚9-氨基壬酸(尼龙9) PAA 聚丙烯酸 PAAS 水质稳定剂 PABM 聚氨基双马来酰亚胺 PAC 聚氯化铝 PAEK 聚芳基醚酮 PAI 聚酰胺-酰亚胺 PAM 聚丙烯酰胺 PAMBA 抗血纤溶芳酸 PAMS 聚α-甲基苯乙烯 PAN 聚丙烯腈 PAP 对氨基苯酚 PAPA 聚壬二酐

PAPI 多亚甲基多苯基异氰酸酯 PAR 聚芳酰胺 PAR 聚芳酯(双酚A型) PAS 聚芳砜(聚芳基硫醚) PB 聚丁二烯-[1,3] PBAN 聚(丁二烯-丙烯腈) PBI 聚苯并咪唑 PBMA 聚甲基丙烯酸正丁酯 PBN 聚萘二酸丁醇酯 PBR 丙烯-丁二烯橡胶 PBS 聚(丁二烯-苯乙烯) PBS 聚(丁二烯-苯乙烯) PBT 聚对苯二甲酸丁二酯 PC 聚碳酸酯 PC/ABS 聚碳酸酯/ABS树脂共混合金 PC/PBT 聚碳酸酯/聚对苯二甲酸丁二醇酯弹性体共混合金PCD 聚羰二酰亚胺 PCDT 聚(1,4-环己烯二亚甲基对苯二甲酸酯) PCE 四氯乙烯 PCMX 对氯间二甲酚 PCT 聚对苯二甲酸环己烷对二甲醇酯 PCT 聚己内酰胺

PCTEE 聚三氟氯乙烯 PD 二羟基聚醚 PDAIP 聚间苯二甲酸二烯丙酯PDAP 聚对苯二甲酸二烯丙酯PDMS 聚二甲基硅氧烷 PE 聚乙烯 PEA 聚丙烯酸酯 PEAM 苯乙烯型聚乙烯均相离子交换膜PEC 氯化聚乙烯 PECM 苯乙烯型聚乙烯均相阳离子交换膜PEE 聚醚酯纤维 PEEK 聚醚醚酮 PEG 聚乙二醇 PEHA 五乙撑六胺 PEN 聚萘二酸乙二醇酯 PEO 聚环氧乙烷 PEOK 聚氧化乙烯 PEP 对-乙基苯酚聚全氟乙丙烯薄膜PES 聚苯醚砜 PET 聚对苯二甲酸乙二酯 PETE 涤纶长丝 PETP 聚对苯二甲酸乙二醇酯

聚合物化学反应

第七章聚合物化学反应 一、名称解释 1. 聚合物化学反应:研究聚合物分子链上或分子链间官能团相互转化的化学反应过程。聚合物的化学反应根据聚合物的聚合度和基团的变化(侧基和端基)可分为相似转变、聚合物变大的反应及聚合物变小的反应。 2. 功能高分子:是指具有传递、转换或储存物质、能量可信息的高分子,其结构特征是聚合物上带有特殊功能基团,其中聚合物部份起着载体的作用,不参与化学反应。按功能的不同,可分为化学功能高分子、物理功能高分子和生物功能高分子。 3. 高分子试剂:也叫反应性高分子,即高分子试剂上的基团起着化学试剂的作用,它是各类高分子的化学试剂的总称。 4. 高分子催化剂:将能起催化剂作用的基团接到高分子母体上,高分子本身不发生变化,但能起催化低分子反应。这种催化剂称作高分子催化剂, 5. 低分子基质:低分子反应物中的特定基团与保护试剂作用后受到保护不再参与主反应,这种受到保护的低分子反应物称作低分子基质。 6. 高分子基质:将要准备反应的低分子化合物以共价键形式结合到聚合物载体上,得到高分子基质。 7. 接枝:通过化学反应,在某些聚合物主链上接上结构、组成不同的支链,这一过程称为接枝,形成的产物称为接枝共聚物。 8. 嵌段:形成嵌段共聚物的过程。 9. 扩链:分子量不高的聚合物,通过适当的方法,使多个大分子连接在一起,分子量因而增大的过程称为扩链。

10. 交联:聚合物在光、热、辐射、或交联剂作用下,分子链间形成共价键,产生凝胶或不溶物,这一过程称为交联。交联有化学交联和物理交联。交联的最终目的是提高聚合物的性能。如橡胶的硫化等。 11. 交联剂:使聚合物交联的试剂。 12. 降解:降解是聚合度分子量变小的化学反应的总称。它是高分子链在机械力、热、超声波、光、氧、水、化学药品、微生物等作用下,发生解聚、无规断链及低分子物脱除等反应。 13. 老化:聚合物及其制品在加工、贮存及使用过程中,物理化学性质及力学性能逐步变坏,这种现象称老化。橡胶的发粘、变硬、或龟裂,塑料制品的变脆、破裂等都是典型的聚合物老化现象。导致老化的物理因素是热、光、电、机械应力等。化学因素是氧、酸、碱、水以及生物霉菌的侵袭,实际上,老化是上述各因素的综合作用的结果。 14. 聚合物的无规降解:聚合物在热的作用下,大分子链发生任意断裂,使聚合度降低,形成低聚体,但单体收率很低(一般小于3%),这种热降解称为无规降解 15. 聚合度相似的化学反应:如果聚合物的化学反应是发生在侧基官能团上,很显然这种化学反应不涉及聚合物大分子的聚合度,反应前后聚合度不变,把这种聚合物的化学反应称为聚合度相似的化学反应。 16. 遥爪高分子:含有反应性末端基团、能进一步聚合的高分子。 二、选择题 1. 下列因素不能使聚合热降低的是(C ) A.取代基的位阻效应B.共轭效应 C.带上电负性强的取代基D.溶剂化 2. 聚合度变大的化学反应是( C ) APVAc的醇解B纤维素硝化C高抗冲PS的制备D离子交换树脂的制备 3. 聚合物热降解得到的单体收率最高的是( B )

第八章 聚合物的化学反应

第八章聚合物的化学反应 一、课程主要内容 本章研究聚合物化学反应的意义和聚合物的化学反应。聚合物的化学反应包括:聚合度相似的化学反应;聚合度变大的化学反应和聚合度变小的化学反应。 通过学习第八章,掌握聚合物可能发生的聚合反应,以便对聚合物进行改性;了解聚合物老化的原因和防止聚合物老化的方法。 二、试题与答案 本章有基本概念题、填空题、选择填空题和简答题。 ㈠基本概念题 ⒈聚合物的化学反应:天然聚合物或由单体经聚合反应合成的聚合物为一级聚合物,若其侧基或端基为反应性基团,则在适当的条件下可发生化学反应,从而形成新的聚合物(为二级聚合物),由一级聚合物变为二级聚合物的化学反应,谓之。 ⒉聚合度相似的化学反应:如果聚合物的化学反应是发生在侧基官能团上,很显然这种化学反应不涉及聚合物的聚合度,反应前后聚合度不变(或相似),将这种聚合物的化学反应称为聚合度相似的化学反应。 ⒊聚合度变大的化学反应:如果聚合物的化学反应是交联、嵌段或接枝等,使聚合物的聚合度变大,将这种聚合物的化学反应称为聚合度变大的化学反应。 ⒋聚合度变小的化学反应:如果聚合物的化学反应是降解(热降解、化学降解等)很显然这种化学反应使聚合物的聚合度变小,将这种聚合物的化学反应称为聚合度变小的化学反应。 ⒌聚合物的老化:聚合物在使用或贮存过程中,由于环境的影响,性能变坏、强度和弹性降低、颜色变暗、发脆或发粘等现象叫聚合物的老化。 ⒍聚合物的无规降解:聚合物在热的作用下,大分子链发生任意断裂,使聚合度降低,形成低聚体,但单体收率很低(一般小于3%),这种热降解称为无规降解。 ⒎聚合物的解聚:聚合物在热的作用下发生热降解,但降解反应是从链的末端开始,降解结果变为单体,单体收率可达90%~100%,这种热降解叫解聚。 ⒏聚合物的侧链断裂:聚氯乙烯和聚偏二氯乙烯加热时易着色,起初变黄,然后变棕,最后变为暗棕或黑色,同时有氯化氢放出。这一过程是链锁反应,连续脱氯化氢的结果使分子链形成大π键或交联,这种热降解称为侧链断裂。 ⒐离子交换树脂:离子交换树脂是指具有反应性基团的轻度交联的体型无规聚合物,利用其反应性基团实现离子交换反应的一种高分子试剂。 ⒑强酸性阳离子交换树脂:磺酸型离子交换树脂其酸性相当H2SO4,为强酸,并且能与水中或溶液中的阳离子(Na+1,Mg+2,Ca+2发生离子交换反应。称磺酸型离子交换树脂为强酸型阳离子交换树脂。 150

磁性高分子微球

知识介绍 基金项目:航空基金资助项目(99G 53074); 作者简介:谢钢(1975— ),男,重庆市人,博士研究生,主要从事磁性功能材料方面的研究。磁性高分子微球 谢 钢1,张秋禹1,李铁虎2 (11西北工业大学化学工程系,西安 710072; 21西北工业大学材料科学与工程系,西安 710072) 摘要:对磁性高分子微球的研究现状进行了综述,详细探讨了目前常用的各种合成制备方法, 并对各种方法的优缺点进行了分析。在此基础上,对磁性高分子微球在细胞分离、有机合成、环境Π 食品微生物检测等领域的最新应用进展及存在的问题进行了分析,指出了该领域今后的研究方向。 关键词:磁性高分子微球;制备;细胞分离;有机合成;微生物检测 磁性高分子微球是指通过适当的方法使有机高分子与无机磁性物质结合起来形成的具有一定磁性及特殊结构的微球。因磁性高分子微球同时兼具高分子微球的众多特性和磁响应性,不但能通过共聚及表面改性等方法赋予其表面功能基(如—OH 、—C OOH 、—CH O 、—NH 2、—SH 等),还能在外加磁场下方便迅速地分离,因此自70年代以来,磁性高分子微球作为一种新型的功能材料,在磁性材料、生物医学、细胞学和生物工程、分离工程,以及隐身技术等诸多领域显示出强大的生命力。 目前有关磁性高分子微球的研究工作主要集中在制备、表征和应用几个方面,也有少量有关磁 性微球宏观物理性能的研究[1,2]。其中有关磁性高分子微球的分类、早期的一些应用等已有较详细 的综述[3~5],本文主要就磁性高分子微球的合成制备方法、研究发展状况及所存在的问题做一介绍。 1 制备方法的分类及研究现状 就目前的研究现状来看,磁性高分子微球按结构可分为三类:一是核为磁性材料,壳为聚合物的核/壳式结构,该类微球研究得最多;二是以高分子材料为核,磁性材料作为壳层的核Π壳式结构;三是内层、外层皆为高分子材料,中间层是磁性材料的夹心式结构。其中研究较多且具有广泛应用前景的主要是第一类磁性高分子微球,因此主要就第一类磁性高分子微球的制备方法及其应用情况进行介绍。 从制备方法来看,主要包括包埋法[6,7]、单体聚合法[8~28]和原位法[29]三类。 1.1 包埋法 包埋法是制备磁性高分子微球最早的一类方法,它是将磁性微粒分散于天然或合成高分子溶

常用高分子材料汇总

常用高分子材料汇总

————————————————————————————————作者:————————————————————————————————日期: 2

常用高分子材料总结 塑料:1、热固性塑料 2、热塑性塑料:①通用塑料(五大通用塑料) ②工程塑料(通用工程塑料特种工程塑料) 工程塑料具有更高的力学强度,能经受较宽的温度变化范围和较苛刻的环境条件,具有较高的尺寸稳定性, 五大通用工程塑料为:聚酰胺、聚碳酸酯、聚甲醛、热塑性聚酯、聚苯醚。 分 类 名称概述性能特点加工性能主要应用 酚醛树脂(PF)酚类和醛类缩聚而 成的合成树脂的总 称。最常用的是苯 酚和甲醛 力学强度高;性能稳定;坚硬耐磨; 耐热、阻燃、耐腐蚀;电绝缘性良好; 尺寸稳定性好;价格低廉;色深,难 于着色 本身很脆,成型时需排气,须加入纤 维或粉末状填料。有层压和模压 电绝缘材料(俗称电 木)、家具零件、日用品、 工艺品、耐酸用的石棉 酚醛塑料 3

热固性塑不饱和聚酯 (UP) 由二元酸(或酸酐) 与二元醇经缩聚而 制得的不饱和线型 热固性树脂 力学强度高,强度接近钢材,可用作 结构材料,可在常温常压下固化 在不饱和聚酯中加入苯乙烯等活性 单体作为交联剂(影响其性能),并 加入引发剂和促进剂,可以在低温或 室温下交联固化形成。 主要用途是玻璃纤维增 强制成玻璃钢,大型化 工设备及管道,飞机零 部件,汽车外壳小型船 艇,透明瓦楞板,卫生 盥洗器皿、 氨 基 塑 料 脲甲醛 树脂UF 氨基模塑料俗称电 玉粉,是由氨基树 脂为基质添加其他 填充剂、脱模剂、 固化剂、颜料等, 经过一定塑化工艺 制成 (UF)坚硬耐刮伤、有较好的耐电 弧性和一定的机械强度,有自熄性、 无臭、无味、耐热性、耐水性比酚醛 塑料稍差,外观美丽鲜艳,耐霉菌, 制造电器开关、插座、照明器具 (MF)的吸水性比脲醛树脂要低, 而且耐沸水煮,耐热性也优于脲醛塑 料一般可在150-200℃范围内使用, 并有抗果汁、洒类饮料的沾污,密胺 餐具而出名 (UMF)制品具有优良 的耐电弧性能和很高的 机械强度,以及良好的 电绝缘性和耐热性;耐 电弧防爆电器设备配 件,要求高强度的电器 开关和电动工具的绝缘三聚氰 胺甲醛 树脂MF 脲三聚 氰胺甲 4

磁性聚合物微球研究进展_邓勇辉

磁性聚合物微球研究进展 邓勇辉1,汪长春1,杨武利1,胡建华1,金 岚1,褚轶雯1,府寿宽1*,沈锡中2 (1.复旦大学高分子科学系,教育部聚合物分子工程实验室,上海 2000433; 2.复旦大学附属中山医院消化科,上海 200032) 摘要:磁性聚合物微球作为一种新型功能材料,在许多领域尤其是生物医药、生物工程等方面具有广阔的应用前景。本文综述了近年来磁性聚合物微球的制备及应用等方面的最新进展。 关键词:磁性聚合物微球;制备;应用;研究进展 引 言 磁性聚合物微球是一种由磁性材料和非磁性聚合物材料复合而成的新型功能微球,其中磁性成分主要是铁、钴、镍,或者它们的氧化物以及合金等,非磁性聚合物材料可以是合成聚合物如聚苯乙烯和各种丙烯酸树脂或天然聚合物蛋白质、淀粉、葡聚糖、琼脂糖等,也可以是无机聚合物如二氧化硅等。以无机聚合物作为非磁性组分的磁性聚合物微球方面的文献报道得不多,因此本文着重综述有机-无机复合的磁性聚合物微球,并将这类微球称为磁性聚合物微球。磁性聚合物微球通常由无机磁性材料和有机聚合物材料构成,一方面,它具有有机聚合物微球的众多特性,如可通过共聚、表面改性等途径,赋予其表面多种反应性官能团(如羟基、羧基、氨基、醛基等),通过吸附或共价键合的方式与酶、细胞、药物等生物活性物质结合;另一方面,由于它具有超顺磁性可以很方便地在外加磁场作用下从介质中分离出来。因此,磁性聚合物微球被广泛地应用作分离材料和载体,如免疫分析、固定化酶、靶向给药、细胞分离等。另外磁性聚合物微球也被广泛应用于磁共振成影、磁记录、环境保护以及磁性塑料和磁性橡胶等领域。 1 磁性聚合物微球的分类 磁性聚合物微球按照其结构特点可以大致分为以下几种类型,第一类,核壳式,即内核是无机磁性颗粒,外壳是聚合物,这种复合微球中,无机磁性颗粒完全被聚合物包埋,形成典型的核壳结构,如图1A所示;第二类,反核壳式,即内核是聚合物,外壳是无机磁性颗粒,在这类复合微球中无机颗粒通过静电作用或络合等方式沉积在聚合物微球的表面从而形成无机磁性壳层,如图1B所示;第三类,夹心式,即内外层均为聚合物,中间为无机磁性颗粒,这类复合微球往往是通过对第二类微球再包裹一层聚合物而制备的,如图1C所示;第四类,弥散式,即无机磁性颗粒遍布在聚合物微球中,如图1D所示,这类微球最早是由荷兰科学家Ugelstad等报道的。 2 磁性纳米颗粒(磁流体)的制备 磁性纳米颗粒可以是金属铁、镍、钴或其合金或其氧化物等,由于镍、钴等存在毒性,在生物、医药等领域的应用受到严格限制,而铁的氧化物(Fe3O4,γ-Fe2O3)因其低毒(LD50约2000mg kg体重,远远高于目前临床应用剂量)、易得等特点通常被用作磁性聚合物微球的磁性组分。制备磁性纳米颗粒的方法主要 基金项目:NSFC(No50173005,50343019)和STCS M(03JC14012)资助项目; 作者简介:邓勇辉(1977-),男,江西临川人,复旦大学高分子科学系博士研究生,研究方向为磁性聚合物微球的制备及其应用。 *通讯联系人E_mail:skfu@https://www.doczj.com/doc/d21237479.html,.

常用聚合物名称缩写

常用高分子聚合物名称缩写 PA 聚酰胺(尼龙) PA-1010 聚癸二酸癸二胺(尼龙1010) PA-11 聚十一酰胺(尼龙11) PA-12 聚十二酰胺(尼龙12) PA-6 聚己酰胺(尼龙6) PA-610 聚癸二酰乙二胺(尼龙610) PA-612 聚十二烷二酰乙二胺(尼龙612) PA-66 聚己二酸己二胺(尼龙66) PA-8 聚辛酰胺(尼龙8) PA-9 聚9-氨基壬酸(尼龙9) PAA 聚丙烯酸 PAAS 水质稳定剂 PABM 聚氨基双马来酰亚胺 PAC 聚氯化铝 PAEK 聚芳基醚酮 PAI 聚酰胺-酰亚胺 PAM 聚丙烯酰胺 PAMBA 抗血纤溶芳酸 PAMS 聚α-甲基苯乙烯 PAN 聚丙烯腈 PAP 对氨基苯酚 PAPA 聚壬二酐 PAPI 多亚甲基多苯基异氰酸酯 PAR 聚芳酰胺 PAR 聚芳酯(双酚A型) PAS 聚芳砜(聚芳基硫醚) PB 聚丁二烯-[1,3]

PBAN 聚(丁二烯-丙烯腈) PBI 聚苯并咪唑 PBMA 聚甲基丙烯酸正丁酯 PBN 聚萘二酸丁醇酯 PBR 丙烯-丁二烯橡胶 PBS 聚(丁二烯-苯乙烯) PBS 聚(丁二烯-苯乙烯) PBT 聚对苯二甲酸丁二酯 PC 聚碳酸酯 PC/ABS 聚碳酸酯/ABS树脂共混合金 PC/PBT 聚碳酸酯/聚对苯二甲酸丁二醇酯弹性体共混合金PCD 聚羰二酰亚胺 PCDT 聚(1,4-环己烯二亚甲基对苯二甲酸酯) PCE 四氯乙烯 PCMX 对氯间二甲酚 PCT 聚对苯二甲酸环己烷对二甲醇酯 PCT 聚己酰胺 PCTEE 聚三氟氯乙烯 PD 二羟基聚醚 PDAIP 聚间苯二甲酸二烯丙酯 PDAP 聚对苯二甲酸二烯丙酯 PDMS 聚二甲基硅氧烷 PE 聚乙烯 PEA 聚丙烯酸酯 PEAM 苯乙烯型聚乙烯均相离子交换膜 PEC 氯化聚乙烯 PECM 苯乙烯型聚乙烯均相阳离子交换膜 PEE 聚醚酯纤维 PEEK 聚醚醚酮

聚合物的化学反应

聚合物化学反应的发展 摘要:本文对聚合物的化学反应的发展进行了概述,主要从聚合物的结构和聚合度变化进行分类介绍,主要分为聚合物的基团反应、接枝、嵌段、扩链、交联、降解方面进行了介绍,并对聚合物的化学反应的发展进行了叙述。 关键词:基团反应;接枝;嵌段;扩链;交联;降解; 研究聚合物分子链上或分子链间官能团相互转化的化学反应过程。聚合物的化学反应根据聚合物的聚合度和基团的变化(侧基和端基)可分为相似转变、聚合物变大的反应及聚合物变小的反应称为聚合物的化学反应。从聚合物的结构和聚合度变化进行分类,聚合物的化学反应大致可以分为聚合物的基团反应、接枝、嵌段、扩链、交联、降解等几大类。 聚合物可以像低分子有机物一样进行许多化学反应,例如氢化、卤化、硝化、磺化、醚化、酯化、水解、醇解等。与有机化学反应相比,聚合物化学反应有四大特点:(1)在低分子有机化学反应中,用化学反应方程式就可以表示反应物和产物之间的变化及其定量关系。但是,聚合物的化学反应虽也可用反应式来表示,其意义却有很大的局限性。(2)通过聚合物的化学反应,制取大分子链中含有同一重复单元的“纯的”高分子,是极为困难的,甚至可以说是不可能的。原因是聚合物的化学反应中,官能团的转化率不可能达到100%,而且在反应过程中,起始官能团和反应各阶段形成的新官能团,往往同时连接在同一个大分子链上。(3)在缩聚反应中建立了官能团等活性概念、在烯类单体聚合时假定了反应中心的活性与链长无关(动力学分析的基础),在研究聚合物化学反应时,就有机官能团反应而言,也不应受链长的影响,即大分子链上官能团的反应能力应与低分子同系物中官能团的反应能力相似。在某些情况下确实如此,但在很多情况下,大分子上官能团的反应速率远低于同类型的低分子。这是因为在高分子反应的许多场合中,由于大分子形状、聚集态和粘度等因素会防碍反应物的扩散,而使聚合物化学反应的速率所有降低。(4)聚合物化学反应过程中,往往会引起聚合度的改变。在聚合物化学反应中,不宜用分子而应该以基团来表述产率或者转化率,基团的活性受许多因素的影响,有物理因素、化学因素等,有时还会出现物理和化学的协同作用。通过高分子链上或分子链间官能团相互转化的化学反应,可以制备具有新的或特殊性能的功能高分子材料,可以在很广的范围内改变天然和合成高分子化合物的性能,扩大应用范围。高分子链参与的化学反应的研究能探索聚合物的化学结构与性能、结构和被破坏的因素之间的规律[1]。 下面将从聚合物的基团反应、接枝、嵌段、扩链、交联、降解方面进行介绍。 1.聚合物的基团反应 聚合物的基团反应是指聚合物的大分子链(主链和支链)上的各种各样能够进行化学反应的官能团所发生的化学反应。聚合物链上的官能团可以进行类似于有机化学中的化学反应,只是受到官能团所处环境的影响较普通的有机化学反应更为复杂,并具有自身的特点。聚合物的基团反应是有机化学反应在高分子化学领域中的应用和发展。 聚合物的基团反应主要有聚二烯烃的加成反应。聚烯烃和聚氯乙烯的氯化、聚醋酸乙烯酯的醇解、纤维素的化学改性等。 聚二烯烃的加成反应是由于二烯类橡胶分子含有双键,可以进行加成反应,若不进行加成反应,大分子链中的双键易氧化和老化,常见的加成方式有加氢反应、氯化和氢氯化等。在加氢反应中关键是寻找加氢催化剂,张彦芳[2]对于Ni-Al-B-O(辛醛)催化体系进行了研究,发现该催化剂具有活性高、稳定性好、A1/B变化范围宽的特点,能灵敏地调节BR的门

高分子微球的制备及应用研究进展_李如

高分子微球的制备及应用研究进展 * 李 如,于良民,高丙娟 (中国海洋大学,海洋化学理论与工程技术教育部重点实验室,山东 青岛 266100) 摘 要:高分子微球材料具有提高材料强度和寿命,以及可作为反应物微存储器、微分离器等很多优良的应用特性。本文综述 了近年来不同尺寸高分子微球的制备工艺以及性能,介绍了其在生物医药、食品工业、废水处理以及涂料领域中的应用进展,并展望 其研究和开发前景。 关键词:高分子微球;制备工艺;应用 R e s e a r c hP r o g r e s s o f P r e p a r a t i o n a n dA p p l i c a t i o no f P o l y m e r M i c r o s p h e r e s * L I R u ,Y UL i a n g -m i n ,G A OB i n g -j u a n (K e y L a b o r a t o r y o f M a r i n e C h e m i s t r y T h e o r y a n d T e c h n o l o g y ,M i n i s t r y o f E d u c a t i o n ,O c e a n U n i v e r s i t y o f C h i n a , S h a n d o n g Q i n g d a o 266100,C h i n a )A b s t r a c t :P o l y m e r m i c r o s p h e r e w i t h l o s s o f e x c e l l e n t p r o p e r t i e s ,s u c h a s i m p r o v i n g m a t e r i a l s t r e n g t h a n d f a t i g u e a n d c a n b e u s e d a s a m i c r o m e m o r y o r m i c r o s e p a r a t o r .P r e p a r a t i o n o f p o l y m e r m i c r o s p h e r e s b y d i f f e r e n t m e t h o d s a n d c h a r a c -t e r i z a t i o n w e r e r e v i e w e d .T h e a p p l i c a t i o n s o f p o l y m e r m i c r o s p h e r e s i nb i o m e d i c a l ,f o o d i n d u s t r y ,w a s t e w a t e r t r e a t m e n t ,a n d c o a t i n g f i e l d s w e r e a l s o i n t r o d u c e d a n d t h e i r b r i g h t f u t u r e s w e r e p r o s p e c t e d f o r f u r t h e r r e s e a r c h a n d d e v e l o p m e n t . K e y w o r d s :p o l y m e r m i c r o s p h e r e ;p r o c e s s i n g m e t h o d s ;a p p l i c a t i o n * 基金项目:国家自然科学基金(批准号:50673085、20060423017、A 1420080191);863计划(2006A A 09Z 224);新世纪人才(N C E T-04-0644;N C E T -06 -0601);基础科研项目资助。作者简介:李如:(1985-),女,硕士研究生,从事环境友好型海洋防污材料的研究。E-m a i l :n o r o y b l @126.c o m 通讯作者:于良民,男,教授,博导,长期从事环保型海洋防污材料的研究开发工作。E-m a i l :y u y a n @o u c .e d u .c n 高分子微球是指直径在纳米级至微米级,形状为球形或其他几何体的高分子材料或高分子复合材料。高分子微球也包含微囊,微囊通常是指微球中间有一个或多个微腔,而且微腔内包埋了某种特殊物质的微球。微球和微囊因其特殊尺寸和特殊结构在许多重要的领域起到了特殊并且关键的作用。 高分子微球的起源非常悠久,最早的天然高分子微球来自天然橡胶树的树液,被称为乳胶(L a t e x )。合成的高分子微球最早被应用于橡胶制品或橡胶制品的添加剂中。以后随着微球制备技术的发展,高分子微球又开始被应用于涂料、纸张的表面加工、胶粘剂、塑料添加物、建筑材料等领域,并且又进一步从一般的工业应用发展到高尖端技术领域,如医疗和医药领域、生物化学领域、电子信息领域等,由此高分子微球和微囊的制备和应用研究又进入了一个新的高潮[1]。 本论文阐述了几种常见微球制备的方法及其在不同领域中的应用,并对其发展前景进行了展望。 1 高分子微球的制备方法 高分子微球的制备方法有很多,如:水热合成法、低温合成 法、分散聚合法、自组装法等。不同方法可得到不同组成、粒径的聚集体,其粒径的分散度也不同。根据制备原料的不同可以分为:以单体为原料的微球制备方法和以聚合物为原料的微球制备方法,本文着重综述了制备原料不同的几种制备方法。 1.1 以单体为原料制备高分子聚合物微球 以单体为原料制备高分子聚合物微球的方法分为乳液聚合、无皂乳液聚合、沉淀聚合、悬浮聚合、微乳聚合、细乳液聚合、以及种子聚合。1.1.1 乳液聚合 乳液聚合是最常用的微球制备方法,一般使用疏水性较强的单体来制备。用乳液聚合法可以较容易得到数十至数百纳米的微球。聚合系统由疏水性单体(如苯乙烯)、水(分散媒体)、乳化剂(如十二烷基硫酸钠)以及水溶性引发剂组成。乳液聚合的主要优点是:聚合速度快、得到的聚合物分子量高(105g /m o l )、 粒径均匀,通常乳液聚合反应在1h 内基本完成。N a g a i [2] 等将乳液聚合限制在硅胶表面,得到了表面覆盖聚合物的复合微球。将其与聚苯乙烯溶液混合后制膜,所得到的膜将兼备硅胶和聚合物的优点,且膜的延伸率和应力增大了2倍。1.1.2 无皂乳液聚合 无皂乳液聚合,是在乳液聚合基础上发展起来的聚合技术,是指体系中完全不含乳化剂或仅含微量乳化剂(低于乳化剂的临界胶束浓度)。它解决了传统乳液聚合后处理难以及乳化剂对产品带来的不良影响;同时降低了生产成本,减轻对环境的负荷。由于无皂聚合体系中无外加乳化剂,聚合和存储过程中微球的稳定性差,因此固含量一般较低,大规模应用于涂料和粘合剂还存在一些问题[3-4]。Y a n a s e 等[5-6]发现磁流体中的纳米磁

相关主题
文本预览
相关文档 最新文档