当前位置:文档之家› 多元函数的极值和最值条件极值拉格朗日乘数法

多元函数的极值和最值条件极值拉格朗日乘数法

拉格朗日条件极值

拉格朗日乘子法的简单证明(不知道对不对) 应用例题:已知有一个体积为a 的铁块。把这个铁块打造成一个长方体,求其表面积s 的极小值。 解:依据题意有如下关系式 )1(a xyz = )2()(2222z y x s ++= 构造函数M 如下: )3() ()(2),,,(222a xyz c z y x c z y x M -+++= 只要求M 函数的极值,即为s 的极值。 )4(04=+=??cyz x x M )5(04=+=??cxz y y M )6(04=+=??cxy z z M )7(0=-=??a xyz c M 以上四个方程可解出四个未知数x ,y ,z ,c 。将(7)带入(4),(5),(6)后得: )8(4442 22z y x ac ===- 可得: )9(431 a z y x ac ====- )01(431 -a c -= 此时,面积s 为: )9(632a s = 证明过程:拉格朗日乘子法,拉格朗日条件极值。 已知,自变量x 和y 符合关系式(1),求表达式(2)的极值。 )1(0),(==y x F z )2(),(y x f )3(?)(y =x 解:若可以从(1)式中求出y 的表达式(3),则可以把(3)式带入(2)式。此时,就变成求单个自变量的函数极值问题,即为(4)式。 )4(0))(,())(,(=+=dx dy x y x f x y x f dx dz y x 对(1)进行全微分,可得(5)式,进而得到(6)式。 )6()5(0),(Y x y x F F dx dy dy F dx F y x dF -==+=

将(6)式带入(4)式可得(7)式。 )7(0))(,())(,())(,())(,(=-=-=x y y x y x y x F F x y x f x y x f F F x y x f x y x f dx dz )8(),() ,(y x F y x f y y -=λ 设极值点坐标为(x 0,y 0),则此时将极值点坐标带入(7),并采用(8)式记号后得(9)式 )9(0),(),() ,(),(),(),(000000000000=-=-=y x F y x f y x F y x F y x f y x f dx dz x x y x y x λ )9(0),(),(0000=-=y x F y x f dx dz x x λ 反过来,我们假设存在(10)式,则将极值点的坐标(x 0,y 0)带入后可得(10)式等于0。 )10(0?),(),(==-=y x F y x f dx dz x x λ 依据(8)式定义知当坐标(x 0,y 0)确定后λ(x 0,y 0)为一常数(但此前λ(x,y)为变数)。 类似可得(11)式 )11(0),(),(0000=-=y x F y x f dy dz y y η 反过来,我们假设存在(12)式,则将极值点的坐标(x 0,y 0)带入后可得(12)式等于0。 )12(0?),(),(==-=y x F y x f dy dz y y η )31(),() ,(y x F y x f x x -=η 对于符合限制条件的自变量,在极值点处有(14)式成立,进而可得(15)式 )15()14(0 ),(Y x y x f f dx dy dy f dx f y x df -==+= 在极值点处(6)式和(15)式同时成立。对比(6)式和(15)式后得出(16)式。 )16(Y x Y x f f F F -=- 因此,(6)式中的λ和(13)式中η相等。 以上事实提示我们可以预先构造出如下函数

多元函数极值充分条件

定理10.2(函数取得极值的充分条件) 设函数(,)f x y 在点000(,)P x y 的邻域内存在二阶连续 偏导数,且00(,)0x f x y =,00(,)0y f x y =.记00(,)xx f x y A =, 00(,)xy f x y B =,00(,)yy f x y C =,则有 (1) 当20A C B ->时,00(,)x y 是极值点.且当0A >时,000(,)P x y 为极小值点;当0A <时,000(,)P x y 是极大值点. (2) 当20A C B -<时,000(,)P x y 不是极值点. (3) 当20A C B -=时,不能判定000(,)P x y 是否为极值点,需要另外讨论. 证 (1) 利用二元函数的一阶泰勒公式,因 0000(,)(,)f x h y k f x y ++- 20000001(,)(,)(,)2x y f x y h f x y k h k f x h y k x y q q 轾抖犏=+++++犏抖臌, 01q << 由已知条件,00(,)0x f x y =,00(,)0y f x y =,故 20000001(,)(,)(,)2f x h y k f x y h k f x h y k x y q q 轾抖犏++-=+++犏抖臌 220000001(,)2(,)(,)2 xx xy yy f x h y k h f x h y k hk f x h y k k q q q q q q 轾=++++++++犏臌 利用矩阵记号, 记h r k 骣÷?÷?=÷?÷?÷桫,(,)r h k ¢=,0()A B Hf P B C 骣÷?÷?=÷?÷?÷桫 ,000(,)P r x h y k q q q +=++ 0000 0()()()()()xx xy xy yy f P r f P r Hf P r f P r f P r q q q q q 骣++÷?÷?+=÷?÷++÷?桫, 可改写上式为 00()()f P r f P +-000 0()()1(,)()()2xx xy xy yy f P r f P r h h k k f P r f P r q q q q 骣骣++÷÷??÷÷??=÷÷??÷÷++?÷÷?桫桫01()2r Hf P r r q ¢=+ 01q << (1) 进一步,又有 00()()f P r f P +-00011()[()()]22 r Hf P r r Hf P r Hf P r q ⅱ= ++- (2) 当20A C B ->且0A >时,二次型0()r Hf P r ¢正定,因此对于任何00h r k 骣骣÷÷??÷÷??= ÷÷??÷÷?麋桫桫,0()0r Hf P r ¢>。特别地,在单位圆{22(,)1}Q x y x y +=上,连续函数0()Q Hf P Q ¢ 取得的最小值0m >。 因此,对任何00h r k 骣骣÷÷??÷÷??= ÷÷??÷÷ ?麋桫桫,我们有 22 00()(())r r r Hf P r r Hf P r m r r ⅱⅱ = ¢ 另一方面,由于(,)f x y 二阶偏导数在点000(,)P x y 连续,对任何:02 m e e <<,总可取0d >,使得0r d ¢<<时,有 00()()xx xx f P f P r q e -+<,00()()xy xy f P f P r q e -+<,00()()yy yy f P f P r q e -+< 从而, 220000[()()][()()]2r Hf P r Hf P r r Hf P r Hf P r r r q q e ⅱ+-W+-? 于是,

多元函数的极值与最值例题极其解析

多元函数的极值与最值 1.求函数z=x3+y3?3xy的极值。 步骤: 1)先求驻点(另偏导数等于0,联立) 2)再求ABC A=f xx(x0, y0) B=f xy(x0, y0) C=f yy(x0, y0) 3)(1)当B2-AC<0时,f(x,y)在点(x o,y o)处取得极值, 且当A<0时取得极大值f(x o,y o),当A>0时取得极小值f(x o,y o),当A<0时取得极大值f(x o,y o); (2)当B2-AC>0时,f(x o, y o )不是极值; (3)当B2-AC=0时,f(x o,y o)是否为极值不能确定,需另做讨论. =3x2?3y=0 解:?z ?x ?z =3y2?3x=0 ?y 联立得驻点为(0,0),(1,1) A=f xx(x0, y0)=6x(对x求偏导,再对x求偏导) B=f xy(x0, y0)=-3(对x求偏导,再对y求偏导) C=f yy(x0, y0)=6y(对y求偏导,再对y求偏导) 在点(0,0)处,A=0,B=-3,C=0,由B2-AC=9>0,故在此处

无极值。 在点(1,1)处,A=6,B=-3,C=0, B2-AC=-27<0,又因为 A>0,故在此处为极小值点,极小值为 F (1, 1) =x3+y3?3xy=?1 2.求函数f(x, y)=x2+(y?1)2的极值。 解:f x’=2x=0 F y’=2y-2=0 联立得驻点为(0,1) A=f xx(x0, y0) =2 B=f xy(x0, y0) =0 C=f yy(x0, y0) =2 在点(0,1)处A=2,B=0,C=2由B2-AC=-4<0,又因为A>0,故在此处为极小值点,极小值为 F (0, 1) = 0 3.制造一个容积为a的无盖长方体,使之用料最少,则长宽高为多少? 解:另长宽高分别为x, y, z 故xyz=a, z=a xy S=xy+2(x a xy +y a xy )=xy+2(a y +a x ) S x’=y+2(?a x2 )=0 S y ’= x+2(?a y )=0

拉格朗日极值

习题8-4 1. 求下列各函数在所给的限制下的极大值或极小值 (a) f(x,y)=xy ; x+3y=6。 解:令()63,-+=y x y x g 故()0,=y x g 令拉格朗日函数为()()()()63,,,,-++=+=y x xy y x g y x f y x F λλλ 6 33-+=+=+=y x F x F y F y x λλλ 令?? ???=-+=+=+063030y x x y λλ 将λ消掉可得??????==?=-+=-1306303y x y x y x ()31,3=f 取一满足063=-+y x 的点()2,0代入()302,0,<=f f 故知()31,3=f 为绝对极大值 (b) f(x,y)=x 2+2y 2 ; x –2y+1=0。 解:令()12,++=y x y x g 故()0,=y x g 令拉格朗日函数()()()()12,,,,22+-++=+=y x y x y x g y x f y x F λλλ 1 2242+-=-=+=y x F y F x F y x λλλ 令?????=+-=-=+01202402y x y x λλ 将λ消掉可得??? ?????????=-=?=+-=+3131012044y x y x y x 3 131,31=??? ??-f 取一满足012=+-y x 的点()0,1-代入()3 110,1,> =-f f 故知3 131,31=??? ??-f 为绝对极小值

(c) f(x,y)=x 3–y 3 ; x –y=3。 解:令()3,--=y x y x g 故()0,=y x g 令拉格朗日函数()()()()3,,,,33--+-=+=y x y x y x g y x f y x F λλλ 33322--=--=+=y x F y F x F y x λλ λ 令?? ???=--=--=+03030322y x y x λλ 将λ消掉可得y x =或y x -= 当y x =则0303=-?=--y x 矛盾 当y x -=则2 32303-=?= ?=--x y y x 42723,23-=??? ??-f 取一满足03=--y x 的点()0,3代入()4 27270,3,-> =f f 故知42723,23-=??? ??-f 为绝对极小值 (d) f(x,y)=2x+y –z ; x 2+y 2+z 2=24。 解:令()24,222-++=z y x y x g 故()0,,=z y x g 令拉格朗日函数 ()()()() 242,,,,,,222-+++-+=+=z y x z y x z y x g z y x f y x F λλλ 242112222-++=+-=+=+=z y x F z F y F x F z y x λλλλ 令???????=-++=+-=+=+0 240210102222z y x z y x λλλ

多元函数极值的充分条件

多元函数极值的充分条件 马丽君 (集宁师范学院 数学系) 我们知道,一元函数()y f x =在点0x x =取得极值的充分条件是:函数()f x 在点0x 处具有一阶二阶连续导数,0x 是()f x 驻点,即0()0f x '=。若 0()0(0)f x ''><,则0x 为()f x 的极小值点(或极大值 点) 对于多元函数() Y f X =,其中 12(,,,)n X x x x =,有与上面一元函数取得极值的充 分条件相对应的结论。 定义 1.设n 元函数()Y f X =,其中 12(,,,)n X x x x =,对各自变量具有一阶连续偏导数,则称12 ,,,T n f f f x x x ????? ?????? 为()f X 的梯度,记作gradf 。 引理 设n 元函数()f X ,其中 12(,,,)n X x x x =,对各自变量具有一阶连续偏导数, 则()f X 在点00 0012(,,,)n X x x x =取得极值的必要 条件 是 : 0112(),, ,0T n n X X f f f gradf X x x x ?=?????== ?????? 证明:引理成立是显然的,即极值点函数可导,则该点的偏导数等于零。 定义 2.设n 元函数()f X ,对各自变量具有二阶 连续偏导数,00 0012(,, ,)n X x x x =是()f X 的驻点, 现定义 ()f X 在点0X 处的矩阵为: 2220002 112122220002021 22222 0002 1 2 () ()()()() ()()()()()f N n n n f X f X f X X X X X X f X f X f X H X X X X X X f X f X f X X X X X X ?? ????? ?????? ??? ???? ? =??????? ??? ? ?? ???? ???????? 由 于 各 二 阶 偏 导 数 连 续 , 即 22(,1,2,,)i j j i f f i j n x x x x ??==????, 所以0()f H X 为实对称矩阵。 定理 设n 元函数()f X ,其中 12(,,,)n X x x x =,具有对各自变量的二阶连续偏导 数,00 0012(,, ,)n X x x x =是()f X 的驻点,则 (1) 当 0() f H X 正 定 时 , 000012(,, ,)n X x x x =是()f X 的极小值 点; (2) 当 0() f H X 负定时, 000012(,, ,)n X x x x =是()f X 的极大值 点; (3) 当 0() f H X 不定时, 000012(,, ,)n X x x x =不是()f X 的极大 值点 证明:由()f X 在点0X 处的泰勒公式

函数的极值和最值(讲解)

函数的极值和最值 【考纲要求】 1.掌握函数极值的定义。 2.了解函数的极值点的必要条件和充分条件. 3.会用导数求不超过三次的多项式函数的极大值和极小值 4.会求给定闭区间上函数的最值。 【知识网络】 【考点梳理】 要点一、函数的极值 函数的极值的定义 一般地,设函数)(x f 在点0x x =及其附近有定义, (1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作 )(0x f y =极大值; (2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作 )(0x f y =极小值. 极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释: 求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f '; ③求方程0)(='x f 的根; ④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点二、函数的最值 1.函数的最大值与最小值定理 若函数()y f x =在闭区间],[b a 上连续,则)(x f 在],[b a 上必有最大值和最小值;在开区间),(b a 内连 函数的极值和最值 函数在闭区间上的最大值和最小值 函数的极值 函数极值的定义 函数极值点条件 求函数极值

续的函数)(x f 不一定有最大值与最小值.如1 ()(0)f x x x = >. 要点诠释: ①函数的最值点必在函数的极值点或者区间的端点处取得。 ②函数的极值可以有多个,但最值只有一个。 2.通过导数求函数最值的的基本步骤: 若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下: (1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根; (3)求在),(b a 内使0)(='x f 的所有点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数 ()y f x =在闭区间],[b a 上的最小值. 【典型例题】 类型一:利用导数解决函数的极值等问题 例1.已知函数.,33)(23R m x x mx x f ∈-+=若函数1)(-=x x f 在处取得极值,试求m 的值,并求 )(x f 在点))1(,1(f M 处的切线方程; 【解析】2'()363,.f x mx x m R =+-∈ 因为1)(-=x x f 在处取得极值 所以'(1)3630f m -=--= 所以3m =。 又(1)3,'(1)12f f == 所以)(x f 在点))1(,1(f M 处的切线方程312(1)y x -=- 即1290x y --=. 举一反三: 【变式1】设a 为实数,函数()22,x f x e x a x =-+∈R . (1)求()f x 的单调区间与极值;

多元函数求极值(拉格朗日乘数法)

第八节多元函数的极值及其求法 教学目的:了解多元函数极值的定义,熟练掌握多元函数无条件极值存在的判定 方法、求极值方法,并能够解决实际问题。熟练使用拉格朗日乘数法求条件极值。 教学重点:多元函数极值的求法。 教学难点:利用拉格朗日乘数法求条件极值。 教学内容: 一、 多元函数的极值及最大值、最小值 定义设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内异于 ),(00y x 的点,如果都适合不等式 00(,)(,)f x y f x y <, 则称函数(,)f x y 在点),(00y x 有极大值00(,)f x y 。如果都适合不等式 ),(),(00y x f y x f >, 则称函数(,)f x y 在点),(00y x 有极小值),(00y x f .极大值、极小值统称为极值。使函数取得极值的点称为极值点。 例1 函数2 243y x z +=在点(0,0)处有极小值。因为对于点(0,0)的任 一邻域内异于(0,0)的点,函数值都为正,而在点(0,0)处的函数值为零。从 几何上看这是显然的,因为点(0,0,0)是开口朝上的椭圆抛物面 2 243y x z +=的顶点。

例2函数2 2y x z +-=在点(0,0)处有极大值。因为在点(0,0)处函 数值为零,而对于点(0,0)的任一邻域内异于(0,0)的点,函数值都为负, 点(0,0,0)是位于xOy 平面下方的锥面2 2y x z +-=的顶点。 例3 函数xy z =在点(0,0)处既不取得极大值也不取得极小值。因为在点(0,0)处的函数值为零,而在点(0,0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点。 定理1(必要条件)设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零: ),(,0),(0000==y x f y x f y x 证不妨设),(y x f z =在点),(00y x 处有极大值。依极大值的定义,在点),(00y x 的某邻域内异于),(00y x 的点都适合不等式 ),(),(00y x f y x f < 特殊地,在该邻域内取0y y =,而0x x ≠的点,也应适合不等式 000(,)(,)f x y f x y < 这表明一元函数f ),(0y x 在0x x =处取得极大值,因此必有 0),(00=y x f x 类似地可证 ),(00=y x f y

求极值与最值的方法

求极值与最值的方法 1 引言 在当前的数学教育中,求初等函数的极值与最值占有比较重要的位置,由于其解法灵活,综合性强,能力要求高,故而解决这类问题,要掌握各数学分支知识,能综合运用各种数学技能,灵活选择合理的解题方法。下面我们将要介绍多种求初等函数的极值和最值的方法。 2 求函数极值的方法 极值定义:设函数()f x 在0x 的某邻域内有定义,且对此邻域内任一点 x 0()x x ≠,均有0()()f x f x <,则称0()f x 是函数错误!未找到引用源。的一个极大值;同样如果对此邻域内任一点x 0()x x ≠,均有错误!未找到引用源。,则称0()f x 是函数错误!未找到引用源。的一个极小值。函数的极大值与极小值统称为函数的极值。使函数取得极值的点0x ,称为极值点。 2.1 求导法 判别方法一: 设()f x 在点0x 连续,在点错误!未找到引用源。的某一空心邻域内可导。当 x 由小增大经过错误!未找到引用源。时,如果: (1)'()f x 由正变负,那么0x 是极大值点; (2)错误!未找到引用源。由负变正,那么0x 是极小值点; (3)错误!未找到引用源。不变号,那么0x 不是极值点。 判别方法二: 设()f x 在点0x 处具有二阶导数,且'()0f x =,''()0f x =。 (1)如果''()0f x <,则()f x 在点0x 取得极大值; (2)如果''()0f x >,则()f x 在点0x 取得极小值。

判别方法三: 设()f x 在点0x 有n 阶导数,且0)()()(0)1(00===''='-x f x f x f n 0)(0)(≠x f n ,则: (1)当为偶数时,)(x f 在0x 取极值,有0)(0)(x f n 时,)(x f 在0x 取极小值。 (2)当为奇数时,)(x f 在0x 不取极值。 求极值方法: (1)求一阶导数,找出导数值为0的点(驻点),导数值不存在的点,及端点; (2)判断上述各点是否极值点 例 1 求函数32()69f x x x x =-+的极值。 解法一 : 因为32()69f x x x x =-+的定义域为错误!未找到引用源。, 且'2()31293(1)(3)f x x x x x =-+=--, 令'()0f x =,得驻点11x =, 23x =; 在错误!未找到引用源。内,错误!未找到引用源。,在错误!未找到引用源。内,'()0f x <,(1)4f =为函数()f x 的极大值。 解法二: 因为错误!未找到引用源。的定义域为错误!未找到引用源。, 且错误!未找到引用源。,错误!未找到引用源。。 令错误!未找到引用源。,得驻点错误!未找到引用源。,错误!未找到引用源。。又因为错误!未找到引用源。,所以,错误!未找到引用源。为)(x f 极大值。 错误!未找到引用源。,所以错误!未找到引用源。为)(x f 极小值.

函数极值与最值研究毕业论文

函数极值与最值研究 摘要:在实际问题中, 往往会遇到一元函数.二元函数,以及二元以上的多元函数的最值问题和极值问题等诸多函数常见问题。求一元函数的极值,主要方法有:均值等式法,配方法,求导法等。求一元函数的最值,主要方法有:函数的单调性法,配方法,判别式法,复数法,导数法,换元法等。求二元函数极值,主要方法有:条件极值拉格朗日乘数法,偏导数法等。求二元函数最值,主要方法有:均值不等式法,换元法,偏导数法等。对于多元函数,由于自变量个数的增加, 从而使该问题更具复杂性,求多元函数极值方法主要有:条件极值拉格朗日法, 等,对于多元函数最值问题与一元函数类似可以用极值来求函数的最值问题.主要方法有:向量法,均值不等式法,换元法,消元法,柯西不等式法,数形结合法等, 关键词:函数,极值,最值,极值点,方法技巧. Abstract: in practical problems,often encounter a unary function. The function of two variables, and multiplefunctions of two yuan more than the most value questionand extremum problems and many other functions of common problems. Extremum seeking a binary function,the main methods are: inequality extremum method,distribution method, derivation etc.. The value for theelement function, the main methods are: monotone method, function method, the discriminant method,complex method, derivative method, substitution methodetc.. For two yuan value function, the main methods are:conditional extremum of Lagrange multiplier method etc..Ask two yuan to the value function, the main methods are:mean inequality method, substitution method, partial derivative method etc.. For multivariate function, due to the increased number of

多元函数条件极值的几种求解方法

多元函数条件极值的几种求解方法 摘 要 本文主要讨论了多元函数条件极值的求解问题,其中包括无条件极值、条件极值的概念介绍,对多元函数条件极限值的几种求解方法的概括,其中包括了直接代入法,拉格朗日乘数法,柯西不等式等方法,其中拉格朗日乘数法还着重介绍了全微分和二阶偏导数即Hesse矩阵法等。介绍关于求解多元函数条件极值的几种方法目的是在解决相应的问题中时能得以借鉴,找到合适的解决问题的途径。 关键词 极值;拉格朗日乘数法;柯西不等式 Multivariate function of several conditional extreme value solution Abstract This paper mainly discusses the multivariable function conditional extreme value problem solving, including the unconditional extreme value, conditional extreme value concept of multivariate function is introduced, and several methods of solving condition limit the wraparound, including direct generation into law, Lagrange multiplier method, methods of cauchy inequality, including Lagrange multiplier method also introduces the differential and second-order partial derivative namely Hesse matrix method, etc. This paper introduces the multivariable function about solving several methods of conditional extreme value, which can provide in solving the relevant question readers may be reference when, find the appropriate way to solve the problem. Meanwhile introducing method also has some deficiencies in its done, and further discussion. Key words Extreme; Lagrange multiplier method; Cauchy inequality

多元函数条件极值的求解方法

多元函数条件极值求解方法 摘要:本文研究的是代入法、拉格朗日乘数法、标准量代换法、不等式法等九种方法在解 多元函数条件极值问题中的运用,较为全面的总结了多元函数条件极值的求解方法,旨在 解决相应的问题时能得以借鉴,找到合适的解决方法。 关键词:多元函数;条件极值;拉格朗日乘数法;柯西不等式 Abstract: This paper studies the substitution method, the Lagrange multiplier method, standard substitution method, inequality of nine kinds of method in solving multivariate function extremum problems, the application conditions are summed up the diverse functions of conditional extreme value method, to solve the corresponding problem is able to guide, to find the right solution. Key words: multiple functions; Conditional extreme value; Lagrange multiplier method; Cauchy inequality 时比较困难,解题过程中选择一种合理的方法可以达到事半功倍的效果,大大减少解题时间,拓展解题的思路。下面针对多元函数条件极值问题总结了几种方法供大家借鉴。 1.消元法 对于约束条件较为简单的条件极值求解问题,可利用题目中的约束条件将其中一个量用其他量表示,达到消元的效果,从而将条件极值转化为无条件极值问题。 例1 求函数(,,)f x y z xyz =在条件x -y+z=2下的极值. 解: 由x -y+z=2 解得 2z x y =-+ 将上式代入函数(,,)f x y z ,得 g(x,y)=xy(2-x+y) 解方程组 2 2 '2y 20 220 x y g xy y g x xy x ?=-+=??'=+-=?? 得驻点 12 22 P P =33 (0,0),(,-) 2xx y ''=-g ,222xy g x y ''=-+,2yy g x ''= 在点1P 处,0,2,0A B C === 22=0240AC B ?-=-=-<,所以1P 不是极值点 从而函数(,,)f x y z 在相应点(0,0,2)处无极值;

多元函数求极值拉格朗日乘数法资料全

第八节 多元函数的极值及其求法 教学目的:了解多元函数极值的定义,熟练掌握多元函数无条件极值存在的判定 方法、求极值方法,并能够解决实际问题。熟练使用拉格朗日乘数法求条件极值。 教学重点:多元函数极值的求法。 教学难点:利用拉格朗日乘数法求条件极值。 教学内容: 一、 多元函数的极值及最大值、最小值 定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内异于),(00y x 的点,如果都适合不等式 00(,)(,)f x y f x y <, 则称函数(,)f x y 在点),(00y x 有极大值00(,)f x y 。如果都适合不等式 ),(),(00y x f y x f >, 则称函数(,)f x y 在点),(00y x 有极小值),(00y x f .极大值、极小值统称为极值。使函数取得极值的点称为极值点。 例1 函数2243y x z +=在点(0,0)处有极小值。因为对于点(0,0)的 任一邻域内异于(0,0)的点,函数值都为正,而在点(0,0)处的函数值为零。

从几何上看这是显然的,因为点(0,0,0)是开口朝上的椭圆抛物面2243y x z +=的顶点。 例2 函数22y x z +-=在点(0,0)处有极大值。因为在点(0,0)处 函数值为零,而对于点(0,0)的任一邻域内异于(0,0)的点,函数值都为 负,点(0,0,0)是位于xOy 平面下方的锥面22y x z +-=的顶点。 例3 函数xy z =在点(0,0)处既不取得极大值也不取得极小值。因为在点(0,0)处的函数值为零,而在点(0,0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点。 定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点 ),(00y x 处有极值,则它在该点的偏导数必然为零: 0),(,0),(0000==y x f y x f y x 证 不妨设),(y x f z =在点),(00y x 处有极大值。依极大值的定义,在点 ),(00y x 的某邻域内异于),(00y x 的点都适合不等式 ),(),(00y x f y x f < 特殊地,在该邻域内取0y y =,而0x x ≠的点,也应适合不等式 000(,)(,)f x y f x y < 这表明一元函数f ),(0y x 在0x x =处取得极大值,因此必有 0),(00=y x f x

多元函数条件极值的几种求解方法

多元函数条件极值的几种求解方法 摘要 本文主要讨论了多元函数条件极值的求解问题,其中包括无条件极值、条件极值的概念介绍,对多元函数条件极限值的几种求解方法的概括,其中包括了直接代入法,拉格朗日乘数法,柯西不等式等方法,其中拉格朗日乘数法还着重介绍了全微分和二阶偏导数即Hesse矩阵法等。介绍关于求解多元函数条件极值的几种方法目的是在解决相应的问题中时能得以借鉴,找到合适的解决问题的途径。 关键词 极值;拉格朗日乘数法;柯西不等式

1前言 函数极值问题已广泛地出现于数学、物理、化学等学科中,且它涉及的知识面非常广,所以就要求学生有较高的分析能力和逻辑推理能力,同时也要求学生掌握多种求函数极值的方法,因此对函数极值的研究是非常必要的。 函数极值的求解与发展极大的推动了微积分学科的发展,为其做出了重大贡献。 微积分的创立,首先是为了处理十七世纪的一系列主要的科学问题。有四种主要类型的科学问题:第一类是,已知物体的移动的距离表为时间的函数的公式,求物体在任意时刻的速度和加速度使瞬时变化率问题的研究成为当务之急;第二类是,望远镜的光程设计使得求曲线的切线问题变得不可回避;第三类是,确定炮弹的最大射程以及求行星离开太阳的最远和最近距离等涉及的函数极大值、极小值问题也急待解决;第四类问题是求行星沿轨道运动的路程、行星矢径扫过的面积以及物体重心与引力等,又使面积、体积、曲线长、重心和引力等微积分基本问题的计算被重新研究。 同样在很多工程实际中,我们经常需要做一些优化。举个简单的例子,就拿天气预报来说吧,通过实验测得很多气象数据,那么我们怎么处理这些数据,或者说用什么方法处理这些数据,才能达到预测结果最为准确呢,这其实也是一个广义上的极值问题。还有就是经济学的投资问题,我们知道现在国家搞什么高铁、高速公路的,都是

第十五章 值和条件极值

第十五章 极值和条件极值 §1. 极值和最小二乘法 一 极值 定义1 设(),f x y 在()000,M x y 的邻域内成立不等式 ()()00,,f x y f x y ≤ 则称函数(,)f x y 在点0M 取到极大值,点()000,M x y 称为函数的极大点,若在()000,M x y 的邻域内成立不等式 ()()00,,f x y f x y ≥ 则称函数(,)f x y 在点0M 取到极小值,点()000,M x y 称为函数的极小点。极大值和极小值统称为极值,极大点和极小点统称为极值点。 定义 2 设D 是2R 内的一个区域,()00,x y 是D 的一个内点,如果()00,0f x y x ?=?,()00,0f x y y ?=?,则称()00,x y 是f 的一个驻点。 根据费玛定理,可知 定理1 二元函数的极值点必为0f f x y ??==??的点或至少有一个偏导数不存在的点。 注:定理1的条件是必要条件,而不是充分条件。 例:z xy =在()0,0点。 例:z x =在()0,0点。 怎样进一步判断是否有极值? 定理2 设f 在点),(00y x 的某个邻域内有各个二阶连续偏导数,并且点),(00y x 是f 的一个驻点, ),(0022y x x f A ??=,),(0022y x y f C ??=,),(002y x y x f B ???=,2A B H AC B BC ==-,则:(1)若0,0H A >>,则f 在点),(00y x 有极小值;(2)若0,0H A ><,则f 在点),(00y x 有极大值;(3)若0H <,则f 在点),(00y x 没有极值;(4)若0H =,则须进一步判断。 例:求)1(b y a x xy z --= )0,0(>>b a 的极值。 例:求333z axy x y =--的极值。 多元函数的最大(小)值问题 设函数),(y x f 在某一有界闭区域D 中连续且可导,必在D 上达到最大(小)值。若这样的点0M 位于

条件极值答案

习题8-3答案 (A ) 1、求下列函数的极值: (1)极小值点(0,1);极小值z=0; (2)求函数333z x y xy =+- 的极值. 解:解方程组得22330330z x y x z y x y ??=-=??????=-=???,解得驻点(0,0),(1,1) 由于222226,3,6z z z x y x x y y ???==-=????,故在(0,0)处290AC B -=-<,函数z 不取得 极值;在(1,1)处有2 270AC B -=>,且60A =>,函数z 在点(1,1)处取得极值,且极小值为1z =-。 (3)极大值点(0,0),极大值1;且(0,0)点为不可导点 (4)极小值点(5,2),极小值30 2 要设计一个容积为a 的长方体形无盖水池 . 确定长、宽和高 , 使水池的表面积最小 . 分别以x 、y 和z 表示水池的长、宽和高 , 该例可表述为 : 在约束条件 xyz a =之下求函数xy yz xz z y x S ++=)(2),,(的最小值 . (,,,)2()()F x y z xz yz xy xyz a λλ=+++- 对F 求偏导数, 并令它们都等于0: 20,20,2()0,0.x y z F z y yz F z x xz F x y xy F xyz a λλλλ=++=? ?=++=? ?=++=? ?=-=? 求上述方程组的解, 得3 3 4 22,2x y z a a λ=== =- . 依题意, 所求水箱的表面积在所给条件下确实存在最小值. 由上可知, 当高为3 4 a , 长与

宽为高的2倍时, 表面积最小. 最小值233(2)S a =. 3.提示:分别以x 、y 表示矩形的长、宽,则 222x y p +=(约束条件),所求圆柱体体积为2 V x y π= 构造辅助函数2(,,)(222)F x y x y x y p λπλ=++-,则 2220, 20,2220.x y F xy F x F x y p λπλπλ=+=?? =+=?? =+-=? 解得2x y =,代入约束条件得: 23x p = 13y p =;为唯一的驻点,有实际意义知为最值点。 4.求函数u xyz =在条件22 2124 x y z ++=之下的极值。 解:构造辅助函数22 2(,,,)(1)24 x y F x y z xyz z λλ=++ +-,则 222 0, 0, 220,10.24x y z F yz x y F xz F xy z x y F z λλλλ=+=? ??=+=??=+=??=++-=? ? 前三个式子联立去掉λ,得22 224x y z ==,结合第四个式子得到结果为2221 243 x y z ===。所以驻点有八个(+,+,+)(+,+,-) (+,-,+)(+,-,-)(-,+,+)(-,+,-)(-,-,+)(-,-,-)。其中1、4、6、7点为极大值点,2、3、5、8为极小值点。 (其中在三个式子联立去掉λ的过程中不需要考虑λ=0,或者x =0,y =0及z=0,因为此 时它们的函数值为0,不是极值点。 5、在半径为R 的半球内求一体积为最大的内接长方体。 解:设此半球的方程为2 2 2 2 ,0x y z R z ++=≥,内接长方体在第一象限的一个顶点坐标为(),,x y z ,则内接长方体体积22224,V xyz x y z R =++=。考虑函数

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00,B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02>-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232-=??,x y y z 22-=??.x x z 622=??, 22-=???y x z , 222=??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组? ??=-=-.022,0232x y y x 求得驻点(0,0)、),(3 232. 利用定理2对驻点进行讨论:

相关主题
文本预览
相关文档 最新文档