当前位置:文档之家› 同一天生日的概率问题

同一天生日的概率问题

同一天生日的概率问题
同一天生日的概率问题

同一天生日的概率问题

姓名:

xx

班级:06级电子商务一班学号:0125上课时间:

星期一据国外媒体报道,数学经常会让聪明人感觉自己笨得不行,有时甚至会让他们很生气。事实上,数学本身非常有趣,它是我们日常生活的一部分,每个人都能从中获得享受。只不过在课堂上,数学被一些死板的老师教死板了。以下就是英国《每日邮报》最近公布的日常生活中一道趣味数学:

同一天过生日的概率

假设你在参加一个由50人组成的婚礼,有人或许会问:

“我想知道这里两个人的生日一样的概率是多少?此处的一样指的是同一天生日,如5月5日,并非指出生时间完全相同。”

也许大部分人都认为这个概率非常小,他们可能会设法进行计算,猜想这个概率可能是七分之一。然而正确答案是,大约有两名生日是同一天的客人参加这个婚礼。如果这群人的生日均匀地分布在日历的任何时候,两个人拥有相同生日的概率是97%。

你没有看错,的确是97%。这似乎超出了很多人的想象。认为这不可能有这么高的概率。开始我也这么认为我问过很多人,都觉得不好算。简化点问是否有50%?答没有,再问有没有20%,也还是觉得没那么高。当我告诉答案是96.5%时,都表示不相信。

而事实上,当有50个学生时,答案确实是96.5%;有59个学生更是高达

99.1%,有47个是94.8%,有35个是80.5%,而当有23个时,概率就刚好超过50%,可以进行赔率为1:1的赌博了。另一方面,要是以普通约为50人的班做对象,按1:10的赔率赌博也是个赚字。

看到这些答案吃惊吗?不信的话可以做验证,下面有两个方法:

第一个是实验验证,找多个班的学生生日资料,查查是不是有同一天过生日的,计算有同一天过生日的数量占总数的百分比。当然也不必限定一定是学生,只要是能找到生日资料的任何人群都可以,如亲人朋友、战友、网友、同村的、同楼的等等,有生日记载的历史人物也可以,只要按一定的数量组成要考查的群体就行。

第二个是实验数学方法验证。毕竟要找那么多人的生日资料不是很容易办到的。可以假设生日的分布是随机的,用随机数函数产生伪随机数模拟生日资料进行分析。

1.打开Excel,新建一个工作簿,另存为birthday.xls;

2.在Sheet1的A2单元格输入“=INT(RAND()*366)”,获得从0至365的伪随机数;

3.在B1单元格输入“1-1”,显示为1月1日,或者将B列设为喜欢的日期格式,设置C列为B列相同的日期格式;

4.在B2单元格输入“=A2+B$1”,显示为1月1日,或者将B列设为喜欢的日期格式;

5.在D2单元格输入“=C3-C2”,显示为1月1日,或者将B列设为喜欢的日期格式;

6.选取区域A2:D2,鼠标移到选取区域的右下角时指针变为“+”,如要模拟50人的情况,将鼠标按住下接至51行;

7.在D1单元格输入“=MIN(D2:D50)”;

8.此时A列为0至365的伪随机数,B列为对应的日期。此二列当有输入事件发生时会重新产生随机数而变化。D列为0,将D51中的内容删除;

9.选取区域B2:B51,复制,选择性粘贴数值到C2:C51,对C列数据区域排序。

此时,如D1的值为0,则说明是有同一天过生日的;重复第9步就可统计所需概率了。当然,要是觉得一次次统计太累,也可以将第9步录制为宏,然后对宏代码做些修改以自动完成。

在F2单元格输入“班数”;F3单元格输入准备模拟统计班的数量,比如说100,当然此数越大越准确,但花的计算时间也会相应增加;在F4单元格输入“概率”;F5单元格准备显示宏程序统计出的概率,将格式设为百分比。运行宏程序就在F5中见到所得的概率结果。宏代码如下:

Sub STAT()

Range("F3").Select

Number = ActiveCell.Value

counter = 0

For n = 1 To Number

Range("B2:B51").Select

Selection.Copy

Range("C2").Select

Selection.PasteSpecial Paste:

=xlPasteValues

Application.CutCopyMode = False

Selection.Sort Key1:=Range("C2"), Order1:=xlAscending

Range("D1").Select

If ActiveCell.Value = 0 Then counter = counter + 1

Next n

Range("F5").Select

ActiveCell.Value = counter / Number

End Sub

看到模拟统计的结果了吧?下面我们来分析如何用统计学的方法计算:2个人同一天过生日的概率是多少呢?很明显是。但如有多个人的话,则要考虑任何2个人同一天过生日的可能性。需要用组合计算确定有多少个可能的2人组合。而至少有2人同一天过生日的概率,则考虑通过计算没有任何一个2人组合同一天过生日的概率来得到。显然,一个2人组合不是同一天过生日的概率为,有多少个2人组合就将它乘多少次方。

我们还是在前面的Excel文件中进行计算:在F7、F8中分别输入“人数”如“50”;在

F9、F10中分别输入“组合数”和“=COMBIN(F8,2)”,此时F10是得到计算出的组合数为1225;在

F11、F12xx分别输入“概率”和

“=1-并将F12格式设为百分比,就得到了所求的结果,在前述的50人时为96.53%;变化F8中的数值就求得不同人数下的概率。

顺便说下,前述的的多次方的计算,用计算器的话可能不能算或者误差很大,应当先将取对数,再乘以组合数n*(n-1)/2,将乘方计算转化为乘法计算,再求反对数。用这种方法,有数学用表(需查对数表与反对数表)的情况下也能用手工计算出结果。

如果你看的还不是很xx,那我们这样说:

要直接计算N人中有至少2人生日相同比较困难。我们就先算出全部不同的概率。然后用100%减去它就是至少有2人相同的概率了是吗?

如果只有一个人,由于不存在与之共享生日的人,因此没人生日相同的概率为。(我们算它一年有366天,算足它)

第二个人进来。因为有366个可能的生日,而365天都不同。所以此人与第一个人生日不同的概率为或0.997。

第三个人进来,已经有两个生日被占用了,因此第三个人与他们两个生日均不相同的概率为364/366,算上前面的,这三个人生日各不相同的概率为366。

我们可以看出规律了,继续计算人数为任意值时生日各不相同的概率:

情况随人数的增加而迅速变化。当房间中有23个人时,存在共用生日的概率已略大于50%,当人数达到41人时,此概率超过90%。

当达到50人时大家生日各不相同的概率是:

366 = 0.03 = 3%

所以有人生日相同的概率就是100% - 3% = 97%

概率论在实际生活中的应用

信息学院 14-15学年第1学期《概率论与数理统计》课程(单元)项目研究报告 项目名称 概率论在足球比赛中的应用 【项目内容】详细叙述拟完成项目的条件和问题,可配表或图。 足球号称世界第一运动,因为在全球范围内无论是哪个国家或者地区都有许多喜欢足球,热爱足球甚至从事足球这项运动的人.四年举行一次的世界杯更是球迷们的狂欢节.中国同样有许多热爱足球的人,中国国家队水平不高经常让中国老百姓失望,但是这丝毫不会减少大家对足球的热情,作为一个中国人我希望中国足球会越来越好. 下面我们来看看大家都喜爱的足球与概率论到底有哪些关联。 相关问题:在某届欧洲杯足球比赛上,西班牙,德国,英格兰和荷兰队进入到了四强,这四支球队中的一支将有希望最终夺冠.决赛四强对阵情况是西班牙对阵英格兰,而德国将与荷兰队争夺另一个进入决赛的名额,由于四支球队都是强队,所以两场半决赛将会十分激烈,先比赛完的一场半决赛中世界第一西班牙队战胜了英格兰队率先进入了决赛,大家此时都将目光放到了西班牙队上,根据以往的比赛成绩,西班牙战胜德国的概率为0.8,战胜荷兰队的概率为0.3,而德国队战胜荷兰队的概率为0.5,那么西班牙球迷迫切想知道西班牙队最终能获得冠军的概率究竟是多大? 对于上面西班牙球迷十分迫切关心的问题,让我们来利用概率的知识来帮助他们解决他们心中的疑虑. 由于西班牙队已经率先挺进决赛,所以还没有完成的德国和荷兰的比赛对于最终的冠军归属有很大的影响,如果德国战胜了荷兰队,那么西班牙队就有80%的可能性夺冠,但是如果荷兰队取得了半决赛的胜利,那么西班牙队夺冠的希望只有30% 根据以上条件,把西 班牙队夺冠记为事件C ,德国战胜荷兰记为事件C ,而荷兰战胜德国则记为事件A ,P(B)=0.5,P(A)=0.5由全概率公式,则A,B 是一个完备事件组,那么有公式就可以得出P(C)=P(B)P(C|B)+P(A)P(C|A)其中可以看出P(C|A)以及P(C|B)是条件概率,P(C|B)表示西班牙在决赛战胜了另一场半决赛的胜者德国队夺冠,P(C|B)=0.8,P(C|A)表示西班牙队在决赛战胜了另一场半决赛的胜出者荷兰队夺冠,P(C|A)=0.3. 所以根据上述公式(全概率公式)我们就可以计算出西班牙队最终夺冠的概率为 P(C)= P(B)P(C|B)+P(A)P(C|A)=0.5*0.8+0.5*0.3=0.55 所以西班牙队最终夺冠的概率应该为55%[10] 看到了西班牙队的最终夺冠的概率,西班牙队的球迷应该可以松一口气,好好享受西班牙队在决赛上的精彩表演啦,因为西班牙队夺冠概率还是比较大的.以上是利用了全概率公式的知识解决了足球比赛中的常见问题,希望能给读者和球迷一些帮助。 2.排列和组合在足球比赛中的应用 每次举行一些足球比赛时经常要事先安排好比赛场次,为了能使足球比赛顺利进行.下面就是举办足球比赛时经常遇到的一类问题。某大学要举行一次校园足球比赛以增强大学生的体质,学校规定每个学院至少要派出一支球队参加这项赛事,最终一共有12支球队参

概率论在日常生活中的应用

概率论在日常生活中的应用 概率论是一门与现实生活紧密相连的学科,不过大多数人对这门学科的理解还是很平凡的:投一枚硬币,0.5的概率正面朝上,0.5的概率反面朝上,这就是概率论嘛。学过概率论的人多以为这门课较为理论化,特别是像大数定律,极限定理等内容与现实脱节很大,专业性很强。其实如果我们用概率论的方法对日常生活中的一些看起来比较平凡的内容做些分析,常常会得到深刻的结果。 在自然界和现实生活中,一些事物都是相互联系和不断发展的。在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成两大类:一类是确定性现象,指在一定条件下,必定会导致某种确定的结果。例如,同性电荷相互排斥,异性电和相互吸引;在标准大气压下,水加热到100摄氏度,就必然会沸腾。事物间的这种联系是属于必然性的。另一类是不确定性现象。这类现象在一定条件下的结果是不确定的,即人们在未作观察或试验之前,不能预知其结果。例如,向桌上抛一枚硬币,我们不能预知向上的是正面还是反面;随机地找一户家庭调查其收入情况,我们亦不能预知其收入是多少。为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素是人们无法事先预料的。但另一方面,对这些不确定性现象进行大量、重复的实验时,人们会发现,其结果会出现某种“统计规律性”:重复抛一枚硬币多次,出现正、反两面的次数大致会各占一半;调查多户家庭,其收入会呈现“两头小,中间大”的状况,即处于中间状态的是大多数。这种在每次试验中呈现不确定性,而在大量重复试验中又呈现某种统计规律性的现象较随机现象。概率统计就是研究随机现象并揭示其统计规律性的一个数学分支,它在自然科学及社会科学的诸多领域都有着广泛的应用。 概率,简单地说,就是一件事发生的可能性的大小。比如:太阳每天都会东升西落,这件事发生的概率就是100%或者说是1,因为它肯定会发生;而太阳西升东落的概率就是0,因为它肯定不会发生。但生活中的很多现象是既有可能发生,也有可能不发生的,比如某天会不会下雨、买东西买到次品等等,这类事件的概率就介于0和100%之间,或者说0和1之间。大部分人认为一件事概率为0即为不可能事件,这是不对的。比如甲乙玩一个游戏,甲随机写出一个大于0小于1的数,乙来猜。1.乙一次猜中这个数2.乙每秒才一次,一直猜下去,“最终”猜中这个数。这两件事发生的概率的概率都是0,但显然他们都有可能发生,甚至可以“直观”地讲2发生的可能性更大些。这说明概率为0的事件也是有可能发生的。不过在我看来,这样的可能性实在太小了,在实际操作中认为不可能也是有道理的,但不管怎么说,他们确实是可能事件。 在日常生活中无论是股市涨跌,还是发生某类事故,但凡捉摸不定、需要用“运气”来解释的事件,都可用概率模型进行定量分析。不确定性既给人们带来许多麻烦,同时又常常是解决问题的一种有效手段甚至唯一手段。 走在街头,来来往往的车辆让人联想到概率;生产、生活更是离不开概率。在令人心动的彩票摇奖中,概率也同样指导着我们的实践。继股票之后,彩票也成了城乡居民经济生活中的一个热点。据统计,全国100个人中就有3个彩民。通过对北京、上海与广州3城市居民调查的结果显示,有50%的居民买过彩票,其中5%的居民成为“职业”(经济性购买)彩民。“以小博大”的发财梦,是不少彩票购买者的共同心态。那么,购买彩票真的能让我们如愿以偿吗?以从36个号码中选择7个的投注方式为例,看起来似乎并不很难,其实却是“可望而不可及”的。经计算,投一注的理论中奖概率极其小。由此看出,只有极少数人能中奖,购买者应怀有平常心,既不能把它作为纯粹的投资,更不应把它当成发财之路。 在我国南方流行一种成为“捉水鸡”的押宝,其规则如下:有庄家摸出一只棋子,放在密闭盒中,这只棋子可以是红的或黑的将、士、象、车、马、炮之一。赌客们把钱压在一

概率论在保险中的应

目录 摘要 (2) 关键字 (2) 一、简介 (2) 1.概率论的研究对象 (3) 2.概率论与保险的关系 (3) 二、随机变量及其分布与保险 (3) 三、数字特征与保险 (4) 四、大数法则与保险 (4) 1切比雪夫大数法则 (4) 2.贝努里大数法则 (5) 3.大数定律对风险转移的作用 (5) 4.大数定律在保险中的适用性 (5) 五、应用概率进行保险计算 (6) 六、总结 (7)

摘要:概率论与数理统计是研究随机现象统计规律的一门数学科学是对随机现象的统计规律进行的演绎和归纳的科学.随着社会的不断发展,概率论与数理统计的知识越来越重要.运用抽样数据进行推断已成为现代社会一种普遍适用并且强有力的思考方式.本文就概率论与数理统计的方法和思想,并就其在保险中的应用进行分析和讨论,从中可以看出在经济领域和日常生活中以概率方法和数理统计的思想解决问题的高效性,简捷性和实用性 关键词:概率论, 切比雪夫大数法则定理, 贝努里大数法则,大数定律 一、简介 1.概率论的研究对象 概率论是研究随机现象数量规律的数学分支.随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象.例如在标准大气压下,纯水加热到100度时水必然会沸腾等.随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象.每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性.例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等.随机现象的实现和对它的观察称为随机试验.随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件.事件的概率则是衡量该事件发生的可能性的量度.虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律.例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2.又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性.大数定律及中心极限定理就是描述和论证这些规律的.在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程.例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程.随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题.概率论与实际生活有着密切的联系,它在自然科学、技术科学、社会科学、军事和工农业生产中都有广泛的应用.

生日相同的概率典型题练习(含答案)

生日相同的概率(典型题汇总)◆基础训练 一、选择题 1.随机找两人,这两人同月出生的概率为(). A.0 B.1 C. 1 12 D. 1 2 2.一个家庭中有4个孩子,则下列事件发生的可能性,正确的个数是(). ①P(全为男孩)=1 5 ;②P(至少有一个女孩)= 4 5 ; ③P(2男2女)=1 5 ;④P(至少有2个女孩)= 3 5 ; ⑤P(3男1女)=1 4 . A.0 B.1 C.2 D.3 3.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明一定的金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖.参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的机会是(). A.1 4 B. 1 5 C. 1 6 D. 3 20 二、填空题 4.一年365天,任意翻一本日历,正好翻到你生日的概率是______,是2?月的概率是______.5.九年级(1)班有45个同学,有两人生日月份相同的概率为_______. 6.10件产品中有3件次品,从中任意抽出2件产品,则这两件产品都是合格品的概率是________. 三、解答题 7.你们一家三口的生肖分别是什么?有两人的生肖相同吗??如果想了解任意三人中有两人生活相同的概率,在全班进行调查得到的结果正确吗?为什么?如果想得到比较准

确的结果,请你设计一个方案进行调查并将结果记录下来. ◆能力提高 8.在拼纸游戏中,把图中三张纸牌放在盒子里搅匀,任取两张,看能拼成菱形还是房子,拼成菱形和房子的概率分别是多少? 9.桌面上放有4张卡片,正面分别标有数字1,2,3,4.这些卡片除数字外完全相同,把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,?记下卡片上的数字后仍反面朝上放回洗匀,乙也从中任意抽出一张,记下卡片上的数字,?然后将这两数相加.(1)请用列表或画树状图的方法求两数之和为5的概率; (2)若甲与乙按上述方式做游戏,当两数之和为5时,甲胜,反之则乙胜.若甲胜一次得12分,那么乙胜一次得多少分,这个游戏对双方才公平? ◆拓展训练 10.小王想知道6个人中有两个人是同月出生的概率,如果不进行调查,你能帮助小王设计一个方案吗?

毕业论文.概率统计在生活中的应用Word版

毕业论文 课题 学生姓名胡泽学 系别 专业班级数学与应用数学指导教师 二0 一六年三月

目录 摘要.................................................................... I ABSTRACT................................................................... II 第一章绪论. (1) 第二章概率在生活中的应用 (4) 2.1在抽签和摸彩中的应用 (4) 2.2经济效益中的应用 (8) 2.3在现实决策中的应用 (4) 2.4在相遇问题中的应用 (12) 2.5在预算及检测中的应用 (10) 结论 (13) 参考文献 (14) 致谢 (15)

概率统计在生活中的应用 摘要 随着时代的发展人类的进步,17—18世纪出现了一门新的学科概率论,概率论逐渐成为了为数不多的可以和传统数学相抗衡的学科之一,并一步步的走向了人们的生活,成为了人们生活中不可或缺的部分。 本文先简述了概率论的发展,之后从概率在抽签中的应用、经济效益中的应用、现实决策中的应用、追击相遇问题中的应用、最大利润问题中的应用、最佳配置问题中的应用、经济保险问题中的应用、获奖问题中的应用、概率和选购方案的综合应用、金融界中的应用、设计方案的综合应用、厂矿生产中的如何合理配置维修工人问题、在商品质检中的应用和在运输预算费用中的应用等。多方面论述了概率的应用。 关键词:概率;概率的含义;概率的应用

Abstract

第一章绪论 概率统计是一门和生活关联紧密的学科同样也是一门特别有趣的数学分支学科,17-18世纪,数学得到了快速的发展。数学家们打破了古希腊的演绎框架,社会生活对与自然界的多方面吸取灵感,数学领域涌现了许多新面孔,之后都形成了完整的数学分支。除了分析学这之外,概率论就是同时期能使"欧几里德几何不相上下"的几个伟大成就之一。 概率的发源与赌博有关,伴随着科学技术的发展进步以及计算机普及,它在最近几十年来的社会科学和自然科学中得到了特别广泛的应用,在生活与社会生产中起着很重要的作用。我们生活在一个千变万化千变万化、千变万化的时代里,而我们每个人无时无刻都要直面生活中遇到的问题。而其中很多的问题都是随机的与随机的随机的。如决策时如何获取最大利益,公司要如何组合生产才能取得最大收益,如何加大买彩票的获奖概率,怎样进行误差分析、所购买物品的产品检验,生产质量把控等,当我们在遇到这些问题时应该如何解决它呢?幸好我们如今有了概率,概率是一门探索和揭示随机现象和规律的一门学科。 实践证明,概率是对生活中碰到的问题进行量的解答的有效工具,对经济决策和预测提供了新型的手段。下文就通过列举实例来表述概率在抽签中的应用、经济效益中的应用、现实决策中的应用、追击相遇问题中的应用、最大利润问题中的应用、最佳配置问题中的应用、经济保险问题中的应用、获奖问题中的应用、概率和选购方案的综合应用、金融界中的应用、设计方案的综合应用、厂矿生产中的如何合理配置维修工人问题、在商品质检中的应用和在运输预算费用中的应用等。

趣味数学078:至少两个人生日相同的概率有多大

至少两个人生日相同的概率有多大 “n个人中,至少2人的生日相同的概率是多少?” 这是一道概率论中的名题。如果说,在任意50个人中,很可能有2人生日相同,人们也许会不相信。因为,按照一般的想法,一年有365天,每个人的生日都是随意的。365比50大得多,在区区50人中怎么会那么巧,有2人同一天出生?即使偶尔有的话,那也纯属巧合,绝对没有普遍性。 的确,每人的生日都有365种可能,那么,怎样计算“至少2人生日相同”的概率呢?“至少2人的生日相同”既包括“2人的生日相同”,也包括“3人的生日相同”“4人的生日相同”……“50人的生日相同”。如果照这样去计算,实在是太复杂了。不妨换一种思路,先算出与“至少2人的生日相同”相对立的事件“没有人生日相同”的概率,这两个概率的和等于“1”。再从“1”中减去“没有人生日相同”的概率,就得到“至少2人生日相同”的概率。 按照这种思路:第1个人的生日是随意的,有365种可能,概率是365/365=1;第2个人的生日不能与第1个人相同,只有365-1=364种可能,概率是364/365;第3个人的生日不能与前面2人相同,只有365-2=363种可能,概率是363/365;……;第50个人的生日不能与前面49人相同,只有365-49=316种可能,概率是316/365。于是,50个人的生日都不相同的概率是1×(364/365) ×(363/365) ×…×(316/365)≈0.027。所以,“至少2人生日相同”的概率是1-0.027=0.973≈0.97,即97%。可见,在任意50个人中有2人生日相同的可能性还是非常大的。 如果用n表示人数,p(n)表示n人中至少2人生日相同的概率,计算得到: p(5)=0.03 p(10)=0.12 p(15)=0.25 p(20)=0.41 p(25)=0.57 p(30)=0.71 p(35)=0.81 p(40)=0.89 p(45)=0.94 p(50)=0.97 p(55)=0.99 可以看出,当人数超过55人时,至少2人生日相同的概率就会超过

概率论在现实生活中的意义

概率论在现实生活中的意义 概率,简单地说,就是一件事发生的可能性的大小。比如:太阳每天都会东升西落,这件事发生的概率就是100%或者说是1,因为它肯定会发生;而太阳西升东落的概率就是0,因为它肯定不会发生。但生活中的很多现象是既有可能发生,也有可能不发生的,比如某天会不会下雨、买东西买到次品等等,这类事件的概率就介于0和100%之间,或者说0和1之间。在日常生活中无论是股市涨跌,还是发生某类事故,但凡捉摸不定、需要用“运气”来解释的事件,都可用概率模型进行定量分析。不确定性既给人们带来许多麻烦,同时又常常是解决问题的一种有效手段甚至唯一手段。 走在街头,来来往往的车辆让人联想到概率;生产、生活更是离不开概率。在令人心动的彩票摇奖中,概率也同样指导着我们的实践。继股票之后,彩票也成了城乡居民经济生活中的一个热点。据统计,全国100个人中就有3个彩民。通过对北京、上海与广州3城市居民调查的结果显示,有50%的居民买过彩票,其中5%的居民成为“职业”(经济性购买)彩民。“以小博大”的发财梦,是不少彩票购买者的共同心态。那么,购买彩票真的能让我们如愿以偿吗?以从36个号码中选择7个的投注方式为例,看起来似乎并不很难,其实却是“可望而不可及”的。经计算,投一注的理论中奖概率如下:

由此看出,只有极少数人能中奖,购买者应怀有平常心,既不能把它作为纯粹的投资,更不应把它当成发财之路。 体育比赛中,一局定胜负,虽然比赛双方获胜的机会均为二分之一,但是由于比赛次数太少,商业价值不大,因此比赛组织者普遍采用“三局两胜”或“五局三胜”制决定胜负的方法,既令参赛选手满意,又被观众接受,组织者又有利可图。那么它对于双方选手来说真的公平吗?以下我们用概率的观点和知识加以阐述: 日常生活中我们总希望自己的运气能好一些,碰运气的也大有人在,就像考生面临考试一样,这其中固然有真才实学者,但也不乏抱着侥幸心理的滥竽充数者。那么,对于一场正规的考试仅凭运气能通过吗?我们以大学英语四级考试为例来说明这个问题。 大学英语四级考试是全面检验大学生英语水平的一种考试,具有一定难度,包括听力、语法结构、阅读理解、填空、写作等。除写作15分外,其余85道题是单项选择题,每道题有A、 B、 C、D四个选项,这种情况使个别学生产生碰运气和侥幸心理,那么靠运气能通过四级英语考试吗?答案是否定的。假设不考虑写作15分,及格按60分算,则85道题必须答对51题以上,可以看成85重贝努利试验。

浅谈概率论在生活中的应用

单位代码: 分类号: X X 大学 题目: 浅谈概率论在生活中的应用专业名称: 数学与应用数学 学生: 学生学号: 指导教师: 毕业时间:

浅谈概率论在生活中的应用 摘要:随机现象存在于我们日常生活的方方面面和科学技术的各个领域,概率论与数理统计是一门十分重要的大学数学基础课,也是唯一一门研究随机现象规律的学科,它指导人们从事物表象看到其本质.它的实际应用背景很广,包括自然科学、社会科学、工程技术、经济、管理、军事和工农业生产等领域.经过不断的发展,学科本身的理论和方法日趋成熟,近年来,概率统计知识也越来越多的渗透到诸如物理学、遗传学、信息论等学科当中.另外,在社会生活中,就连面试、赌博、彩票、体育和天气等等也都会涉及到概率学知识.可以说,概率统计是当今数学中最活跃,应用最广泛的学科之一.本文通过对现实生活中的部分现象分析探讨了概率知识在日常生活中的广泛应用. 关键词:随机现象;概率;日常生活;应用分析

Discuss the application in life probability Abstract: Random phenomenon exists in every aspect of our everyday lives and scientific technology each domain, probability and mathematical statistics is an important basic course in college mathematics, and is the only the study of random phenomenon regular course, its guiding people from representation see its nature. Its actual application background is very wide, including natural science, social science, engineering, economics, management, military and industrial and agricultural production, etc. Through continuous development, the theory and method of subject itself becomes mature, in recent years, the probability and statistics knowledge also more and more penetrated into such as physics, genetics, information subjects such as the midst. In addition, in social life, even interview, gambling, lottery tickets, sports and weather, etc are also involves probability learn knowledge. Can say, probability and statistics is the most active in mathematics, the most widely used in the fields of. This article through to in real life part phenomenon discussed probability knowledge in daily life the widely application. Keywords:random phenomenon; probability; daily life; application analysis

《生日相同的概率》导学卡(生用)

课题:九年级上册《生日相同的概率》导学卡主备:九年级数学组 学习目标: 1.能用实验的方法估计一些复杂的随机事件发生的概率. 2.经历实验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力. 3.通过对贴近生活的有趣的生日问题的实验、统计,提高学习数学的兴趣,并且有助于破除迷信,培养学生严谨的科学态度和辩证唯物主义世界观. 教学重点: 用实验的方法估计一些复杂的随机事件的概率. 导学卡 任务一:(温故知新) 1.下列事件是随机事件,必然事件,还是不可能事件? (1)13人中,有两个人在同一个月出生。 (2)掷一枚均匀的骰子,朝上的点为6点。 (3)在400人中,至少有两人在同一天出生。 (4)50人中有,有两人的生日相同。 2.星期天,小颖有事要与小亮打电话,但小亮家的电话号码的后两位数想不起来了,小颖随意拨一个电话号码,她能打通小亮家的概率为。 任务二:听故事,入新课:(美国数学家伯格米尼的故事) 任务三:经历实验、统计等活动过程,估计复杂随机事件(生日相同)的概率 活动1、调查全班45个同学的生日,看看有无2个同学的生日是相同的. 活动形式:全班按学习小组进行,组长进行统计。 在活动之前,请同学们思考:1、如果咱们班45个同学中有两个同学的生日相同,那么能说明这45个同学中有2个同学生日相同的概率是1吗? 2、如果咱们班没有两个同学的生日相同,能说明其相应概率为0吗? 3、为了节约时间,写生日时,可以进行一定的简化,如可将“2月16日”记为“2.16”.活动2、每位同学心中随便想一个生日号码,为了简便起见,用1—365中的一个数来代表,写在纸上。请一位同学写在黑板上。(至少做十次) 任务四:活动小结:这个问题出人意料之处在于其结果违反了人们的直觉.人们往往觉得两个人生日相同是一种可能性不大的事情.但计算结果告诉我们:如果人数不少于23人,那么这种可能性就会达到50%. 训练卡 基本题: 1.下列说法正确的是() (A)“明天的降水量概率为30%”是指明天下雨的可能性是30% (B)连续抛一枚硬币50次,出现正面朝上的次数一定是25 (C)连续三次掷一颗骰子都出现了奇数,则第四次出现的数一定是偶数 (D)某地发行一种福利彩票,中奖概率为1%,买这种彩票100张一定会中奖

概率论在现实生活中的意义

概率论在现实生活中的意义 在自然界和现实生活中,一些事物都是相互联系和不断发展的。在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成两大类:一类是确定性的现象,指在一定条件下,必定会导致某种确定的结果。如,在标准大气压下,水加热到100摄氏度,就必然会沸腾。事物间的这种联系是属于必然性的。另一类是不确定性的现象。这类现象在一定条件下的结果是不确定的。例如,同一个工人在同一台机床上加工同一种零件若干个,它们的尺寸总会有一点差异。又如,在同样条件下,进行小麦品种的人工催芽试验,各颗种子的发芽情况也不尽相同有强弱和早晚之别等。为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素是人们无法事先预料的。这类现象,我们无法用必然性的因果关系,对现象的结果事先做出确定的答案。事物间的这种关系是属于偶然性的,这种现象叫做偶然现象,或者叫做随机现象。 概率,简单地说,就是一件事发生的可能性的大小。比如:太阳每天都会东升西落,这件事发生的概率就是100%或者说是1,因为它肯定会发生;而太阳西升东落的概率就是0,因为它肯定不会发生。但生活中的很多现象是既有可能发生,也有可能不发生的,比如某天会不会下雨、买东西买到次品等等,这类事件的概率就介于0和100%之间,或者说0和1之间。在日常生活中无论是股市涨跌,还是发生某类事故,但凡捉摸不定、需要用“运气”来解释的事件,都可用概率模型进行定量分析。不确定性既给人们带来许多麻烦,同时又常常是解决问题的一种有效手段甚至唯一手段。 走在街头,来来往往的车辆让人联想到概率;生产、生活更是离不开概率。在令人心动的彩票摇奖中,概率也同样指导着我们的实践。继股票之后,彩票也成了城乡居民经济生活中的一个热点。据统计,全国100个人中就有3个彩民。通过对北京、上海与广州3城市居民调查的结果显示,有50%的居民买过彩票,其中5%的居民成为“职业”(经济性购买)彩民。“以小博大”的发财梦,是不少彩票购买者的共同心态。那么,购买彩票真的能让我们如愿以偿吗?以从36个号码中选择7个的投注方式为例,看起来似乎并不很难,其实却是“可望而不可及”的。经计算,投一注的理论中奖概率如下: 由此看出,只有极少数人能中奖,购买者应怀有平常心,既不能把它作为纯粹的投资,更不应把它当成发财之路。 体育比赛中,一局定胜负,虽然比赛双方获胜的机会均为二分之一,但是由于比赛次数太少,商业价值不大,因此比赛组织者普遍采用“三局两胜”或“五局三胜”制决定胜负的方法,既令参赛选手满意,又被观众接受,组织者又有利可图。那么它对于双方选手来说真的公平吗?以下我们用概率的观点和知识加以阐述:日常生活中我们总希望自己的运气能好一些,碰运气的也大有人在,就像考生面临考试一样,这其中固然有真才实学者,但也不乏抱着侥幸心理的滥竽充数者。那么,对于一场正规的考试仅凭运气能通过吗?我们以大学英语四级考试为例来说明这个问题。 大学英语四级考试是全面检验大学生英语水平的一种考试,具有一定难度,包括听力、语法结构、阅读理解、填空、写作等。除写作15分外,其余85道题是单项选择题,每道题有A、B、C、D四个选项,这种情况使个别学生产生碰运气和侥幸心理,那么靠运气能通过四级英语考试吗?答案是否定的。假设不考虑写作15分,及格按60分算,则85道题必须答对51题以上,可以看成85重贝努利试验。

概率论与数理统计在生活中的应用

概率论与数理统计在生活中的应用 单位:兴隆场初级中学姓名:姜宏琼 摘要:随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本质的一门科学。生活中买彩票显示了小概率事件发生的几率之小,抽签与体育比赛赛制的选择用概率体现了公平与不公平,用概率来指导决策,减少错误与失败等等,显示了概率在人们日常生活中越来越重要。数理统计在人们的生活中也不断的发挥重要的作用,如果没有统计学,人们在收集资料和进行各项的大型的数据收集工作是非常困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,所以统计也是一门很实用的科学,应该受到大家的重视。 关键字:概率、保险、彩票、统计、数据、应用 由赌徒的问题引起,概率逐渐演变成一门严谨的科学。1654年,有一个法国赌徒梅勒遇到了一个难解的问题:梅勒和他的一个朋友每人出30个金币,两人谁先赢满3局谁就得到全部赌注。在游戏进行了一会儿后,梅勒赢了2局,他的朋友赢了1局。这时候,梅勒由于一个紧急事情必须离开,游戏不得不停止。他们该如何分配赌桌上的60个金币的赌注呢?梅勒的朋友认为,既然他接下来赢的机会是梅勒的一半,那么他该拿到梅勒所得的一半,即他拿20个金币,梅勒拿40个金币。然而梅勒争执道:再掷一次骰子,即使他输了,游戏是平局,他最少也能得到全部赌注的一半——30个金币;但如果他赢了,并可拿走全部的60个金币。在下一次掷骰子之前,他实际上已经拥有了30个金币,他还有50%的机会赢得另外30个金币,所以,他应分得45个金币。 赌本究竟如何分配才合理呢?后来梅勒把这个问题告诉了当时法国著名的数学家帕斯卡,这居然也难住了帕斯卡,因为当时并没有相关知识来解决此类问题,而且两人说的似乎都有道理。帕斯卡又写信告诉了另一个著名的数学家费马,于是在这两位伟大的法国数学家之间开始了具有划时代意义的通信,在通信中,他们最终正确地解决了这个问题。他们设想:如果继续赌下去,梅勒(设为甲)和他朋友(设为乙)最终获胜的机会如何呢?他们俩至多再赌2局即可分出胜负,这2局有4种可能结果:甲甲、甲乙、乙甲、乙乙。前3种情况都是甲最后取胜,只有最后一种情况才是乙取胜,所以赌注应按3:1的比例分配,即甲得

浅谈“生日攻击”和“生日悖论”

密码学课程报告 学生姓名:xxxxxx 学号: xxxx

浅谈“生日悖论”与“生日攻击” 在开始正文之前,我想先简单地说明一下,我选择这个话题的原因,主要有三点:第一,比较贴近生活和实际;第二,趣味性较强,便于讨论;第三,容易理解。 既然是谈到“生日悖论”和“生日攻击”,那么肯定是少不了“生日”二字了。众所周知,我们每个人都有自己生日,在生活中,如果能够遇到与自己同一天生日的人,大多数的我们都会很惊喜,觉得这种缘分似乎很少见,又或者说这是一个很小的机率。那我们是否有想过,假若在23个人当中,出现两个人是同一天生日的这种缘分的概率有多大呢?是5%?10%?还是20%?又或者是更多呢?下面我来一一和大家说明。 文章开始我不想长篇大论地把很多公式给搬上来,那样没意思,吊足了大家的胃口,却不受待见。所以,在开始的时候,我就不打算写那么多计算过程,留着后面慢慢讨论和解释。那么我告诉各位:23个人中,有两个人生日是同一天的概率约为50%(甚至比这个数值还高出那么一丢丢),在50个人中有相同生日的概率,竟然高达97%,这两个数值,这两个结果,各位是不是有点不太敢相信?哈哈...... 其实这个结果并没有算错,是经过科学计算而得出来的结果,是有理有据的,只是我们的直觉错了,科学与生活,就好比梦想和现实是一样:梦想往往是丰满的,现实呢,却常常是骨感的。正因为经过科学方法计算出来的结果与我们日常生活的经验产生了如此大的落差,所以我们把这类问题称为“生日悖论(Birthday Paradox)”[1][2]。 什么是“生日悖论”? 在很多课程中,常用“生日悖论来说明一些违背直觉的结果”。生日悖论是指:要想使得k个人中至少有两个人生日相同的概率大于0.5的话,k最小可以是多少?[1]我们不把某一年有2月29日或者某两人是双胞胎这样的或者类似的外界因素算在内,只考虑纯粹的随机概率,也就是说每个人出生的日子都随机分布在一年365天的任何一天。最后答案是我们在前面所说的23人。简单地说呢,就是假如一个房间里有23个或23个以上的人,那么至少有两个人的生日相同的概率要大于50%。就拿我身边的情况来作为例子吧,假如我们班30人,那

生活中的概率论

生活中的概率论 【摘要】本文论述了概率统计的某些知识在实际问题中的应用,主要围绕公平性、朋友、巧合、决策等方面,从独特的视角对现实生活中的一些问题进行深入解读,并提供了解决问题的良好思路,揭示概率统计与实际生活的密切联系,为应用概率知识解决实际问题、数学模型的建立、学科知识的迁移奠定一定的理论基础。 【Abstract】In this article, the writer has made a discussion on some knowledge about the application of the probability Statistic in the factual problem, main rounding equitable quality, friend, coincidence and decision-making to have unscrambled some problem in factual life from the special angle. In addition, the excellent way for solving that has also been offered, which has laid a certain theoretic foundation for applying the probability knowledge to solve factual problems, build mathematics model and transfer subject knowledge and opening out the close relation between probability Statistic and factual problems. 【Keywords】Theory of probability Equitable quality Coincidence Decision-making 引言:概率论在一定的社会条件下,通过人类的社会实践和生产活动发展起来,被广泛应用于各个领域,在国民经济的生产和生活中起着重要的作用。正如英国逻辑学家和经济学家杰文斯(Jevons,1835-1882)所说:概率论是“生活真正的领路人,如果没有对概率的某种估计,我们就寸步难行,无所作为”。在日常生活中,周围的许多事物都和概率有着千丝万缕的联系,运用概率论可解读生活现象,透视社会规则,掌握制胜的生存哲学。本文将从公平性、朋友、巧合、决策等方面谈谈概率在生活中的应用。 1.概率与公平性。中奖的公平性是指中奖结果与排队的先后顺序无关。请看下面的问题:有奖券n张,其中有m张有奖。现有n个人排队依次抽取一张且不放回,问每个人中奖的机会是否相同? 分析:记()表示第个人中奖,利用全概率公式 利用全概率公式计算时,由于完备事件组中事件的个数为,随着k的增大,计算难度越来越大,当时可用下面的方法分析: 首先考虑m=1的情形,即有n张奖券只有一张有奖。 记,则,显然。 利用全概率公式

概率论中几个有趣的例子

转载】概率论中几个有趣的例子 [ 2007-6-3 13:06:00 | By: Byron ] 推荐 作者: ni1985 (妮子||从东方席地卷来一团野火), 原发新水木Mathematics 已经酝酿很长时间的本文终于出场了。 写本文的主要目的:1 很多人看了我前面大量的历史日志后,对我的数学水平产生了怀疑;2 有高中的校友师妹咨询关于大学数学学习的问题;3 概率论是数学中一个重要而美的分支,可惜多数同学尚没有机会看到其冰山一角。 本文的读者适用范围:最低标准是学过工科专业的高等数学和概率论,最高标准不清楚(也许水平比我高的人就不屑于读了) 当我跟皇上提到要写这篇文章的想法时,我提到:试图用比较短的篇幅让只要有初等概率论基础的人,也能看懂,从而对较深的概率论的研究对象和有趣的结论有一个初步的了解,激发其进一步深入学习概率论的兴趣。皇上说:那可不容易,相当于一个毕业设计了。我觉得,确实如此,本文是基本失败还是基本成功,还要看读者的评价。 要想引入本文的内容,首先从数学美的定义说起。关于数学美,我比较欣赏的有两种观点,一是Birkhoff 的观点,数学美=逻辑的复杂程度/表述的复杂程度;二是Von Neumann的观点,数学的活力依赖于与它有联系的科学分支的多寡与分支的活力。也许做应用的人更喜欢后者,但我是比较喜欢前者的。因此,我下面的主要内容就是介绍一些概率论中的基本例子,这些例子的表述是相当简单的,但得到这些例子的手段却比较复杂。我将试图把每个例子表述清楚,让只要有初等概率论基础的读者就知道在说什么,但对得到这些结果的证明过程则一律省略,只简要提出涉及的基本工具,但其中有些比较简单的细节会给大家留为习题。这些例子一律来自伟大的Durrett的著作:Probability theory and examples——我认为最优秀的概率论教材。 例1. Coupon collector问题:X1,X2,…是独立同分布,均匀的取自集合{1,…,n}的随机变量序列。大家把集合{1,…,n}想象为若干张扑克牌,每次我们等概率的取一张扑克牌,取完放回。 ,意思就是手中取过k种不同的扑克牌所需的次数。T(n) =t(n,n)表示取过所有扑克牌所需的次数。X(n,k)=t(n,k)-t(n,k-1),则X(n,k)服从参数是1-(k-1)/n的几何分布(思考题!),它的期望和方差可求,且容易发现X(n,1),…,X(n,n)相互独立,从而可以求出E T(n),Var T(n)(习题!)。且去证明依概率趋近于0.(数学基础稍微深一些的同学都知道,L2收敛蕴含依概率收敛)最终得到一个漂亮的结论: 依概率收敛于1.

概率在生活中的应用

概率在生活中的应用 概率论在一定的社会条件下,通过人类的社会实践和生产活动发展起来,被广泛应用于各个领域,在国民经济的生产和生活中起着重要的作用。正如英国逻辑学家和经济学家杰文斯(Jevons,1835-1882)所说:概率论是“生活真正的领路人,如果没有对概率的某种估计,我们就寸步难行,无所作为”。在日常生活中,同样不难发现,周围的许多事物都和概率有着千丝万缕的联系,下面将说明概率统计在生活中的应用。 一、数学期望在求解最大利润问题中的应用 如何获取最大利润不但成为商界追求的目标,同时也为越来越多的人所关注,许多数学模型也从概率角度利用期望求解最大利润问题,为问题的解决提供新的思路。下面就是一道应用期望探讨利润的问题。 例1、五一期间,某鲜花店某种鲜花的进货价为每束2.5元,销售价为每束5元。若在五一期间内没有售完,则在五一期间营业结束后以每束1.5元的价格处理。据前5年的有关资料统计,五一期间这种鲜花的需求量为20束、30束、40束和50束的概率分别为0.20、0.35、0.30和0.15。问该鲜花店今年春节前应进该鲜花为多少束为宜? 分析售出一束鲜花能获得利润5-2.5=2.5元,处理一束鲜花将亏损1元。由于量少不够卖,量多卖不完,即鲜花的需求量是随机变量。因此,需通过计算在不同进货量时对应的利润期望值E和损失风险R的大小决定进货量。 若进货量为20,则无论销售量是20、30、40和50时,利润均为(5-2.5)*20=50(元);若进货量为30时,利润为(5-2.5)*20-(2.5-1.5)。10=40(元),当销量是30、40和50时,利润为(5-2.5)*30=75(元);同理,可计算进货量为40和50时的利润数。 因此,当进货量为20时,利润的期望值El=50*.(0 20+0.35+0.30+0.15)=50(元);当进货量为30时,利润的期望值为E2=40*0.20+75*(0.35+0.30+0.15)=68(元);当进货量为40时,利润的期望值E3=30*0.20+65*0.35+100*(0.30+0.15)=73.75(元);当进货量为50时,利润的期望值E4=20*0.20+55*0.35+90*0.30+125"0.15=69(元)。 另外,若选择进货量为20,当需求量分别是20、30、40和50时,损失均为0;若选择进货量为30,当需求量为20时,损失为75-40=35,当需求量为30、40和50时,损失均为0;同理,可计算选择进货量为40和50时的损失。 因此,当进货量为20时,损失风险RI=O*(0.20+0.35+0.30+0.15)=0(元);当进货量为30时,损失风险R2=35*0.20+0*(0.35+0.30+0.15)=7(元);当进货量为40时,损失风险R3=70*0.20+35*0.35+0*(0.30+0.15)=26.25(元);当进货量为50时,损失风险R4=95*0.20+70*0.35+35*0.30+0*0.15=54(元)。 从利润期望值的最大角度考虑,似乎应选择进货量为40束,但是,从损失风险最小的角度分析,似乎选择进货量为20束更有道理。到底应如何决策?我们认为真正选择那种决策是与决策者的性格和心理素质有关。若偏爱冒险,可选择进货量为40束(利润期望值最大,同时损失风险也较大);若偏爱保守,可选择进货量为20束(损失风险最小,同时利润期望值页最小)。实际上,若兼顾两者,进货量也可选择在20束至40束之间(利润的期望值和损失风险都介乎最小和最大之间)。 二、小概率原理在生活中的应用 这不是一件东西不是一个测试,现在,这是小概率原理。实际生活中的小概率事件原理指导人无意中。因为人们总是坚持这样一个信念:小概率事件在实际测试几乎是不可能的,如果事实上真的发生了,人仍然抱着这样的想法,而是这一事件的前提下,改变了。如果一

相关主题
文本预览
相关文档 最新文档