当前位置:文档之家› 51单片机 12864液晶显示程序

51单片机 12864液晶显示程序

51单片机 12864液晶显示程序
51单片机 12864液晶显示程序

/*========================LCD12864液晶并行驱动程序==========================

程序名称:12864液晶驱动程序(并行模式)

================================================= ===========================*/

#include <>

#define uchar unsigned char

#define uint unsigned int

uchar t,p;

/********************************引脚定义

***********************************/

#define RS P1_0 //RS=0为执行指令;RS=1为执行数据;#define RW P1_1 //读写

#define E P1_2 //使能

#define PSB P1_3 //低电平(串口驱动);高电平(并口驱动)

#define RST P1_4 //LCD复位

/********************************定义数组

***********************************/

uchar code title[] = {"LCD 并行接口测试"}; uchar code website[]={"qwertyuioopplkjh"}; uchar code dig[]={"09"};

uchar code dig2[]={0,1,2,3,':'}; //

/*******************************相关子程序

**********************************/

void Init_lcd(); //初始化液晶

void lcd_busy(); //忙标志查询

void delay100us(); //100us延时程序

void write(uchar x,uchar Data); //写单字节函数void Show(uchar address,uchar L,uchar STR1[]); void Show_dig(uchar address,uint number);

/*******************************延时子程序

**********************************/

void delay100(int n)

{

unsigned char i;

while(n--)

for(i=0;i<100;i++);

}

/*******************************LCD 忙标志查询******************************/

void lcd_busy(void)

{

uchar busy;

P0=0xff;

RS=0;

RW=1;

do{

E=1;

busy=P0;

E=0;

}

while(busy>0x7f);

}

/*****************************写指令或数据**********************************/

void write(uchar x,uchar Data)

{

lcd_busy(); //忙查询

if(x==0)

{

RS=0;

RW=0; //写单字节命令字

}

else if(x==1)

{

RS=1;

RW=0; //写单字节数据

}

E=1;

P0=Data;

E=0;

P0=0xff;

}

/*******************************初始化LCD **********************************/

void Init_lcd(void)

{

delay100(20); //启动等待,等LCM讲入工作状态

PSB=1; //并口驱动模式

RST=0;

delay100(4);

RST=1; // 复位LCD

write(0,0x30); //8 位介面,基本指令集

write(0,0x0c); //显示打开,光标关,反白关

write(0,0x01); //清屏,将DDRAM的地址计数器归零}

/*******汉字和字符显示,参数入口:Show(地址,显示宽度,汉字数组)************/

void Show(uchar address,uchar L,uchar STR1[])

{

uchar i;

write(0,address);

for(i=0;i

write(1,STR1[i]);

}

/************纯阿拉伯数字显示,参数入口:Show_dig (地址,数字)**************/

void Show_dig(uchar address,uint number)

{

uchar shi,ge;

shi=number/10;

ge=number%10;

write(0,address);

delay100(20);

write(1,dig[shi]);

delay100(20);

wri

te(1,dig[ge]);

}

/************************************主程序**********************************/

void main(void)

{

Init_lcd();

TMOD=0X01;

TH0=0xdc;

TL0=0x00;

ET0=1;

TR0=1;

EA=1;

P3_6=0;

delay100(30);

Show(0x83,4,"梁浩"); //写数组里的内容write(0,0x0d);

delay100(30);

Show(0x90,16,"电子科技协会会长"); delay100(30);

Show(0x88,16,"TEL "); //写英文

delay100(30);

while(1)

{

Show_dig(0x99,p); //写实时数组

}

}

void exter() interrupt 1

{

TH0=0xdc;

TL0=0x00;

t++;

if(t==20)

{

t=0;

p++;

}

if(p==60)

p=0;

}

/***************************************end****** *****************************/

AT89C51单片机简易计算器的设计

AT89C51单片机简易计算器的设计 单片机的出现是计算机制造技术高速发展的产物,它是嵌入式控制系统的核心,如今,它已广泛的应用到我们生活的各个领域,电子、科技、通信、汽车、工业等。本设计是基于51系列单片机来进行的数字计算器系统设计,可以完成计算器的键盘输入,进行加、减、乘、除六位数范围内的基本四则运算,并在LCD上显示相应的结果。设计电路采用AT89C51单片机为主要控制电路,利用MM74C922作为计算器4*4键盘的扫描IC读取键盘上的输入。显示采用字符LCD静态显示。软件方面使用C语言编程,并用PROTUES仿真。 一、总体设计 根据功能和指标要求,本系统选用MCS-51系列单片机为主控机。通过扩展必要的外围接口电路,实现对计算器的设计。具体设计如下:(1)由于要设计的是简单的计算器,可以进行四则运算,为了得到较好的显示效果,采用LCD 显示数据和结果。 (2)另外键盘包括数字键(0~9)、符号键(+、-、×、÷)、清除键和等号键,故只需要16 个按键即可,设计中采用集成的计算键盘。 (3)执行过程:开机显示零,等待键入数值,当键入数字,通过LCD显示出来,当键入+、-、*、/运算符,计算器在内部执行数值转换和存储,并等待再次键入数值,当再键入数值后将显示键入的数

值,按等号就会在LCD上输出运算结果。 (4)错误提示:当计算器执行过程中有错误时,会在LCD上显示相应的提示,如:当输入的数值或计算得到的结果大于计算器的表示范围时,计算器会在LCD上提示溢出;当除数为0时,计算器会在LCD 上提示错误。 系统模块图: 二、硬件设计 (一)、总体硬件设计 本设计选用AT89C51单片机为主控单元。显示部分:采用LCD 静态显示。按键部分:采用4*4键盘;利用MM74C922为4*4的键盘扫描IC,读取输入的键值。 总体设计效果如下图:

51单片机常用子程序汇总

目录 1、通过串口连续发送n个字节的数据 /*************************************************************** 模块功能:通过串口连续发送n个字节的数据 参数说明: s:待发送数据的首地址 n:要发送数据的字节数 ***************************************************************/ void SendD(unsigned char *s,unsigned char n) { unsigned char unX; if(n>0) { ES=0; // 关闭串口中断 for(unX=0;unX #include #define Nop() _nop_() //空指令

sbit SDA=P1^3; sbit SCL=P1^2; bit ACK; void Start_I2c() { SDA=1; Nop(); SCL=1; Nop(); Nop(); Nop(); Nop(); Nop(); SDA=0; Nop(); Nop(); Nop(); Nop(); Nop(); SCL=0; //钳住I2C总线,准备发送或接受数据Nop(); Nop(); } (2)结束总线函数 /*************************************************************** 模块功能:发送I2C总线结束条件 ***************************************************************/ void Stop_I2c() { SDA=0; Nop(); SCL=1; Nop(); Nop(); Nop(); Nop(); Nop(); SDA=1; Nop(); Nop(); Nop(); Nop();

基于单片机的贪吃蛇设计

基于单片机的贪吃蛇设计 本篇论文主要是设计并且着手致力于实现一种基于51单片机的经典的贪吃蛇游戏,主要是研究该游戏的硬件电路和软件编程的设计,同时也简单介绍了应该如何使用Proteus软件进行仿真。借助仿真软件进行实验测试,可以基本实现游戏一些简单的基本功能。直至现在,大家都知道且明白了51系列的单片机技术相对而言比较成熟,功能也十分强大,应用较为广泛。将单片机作为本设计的控制核心,能够使硬件电路大大地简化,用软件来编程控制单片机,来加以实现硬件电路的功能,可以降低能耗,同时也节约成本。选用C语言编程,比较方便灵活,极大地加快了软件开发的速度,使开发周期缩短了,同时方便移植。本篇论文比较详细的的介绍了各种硬件的基本特性,贪吃蛇游戏实现的基本功能与详细设计,软件设计的具体说明,每一个模块的细节要求,还有一些功能模块的程序流程图和关键部分代码的详细讲解等。 关键词:Proteus软件仿真;51单片机;Keil;贪吃蛇;LED点阵屏

目录 1 绪论 (1) 1.1研究背景及意义 (1) 1.2单片机发展状况 (1) 1.3 LED发展状况 (2) 1.4 设计特点 (3) 2 系统总体设计 (3) 2.1设计要求 (3) 2.2 系统设计方案 (4) 2.2.1硬件设计 (4) 2.2.2软件设计 (4) 3系统硬件设计 (4) 3.18*8LED点阵的原理说明 (4) 3.2 LED阵列驱动电路 (4) 4系统软件设计 (5) 4.1系统主要模块介绍 (5) 4.1.1 主函数模块 (6) 4.1.2 按键模块 (6) 4.1.3 蛇运动控制模块 (6) 4.2主程序工作流程 (6) 4.3 游戏设计思想 (7) 4.4 LED点阵初始化 (8) 4.5 贪吃蛇的移动 (9) 4.6 食物的随机出现 (9) 5联调与测试 (9)

基于51单片机的计算器设计程序代码汇编

DBUF EQU 30H TEMP EQU 40H YJ EQU 50H ;结果存放 YJ1 EQU 51H ;中间结果存放GONG EQU 52H ;功能键存放 ORG 00H START: MOV R3,#0 ;初始化显示为空MOV GONG,#0 MOV 30H,#10H MOV 31H,#10H MOV 32H,#10H MOV 33H,#10H MOV 34H,#10H MLOOP: CALL DISP ;PAN调显示子程序WAIT: CALL TESTKEY ; 判断有无按键JZ WAIT CALL GETKEY ;读键 INC R3 ;按键个数 CJNE A,#0,NEXT1 ; 判断就是否数字键 LJMP E1 ; 转数字键处理NEXT1: CJNE A,#1,NEXT2 LJMP E1 NEXT2: CJNE A,#2,NEXT3 LJMP E1 NEXT3: CJNE A,#3,NEXT4 LJMP E1 NEXT4: CJNE A,#4,NEXT5 LJMP E1 NEXT5: CJNE A,#5,NEXT6 LJMP E1 NEXT6: CJNE A,#6,NEXT7 LJMP E1 NEXT7: CJNE A,#7,NEXT8 LJMP E1 NEXT8: CJNE A,#8,NEXT9 LJMP E1 NEXT9: CJNE A,#9,NEXT10 LJMP E1 NEXT10: CJNE A,#10,NEXT11 ;判断就是否功能键LJMP E2 ;转功能键处理NEXT11: CJNE A,#11,NEXT12 LJMP E2 NEXT12: CJNE A,#12, NEXT13 LJMP E2

51单片机汇编程序范例

16位二进制数转换成BCD码的的快速算法-51单片机2010-02-18 00:43在做而论道上篇博文中,回答了一个16位二进制数转换成BCD码的问题,给出了一个网上广泛流传的经典转换程序。 程序可见: http: 32.html中的HEX2BCD子程序。 .说它经典,不仅是因为它已经流传已久,重要的是它的编程思路十分清晰,十分易于延伸推广。做而论道曾经利用它的思路,很容易的编写出了48位二进制数变换成16位BCD码的程序。 但是这个程序有个明显的缺点,就是执行时间太长,转换16位二进制数,就必须循环16遍,转换48位二进制数,就必须循环48遍。 上述的HEX2BCD子程序,虽然长度仅仅为26字节,执行时间却要用331个机器周期。.单片机系统多半是用于各种类型的控制场合,很多时候都是需要“争分夺秒”的,在低功耗系统设计中,也必须考虑因为运算时间长而增加系统耗电量的问题。 为了提高整机运行的速度,在多年前,做而论道就另外编写了一个转换程序,程序的长度为81字节,执行时间是81个机器周期,(这两个数字怎么这么巧!)执行时间仅仅是经典程序的!.近来,在网上发现了一个链接: ,也对这个经典转换程序进行了改进,话是说了不少,只是没有实质性的东西。这篇文章提到的程序,一直也没有找到,也难辩真假。 这篇文章好像是选自某个著名杂志,但是在术语的使用上,有着明显的漏洞,不像是专业人员的手笔。比如说文中提到的:

“使用51条指令代码,但执行这段程序却要耗费312个指令周期”,就是败笔。51条指令代码,真不知道说的是什么,指令周期是因各种机型和指令而异的,也不能表示确切的时间。 .下面说说做而论道的编程思路。;----------------------------------------------------------------------- ;已知16位二进制整数n以b15~b0表示,取值范围为0~65535。 ;那么可以写成: ; n = [b15 ~ b0] ;把16位数分解成高8位、低8位来写,也是常见的形式: ; n = [b15~b8] * 256 + [b7~b0] ;那么,写成下列形式,也就可以理解了: ; n = [b15~b12] * 4096 + [b11~b0] ;式中高4位[b15~b12]取值范围为0~15,代表了4096的个数; ;上式可以变形为: ; n = [b15~b12] * 4000 + {[b15~b12] * (100 - 4) + [b11~b0]} ;用x代表[b15~b12],有: ; n =x * 4000 + {x * (100 - 4) + [b11~b0]} ;即: ; n =4*x (千位) + x (百位) + [b11~b0] - 4*x ;写到这里,就可以看出一点BCD码变换的意思来了。 ;;上式中后面的位:

51单片机中断系统详解

的定时器中断后便认为是1s,这样便可精确控制定时时间啦。要计50000个数时,TH0和TL0中应该装入的总数是65536-50000=15536.,把15536对256求模:15536/256=60装入TH0中,把15536对256求余:15536/256=176装入TL0中。 以上就是定时器初值的计算法,总结后得出如下结论:当用定时器的方式1时,设机器周期为T CY,定时器产生一次中断的时间为t,那么需要计数的个数为N=t/T CY ,装入THX和TLX中的数分别为: THX=(65536-N)/256 , TLX=(65536-N)%256 中断服务程序的写法 void 函数名()interrupt 中断号using 工作组 { 中断服务程序内容 } 在写单片机的定时器程序时,在程序开始处需要对定时器及中断寄存器做初始化设置,通常定时器初始化过程如下: (1)对TMOD赋值,以确定T0和 T1的工作方式。 (2)计算初值,并将初值写入TH0、TL0或TH1、TL1。 (3)中断方式时,则对IE赋值,开放中断。 (4)使TR0和TR1置位,启动定时器/计数器定时或计数。 例:利用定时器0工作方式1,实现一个发光管以1s亮灭闪烁。 程序代码如下: #include #define uchar unsigned char #define uint unsigned int sbit led1=P1^0; uchar num; void main() { TMOD=0x01; //设置定时器0位工作模式1(M1,M0位0,1) TH0=(65536-45872)/256; //装初值11.0592M晶振定时50ms数为45872 TL0=(65536-45872)%256; EA=1; //开总中断 ET0=1; //开定时器0中断 TR0=1; //启动定时器0 while(1) { if(num==20) //如果到了20次,说明1秒时间 { led1=~led1; //让发光管状态取反 num=0; } } } void T0_time()interrupt 1

51单片机简易计算器程序

#include <reg51.h>#include <intrins.h> #include <ctype.h> #include <stdlib.h> #define uchar unsigned char #define uint unsigned int uchar operand1[9], operand2[9]; uchar operator; void delay(uint); uchar keyscan(); void disp(void); void buf(uint value); uint compute(uint va1,uint va2,uchar optor); uchar code table[] = {0xc0,0xf9,0xa4,0xb0,0x99, 0x92,0x82,0xf8,0x80,0x90,0xff}; uchar dbuf[8] = {10,10,10,10,10,10,10,10}; void delay(uint z) { uint x,y; for(x=z;x>0;x--)

for(y=110;y>0;y--); } uchar keyscan() { uchar skey; P1 = 0xfe; while((P1 & 0xf0) != 0xf0) { delay(3); while((P1 & 0xf0) != 0xf0) { switch(P1) { case 0xee: skey = '7'; break; case 0xde: skey = '8'; break; case 0xbe: skey = '9'; break; case 0x7e: skey = '/'; break; default: skey = '#'; }

51单片机实用子程序(汇编)

《MCS-51单片机实用子程序库(96年版)》 周航慈 目前已有若干版本的子程序库公开发表,它们各有特色。笔者在1988年也编制了两个子程序库(定点子程序库和浮点子程序库),并在相容性、透明性、容错性和算法优化方 面作了一些工作。本程序库中的开平方算法为笔者研究的快速逼近算法,它能达到牛顿迭代法同样的精度,而速度加快二十倍左右,超过双字节定点除法的速度。经过八年来全国广大用户的实际使用,反馈了不少信息,陆续扩充了一些新的子程序,纠正了一些隐含错误,成为现在这个最新版本。 本子程序库对《单片机应用程序设计技术》一书附录中的子程序库作了重大修订:(1)按当前流行的以 IBM PC 为主机的开发系统对汇编语言的规定,将原子程序库的标号和位地址进行了调整,读者不必再进行修改,便可直接使用。 (2)对浮点运算子程序库进行了进一步的测试和优化,对十进制浮点数和二进制浮点数的相互转换子程序进行了彻底改写,提高了运算精度和可靠性。 (3)新增添了若干个浮点子程序(传送、比较、清零、判零等),使编写数据处理 程序的工作变得更简单直观。 在使用说明中开列了最主要的几项:标号、入口条件、出口信息、影响资源、堆栈 需求,各项目的意义请参阅《单片机应用程序设计技术》第六章 6.3.7 节的内容。程序 清单中开列了四个栏目:标号、指令、操作数、注释。为方便读者理解,注释尽力详细。 子程序库的使用方法如下: 1.将子程序库全部内容链接在应用程序之后,统一编译即可。优点是简单方便,缺点是程序太长,大量无关子程序也包含在其中。 2.仅将子程序库中的有关部分内容链接在应用程序之后,统一编译即可。有些子程序需要调用一些低级子程序,这些低级子程序也应该包含在内。优点是程序紧凑,缺点是需要对子程序库进行仔细删节。 (一)MCS-51定点运算子程序库及其使用说明 定点运算子程序库文件名为DQ51.ASM,为便于使用,先将有关约定说明如下: 1.多字节定点操作数:用[R0]或[R1]来表示存放在由R0或R1指示的连续单元中的数据。地址小的单元存放数据的高字节。例如:[R0]=123456H,若(R0)=30H,则(30H)=12H,(31H)=34H,(32H)=56H。 2.运算精度:单次定点运算精度为结果最低位的当量值。 3.工作区:数据工作区固定在PSW、A、B、R2~R7,用户只要不在工作区中存放无 关的或非消耗性的信息,程序就具有较好的透明性。

基于51单片机与点阵的贪食蛇游戏机开发

基于51单片机与8*8点阵的贪吃蛇游戏机开发

目录

一、硬件设计 1、8*8LED点阵的原理说明 本设计采用的点阵显示模块是ARK-SZ411288K,其原理 结构图如图1所示。ARK-SZ411288K显示模块是8*8点阵的 显示模块,从图1中可以看出,8*8点阵共需要64个发光二 极管组成,且每个发光二极管是放置在行线和列线的交叉点 上,当对应的某一列置1电平,某一行置0电平,则相应的图18*8LED点阵的原理图二极管就亮。ARK-SZ411288K可与CPU直接连接,根据引脚说明,将其各个引脚与相应的I/O 口连接。 2、LED阵列驱动电路 正向点亮一颗LED,至少也得10~20毫安,若电流不够大,则LED不够亮。而不管是8051的输入/输出口,还是TTL、CMOS的输出端,其高态输出电流都不是很高,不过1~2毫安而已,因此,很难直接高态驱动LED。这时候就需要额外的驱动电路,本设计采用的是74HC595,用74HC595芯片驱动LED有以下特点:速度较快,功耗较小,LED的数目多少随意,既可以控制共阴极的LED显示器,也可以控制共阳极的LED显示器,可以软件控制LED的亮度,还可以在必要的时候关断显示 (数据保留),以减小功耗,并可随时唤醒显示。用它设计的电路,不仅软硬件设计简单,而且功耗低,驱动能力强,占用的I/O口线较少,是一种造价低廉,应用灵活的设计方案。

图274HC595管脚图 74HC595内含8位串入、串/并出移位寄存器和8位三态输出锁存器。寄存器和锁存器分别有各自的时钟输入(SCLK和SLCK),都是上升沿有效。当SCLK从低到高电平跳变时,串行输入数据(SDA)移入寄存器;当SLCK从低到高电平跳变时,寄存器的数据置入锁存器。清除端(CLR)的低电平只对寄存器复位(QS为低电平),而对锁存器无影响。当输出允许控制(EN)为高电平时, 并行输出(Q0~Q7)为高阻态,而串行输出(QS)不受影响。74HC595最多需要5根控制线,即SDA、SCLK、SLCK、CLR和EN。其中CLR可以直接接到高电平,用软件来实现寄存器清零;如果不需要软件改变亮度,EN可以直接接到低电平,而用硬件来改变亮度。把其余三根线和单片机的I/O口相接,即可实现对LED的控制。 数据SDA口送入74HC595,在每个SCLK的上升沿,SDA口上的数据移入寄存器,在SCLK 的第9个上升沿,数据开始从QS移出。如果把第一个74HC595的QS和第二个74HC595的SDA 相接,数据即移入第二个74HC595中,照此一个一个接下去,可接任意多个。数据全部送完后,给SLCK一个上升沿,寄存器中的数据即置入锁存器。此时如果EN为低电平,数据即从并口Q0~Q7输出,把Q0~Q7与LED的8段相接,LED就可以实现显示了。要想软件改变LED的亮度,只需改变EN的占空比就行了[1]。 二、软件设计 1、主程序工作流程

AT89C51单片机C实现简易计算器

AT89C51单片机简易计算器的设计 一、总体设计 根据功能和指标要求,本系统选用MCS-51系列单片机为主控机。通过扩展必要的外围接口电路,实现对计算器的设计。具体设计如下:(1)由于要设计的是简单的计算器,可以进行四则运算,为了得到较好的显示效果,采用LCD 显示数据和结果。 (2)另外键盘包括数字键(0~9)、符号键(+、-、×、÷)、清除键和等号键,故只需要16 个按键即可,设计中采用集成的计算键盘。 (3)执行过程:开机显示零,等待键入数值,当键入数字,通过LCD显示出来,当键入+、-、*、/运算符,计算器在内部执行数值转换和存储,并等待再次键入数值,当再键入数值后将显示键入的数值,按等号就会在LCD上输出运算结果。 (4)错误提示:当计算器执行过程中有错误时,会在LCD上显示相应的提示,如:当输入的数值或计算得到的结果大于计算器的表示范围时,计算器会在LCD上提示溢出;当除数为0时,计算器会在LCD 上提示错误。 系统模块图:

二、硬件设计 (一)、总体硬件设计 本设计选用AT89C51单片机为主控单元。显示部分:采用LCD 静态显示。按键部分:采用4*4键盘;利用MM74C922为4*4的键盘扫描IC,读取输入的键值。 总体设计效果如下图:

(二)、键盘接口电路 计算器输入数字和其他功能按键要用到很多按键,如果采用独立按键的方式,在这种情况下,编程会很简单,但是会占用大量的I/O 口资源,因此在很多情况下都不采用这种方式,而是采用矩阵键盘的方案。矩阵键盘采用四条I/O 线作为行线,四条I/O 线作为列线组成键盘,在行线和列线的每个交叉点上设置一个按键。这样键盘上按键的个数就为4×4个。这种行列式键盘结构能有效地提高单片机系统中I/O 口的利用率。 矩阵键盘的工作原理: 计算器的键盘布局如图2所示:一般有16个键组成,在单片机中正好可以用一个P口实现16个按键功能,这种形式在单片机系统中也最常用。 图 2 矩阵键盘布局图 矩阵键盘内部电路图如图3所示:

基于单片机的微型游戏机—贪吃的蛇

北京理工大学珠海学院毕业论文 基于单片机的微型游戏机—贪吃的蛇 摘要 单片微型机简称单片机,它是在一片芯片上集成了中央处理部件,存储器、定时器/计数器和各种输入输出设备等接口部件。单片机是微机发展的一个重要的分支,自问世以来,性能不断地改善和提高,加之单片机具有集成度高、功能强、速度快、体积小、功耗小、使用方便、性能可靠、价格便宜等优点,故在工业控制、数据采集和处理、通信系统、家用电器等领域的应用日益广泛。国内虽然起步较晚,但单片机的潜力越来越被人们所重视,尤其在工业控制、自动化仪器仪表、计算机系统接口、智能化外设等应用领域发展很快。它的应用对于产品升级换代、机电一体化都具有重要的意义,在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数,被用于各种不同产品的生产。在通信行业更为广泛利用,手机从只能基本通话,到现在一台手机拥有各种不同的功能,单片机得到了广泛的应用。手机可以听音乐,听收音机,玩游戏,照相片等等,比较流行的手机游戏贪吃蛇就能用单片机实现。 关键词:51单片机贪吃蛇游戏

Based on single chip micro-game - greedy snake ABSTRACT Single-chip microprocessor referred to as microcontrollers, which is integrated on a chip, a central processing unit, memory, timer / counters and a variety of input and output devices such as Interface Unit. SCM is a microprocessor development, an important branch, since its inception, performance, continuous improvement and increase, coupled with microcontroller with an integrated high, strong function, high speed, small size, power consumption, easy to use, reliable, cheap, etc. advantages, so in the industrial control, data acquisition and processing, communication systems, home appliances and other fields increasingly wide range of applications. Although the domestic late start, but the potential of SCM has been growing attention, especially in industrial control, automation instruments and meters, computer system interface, intelligent peripherals and other applications developed rapidly. Its application for the upgrading of products, mechanical and electrical integration, have important significance in industrial production, current, voltage, temperature, pressure, flow, flow rate and switching capacity are commonly used parameters of the main accused, was used for a variety production of different products. More extensive use of the communications industry, cell phone calls from can only be basic to the present, mobile phones have a variety of functions, single-chip has been widely used. Phone can listen to music, listening to the radio, play games, according to photos, etc., the more popular cell phone game Snake will be able to use SCM. Keyword:51singlechip snake game

51单片机浮点运算子程序库

51单片机浮点运算子程序库 时间:2007-11-14 来源: 作者: 点击:4020 字体大小:【大中小】 1: FSDT 功能:浮点数格式化 2: FADD 功能:浮点数加法 3: FSUB 功能:浮点数减法 4: FMUL 功能:浮点数乘法 5: FDIV 功能:浮点数除法 6: FCLR 功能:浮点数清零 7: FZER 功能:浮点数判零 8: FMOV 功能:浮点数传送 9: FPUS 功能:浮点数压栈 10: FPOP 功能:浮点数出栈 11: FCMP 功能:浮点数代数值比较不影响待比较操作数 12: FABS 功能:浮点绝对值函数 13: FSGN 功能:浮点符号函数 14: FINT 功能:浮点取整函数 15: FRCP 功能:浮点倒数函数 16: FSQU 功能:浮点数平方 17: FSQR 功能:浮点数开平方快速逼近算法 18: FPLN 功能:浮点数多项式计算 19: FLOG 功能:以10为底的浮点对数函数 20: FLN 功能:以e为底的浮点对数函数 21: FE10 功能:以10为底的浮点指数函数 22: FEXP 功能:以e为底的浮点指数函数 23: FE2 功能:以2为底的浮点指数函数 24: DTOF 功能:双字节十六进制定点数转换成格式化浮点数 25: FTOD 功能:格式化浮点数转换成双字节定点数 26: BTOF 功能:浮点BCD码转换成格式化浮点数 27: FTOB 功能:格式化浮点数转换成浮点BCD码 28: FCOS 功能:浮点余弦函数 29: FSIN 功能:浮点正弦函数 30: FATN 功能:浮点反正切函数 31: RTOD 功能:浮点弧度数转换成浮点度数 32: DTOR 功能:浮点度数转换成浮点弧度数 为便于读者使用本程序库,先将有关约定说明如下: 1.双字节定点操作数:用[R0]或[R1]来表示存放在由R0或R1指示的连续单元中的数据,地址小的单元存放高字节?如果[R0]=1234H,若(R0)=30H,则(30H)=12H,(31H)=34H? 2.二进制浮点操作数:用三个字节表示,第一个字节的最高位为数符,其余七位为阶码(补码形式),第二字节为尾数的高字节,第三字节为尾数的低字节,尾数用双字节纯小数(原码)来表示?当尾数的最高位为1时,便称为规格化浮点数,简称操作数?在程序说明中,也用[R0]或[R1]来表示R0或R1指示的浮点操作数,例如:当[R0]=-6.000时,则二进制浮点数表示为83C000H?若(R0)=30H,则 (30H)=83H,(31H)=0C0H,(32H)=00H? 3.十进制浮点操作数:用三个字节表示,第一个字节的最高位为数符,其余七位为阶码(二进制补码形式),第二字节为尾数的高字节,第三字节

51单片机中断系统程序实例

51单片机中断系统程序实例(STC89C52RC) 51单片机有了中断,在程序设计中就可以做到,在做某件事的过程中,停下来先去响应中断,做别的事情,做好别的事情再继续原来的事情。中断优先级是可以给要做的事情排序。 单片机的学习不难,只要掌握学习方法,学起来并不难。什么是好的学习方法呢,一定要掌握二个要点: 1. 要知道寄存器的英文全拼,比如IE = interrupt中断 不知道全拼,要去猜,去查。这样就可以理解为什么是这个名称,理解了以后就不用记忆了。 2. 每个知识点要有形像的出处 比如看到TF0,脑子里马上要形像地定位到TCON寄存器的某位 看到ET0, 马上要形像地定位到IE寄存器的第2位 https://www.doczj.com/doc/d011050214.html,/tuenhai/独家揭秘:形像是记忆的最大技巧。当人眼看到某个图时,是把视觉信号转化成电信号,再转化成人能理解的形像。当我们回忆形像时,就是在重新检索原先那个视觉信号,并放大。在学习过程中,不断练习检索、放大信号,我们的学习能力就会越来越强。 写程序代码时,也要把尽量把每行代码形像化。 51单片机内中断源 8051有五个中断源,有两个优先级。与中断系统有关的特殊功能寄存器有IE(中断允许寄存器)、IP(中断优先级控制寄存器)、中断源控制寄存器(如TCON、SCON的有关位)。51单片机的中断系统结构如下图(注意,IF0应为TF0):

8052有6个中断源,它比8051多一个定时器/计数器T2中断源。 8051五个中断源分别是: (1)51单片机外部中断源 8051有两个外部中断源,分别是INT0和INT1,分别从P3.2和P3.3两个引脚引入中断请求信号,两个中断源的中断触发允许由TCON的低4位控制,TCON的高4位控制运行和溢出标志。 INT0也就是Interrupt 0。在这里应该看一下你的51单片机开发板的电路原理图。离开形像的记忆是没有意义的。读到上面这句,你应该回忆起原理图上的连接。任何记忆都转化为形像,这是学习的根本原理,我们通过学习单片机要学会这种学习方法,会让你一辈子受益无穷。 TCON的结构如下图: (a)定时器T0的运行控制位TR0

贪吃蛇设计

《C51程序设计》期末项目考核 项目设计报告 题目:点阵贪吃蛇设计 学院: 专业: 班级: 学号: 姓名:

目录 1项目要求及功能 (2) 1.1电路要求 (2) 1.2 程序要求 (2) 2项目设计 (2) 2.1整体设计思路及原理 (2) 2.1.1蛇的运动处理 (3) 2.1.2点阵屏的原理图 (4) 2.2贪吃蛇的设计的基本思路 (4) 2.3硬件电路设计 (4) 2.4单片机最小系统图模块 (5) 2.5点阵屏显示模块 (5) 2.6按键控制电路模块 (5) 2.7贪吃蛇程序流程图 (5) 3项目仿真 (6) 3.1仿真效果图及电路图 (6) 3.11仿真效果图 (6) 3.2测试结果分析 (6) 4贪吃蛇设计总结 (7) 5 参考文献 (8) 附录 (8)

附录Ⅰ整体电路图 (8) 1.1按键控制电路 (8) 1.2单片机最小系统图及点阵屏显示电路仿真图 (9) 附录Ⅱ源程序清单 (9) 1项目要求及功能 项目要求:通过使用C51单片机和点阵显示屏,制作贪吃蛇并通过KEI软件写出程序,运用PROTUES仿真软件测试其功能 1.1电路要求 通过使用单片机和点阵屏完成电路的各部分并实现贪吃蛇所需的全部功能。通过仿真软件实现对电路和软件设计的检查和验收。 1.2 程序要求 通过使用KEIL软件,使用C语言并结合硬件电路,实现硬件所需要的功能,要求程序简单易懂,代码效率高,无错误,生成HEX,文件并将文件烧入仿真软件中。 2项目设计 2.1 整体设计思路及原理 随着科技的发展,现代生活节奏越来越快,人们的工作生活压力也随之加大。设计一款操作简单,生动新颖,娱乐性强,便于携带的小游戏,在繁忙的工作生活之余玩玩这款小游戏,不仅可以调节人们的情绪,使人心情舒畅,还能健脑益智,为更好地投入工作学习做好准备。 随着社会的发展,人们生活的步调日益加快,越来越多的人加入了全球化的世界。人们不再拘泥于,加班,出差成了现代人不可避免的公务。而此时一款可以随时随地娱乐的游戏成了必需品。贪吃蛇这一游戏简单易行,操作方便,娱乐性较强,吸引了不少人。这一款游戏紧紧地抓住了人们的心理,虽然简单,却其乐无穷,在人们不断追求更多的欲望下,该游戏给人们带来了追逐的快感,以及成功后的满足感,对于一直处于高压下的现代人是很好的放松工具。当前科学技术飞速发展,特别是微电子技术,计算机软件与应用技术的发展,使得人们的日常生活丰富多彩。单片微型计算机(简称单片机)作为微型计算机家族的一员,以其独特的结构,良好的稳定性,便宜的价格在嵌入式领域广泛应用。与传统的PC上设计的贪吃蛇游戏不同,本次作者利用Proteus 硬件仿真软件,采用单片机、液晶显示屏、扬声器、按键等搭建硬件平台,C语言编程,实现便携地贪吃蛇游戏。

51单片机简易计算器代码

#include"reg52.h" #define uchar unsigned char #define uint unsigned int sbit busy=P0^7; void delay(uint z) { uint x,y; for(x=z;x>0;x--) for(y=110;y>0;y--); } char i,j,temp,num; long a,b,c; //a,第一个数b,第二个数c,得数 uchar flag,fuhao;//flag表示是否有符号键按下,fuhao表征按下的是哪个符号uchar code table[]={7,8,9,0,4,5,6,0,1,2,3,0,0,0,0,0}; uchar code table1[]={7,8,9,0x2f-0x30,4,5,6,0x2a-0x30,1,2,3,0x2d-0x30,0x01-0x30,0,0x3d-0x30,0 x2b-0x30}; //按键显示编码表 sbit lcden=P2^2; sbit lcdwrite=P2^1; sbit lcdrs=P2^0; //lcd的写指令 void write_com(uchar com) { lcdrs=0; lcden=0; P0=com; delay(1); lcden=1; delay(1); lcden=0; } //lcd的写数据 void write_date(uchar da) { lcdrs=1; lcden=0; P0=da; delay(1); lcden=1; delay(1); lcden=0; } //初始化

void init() //初始化 { uchar num; num=-1; lcdwrite=0; lcden=0; write_com(0x38); write_com(0x0c); write_com(0x06); write_com(0x01); delay(500);//延时0.5s write_com(0x01); i=0; j=0; a=0; //第一个参与运算的数 b=0; //第二个参与运算的数 c=0; flag=0; //flag表示是否有符号键按下, fuhao=0; // fuhao表征按下的是哪个符号 } void keyscan() // 键盘扫描程序 { P3=0xfe; if(P3!=0xfe) { delay(10); //延迟20ms if(P3!=0xfe) { temp=P3&0xf0; switch(temp) { case 0xe0:num=0; break; case 0xd0:num=1; break; case 0xb0:num=2; break; case 0x70:num=3; break; } } while(P3!=0xfe); if(num==0||num==1||num==2)//如果按下的是'7','8'或'9 { if(j==1)//确认一次计算完毕,清屏 { write_com(0x01);

汇编51单片机考试常见试题

汇编51单片机考试常见试题

一、填空题 1.单片机是把中央处理器、存储器、定时器/计数器以及I/O接口电路等主要计算机部件集成在一块集成电路芯片上的微型计算机。 2.除了单片机这一名称之外,单片机还可称为微控制器、嵌入式控制器。 3.计算机的系统总线有地址总线、控制总线和数据总线。 4.80C51单片机基本型内部RAM有 128 个字节单元,这些单元可以分为三个用途不同的区域,一是工作寄存器区、二是位寻址区、三是数据缓冲区。5.8051单片机有2 个16位定时/计数器。 6.单片机存储器的主要功能是存储程序和数据。80C51含4 KB掩膜ROM。7.80C51在物理上有4个独立的存储器空间。 8.通常、单片机上电复位时PC= 0000H,SP=07H;而工作寄存器则缺省采用第00 组,这组寄存器的地址范围是从00H~ 07H。 9.8051的堆栈是向地址的高端生成的。入栈时SP先加1,再压入数据。10.使用8031芯片时,需将/EA引脚接低电平,因为其片内无程序存储器。11.MCS-51特殊功能寄存器只能采用直接寻址方式。 12.汇编语言中可以使用伪指令,它们不是真正的指令,只是用来对汇编过程进行某种控制。 13.半导体存储器的最重要的两个指标是存储容量和存储速度。 14.当PSW4=1,PSW3=0时,工作寄存器Rn,工作在第2组。 15.在8051单片机中,由 2 个振荡(晶振)周期组成1个状态(时钟)周期,由 6个状态周期组成1个机器周期。 16.假定累加器A的内容30H,执行指令:1000H:MOVC A,@A+PC后,把程序存储器1031H单元的内容送累加器A中。 17.MCS-51单片机访问外部存储器时,利用ALE信号锁存来自P0口的低8位地址信号。 18.内部RAM中,位地址为30H的位,该位所在字节的字节地址为26H。19.若A中的内容为63H,那么,P标志位的值为0。 20.在基址加变址寻址方式中,以累加器A作变址寄存器,以DPTR或PC作基址寄存器。 21.指令格式是由操作码和操作数所组成,也可能仅由操作码组成。 22.通过堆栈操作实现子程序调用,首先就要把PC的内容入栈,以进行断点保护。调用返回时,再进行出栈保护,把保护的断点送回到PC。 23.MCS-51单片机程序存储器的寻址范围是由程序计数器PC的位数所决定的,因为MCS-51的PC是16位的,因此其寻址的范围为64KB。 24.在寄存器间接寻址方式中,其“间接”体现在指令中寄存器的内容不是操作数,而是操作数的地址。 25.假定累加器A中的内容为30H,执行指令1000H:MOVC A,@A+PC 后,把程序存储器1031H单元的内容送入累加器A中。 26.12根地址线可寻址4 KB存储单元。 27.:假定A=55H,R3=0AAH,在执行指令ANL A,R3后,A=00H,R3=0AAH。28.MCS-51的P0口作为输出端口时,每位能驱动8个LSTTL负载。 29.MCS-51有4个并行I/O口,其中P1~P3是准双向口,所以由输出转输入时必须先写入“1”。 30.MCS-51的堆栈是软件填写堆栈指针临时在片内数据存储器内开辟的区域。

基于51单片机的小游戏

P 10 P 17P 16P 15P 14P 13P 12P 11K0K1K2K3K4K5K6K7GND GND GND GND K0 K1 K3 K2 GND K4 P10P11P12P13P14P15P16P17 P27 P20 P21 P22 P23 P24 P25 P26 P20P21P22P23P24P25P26P27 VCC GND GND GND K6 K5 K7 G7G6 G5 G4 G3 G2G1 G0 VCC G0G1G2G3G4G5G6G7 GND XTAL2 18 XTAL1 19 ALE 30EA 31 PSEN 29RST 9 P0.0/AD039P0.1/AD138P0.2/AD237P0.3/AD336P0.4/AD435P0.5/AD534P0.6/AD633P0.7/AD732P1.0/T21P1.1/T2EX 2P1.23P1.34P1.45P1.56P1.67P1.7 8 P3.0/RXD 10P3.1/TXD 11P3.2/INT012P3.3/INT113P3.4/T014P3.7/RD 17 P3.6/WR 16P3.5/T115P2.7/A1528P2.0/A821P2.1/A922P2.2/A1023P2.3/A1124P2.4/A1225P2.5/A1326P2.6/A1427P1.7P1.0 共阳低电平扫描 23456789 1 RP1 RESPACK 8×10k 上 下 左 右 12345678 161514131211109 RN1 220 R7 1.5k R6 1.5k R5 1.5k R4 1.5k R3 1.5k R2 1.5k R1 1.5k R0 1.5k 限流电阻 X1 12MHz C2 33pF C3 33pF R8 10k C1 10uF R13220 R12220 R11 220 D1 D2 D3 P2.0P2.7P1.6P1.5P1.4 P1.3P1.2P1.1P2.6 P2.5P2.4P2.3P2.2P2.1列 行SW1 SW-SPST 总开关 Q8 2N3906 R14 1.5k R9 10k R10 10k Q7 2N3906 Q6 2N3906 Q5 2N3906 Q4 2N3906 Q3 2N3906 Q2 2N3906 Q1 2N3906 Q0 2N3906 12345678 161514131211109 RN2 10k LS1 SPEAKER

相关主题
文本预览
相关文档 最新文档