当前位置:文档之家› 固定管板式换热器设计

固定管板式换热器设计

固定管板式换热器设计
固定管板式换热器设计

前言 (2)

列管式换热器机械设计 (3)

一、问题重述 (3)

1.1 设计题目 (3)

1.2 已知条件 (3)

二、计算 (3)

2.1 管子数N (3)

2.2 管子的排列方式,管间距的确定 (4)

2.3 换热器壳体直径的确定 (4)

2.4 换热器壳体壁厚的计算 (4)

2.5 换热器封头换热器封头的选择 (5)

2.6 封头法兰的选择 (5)

2.7 管板尺寸的确定 (6)

2.8 管子拉脱力计算 (8)

2.9 折流板设计 (10)

2.10 拉杆、定距管 (11)

2.11 波形膨胀节的计算 (12)

2.12 接管法兰的选择 (14)

2.13 开孔补强 (14)

2.14 封头法兰垫片 (15)

2.15 底座 (15)

三、课程设计小结 (16)

参考资料 (17)

前言

换热器在工、农业的各个领域应用的十分广泛,在日常生活中也随处可见,是不可缺少的工艺设备之一。换热器的研究备受各种研究机构的关注和重视,其性能的每一点提高都意味巨大的经济与社会效益。

管壳式换热器虽然在换热效率、设备体积和金属材料的消耗方面不如其他新型的换热设备,但它具有结构坚固、操作弹性大、可靠程度高、使用范围广等,所以在各领域中仍得到广泛的应用。

对于学习化工机械的大学生来说,换热器设计是必须要了解和掌握的知识之一。换热器设计是一个复杂而艰辛的过程,它不仅仅是确定一个或者多个可行的解决方案,还要求确定最可能的或接近最优的设计方案。

管壳式换热器的结构设计,必须考虑很多的因素,如压力、温度、材料、流体性质及检修清理等,通过各种因素的综合考虑,来选择合适的设计方案。

本次课程设计通过对固定管板式换热器的的结构设计以及整体装配的设计,了解到换热器大体的设计过程和装配过程,丰富了我们所学习的知识,学以致用,加强了我们对知识的实际应用能力,并且在设计过程中一些新的知识,开阔了自己是思维,对我们以后的工作具有很大是指导意义。

本次课程设计由陈庆和王海波老师指导,特此表示感谢。由于设计者水平有限,不足之处,还望指导。

xxx

2011年12月26日

列管式换热器机械设计

一、问题重述

1.1 设计题目

年产3000吨合成氨厂变换工段换热器的机械设计。

1.2 已知条件

(1)气体平均压力:

管程:半水煤气 0.7MPa (绝压); 壳程:变换气 0.6MPa (绝压);

(2)半水煤气进口温度180℃,出口温度370℃;变换气进口温度400℃,出口温度220℃。

(3)由工艺计算求得换热面积为1302m 。

二、计算

2.1 管子数n

换热管选用Φ32×3的无缝钢管,材质为20号钢,换热管的长度推荐采用1.0,1.5,2.0,2.5,3.0,4.5,6.0,7.5,9.0,12.0m ,本次设计选取管长为3米。

管子的当量直径为:

m mm d n 029.029332==-=。

换热面积:

Ln d A n π=

877.4753

029.0130

L d A n n =??==

∴ππ根 考虑到换热过程中的各种热量损失,圆整确换热管数量n=476根。

2.2 管子的排列方式,管间距的确定

换热管的排列方式采用正三角形排列,换热管中心距不宜小于1.25倍的换热管外径,由GB151-1999《管壳式换热器表》中表12可知换热管外径mm d 32=时,换热管中心距mm S 40=。查表得六角形层数为12层,六角形对角线上的

管子数为25个。

2.3 换热器壳体直径的确定

壳体内径:

l b S D i 2)1(+-=

S ——换热管中心距,S=40mm ;

b ——正六角形对角线上的管子数,b=25个;

l 最外层管子的中心到壳体边缘的距离,取l =2d ;

mm

l b S D i 10883222)125(322)1(=??+-?=+-=

选取壳体内径mm D i 1100=。

2.4 换热器壳体壁厚的计算

壳体材料选取A3R ,已知壳体承受压力为MPa 68.0,设计压力应该取大于

MPa 68.0取设计压力MPa P c 1=,设计温度取400℃,设壁厚在3-16mm 之间,

此时材料的许用应力MPa t

106][=σ;钢板宽度在2500-4000mm 时,材料的允

许负偏差C 1=-0.8mm ;对于碳素钢,腐蚀裕量C 2不小于1mm ,取C 2=2mm ;焊接接头形式为单面焊对接接头,局部无损检测,焊接接头系数Φ=0.8。此时筒 体的计算厚度:

mm P D P c t

i c c 524.61

8.010621100

1][2=-???=-=

φσδ 实际所需厚度

mm C C c 324.921=++=δδ

所以材料的名义厚度可以圆整取mm 10=δ。

2.5 换热器封头换热器封头的选择

上下封头均选择标准椭圆形封头,封头材料选A3R ,根据JB/T4746-2002标准,以内径为基准,封头公称直径mm D DN i 1100==,封头厚度也取mm 10=δ,曲面高度mm D h i 2754

1

==,查表可知封头总高度mm H 300=。封头结构如下图:

2.6 封头法兰的选择

材料选择16Mn ,根据JB/T 4703-2000,选用MPa PN mm DN 6.1,1100==的榫槽密封面长颈对焊法兰,其规格尺寸如下图:

2.7 管板尺寸的确定

选用固定式换热器管板e 型,管板与壳程圆筒连为整体,期延长部分兼做法兰,与管箱用螺柱、垫片连接;管板材料选用16Mn 。单管程(延长部分兼作法兰固定管板换热器管板,管板周边布管区较窄(管板周边布管区无量纲宽度

0.1≤k ),假定管板厚度为mm 10=δ,管子加强系数为K ,则

δ

ηδ

L E na

E D K p t i

318

.12

= (1)

式中:

i D ——壳程圆筒内径,mm ;

δ—— 管板计算厚度,mm ;

n —— 管子根数;

a —— 一根换热管管壁金属的横截面积,2mm ;

η—— 管板刚度削弱系数,取η=0.4;

L —— 管子有效长度,m ;

i E ——管子设计温度下的弹性模量,GPa ;

p E ——管板设计温度下的弹性模量;GPa 。

π

t

t A D 4=

(2)

式中:

t D —— 管板布管区当量直径,mm ;

t A —— 管板布管区面积,2mm 。

i

t

t D D =

ρ (3)

式中:

t ρ—— 管板布管区的当量直径与壳程圆筒内径之比。

对单管程换热器,三角形排列时:

2866.0nS A t = (4) )(t t a d n n δπδ-= (5)

式中:

S —— 管间距,mm ;

t δ—— 管子壁厚,mm ;

d —— 管子外径,mm 。

(4)式代入(2)式中得:

n S A D t

t 05.14==

π

(6)

(60)式代入(3)式化简得:

i

t D n

S

05.1=ρ (7)

在实际设计工作中,)1(t K k ρ-= (8)

且知:0.1≤k

所以,由(8)得:,0.1)1(≤-t K ρ,即K

t 0

.1)1(≤-ρ (9)

由(9)代入(1)中,经化简得:

34

2

)1()(389.2t p i t t t L

E D E d n ρδδδ--≥ (10)

由已知条件计算得:

833.01100

476

4005.105.1=??==i t D n S ρ

设计温度为400℃时,管子材料为20钢,弹性模量GPa E i 187=,管板材料为16Mn ,弹性模量GPa E p 185=

mm

L

E D E d n t p i t t t 587.233000

185)

833.01(1100187)332(3476389.2)1()(389.23

4

234

2

=?-???-??=--≥ρδδδ

所以管板的最小有效厚度为23.587mm .取管板的有效厚度mm 40=δ,并且将管板延长部分作为法兰和封头法兰配合形成榫槽面密封结构,则其他尺寸如下图所示:

2.8 管子拉脱力计算

管子和管板采用开槽胀接的方式连接,管板厚度大于25mm 时,需要开二个槽。开槽,换热管外径为32φ时,查表可知开槽深度K=0.6mm ,管子伸出段长度为4+2mm ,具体结构如下图所示:

拉脱力计算:

管子 壳体 材质 20号钢 A3R

α 6108.11-? 6

108.11-?

E GPa 210 GPa 210

尺寸 3000332??φ 101100?φ 管字数: 476根; 管间距: mm S

40=;

管壳壁温差: C t

?=?50;

管子与管板连接结构: 开槽胀接; 胀接长度: mm l

44=。

(1)在操作压力下,胀接周边所产生的应力P q

dl

PA q P π=

式中:

24323210818.5)1032(4

)1040(866.04866.0m d S A ---?=??-??=-

π MPa P 7.0=

m l 044.0=

MPa dl PA q P 0945.0044

.0)1032(10818.57.03

4

=?????==--ππ (2)在温差应力作用下,胀接周边所产生的应力T q

dl

d d q i r T 4)

(22-=

σ

式中:

s

t s t r A A T T E +-=

1)

(ασ

22-n m 10485.301.011.1?=??==πδπD A s

22222130.04

476

)026.0032.0(4

)

(m n d d A i t =?-?=

-=

ππ

MPa A A T T E s

t s t r 190.26)

03485.0130.0(150********.111)

(96=+????=+-=

-ασ

MPa dl d d q i r T 656.1044

.0032.04)026.0032.0(1019.264)(22622=??-??=-=σ

P q 与T q 的作用方向相同,则

MPa q q q T P 751.1656.10945.0=+=+=

查表知碳素钢在开槽胀接时许用拉脱应力MPa q 4][= 由于MPa q q 4][=<,拉脱力在许用范围内。

2.9 折流板设计

折流板为弓形,查表可知折流板的名义外径:

mm DN D 1094611006=-=-=

折流板高度mm DN DN DN h 880605)8.055.0()45.02.0(-=-=--=范围内,取mm h 850=。

查表知公称直径为1100mm 时,折流板的厚度mm 8=δ。

折流板的间距一般不小于圆筒内径的五分之一,换热管外径为32φ时,钢管的最大无支撑跨距为2200mm ,在此范围内取折流板间距mm l 600=,则折流板数量为4个。

查表知,在间距mm mm l 900600<=时,折流板管孔直径取30

.00

7.0++d

折流板结构如下图:

2.10 拉杆、定距管

常用拉杆形式有两种:

(1)拉杆定距管结构,适用于换热管外径大于或等于19mm 的管束,

a L l >2;

(2)拉杆与折流板点焊结构,适用于换热管外径小于或等于14mm 的管束。 由于本次设计所用换热管外径为32mm ,故采用拉杆定距管结构。 换热管外径为32φ时,查表得对应的拉杆直径mm d n 16=;圆筒公称直径DN 为1100mm ,查得拉杆数量为6根,mm L a 20=,mm L b 60≥,mm b 2=,拉杆长度根据结构所需来确定,拉杆结构如下:

拉杆定距管结构以及和管板的连接方式如下图所示a L l >2

:

拉杆应尽量均匀布置在管束外缘,在布管区内或靠近折流板缺口处应布置适当数量的拉杆,任何折流板应不少于3个支撑点。合理布置完拉杆后,根据结构得出定距管数量为18根。

2.11 波形膨胀节的计算

根据GB16749-1999标准,选用一个ZDL 型(立式)波形膨胀节,材料Q235,其壁厚按下列两式计算,选用二者中较大值。

(1)

C f 1.1t

s

+=σλδ水压

P D i

ex ex

MPa 875.07.025.1=?=水压

P

1f =

MPa 170300s =σ

25.0C =

7.0==ex

i ex D D β,由表查得103.0,990.0==ex ex λα

mm f P D t

s i ex ex 8.825.0170

1875

.10.111000.103C 1.1=+??=+=σλδ水压 (2)

C f P

D D t

s

i ex ex +-=σδ水压

1.1)

(21.0 mm D D i

ex 429.15717

.0==

mm ex 184.825.0170

1875

.01.1)

1100429.1571(21.0=+??-=δ

取波形膨胀节的厚度与壳体厚度一样,即ex δ为10mm ,按下式进行应力校核:

n ex ex k ex C Q ][)

()

1(8.0σδπβσ≤--=

N

n D T T EL Q ex

i ex ex ex

s t k 892.541281

1.1)7.01(990.006.001.050310210108.11)1(06.0)(2

3

9623

=??-?????????=

--=

-πβαδπα

n ex ex k ex MPa C Q ][521.43)

00025.001.0(14.33.0892.541288.0)()1(8.02

2σδπβσ≤=-???=--= MPa n 5.1901275.1][5.1][=?==σσ

故膨胀节厚度符合要求,查表知膨胀节尺寸如下图所示:

2.12 接管法兰的选择

变换气进口选10356?φ的接管,根据法兰标准JB/T4703-2000,PN=1.6

MPa ,DN=350mm 的对焊接管法兰,半水煤气选10325?φ的接管,PN=1.6 MPa ,DN=300mm 的对焊接管法兰,材料为20钢。结构尺寸如下图所示:

2.13 开孔补强

容器开口需要补强,常用的结构是在开口外面焊上一块与容器器壁材料和厚度都相同,即10mm 的A3R 钢板,查表可知补强结构尺寸,见下图:

2.14 封头法兰垫片

由于封头法兰所选的是长颈对焊法兰,采用榫槽密封面密封,故垫片选用适用于长颈对焊法兰的缠绕垫片中的基本型垫片,根据JB/T4075-2000标准,其结构尺寸如图所示:

2.15 底座

本次设计的换热器圆筒公称直径在800~4000mm范围内,圆筒长度L与公称直径DN之比小于5,容器总高度小于10m,故采用结构简单的支承式支座中的B型支座即可,根据JB/T4712.4-2007支承式支座标准,其结构尺寸具体见装配图。

三、课程设计小结

三周的机械设计使我们认识到了作为一名工程技术人员需具备的素质,扎实的专业知识和较宽的知识面,我们设计者之间团队的重要性,三周的时间里的能够让我们学到很多很多的实际性的知识,怎样才能在这三周里更好的运用学的知识来完成设计任务呢?这无疑让我们有时间做一个理性的思考。把所学的知识在这次设计中和自己的想法结合起来并在自己的设计中形象而生动的表现出来,我认为此次课程设计是我们走向工作的前奏也算是对个人的一个实践性的训练。

课程设计是我们专业课程知识综合应用的实践训练,着是我们迈向社会,从事职业工作前一个必不少的过程。”千里之行始于足下”,通过这次课程设计,我深深体会到这句千古名言的真正含义。我今天认真的进行课程设计,学会脚踏实地迈开这一步,就是为明天能稳健地在社会大潮中奔跑打下坚实的基础。

通过这次换热器设计,本人在很方面都有所提高。综合运用本专业所学课程的理论和生产实际知识,行一次设计工作的实际训练从而培养和提高学生独立工作能力,巩固与扩充了课程所学的内容,掌握换热器设计的方法和步骤,掌握换热器的基本技能,提高了计算能力,绘图能力,熟悉了规范和标准,同时各科相关的课程都有了全面的复习,独立思考的能力也有了提高。

在这次设计过程中,体现出自己单独设计机械的能力以及综合运用知识的能力,体会了学以致用、突出自己劳动成果的喜悦心情,从中发现自己平时学习的不足和薄弱环节,从而加以弥补。在这段时间里我们通过彼此之间的相互合作,交流学习,了解了许多新知识,尤其对化工机械设计有了系统的掌握。但由于时间有限,学习心得不够深刻,还不能对所学的知识达到熟练的运用,这就需要我们在今后的工作中有待学习和提高。

由于本人的设计能力有限,在设计过程中难免出现错误,恳请老师们多多指教,我十分乐意接受你们的批评与指正,本人将万分感谢。

参考资料

1. 《过程设备设计》主编郑津洋董其伍桑芝富

化学工业出版社 2010.6 2. 《过程设备工程设计概论》主编陈庆邵泽波

化学工业出版社 2008.1 3. 《换热器》秦叔经叶文邦

化学工业出版社 2002.12 4. 《冷换设备》主编刘巍

中国石化出版社 2003 5. 《压力容器设计标准汇编》

固定管板式换热器使用中的注意事项及工作原理

固定管板式换热器的注意事项及工作原理 固定管板式换热器在运行中应注意事项有: (1)换热器在新安装或检修完之后必须进行试压后才能使用。 (2)换热器在开工时要先通冷流后通热流,在停工时要先停热流后停冷流。以防止不均匀的热胀冷缩引起泄漏或损坏。 (3)固定管板式换热器不允许单向受热,浮动式换热器管、壳两侧也不允许温差过大。 (4)启动过程中,排气阀应保持打开状态,以便排出全部空气,启动结束后应关闭。 (5)如果使用碳氢化合物,在装入碳氢化合物之前要用惰性气体驱除换热器中的空气,以免发生爆炸。 (6)停工吹扫时,引汽前必须放净冷凝水,并缓慢通气,防止水击。换热器一侧通气时,必须把另一侧的放空阀打开,以免弊压损坏,关闭换热器时,应打开排气阀及疏水阀,防止冷却形成真空损坏设备。 (7)空冷器使用时要注意部分流量均匀,确保冷却效果。 (8)经常注意监视防止泄漏。 固定管板式换热器的工作原理:

图1 [固定管板式换热器]为固定管板式换热器的构造。A流体从接管1流入壳体内,通过管间从接管2流出。B流体从接管3流入,通过管内从接管4流出。如果A流体的温度高于B流体,热量便通过管壁由A流体传递给B流体;反之,则通过管壁由B流体传递给A流体。壳体以内、管子和管箱以外的区域称为壳程,通过壳程的流体称为壳程流体 (A流体)。管子和管箱以内的区域称为管程,通过管程的流体称为管程流体(B流体)。管壳式换热器主要由管箱、管板、管子、壳体和折流板等构成。通常壳体为圆筒形;管子为直管或U形管。为提高换热器的传热效能,也可采用螺纹管、翅片管等。管子的布置有等边三角形、正方形、正方形斜转45°和同心圆形等多种形式,前3 种最为常见。按三角形布置时,在相同直径的壳体内可排列较多的管子,以增加传热面积,但管间难以用机械方法清洗,流体阻力也较大。管板和管子的总体称为管束。管子端部与管板的连接有焊接和胀接两种。在管束中横向设置一些折流板,引导壳程流体多次改变流动方向,有效地冲刷管子,以提高传热效能,同时对管子起支承作用。折流板的形状有弓形、圆形和矩形等。为减小壳程和管程流体的流通截面、加快流速,以提高传热效能,可在管箱和壳体内纵向设置分程隔板,将壳程分为2程和将管程分为2程、4程、6程和8程等。

固定管板式换热器结构设计

固定管板式换热器的结构设计 摘要 换热器是化工、石油、动力、冶金、交通、国防等工业部门重要工艺设备之一,其正确的设置,性能的改善关系各部门有关工艺的合理性、经济性以及能源的有效利用与节约,对国民经济有着十分重要的影响。 换热器的型式繁多,不同的使用场合使用目的不同。其中常用结构为管壳式,因其结构简单、造价低廉、选材广泛、清洗方便、适应性强,在各工业部门应用最为广泛。 固定管板式换热器是管壳式换热器的一种典型结构,也是目前应用比较广泛的一种换热器。这类换热器具有结构简单、紧凑、可靠性高、适应性广的特点,并且生产成本低、选用的材料范围广、换热表面的清洗比较方便。固定管板式换热器能承受较高的操作压力和温度,因此在高温高压和大型换热器中,其占有绝对优势。 固定管板式换热器主要由壳体、换热管束、管板、前端管箱(又称顶盖或封头)和后端结构等部件组成。管束安装在壳体内,两端固定在管板上。管箱和后端结构分别与壳体两端的法兰用螺栓相连,检修或清洗时便于拆卸。换热器设计的优劣最终要看是否适用、经济、安全、运行灵活可靠、检修清理方便等等。一个传热效率高、紧凑、成本低、安全可靠的换热器的产生,要求在设计时精心考虑各种问题.准确的热力设计和计算,还要进行强度校核和符合要求的工艺制造水平。 关键词:换热器;固定管板式换热器;结构;设计

The Structural Design of Fixed Tube Plate Heat Exchanger Author : Chen Hui-juan Tutor : Li Hui Abstract Heat exchanger is one of the most important equipments which is used in the fields of chemical, oil, power, metallurgy, transportation, national defense industry. Its right setting and the improvements of performance play an important role in the rationality o technology, economy, energy utilization and saving, which has a very important impact on the national economy. The type of heat exchanger is various, the different use occasions and the purpose is are commonly used for the tube shell type structure, because of its simple structure, low cost and wide selection, easy to clean, strong adaptability, the most widely used in various industry departments. Fixed tube plate heat exchanger is a kind of typical structure of tube and shell heat exchanger, also is a kind of heat exchanger is applied more widely. This kind of heat exchanger has simple and compact structure, high reliability, the characteristics of wide adaptability, and the production of low cost, wide range of selection of materials, heat exchange surface cleaning more convenient. Fixed tube plate heat exchanger can operate under high pressure and temperature, therefore, the heat exchanger in high temperature and high pressure and large in its possession of absolute advantage. Fixed tube plate heat exchanger is mainly composed of shell, heat

固定板管式换热器设计说明书

固定板管式换热器 设 计 说 明 书 系别: 班级: 姓名: 学号:

一、 设计任务和设计条件 某炼油厂拟用原有在列管式换热器中回收柴油的热量。已知原油 流量为40000kg/h ,进口温度70℃,要求其出口温度不高于110℃;柴油流量为30000kg/h ,进口温度为175℃。设计一适当型号的换热器,已知物性数据: 二、 确定设计方案 ① 初选换热器的规格 当不计热损失时,换热器的热负荷为: Q=W )(12t t c pc C =40000/3600×2.2×103×(110-70)=9.8×105W 逆流过程如图所示: T 2125℃ T 1175℃ t 170℃ t 2110℃ 逆流平均温度差: m t = 8.5970 125110175ln ) 70125()110175( ℃ 初估 值 R= 25.170110125 175 P= 381.070 17570 110 初步决定采用单壳程,偶数管程的固定板管式换热器。经查表得校

正系数 =0.9>0.8,可行。 ∴ 53.859.80.9 逆m m t t ℃ 初步估计传热系数K 估=200W/(㎡·℃), 则 A m 07.918 .53200108.9t 5 m 估估K Q ∴所设计换热器(固定板管式)的参数选择如下表: ② 计算(管、壳程的对流传热系数和压降): a. 管程: 流通面积 220175.04 222 002.044m N N d S P T i i 柴油流速 s m S W u i i h i /666.00175.0715360030000 3600 Re 4 3 1049.11064.0715666.002.0 i i i i du 柴油被冷却,所以 ) /(701)133 .01064.01048.2(1490002.0133.0023.0Pr Re 023 .023.0338 .03 .0C m W d i i i i i ?

固定管板式换热器课设

江汉大学 课题名称: 固定管板式换热器设计 系别: 化学与环境工程学院 专业: 过控121班 学号: 122209104119 姓名: 库勇智 指导教师: 杨继军 时间: 2016年元月 课程设计任务书 设计题目:固定管板式换热器设计 一、设计目得: 1.实用国家最新压力容器标准、规范进行设计,掌握典型得过程装备 设计得全过程、 2.掌握查阅与综合分析文献资料得能力,进行设计方法与设计方案得 可行性研究与论证。 3.掌握软件强度设计计算,要求设计思路清晰,计算数据准确可靠,正 确掌握计算机操作与专业软件得实用。 4.掌握图纸得计算机绘图。 二、设计条件: 设计条件单

管口表 三、设计要求: 1。换热器机械设计计算及整体结构设计 2、绘制固定管板式换热器装配图(一张一号图纸) 3。管长与壳体内径之比在3-20之间 四、主要参考文献 1.国家质量监督检验检疫总局,GB150—2011《压力容器》,中国标

准出版社,2011。 2。国家质量监督检验检疫总局,TSG R0004-2009《固定式压力容器安全技术监察规程》,新华出版社,2009、 3.国家质量监督检验检疫总局,GB151—1999《管壳式换热器》,中国标准出版社,1999、 4、天津大学化工原理教研室,《化工原理》上册,姚玉英主编,天津科学技术出版社,2012、 5、郑津样,董其伍,桑芝富主编,《过程装备设计》,化学工业出版社,2010。 6。赵惠清,蔡纪宁主编,《化工制图》,化学工业出版社,2008。7.潘红良,郝俊文主编,《过程装备机械设计》,华东理工大学出版社,2006、 8。E.U、施林德尔主编,《换热器设计手册》第四卷,机械工业出版社,1989。 前言 换热设备就是用于两种或两种以上流体间、一种流体一种固体间、固体粒子间或者热接触且具有不同温度得同一种流体间热量(或焓)传递得装置。 换热器就是化工、石油、动力、冶金、交通、国防等工业部门重要工艺设备之一,其正确得设置,性能得改善关系各部门有关工艺得合理性、经济性以及能源得有效利用与节约,对国民经济有着十分重要得影响。在炼油、化工装置中换热器占总设备数量得40%左右,

固定管板式换热器

固定管板式换热器的设计 学生:库勇智,化学与环境工程学院 指导教师:王小雨,江汉大学 摘要 换热器是用来在流体间交换热量的装置,在化学专业中具有非常重要的地位,被使用于化工各行业中。由于其中固定管板式换热器管板和壳体是一体构造,具有结构简单、造价十分便宜的优点,所以被普遍的使用。 这篇设计说明书上面着重说明了换热器的换热面积、各个设计压力和设计温度以及接管等数据参数。根据上面所给的数据和换热器类型来对换热器的各个零部件,即换热管根数,尺寸、排列方式,壳体和管箱、封头等等,最后校核、压力试验,根据工艺结构选出材料,最后作图。 本设计说明书的每一部分都是完全参照GB150-2011《压力容器》和GB151-2014《热交换器》中固定管板式换热器的有关标准来计算、校核和选型的。 关键词 管壳式换热器;固定管板式换热器;加热器

Abstract Heat exchanger is a device for exchanging heat between the fluids and in chemistry has a very important position, is used in the chemical industry. Because of the fixed tube plate heat exchanger tube plate and the shell is an integral structure, with has the advantages of simple structure, low cost advantages, so be widely use. The design specification above illustrates the change of the heat exchange area of the heat exchanger, each design pressure and temperature and over data parameters. According to the data given above and the heat exchanger type heat exchanger parts, i.e. the heat exchange tube number, size, arrangement, shell and tube box, head, and so on, finally checking, pressure test, selected according to process structure materials. Finally, drawing. The design specification is strictly according to GB150-2011< pressure container > and heat GB151-2014< exchanger is > fixed tube plate heat exchanger of the relevant provisions of the calculation, selection and checking. Key words Shell and tube heat exchanger ;fixed tube heat exchanger ;heater

固定管板式换热器课程设计

一 列管换热器工艺设计 1、根据已知条件,确定换热管数目和管程数: 选用.5225?φ的换热管 则换热管数目:5.737019 .014.35.2110 A 0≈??== d l n p π根 故738=n 根 管程数:对于固定板式换热器,可选单管程或双管程,为成本计,本设计采用单管程。 2、管子排列方式的选择 (1)采用正三角形排列 (2)选择强度焊接,由表1.1查的管心距t=25mm 。 表1.1 常用管心距 管外径/mm 管心距/mm 各程相邻管的管心距/mm 19 25 38 25 32 44 32 40 52 38 48 60 (3)采用正三角形排列,当传热管数超过127根,即正六边形的个数a>6时,最外层六边形和壳体间的弓形部分空间较大,也应该配置传热管。不同的a 值时,可排的管数目见表1.2。具体排列方式如图1,管子总数为779根。 表1.2 排管数目 正六角形的数目a 正三角形排列 六角形对角线上的管数b 六角形内的管数 每个弓形部分的管数 第一列 第二列 第三列 弓形部分的管数 管子总数 1 3 7 7 2 5 19 19 3 7 37 37 4 9 61 61 5 11 91 91 6 13 12 7 127 7 15 169 3 1 8 187 8 17 217 4 24 241 9 19 271 5 30 10 21

301 11 23 397 7 42 439 12 25 469 8 48 517 13 27 547 9 2 66 613 14 29 631 10 5 90 721 15 31 721 11 6 102 823 16 33 817 12 7 114 931 17 35 919 13 8 126 1045 18 37 1027 14 9 138 1165 19 39 1411 15 12 162 1303 20 41 1261 16 13 4 198 1459 21 43 1387 17 14 7 228 1616 22 45 1519 18 15 8 246 1765 23 47 1657 19 16 9 264 1921 图1.1折流板的管孔及换热管及拉杆分布 3、壳程选择 壳程的选择:简单起见,采用单壳程。 4、壳体内径的确定 换热器壳体内径与传热管数目、管心距和传热管的排列方式有关。壳体的内径需要圆整成标准尺寸。以400mm为基数,以100mm为进级档,必要时可以50mm为进级档。 对于单管程换热器,壳体内径公式0 b t+ - D d = ~ )3 2( )1 (

浅谈换热器管板与换热管胀焊并用连接的制造工艺

浅谈换热器管板与换热管胀焊并用连接的制造工艺 GB151-1999标准中规定,强度胀接适用于设计压力≤4MPa、设计温度≤300℃、无剧烈振动、无过大温度变化及无应力腐蚀的场合;强度焊接适用于振动较小和无间隙腐蚀的场合;胀、焊并用适用于密封性能较高、承受振动或疲劳载荷、有间隙腐蚀、采用复合管板的场合。由此可见,单纯胀接或强度焊接的连接方式使用条件是有限制的。胀、焊并用结构由于能有效地阻尼管束振动对焊口的损伤,避免间隙腐蚀,并且有比单纯胀接或强度焊具有更高的强度和密封性,因而得到广泛采用。目前对常规的换热管通常采用“贴胀+强度焊”的模式;而重要的或使用条件苛刻的换热器则要求采用“强度胀+密封焊”的模式。胀、焊并用结构按胀接与焊接在工序中的先后次序可分为先胀后焊和先焊后胀两种。 1 先胀后焊 管子与管板胀接后,在管端应留有15mm长的未胀管腔,以避免胀接应力与焊接应力的迭加,减少焊接应力对胀接的影响,15mm的未胀管段与管板孔之间存在一个间隙。在焊接时,由于高温熔化金属的影响,间隙内气体被加热而急剧膨胀。据国外资料介绍,间隙腔内压力在焊接收口时可达到200~300MPa的超高压状态。间隙腔的高温高压气体在外泄时对强度胀的密封性能造成致命的损伤,且焊缝收口处亦将留下肉眼难以觉察的针孔。目前通常采用的机械胀接,由于对焊接裂纹、气孔等敏感性很强的润滑油渗透进入了这些间隙,焊接时产生缺陷的现象就更加严重。这些渗透进入间隙的油污很难清除干净,所以采用先胀后焊工艺,不宜采用机械胀的方式。由于贴胀是不耐压的,但可以消除管子与管板管孔的间隙,所以能有效的阻尼管束振动到管口的焊接部位。但是采用常规手工或机械控制的机械胀接无法达到均匀的贴胀要求,而采用由电脑控制胀接压力的液袋式胀管机胀接时可方便、均匀地实现贴胀要求。采用液袋式胀管机胀接时,为了使胀接结果达到理想效果,胀接前管子与管板孔的尺寸配合在设计制造上必须符合较为严格的要求。只有这样对于常规设计的“贴胀+强度焊”可采用先胀后焊的方式,而对特殊设计的“强度胀+强度焊”则可采用先贴胀,再强度焊,最后强度胀的方法。 2 先焊后胀 在制造过程中,一台换热器中有相当数量的换热管,其外径与管板管孔孔径之间存在着较大的间隙,且每根换热管其外径与管板管孔间隙沿轴向是不均匀的。当焊接完成后胀接时,管子中心线必须与管板管孔中心线相重合。当间隙很小时,上端15mm的未胀管段将可以减轻胀接变形对焊接的影响。当间隙较大时,由于管子的刚性较大,过大的胀接变形将越过15mm未胀区的缓冲而对焊接接头产生损伤,甚至造成焊口脱焊。所以对于先焊后胀工艺,控制管子与管板孔的精度及其配合为首要的问题。当管子与管板腔的间隙小到一定值后,胀接过程将不至于损伤到焊接接头的质量。有关资料显示,管口的焊接接头承受轴向力的能力是相当大的,即使是密封焊,焊接接头在做静态拉脱试验时,管子拉断了,焊口将不会拉脱。然而焊口承受切向剪力的能力相对较差,所以强度焊后,由于控制达不到要求,可能造成过胀失效或胀接对焊接接头的损伤。 3 合理的制造工艺 3.1 管子与管孔的公差控制 (1)换热管 在采购换热管时要求每台换热器所使用的换热管在冷拔加工时应采用同一坯料(炉批次)的原料,并在同一台经校验试验合格的拉管机上生产,这样才能保证每根换热管具有相同的材质、规格与精度。换热管外径的均匀一致能保证管子与管板管孔的间隙,内径的均匀一致能保证与液袋式胀管机胀头的匹配性,从而延长胀头的使用寿命。一般管子与管板管孔间隙要求控制在(0.3±0.05)mm范围内,而液袋式胀管机胀头外径与管子内径的公差也应控制在 (0.3±0.05)mm范围内。 (2)管板 为使换热器管板管孔与管子外径在同一公差范围内,首先必须根据到货换热管外径的实际精度尺寸决定管板管孔的加工精度,如上所述,管板管孔与已到货换热管实际均匀外径间隙仍应控制在(0.3土0.05)mm范围内。 3.2换热管与管板的加工及验收

换热器设计

换热器设计: 一:确定设计方案: 1、选择换热器的类型 两流体温度变化情况,热流体进口温度130°C,出口温度80°C;冷流体进口温度40°C,出口温度65°C。该换热器用自来水冷却柴油,油品压力0.9MP,考虑到流体温差较大以及壳程压强0.9MP,初步确定为浮头式的列管式换热器。2、流动空间及流速的确定 由于冷却水容易结垢,为便于清洗,应使水走管程,柴油走壳程。从热交换角度,柴油走壳程可以与空气进行热交换,增大传热强度。选用Φ25×2.5 mm 的10号碳钢管。 二、确定物性数据 定性温度:可取流体进口温度的平均值。 壳程柴油的定性温度为 T1=130°C,T2=80°C,t1=40°C,t2=65°C T=(130+80)/2=105(°C) 管程水的定性温度为 t=(40+65)/2=52.5(°C) 已知壳程和管程流体的有关物性数据 柴油105°C下的有关物性数据如下: ρ=840 kg/m3 密度 定压比热容C o=2.15 kJ/(kg·k) 导热系数λo=0.122 W/(m·k) 粘度μo=6.7×10-4N·s/m2 水52.5°C的有关物性数据如下: ρ=988 kg/m3 密度 i C=4.175 kJ/(kg·k) 定压比热容 i λ=0.65 W/(m·k) 导热系数 i

粘度 μi =4.9×10-4 N·s/m 2 三、计算总传热系数 1.热流量 m 0=95000(kg/h) Q 0= m 0C o Δt o =95000×2.15×(130-80)=10212500kJ/h=2836.8(kw) 2.平均传热温差 m t '?=(Δt 1-Δt 2 )/ln(Δt 1/Δt 2)=[(130-65)-(80-40)]/ln[(130-65)/(80-40)]=51.5(°C) 其中Δt 1=T 1-t 2,Δt 2=T 2-t 1。 3.水用量 W c =Q 0/(C i Δt i )=10212500/[4.175×(65-40)]=97844.3kg/h=27.18kg/s 平均温差 1 221t t T T R --= =406580 130--=2 1112t T t t P --= =40 1304065--=0.28 选择卧式冷凝器,冷凝在壳程,为一壳程四管程,查图可得t ??=0.88。 m t m t t '??=???=0.88×51.5=45.32°C 管子规格5.225?φ,L=3m 。 管束排列方式:正三角形排列。 一壳程四管程三角形管束排列方式285.2175.011==n K ,。 四、传热面积初值计算 取总传热系数K=335W/(m 2.°C) 18632 .45335108.28363 =??=?=m t K Q F m 2 一管子面积 3102031???==-ππL d F i =0.1884m 2 管子数 9871884 .01861=== F F N t 管子中心距 o d t 25.1==1.25×25=31.25mm ,取t=32mm

固定管板式换热器

固定管板式换热器 一 换热管 1换热管外径 取换热管外径为25*2.5。 2换热管数量及长度 *(0.1)A n d L π=- A 换热面积 D 换热管外径 l 换热管长度 A=402m 取安全系数1.125,1*1.12546A A == 140*1.125 248*(0.1) 3.14*0.02*(30.1)A n d L π==≈-- n=248 L=3

3布管 (1)换热管排列方式 采用正三角形排列 (2)换热管中心距 查阅课本139页表5-3确定换热管中心距是32mm 。 二换热器壳体 1换热器内径计算 0*(1)(2~3)*D t b d =-+ t 管心距 d 0 换热管外径 D 壳体内径 17.32281b === 0*(1)(2~3)*D t b d =-+ t=32mm 32*(17.322811)2*25572.32992 D =-+= 取D=600mm

2筒体壁厚计算 水蒸气工作压力1.27Mpa ,脱盐水工作压力1.28Mpa 。 材料选16MnR 工作温度T=150/170℃ 查阅课本32页确定设计设计温度T W =170/190℃ 脱盐水走壳程,水蒸气走管程。 *2*[]*c i t c p D p δσφ=- δ 圆筒的计算壁厚 c p 圆筒的计算压力 []t σ 许用应力 φ 焊接接头系数 []t σ 156 查阅课本32页确定c p =1.28+0.18=1.46Mpa GB150规定焊接接头系数容器受压元件焊接接头的工艺特点以及无损检测的抽查率确定,查阅课本38页确定φ=0.85。 * 1.46*600 3.322*[]*2*156*0.86 1.46 c i t c p D mm p δσφ==≈-- d C δδ=+ 查阅课本40也确定C 2=1.5mm 。 查阅课本39页确定C 1=0.3mm C= C 1 + C 2=1.8mm 3.321 1.8 5.121d C mm δδ=+=+= 元整后6n mm δ= (3)布管限定圆 查阅GB15132*L i D D b =-

板式换热器选型与计算方法(DOC)

板式换热器选型与计算方法 板式换热器的选型与计算方法 板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; mh,mc-----热、冷流体的质量流量,kg/s; Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。 对数平均温差(LMTD) 对数平均温差是换热器传热的动力,对数平均温差的大小直接关系到换热器传热难易程度.在某些特殊情况下无法计算对数平均温差,此时用算术平均温差代替对数平均温差,介质在逆流情况和在并流情况下的对数平均温差的计算方式是不同的。在一些特殊情况下,用算术平均温差代替对数平均温差。 逆流时: 并流时:

固定管板式换热器课程设计

固定管板式换热器设计

目录 第一章绪论 (3) 1.1什么是管壳式换热器······································3 1.2管壳式换热器的分类········································3 第二章总体结构设 计·············································4 2.1固定管板式换热器结构 (4) 第三章机械设计 (4) 3.1工艺条件··················································4 3.2设计计算 (4) (1)管子数 n···············································5 (2)换热管排列形式········································5(3)管间距的确定···········································5 (4)壳程选择···············································5 3.3 筒体 (6) (1)换热器壳体内径的确定··································6 (2)换热器封头的选择 (6) 3.4 折流板 (6) (1)折流板切口高度的确定 (6) (2)确定折流板间距........................................6(3)折流板的排列方式.. (7) (4)折流板外径的选择······································7(5)折流板厚度的确定······································7 (6)折流板的管孔确定 (7) 3.5 拉杆、定距管 (7) (1)拉杆的直径和数量 (7) (2)拉杆的尺寸 (8) (3)拉杆的布置············································9 (4)定距管 (9) 3.6、防冲

换热器管板孔沟槽刀的简易设计

换热器管板孔沟槽刀的简易设计 在换热器管束制造过程中,管板与换热管的连接方式主要有胀接、焊接、胀焊并用等方式。为了保证换热管与管板连接的密封性及抗拉脱强度,提高换热管与管板的胀接质量,通常采用在管孔上开槽的形式。原有管板挖槽依靠镗床利用手工摆动装有挖刀的芯轴来控制挖刀挖槽的深度,准确性差,造成槽的深度不一样,且挖槽后圆孔内壁出现很多毛剌难以消除,使管子胀接在管板的圆孔内后连接牢度低,密封性差。这种方式已不能完全满足批量管板沟槽的加工所以根据生产的实际需要我们设计了结构简单、经济耐用的沟槽刀具。 标签:换热管管板开槽沟槽刀简易设计 目前,管壳式热交换器(冷却器、加热器)广泛应用于石油、化工、轻工、制药能源等工业生产中。为了提高换热器的密封性能和增加拉脱力,越来越多的换热器采用了胀接(贴胀或强度胀)的密封形式,即在两端的管板孔内增加密封槽。其中对于薄管板(厚度小于25mm)一般开单槽,对于厚度大于25mm的一般设置两个沟槽,在一些有特殊要求的情况下有些设置三个沟槽。如图一。 其中δ为管板的厚度;K为槽的深度。 1 目前存在的问题 随着换热器的发展,换热器的换热面积及直径越来越大,一台管壳式换热器可能有几百根乃至上千根换热管,相应管板上就有成百上千个管孔。在每个管孔上加工两个沟槽,对机械加工带来很大的挑战。 1.1 用镗床加工如果采用在镗床上加工的方法,加工费用、加工精度以及进度都无法保证。 1.2 使用成型刀具加工如果采用外购的成型刀具,购买刀具的费用大巨大、且这种成型刀具不耐用,对中小型企业是一笔不小的开支。随着生产的换热器数量的增加,这种矛盾则更为突出。我们经过反复研究、试验、实践,设计了一款管板孔开沟槽刀具。该款刀具结构简单,并能保证沟槽的加工质量;操作过程简单,且价格低廉,适用于各种企业。目前我公司已成功用于批量生产。 2 设计原理 使用普通钻床,利用定位装置安装一活动刀头,运用钻床的上、下移动及转动来完成开槽工序。 该沟槽刀如图二所示,其组成分为刀头、刀杆、定心套、定位轴、调整螺栓、锥柄、刀体、限位螺栓、连接套等20个组件。其特点是,首先将刀杆与衬套及刀体三者利用定位轴固定为一体,工作时三者可同时转动;接着穿入定心套、轴

板式换热器的计算方法

板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数 曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得 快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和 压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度* A3 F7 y& G7 S+ Q T2 = 热侧出口温度3 s' _% s5 s. T" D0 q4 b t1 = 冷侧进口温度& L8 ~: |; B: t2 M2 w$ z t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为:0 B N/ I" A+ m0 z' H9 ~ (热流体放出的热流量)=(冷流体吸收的热流量) 在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W;# Q/ p3 p: I4 ~0 N' I) W mh,mc-----热、冷流体的质量流量,kg/s;+ Z: I9 b- h9 h" r3 P) {/ ^ Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K);6 L8 t6 b3 o& m/ n T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡 算式为:& w3 v) j4 I4 R 一侧有相变化1 Y# e$ B6 c& z% C3 W- W* J 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中

固定管板式换热器的设计

固定管板式换热器的设计 第一章.设计方案概述和简介 一、概述 在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。化工生产中换热器的使用十分普遍,由于物料的性质、要求各不相同,换热器的种类很多。了解各种换热器的特点,根据工艺要求正确选用适当类型的换热器是非常重要的。 按照热量交换的方法不同,分为间壁式换热器、直接接触式换热器、蓄热式换热器三种。化工生产中绝大多数情况下不允许冷、热两流体在传热过程中发生混合,所以,间壁式换热器的应用最广泛。在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量:另一种流体温度较低,吸收热量。换热器在化工、石油、动力、制冷、食品等行业中都有广泛应用,且它们是上述这些行业的通用设备,并占有十分重要的地位 二、列管式换热器的分类 1、 U型管换热器 U型管换热器结构特点是只有一块管板,换热管为U型,管子的两端固定在同一块管板上,其管程至少为两程。管束可以自由伸缩,当壳体与U型环热管由温差时,不会产生温差应力。U型管式换热器的优点是结构简单,只有一块管板,密封面少,运行可靠;管束可以抽出,管间清洗方便。其缺点是管内清洗困难;由于管子需要一定的弯曲半径,故管板的利用率较低;管束最内程管间距大,壳程易短路;内程管子坏了不能更换,因而报废率较高。此外,其造价比管定管板式高10%左右。 2、固定管板式换热器 固定管板式换热器主要是由筒体、封头、管板、换热管、管箱、折流板及法兰等组成,管束两端固定在管板上,管板和筒体之间是刚性连接在一起,相互之间无相对移动,换热器结构简单、制造方便、造价较低;在相同直径的壳体内可排列较多的换热管,而且每根换热管都可单独进行更换和管内清洗;但管外壁清洗较困难。当两种流体的温差较大时,会在壳壁和管壁中产生温差应力,一般当温差大于50摄氏度时就应考虑在壳体上设置膨胀节以减小温差应力。但当管、壳温差大于70摄氏度时,壳程压力超过0.6Mpa时,导致膨胀节过厚失去温差补偿作用。因此,固定管板式换热器适用于壳程流体清洁,不易结垢,管程常用要清洗,冷热流体温差不太大的场合。

列管式固定管板换热器设计.

目 录 第1章 工艺概述 (1) 1.1装置概况 (1) 1.2工艺原理(催化裂化) (1) 1.3工艺流程说明(吸收稳定部分) (2) 第2章 工艺设计 (3) 2.1设计概述 (3) 2.2设计课题 (3) 2.3设计参数的确定 (4) 2.4初算换热器的传热面积0S (4) 2.4.1 换热器的热流量(忽略热损失) (4) 2.4.2 水蒸气的消耗量(忽略热损失) (4) 2.4.3平均传热温差 (5) 2.4.4计算传热面积 (5) 2.5主要工艺及结构基本参数的计算 (5) 2.5.1换热管选择 (5) 2.5.2计算壳体内直径i D (6) 2.5.3画出排管图 (6) 2.5.4计算实际传热面积0S 及过程的总传热系数0()K 选 (7) 2.5.5折流板直径c D 数量及有关尺寸的确定 (7) 2.5.6拉杆的直径和数量与定居管的选定 (7) 2.6换热器核算 (7)

2.6.1换热器内流体的压力降 (7) 2.6.2热流量核算 (8) 第3章结构设计 (10) 3.1折流挡板 (10) 3.2 法兰 (10) 3.3换热管 (11) 3.4支座 (11) 3.5压力容器选材原则 (11) 3.6垫片 (12) 第4章强度计算 (13) 4.1筒体壁厚计算 (13) 4.2流体进、出口接管直径 (13) 4.3其他结构尺寸 (14) 4.4支座反力 (14) 4.5筒体弯矩 (15) 4.5.1圆筒中间处截面上的弯矩 (15) 4.5.2支座处横截面间弯距 (16) 4.6系数计算 (16) 4.7筒体轴向应力 (16) 4.7.1轴向应力 (16) 4.7.2应力校核 (17) 4.8鞍座处圆筒周向应力 (18) 4.9鞍座应力 (18) 第5章设计结果汇总 (19) 参考文献 (20)

固定管板式换热器设计-过程设备设计课程设计报告书

目录 1.换热器选型和工艺设计 (3) 1.1设计条件 (3) 1.2换热器选型 (3) 1.3工艺设计 (3) 1.3.1传热管根数的确定 (4) 1.3.2传热管排列和分程方法 (4) 1.3.3壳体径 (4) 2 换热器结构设计与强度校核 (4) 2.1 管板设计 (4) 2.1.1管板材料和选型 (5) 2.1.2管板结构尺寸 (5) 2.1.3管板质量计算 (6) 2.2法兰与垫片 (6) 2.2.1管箱法兰与管箱垫片 (7) 2.3 接管 (8) 2.3.1接管的外伸长度 (9) 2.3.2 接管位置设计 (9) 2.3.3 接管法兰 (10) 2.4管箱设计 (12) 2.4.1管箱结构形式选择 (12) 2.4.2管箱最小长度 (12) 2.5 换热管 (13) 2.5.1 布管限定圆 (13) 2.5.2 换热管与管板的连接 (13) 2.6 拉杆与定距管 (14) 2.6.1 拉杆的结构形式 (14) 2.6.2 拉杆的直径、数量及布置 (14) 2.6.3 定距管 (15)

2.7防冲板 (15) 2.7.1防冲板选型 (15) 2.7.2防冲板尺寸 (16) 2.8 折流板 (16) 2.8.1 折流板的型式和尺寸 (16) 2.8.2 折流板的布置 (17) 2.8.3 折流板重量计算 (17) 3.强度计算 (18) 3.1壳体和管箱厚度计算 (18) 3.1.1 壳体、管箱和换热管材料的选择 (18) 3.1.2 圆筒壳体厚度的计算 (18) 3.1.3 管箱厚度计算 (19) 3.2 开孔补强计算 (20) 3.2.1 壳体上开孔补强计算 (20) 3.3 水压试验 (20) 3.4支座 (21) 3.4.1支反力计算如下: (21) 3.4.2 鞍座的型号及尺寸 (22) 4焊接工艺设计 (23) 4.1.壳体与焊接 (23) 4.1 .1壳体焊接顺序 (23) 4.1.2 壳体的纵环焊缝 (24) 4.2 换热管与管板的焊接 (24) 4.2.1 焊接工艺 (24) 4.2.2 法兰与短节的焊接 (25) 4.2.3管板与壳体、封头的焊接 (26) 4.2.4接管与壳体焊接 (26) 总结 (28) 参考文献 (28)

固定管板式换热器压力容器计算书

软件批准号:CSBTS/TC40/SC5-D01-1999 DATA SHEET OF PROCESS EQUIPMENT DESIGN 工程名: PROJECT 设备位号: ITEM 设备名称: 021000 EQUIPMENT 图号: 00000000000001 DWG NO。 设计单位:神雕是的发放神雕爱疯阿斯蒂芬艾丝凡 DESIGNER

设计计算条件 壳程管程 设计压力p 4 MPa设计压力p t 1 MPa s 设计温度t 120 ?C设计温度t t70 ?C s 壳程圆筒外径Do 325 mm 管箱圆筒外径Do 325 mm 材料名称20(GB8163) 材料名称20(GB8163) 简图 计算内容 壳程圆筒校核计算 前端管箱圆筒校核计算 前端管箱封头(平盖)校核计算 后端管箱圆筒校核计算 后端管箱封头(平盖)校核计算 管箱法兰校核计算 开孔补强设计计算 管板校核计算

计算所依据的标准 GB 150.3-2011 计算条件 椭圆封头简图 计算压力 P c 1.00 MPa 设计温度 t 70.00 ? C 外径 D o 325.00 mm 曲面深度 h o 83.00 mm 材料 Q235-B (板材) 设计温度许用应力 [σ]t 114.12 MPa 试验温度许用应力 [σ] 116.00 MPa 钢板负偏差 C 1 0.30 mm 腐蚀裕量 C 2 1.00 mm 焊接接头系数 φ 1.00 压力试验时应力校核 压力试验类型 液压试验 试验压力值 P T = 1.25P c t ] [][σσ= 1.0000 (或由用户输入) MPa 压力试验允许通过的应力[σ]t [σ]T ≤ 0.90 σs = 211.50 MPa 试验压力下封头的应力 σT = φδδ.2))5.02(.(e e o T K KD p --= 24.45 MPa 校核条件 σT ≤ [σ]T 校核结果 合格 厚度及重量计算 形状系数 K = ??? ? ???????? ? ?--+2 o )(22261nh o h n h D δδ = 1.0406 计算厚度 δh = ()c t o c 5.02][2P K D KP -+φσ = 1.47 mm 有效厚度 δeh =δn - C 1- C 2= 6.70 mm 最小厚度 δmin = 3.00 mm 名义厚度 δnh = 8.00 mm 结论 满足最小厚度要求 重量 8.16 Kg 压 力 计 算 最大允许工作压力 [P w ]= ()e o e t 5.02][2δφδσ--K KD = 4.66810 MPa 结论 合格

相关主题
文本预览
相关文档 最新文档