当前位置:文档之家› 心肌生理特性

心肌生理特性

第三节-心肌的生理

第三节心肌的生理 在循环系统中,心脏起着泵血的功能,推动血液循环。心脏的这种功能是由于心肌进行节律性的收缩与舒张及瓣膜的活动而实现的。心肌的收缩活动又决定心肌具有兴奋性,传导性等生理特性。心肌细胞膜的生物电活动是兴奋性和传导性等生理特性的基础。故本节先讨论心肌细胞的生物电活动,进而阐明心肌的生理特性。在此基础上,再进一步讨论心脏的生理功能。 心肌的生理特性 心肌组织具有兴奋性、自律性、传导性和收缩性四种生理特性。兴奋性、自律性和传导性是以肌膜的生物电活动为基础的,故又称为电生理特性。 心肌细胞的生物电现象 和神经组织一样,心肌细胞在静息和活动时也伴有生物电变化(又称跨膜电位)。研究和了解心肌的生物电现象,对进一步理解心肌生理特性具有重大意义。从组织学,电生理特点和功能可将心肌细胞分为两大类。 一类是普通细胞,含有丰富的肌原纤维,具有收缩功能,称为工作细胞,工作细胞属于非自律性细胞,它不能产生节律性兴奋活动,但它具有兴奋性和传导兴奋的能力。它们包括心房肌和心室肌。 另一类是一些特殊分化了的心肌细胞,它们含肌原纤维很少或完全缺乏;故已无收缩功能,它们除具有兴奋性、传导性外,还具有自动产生节律性兴奋的能力,故又称自律细胞。主要包括P细胞和浦肯野细胞。它们与另一些既不具有收缩功能又无自律性,只保留很低

的传导性的细胞组成心脏中的特殊传导系统。特殊传导系统是心脏中发生兴奋和传导兴奋的组织,起着控制心脏节律性活动的作用。特殊传导系统包括窦房结、房室交界、房室束和末梢浦肯野纤维。 一、心肌的兴奋性 心肌细胞有两类,一类是具有收缩能力的心房肌和心室肌,称工作细胞即非自律细胞;另一类是特殊分化的细胞,自律细胞,构成心脏的特殊传导系统 (一)心室肌细胞跨膜电位(非自律细胞) 静息电位(Rp)及其形成机制 心肌细胞和骨骼肌一样在静息状态下膜内为负,膜外为正,呈极化状态。这种静息状态下膜内外的电位差称为静息电位。不同心肌的静息电位的稳定性不同,人和哺乳类动物心脏的非自律细胞的静息电位稳定,膜内电位低于膜外电位/90mV左右(以膜外为零电位,膜内侧为-90mV)。在自律性细胞如窦房结细胞和浦肯野细胞的静息电位不稳定,称为舒张期电位,不同部位的自律细胞舒张期最大电位不同,浦肯野细胞的最大舒张电位为 -90mV,窦房结细胞的最大舒张电位较小,约为-70mV左右。心肌细胞静息电位产生的原理基本上与神经、骨骼肌相似,主要是由于K+外流所形成。 动作电位(Ap) 心肌细胞兴奋过程中产生的並能扩布出去的电位变化称为动作电位。与骨骼肌相比心肌细胞动作电位升支与降支不对称。复极过程比较复杂。不同部分心肌细胞动作电位形态波幅都有所不同。按照心肌细胞电活动的特点,可以分为快反应细胞和慢反应细胞。快反应细

心脏的电生理学基础

心脏的电生理学基础 一、心肌细胞的分类 心肌细胞按生理功能分为两类:一类为工作细胞,包括心房肌及心室肌,胞浆内含有大量肌原纤维,因而具有收缩功能,主要起机械收缩作用。除此以外,还具有兴奋性、传导性而无自律性。另一类为特殊分化的心肌细胞,包括分布在窦房结、房间束与结间束、房室交界、房室束和普肯耶纤维中的一些特殊分化的心肌细胞,胞浆中没有或很少有肌原纤维,因而无收缩功能,主要具有自律性,有自动产生节律的能力,同时具有兴奋性、传导性。无论工作细胞还是自律细胞,其电生理特性都与细胞上的离子通道活动有关,跨膜离子流决定静息膜电位和动作电位的形成。 根据心肌电生理特性,心肌细胞又可分为快反应细胞和慢反应细胞。 快反应细胞快反应细胞包括心房肌细胞、心室肌细胞和希-普细胞。其动作电位0相除极由钠电流介导,速度快、振幅大。快反应细胞的整个APD中有多种内向电流和外向电流参与。 慢反应细胞慢反应细胞包括窦房结和房室结细胞,其动作电位0相除极由L-型钙电流介导,速度慢、振幅小。慢反应细胞无I k1控制静息膜电位,静息膜电位不稳定、易除极,因此自律性高。有关两类细胞电生理特性的比较见表1。 表1快反应细胞和慢反应细胞电生理特性的比较 参数快反应细胞慢反应细胞 静息电位-80~-95mV -40~-65mV 0期去极化电流I Na I Ca 0期除极最大速率200~700V/s 1~15V/s 超射+20~+40mV -5~+20mV 阈电位-60~-75mV -40~-60mV 传导速度0.5~4.0m/s 0.02~0.05m/s 兴奋性恢复时间3期复极后 10~50ms 3期复极后100ms以上 4期除极电流I f I k,I Ca,I f 二、静息电位的形成 静息电位(restingpotential,RP)是指安静状态下肌细胞膜两侧的电位差,一般是外正内负。利用微电极测量膜电位的实验,细胞外的电极是接地的,因此RP是指膜内相对于零的电位值。在心脏,不同组织部位的RP是不相同的,心室肌、心房肌约为-80~-90mV,窦房结细胞-50~-60mV,普肯耶细胞-90~-95mV。 各种离子在细胞内外的浓度有很大差异,这种浓度差的维持主要是依靠位于细胞膜和横管膜上的离子泵。如Na-K泵(Na-Kpump),也称Na-K-ATP酶,其作用将胞内的Na+转运至胞外,同时将胞外的K+转运至胞内,形成细胞内外Na+和K+浓度梯度。Na-K-ATP酶的磷酸化需要分解ATP,通常每分解一分子ATP可将3个Na+转运至膜外,同时将2个K+转运至膜内。

心肌生理特性包括 (1)

心肌生理特性包括:自律性、兴奋性、传导性和收缩性。 一、心肌的生物电现象(跨膜电位) 心肌细胞可分为两类:一类是普通心肌,即构成心房壁和心室壁的心肌细胞,故又称为工作细胞。另一类是特化心肌,组成心内特殊传导系统,故又称为自律细胞。 图1 各部分心肌细胞的跨膜电位 (一)、工作心肌的跨膜电位: 以心室肌为例说明之。 图2 心室肌细胞的跨膜电位及形成机制 心肌细胞的跨膜电位包括静息电位和动作电位。其产生的前提条件是跨膜离子浓度差和细胞膜的选择通透性。 (1)、静息电位:心室肌细胞的静息电位约—90mV,其形成机制与神经纤维、骨骼肌细胞相似。细胞内K+浓度高于细胞外;安静状态下心肌细胞膜对K+有较大的通透性。因此,K+顺浓度差由膜内向膜外扩散,达到K+的电一化学平衡电位。 (2)、动作电位:心室肌细胞的动作电位分为0、1、2、3、4五个时期 1、去极化:又称为0期。 在适宜刺激作用下,心肌发生兴奋时,膜内电位由原来的一90 mV上升到+30 mV左右,形成动作电位的上升支。0期历时1~2 ms。 其产生机制:刺激使膜去极化达到阈电位(一70mV)时,大量Na+通道开放,Na+快速内流,使膜内电位急剧上升,达到Na+的电一化学平衡电位。 2、复极化:包括l期、2期、3期、4期。 1期:膜内电位由原来的+30 mV迅速下降到O mV左右,此期历时1 O ms 此期形成的原因主要是K+外流。 2期: 1期结束膜内电位达O mV左右后,膜电位基本停滞在此水平达1 00~1 50 ms。记录的动作电位曲线呈平台状,故此期称为平台期。2期的形成主要是由Ca2+内流与K+外流同时存在,二者对膜电位的影响相互抵消。 3期:膜内电位由0MV 左右下降到-90 ,3期是Ca2+内流停止,K+外流逐渐增强所致。 4期:此期膜电位稳定于静息电位,所以也称静息期。4期跨膜离子流较活跃,主要通过离子泵的活动,以恢复兴奋前细胞内外离子分布状态,保证心肌细胞的兴奋性。 (二)、自律细胞的跨膜电位及其产生机制:

心脏电生理基础知识

心脏电生理检查及射频消融基本操作知识 目前,射频消融术(RFCA)已成为心动过速的主要非药物治疗方法,因此相应的心脏电生理检查实际上是RFCA中的重要部分。在此将心脏电生理检查和RFCA作为一个诊疗整体逐一描述其基本操作步骤。 病人需常规穿刺锁骨下静脉,股静脉,必要时穿动脉,常规放置心内电生理电极导管,最长的为高位右房(HR),HIS束,冠状窦CS,和右室心尖(RV)和射频导管熟称“大头”常规投照体位位左前斜位(LAO)右前斜位(RAO)前后位(AP)和后前位(PA)一、基本操作需知 病人选择及术前检查:2002射频消融指南 血管穿刺:股静脉、股动脉、颈内静脉、锁骨下静脉 心腔置管:HRA、CS、HBE、RVA、LA、PV、LV 体表和心脏内电图:HRA、CSd…CSp、HBEd…HBEp、RVA、PV、Abd、Abp 电生理检查:刺激部位:RA、CS、LA、RV、LV 刺激方法:S1S1、S1S2、S1S2S3、RS2↓ 消融靶点定位:激动顺序、起搏、靶标记录、拖带、特殊标测↓ 消融+消融方式:点消融、线消融 能量控制:功率、温度、时间 消融终点:电生理基础、心动过速诱发、异常途径阻滞、折返环离断、电隔离、其它 二、血管穿刺术 经皮血管穿刺是心脏介入诊疗手术的基本操作,而FCA则需要多部血管穿刺。心动过速的类型或消融方式决定血管刺激的部位。一般而言,静脉穿刺(右例或双侧)常用於右房、希氏束区、右室、左房及肺静脉置管;颈内静脉或锁骨下静脉穿刺则是右房、右室和冠状静脉窦(窦状窦)置管的途径;股颈脉穿刺是左室和左房的置管途径。例如房室结折返性心运过速的消融治疗需常规穿刺股静脉(放置HRA、HBE、RVA和消融导管)和颈内或锁骨下静脉(放置CS导管);左侧旁道消融则需穿刺股动脉放置左室消融导管。三、心腔内置管及同步记录心电信号 根据电生理检查和RFCA需要,选择不同的穿刺途径放置心腔导管。 右房导管常用6F4极(极间距0.5~1cm)放置於右房上部,记录局部电图为HRA1,2和HRA3,4图形特点为高大A波,V波较小或不明显。 希氏束导管常用6F4极(极间距0.5~1cm)放置於三尖瓣膈瓣上缘,记录局部电图为HBE1,2和HBE3,4,HBE1,2的H波高大,HBE3,4的A/V≥1,H波清楚。

心脏心肌的电生理学特性

——心脏心肌的电生理学特性第一节心脏的生物电活动 (The electrical activity of heart) 心脏(heart)的主要功能是泵血,舒张时静脉血液回流入心脏,收缩时心室将血液射出到动脉。心脏的节律性收缩舒张是由于心肌细胞的自发性节律兴奋引起的。胚胎早期的心脏发育过程中,在收缩成份尚未出现前,已经呈现出自发节律(自律)的电活动。发育成熟后正常的心房心室有序的节律性收缩舒张,是由从窦房结(sinoatrial node,SAN)发出的自律性兴奋引起的。因此,为了说明心脏自律性兴奋、收缩的发生原理,必须先了解心肌细胞的生物电活动规律。 心肌细胞(cardiac myocyte)分为两类:一类是构成心房和心室壁的普通心肌细胞,细胞内含有排列有序的丰富肌原纤维,具有兴奋性(excitability)、传导性(conductivity)和收缩性(contractility),执行收缩功能,称为工作心肌(working cardiac muscle);另一类是具有自动节律性(autorhythmicity)或起搏功能(pacemaker)的心肌细胞,在没有外来刺激的条件下,会自发地发出节律性兴奋冲动,它们也具有兴奋性和传导性,但是细胞内肌原纤维稀少且排列不规则,故收缩性很弱,这类细胞的主要功能是产生和传播兴奋,控制心脏活动的节律。这一类细胞包括窦房结、房室交界区、房室束、左右束支和浦肯野纤维(Purkinje fiber),其自律性高低依次递减,合称为心脏的特殊传导系统。正常心脏的自律性兴奋由窦房结发出,传播到右、左心房,然后经房室交界区、房室束、浦肯野纤维传播到左、右心室,引起心房、心室先后有序的节律性收缩。这样,两类心肌细胞各司其职,相互配合,共同完成心脏的有效的泵血功能。 一、心肌细胞的电活动 二、心肌的电生理特性 三、心电图 一、心肌细胞的电活动 (The electrical activity of cardiac myocytes) 心肌细胞膜内外存在着电位差,称为跨膜电位(transmembrane potential)。工作心肌在安静状态时细胞膜外为正,膜内为负,处于极化状态,膜内外的电位差值称为静息电位。特殊传导系统的心肌细胞,因为有自律活动(自动去极),不会有静息状态,只能用其最大极化状态时的膜电位值来代表,称为最大舒张电位。当心肌细胞兴奋时,产生一个可以扩播的电位变化,称为动作电位。动作电位包括去极化和复极化两个过程。心脏各部分心肌细胞的动作电位形态各异,图4-1是一个概略的示意图。 心肌细胞的跨膜电位是由于离子流跨越细胞膜流动而形成的。在电生理学中,正离子由细胞膜外向膜内流动或负离子由膜内向膜外流动,称为内向电流(inward current),它增加细胞内的正电荷,促使膜电位去极;反之,正离子由膜内向膜外流动或负离子由膜外向膜内流动,称为外向电流(outward current),它增加细胞内的负电荷,促使膜电位复极或超级化(hyperpolarization)。 跨膜离子流(transmembrane ionic current)大多经由位于细胞膜上的通道蛋白所形成的孔(pore)跨越细胞膜流动,是一种易化扩散。推动其流动的动力是细胞膜两侧的离子浓度差,但能否跨膜流动则取决于离子通道的孔是否开放。离子通道是否开放,有的取决于膜两侧的电位差,

描述心肌生理特性与心脏功能的关系

描述心肌生理特性与心脏功能的关系 1.心肌的生理特性 心肌组织具有兴奋性、自律性、传导性和收缩性四种生理特性。 心肌的收缩性是指心肌能够在肌膜动作电位的触发下产生收缩反应的特性,它是以收缩蛋白质之间的生物化学和生物物理反应为基础的,是心肌的一种机械特性。 兴奋性、自律性和传导性,则是以肌膜的生物电活动为基础的,故又称为电生理特性。心肌组织的这些生理特性共同决定着心脏的活动。 (1)兴奋性 所有心肌细胞都具有兴奋性,即具有在受到刺激时产生兴奋的能力。心肌的兴奋性是可变的,在一次兴奋过程中,细胞的兴奋性也相应发生一次周 期性的变化。兴奋周期各个阶段的特点: A.有效不应期细胞发生一次兴奋后,在一段时间内,无论给予多强的刺激,都不会产生动作电位。 B.相对不应期心肌细胞一次兴奋后,在有效不应期后,有一段时间,用阈上刺激可以引起动作电位。 C.超常期相对不应期后,有一段时间,用小于阈强度的刺激就能引起心肌细胞产生动作电位。 心肌兴奋性的特点是有效不应期长,相当于整个收缩期和舒张期早期。 (2)自律性 组织、细胞能够在没有外来刺激的条件下,自动地发生节律性兴奋的特性,称为自动节律性,简称自律性。心肌的自动节律性和各自律级组织的相 互关系很早以前就有人观察到,在适宜条件下,两栖类和哺乳类动物的离体 心脏,在未受到任何刺激的情况下,可以长时间地、自动地、有节奏地进行 兴奋和收缩。不是所有心肌细胞,而只是心脏特殊传导组织内某些自律细胞 才具有自动节律性。

特殊传导系统各个部位(结区除外)的自律性有等级差别;其中窦房结细胞自律性最高,自动兴奋频率约为每分钟100次,末梢浦肯野纤维网自律性最低(约每分钟25次),而房室交界(约每分钟50次)和房室束支的自律性依次介于两者之间。 由于窦房结自律性最高,它产生的节律性按一定次序传播,引起其他部位的自律组织和心房、心室肌细胞兴奋,产生与窦房结一致的节律性活动,因此,窦房结是心脏的正常起搏点。其他自律组织的自律性并不明显,只起传导兴奋的作用,故称为潜在起搏点。 抢先占领是窦房结控制潜在起搏点的主要方式,这种方式亦称夺获,由于窦房结的自律性最高,在潜在起搏点4期自动去极化达到阈电位水平以前已被自律性最高的窦房结传来的兴奋抢先激动,使之产生与窦房结节律一致的动作电位,从而使潜在起搏点自身的节律兴奋不能出现。此外窦房结的快速节律活动还对潜在起搏点的兴奋具有直接抑制作用,称为超驱动抑制。(3)传导性 心肌细胞具有传导兴奋的能力。心肌细胞膜的任何部位产生的兴奋不但可以沿整个细胞膜传播,并且可以通过闰盘传递到另一个心肌细胞,从而引起整块心肌的兴奋和收缩。 心脏内兴奋传播的途径:窦房结→心房肌及“优势传导通路”→房室交界区→房室束及左右束支→浦肯野纤维→心室肌。 心肌传导性的特点: A.兴奋在心脏各个部位的传导速度是不一致的,心室内的传导组织的传导性很高,浦肯野纤维最高,心室肌细胞次之,由房室交界是 传入心室的兴奋可迅速向左右心室壁传导,使整个心室同步收缩。 B.房室交界区传导速度最慢,兴奋在此延搁一段时间,称为房室延搁 C.房室交界区是传导的必经之路。 (4)收缩性 心肌收缩性是其机械特性,其原理与骨骼肌相似——肌丝滑行原理 心肌收缩的特点:同步收缩、不发生强直收缩、对细胞外Ca2+的依赖性。

第4章血液循环心肌细胞生理特性.

一、自律性 1?自律性的櫃念 自律性(autorbythnicity ) 5心肌细胞在 无任何外 来剌激的情况下?能自动地按一定的节 律发生兴奋的能力和特性,称为自动节律性,简 称自律性- 单位时间内自动产生兴奋的次数是衡量自律 性高低的指标? 第三节心肌细胞的生理特性 - 性性性性 律奋导缩 自兴传收 ■ ■ ■■

?性心Wh 在奧房结控?下的心fi 节禅性活动. *左?||点Z 其他自律组织的自律性较低.通*处于窦房 tt 的控制之 下,其本身的自律性并不《現- 只起传导作用。 异位起搏点,港在起搏点控制部分或《个心脏的活动. 异位心律:由费房纳以外的祁位为起?点的心脏活动? 依1 100次/分 窦房结 房』交界 次 50次/分 降 40次7分 房室束 低? 25次/分 浦氏幷维 2?心脏的正常起搏点 不同自律細》的自律性; SAN< TPF

3 ?窦房结对潜在起搏点的控制方 式 ①抢先占领(capture) 抢先占领: -由于窦房结自律性高于其它潜在起搏点,当潜在起

搏点4期限自动去极化尚未达到阈电位水平时,已被窦房结传来的冲动所激动而产生动作电位,其自身的自律性无法表现出来。 -这种抢先占领的方式是自律性高的组织控制自律性低的组织的主要方式。

自律细胞高的组织对自律低的组织的直接抑 制作 用,称超速驱动压抑. 自律细胞受到高于它的固有自律频率的刺激时,按外加刺激的频率发生兴奋。 当外来超速驱动刺激停止后,自律细胞不能立即恢复其固有自律性活动,需经一段时间才恢复其自律性. 超速驱动压抑

最大电位釣为-WbV.其动fr 电位的(k k 2、3 ?!的彫杰及K于机?与心但去?L化. If内向起搏电流特点: ①随时间而逐渐增强的内向离子电流? ②If主要为Nr(也有少量K6但不同于快曲通道. ③1「在复极至-60mV时开始激活,至-lOOnV时完全激活? ④If在0期去极化至-50iiV时因通道的失活而终止. ⑤If可被艳9s)所阻断,而对河《毒素不敏感. 自动去极化的离子基础:If内向起搏电流 Cl)浦肯野细胞

蛙心起搏点观察和心肌收缩特性的观察

动物生理学实验报告 一、实验目的 1.学习蛙类暴露心脏的方法,熟悉其心脏的解剖结构; 2.利用结扎法观察两栖类动物心脏的正常起搏点和心脏不同部位传导系统的自动节律性高低; 3.学习蛙类心脏活动的描记方法; 4.通过在心脏活动的不同时期给予刺激,观察心脏兴奋性周期变化的规律以及心肌收缩的特点。 二、实验原理 心肌的生理特性表现为兴奋性、自律性和传导性。其自律性取决于心脏的特殊传导系统,但心脏各部分的自动节律性高低不同。正常情况下,心脏起搏点窦房结(两栖类动物是静脉窦)的自律性最高,它产生的自动节律性兴奋向外扩布,并以此传到心房、房室交界区、心室,引起整个心脏兴奋和收缩,则静脉窦(窦房结)被称为正常起搏点,而心脏其他部位受窦房结(静脉窦)的控制不表现其自身的自律性,仅起着兴奋传导的作用,故称之为潜在起搏点。在某些病理情况下,窦房结的兴奋因传导阻滞不能控制其他自律组织的活动,或者其他自律组织自律性增高,则心房或心室就会受当时自律性最高的组织发出的兴奋性节律的控制进行活动,这些异常的起搏点部位称为异位起搏点。 在一个心动周期中,兴奋性会经历有效不应期、相对不应期、超常期等一系列周期性变化。其显著特点是有效不应期特别长,相当于整个收缩期和舒张期早期,在此期间施加任

何刺激都不能引起心肌的再次兴奋和收缩。但在心肌舒张的早期之后(中晚期之内,相当于相对不应期和超常期),给予刺激可使心肌产生一次比正常节律提前出现的动作电位和收缩,称为期前兴奋和收缩。而期前兴奋和收缩也有自己的有效不应期,所以当下一次正常窦房结的节律性冲动到达时,常常会落在这个有效不应期内,因而不会引起心肌的兴奋和收缩,会出现一个较长的舒张期,称为代偿性间歇。如果窦性心律过慢,当期前兴奋的有效不应期结束时,窦性兴奋才传到心室,则可引起心室的一次新的收缩,而不会出现代偿性间歇。因此心脏不会像骨骼肌那样产生强直收缩,从而实现心脏的泵血机能。 三、使用仪器、材料 1.材料:青蛙、任氏液。 2.仪器:生物信号采集处理系统、10g张力换能器、小动物手术器械、支架、蛙心夹、滴管、烧杯、双极刺激电极、蛙板、蛙钉、玻璃分针、秒表等。 四、实验步骤 1.心肌收缩特性的观察 (1)在体蛙心的暴露:取青蛙,毁髓后固定于蛙板上,上体解剖至充分暴露心脏; (2)连接实验装置:玻璃分针翻转蛙心,蛙心夹夹住心室尖部,连接好张力换能器及生物信号采集处理系统; (3)实验项目:描记正常心搏曲线及在一次兴奋的相对不应期结束时给予刺激观察期前收缩与代偿性间歇。 2.蛙心起搏点的观察 (1)在体蛙心暴露:取青蛙,毁髓后固定于蛙板上,上体解剖至充分暴露心脏; (2)从心脏背面观察静脉窦、心房、心室的搏动顺序,记录正常心搏频率; (3)斯氏第一结扎:在窦房沟处穿线结扎,阻断静脉窦和心房之间的传导;记录心房、心室的复跳时间和蛙心各部分的搏动频率; (4)斯氏第二结扎:在房室沟处穿线结扎记录心室复跳时间和蛙心各部分的搏动频率。

心肌生理特性包括

心肌生理特性包括:自律性、兴奋性、传导性与收缩性。 一、心肌得生物电现象(跨膜电位) 心肌细胞可分为两类:一类就是普通心肌,即构成心房壁与心室壁得心肌细胞,故又称为工作细胞.另一类就是特化心肌,组成心内特殊传导系统,故又称为自律细胞。 图1各部分心肌细胞得跨膜电位 (一)、工作心肌得跨膜电位: 以心室肌为例说明之. 图2 心室肌细胞得跨膜电位及形成机制 心肌细胞得跨膜电位包括静息电位与动作电位。其产生得前提条件就是跨膜离子浓度差与细胞膜得选择通透性.

(1)、静息电位:心室肌细胞得静息电位约—90mV,其形成机制与神经纤维、骨骼肌细胞相似。细胞内K+浓度高于细胞外;安静状态下心肌细胞膜对K+有较大得通透性。因此,K+顺浓度差由膜内向膜外扩散,达到K+得电一化学平衡电位。 (2)、动作电位:心室肌细胞得动作电位分为0、1、2、3、4五个时期 1、去极化:又称为0期. 在适宜刺激作用下,心肌发生兴奋时,膜内电位由原来得一90 mV上升到+30 mV左右,形成动作电位得上升支。0期历时1~2 ms. 其产生机制:刺激使膜去极化达到阈电位(一70mV)时,大量Na+通道开放,Na+ 快速内流,使膜内电位急剧上升,达到Na+得电一化学平衡电位. 2、复极化:包括l期、2期、3期、4期。 1期:膜内电位由原来得+30 mV迅速下降到O mV左右,此期历时1 O ms 此期形成得原因主要就是K+外流。 2期: 1期结束膜内电位达O mV左右后,膜电位基本停滞在此水平达1 00~1 50 ms。记录得动作电位曲线呈平台状,故此期称为平台期。2期得形成主要就是由Ca2+内流与K+外流同时存在,二者对膜电位得影响相互抵消. 3期:膜内电位由0MV左右下降到—90 ,3期就是Ca2+内流停止,K+外流逐渐增强所致。 4期:此期膜电位稳定于静息电位,所以也称静息期。4期跨膜离子流较活跃,主要通过离子泵得活动,以恢复兴奋前细胞内外离子分布状态,保证心肌细胞得兴奋性。 (二)、自律细胞得跨膜电位及其产生机制: 以窦房结细胞为例说明之。 自律细胞动作电位3期末,达到复极最大电位后,4期膜电位自动去极化,当自动去极化达阈电位时,即爆发一个新得动作电位。4期自动去极化就是自律细胞产生自动节律性兴奋得基础。

心肌生理特性----自律性和兴奋性 (1)

第二节心脏的电生理学及生理特性 Part 2 心肌生理特性----自律性和兴奋性 掌握内容自律性、正常起搏点、潜在起搏点、异位起搏点概念,不同部位自律细胞的自律性的差异。影响自律性高低的因素(4期自动去极速度、最大舒张电位与阈电位之差、血钾、神经递质)及影响机制。影响心肌兴奋性的因素及机制。心肌兴奋性的周期性变化及变化机制。心室肌细胞兴奋性变化对心肌收缩的影响。解释早搏后为什么常有较长的舒张期。 熟悉内容窦房结控制整个心脏节律的机制。为什么窦房结停搏后常需要较长时间才出现逸搏心律。 了解内容快钠通道与L-型钙通道功能活动的异同。 (一)选择题 (一)A型题 【A1型题】单项选择题,每题有A、B、C、D、E五个备选答案,请从中选出一个最佳答案。 1. 窦房结能成为心脏正常起搏点的原因是 A. 静息电位仅为-70mV B. 阈电位为-40mV C. 0期去极化速度快 D. 动作电位没有明显的平台期 E. 4期膜电位去极速率快 2. 衡量组织兴奋性高低的指标是 A. 肌肉收缩强弱 B. 腺体分泌多少 C. 刺激阈大小 D. 动作电位幅度 E. 阈电位水平 3. 窦房结是心跳起搏点的原因是 A. 静息电位低 B. 动作电位无平台期 C. 0期去极化速度快 D. 传导速度最快 E. 4期自动去极化速度最快 4. 心室肌的有效不应期较长,一直持续到 A. 收缩期开始 B. 收缩期中间 C. 舒张期早期 D. 舒张中后期 E. 舒张期结束 5. 当血钾逐步升高时,心肌的兴奋性 A. 逐步升高 B. 逐步降低 C. 先升高后降低 D. 先降低后升高 E. 不变 6.下列哪项不引起heart rate增快( )

相关主题
文本预览
相关文档 最新文档