当前位置:文档之家› (完整word)六年级奥数-第九讲复杂抽屉原理教师版.docx

(完整word)六年级奥数-第九讲复杂抽屉原理教师版.docx

(完整word)六年级奥数-第九讲复杂抽屉原理教师版.docx
(完整word)六年级奥数-第九讲复杂抽屉原理教师版.docx

第九讲复杂抽屉原理

内容概述

运用抽原理求解的复的合算与明.里不“抽”与“苹果”需要恰当地与

取,而且有构造出达到最佳状的例子.

典型

1.从 1, 2, 3,?, 1988 , 1989 些自然数中,最多可以取出多少个数,使得其中每两个数的差不等于4?

【分析与解】 1, 2, 3, 4, 9, 10, 1l, 12,17, 18,19, 20,25,?,

些数中任何两个数的差都不4,些数是每8 个的数中取前 4 个的数.

有 1989÷8=248?? 5,所以最多可以248×4+4=996 个数.

注:于,一种方法是先尽可能的多,然后再找出些数的律,再算出最多可以出

多少个 .

2.从 1 至 1993 1993 个自然数中最多能取出多少个数,使得其中任意的两数都不且差不等于4?

【分析与解】 1,3, 6, 8,11, 13,16, 18,21,?,

些数中任何两个数不且差不等于4,些数是每 5 个的数中第 1、 3 个数.

1993÷5=398??3 . 所以最多可以398×2+2 =798 个数.

注:当然可以是1, 4,6, 9, 11, 14, 16, 19, 21,?,

些数足条件,是每 5 个的数中第1、 4 个数.

但是此最多只能出398×2+l=797 个数.

3.从 1,2, 3,4, 5, 6, 7,8, 9, 10,11,12 中最多能出几个数,使得在出的数中,每一个数都不是另一个数的

2 倍 ?

【分析与解】方法一:直接从 1 开始 1, 3, 4,5, 7, 9,11, 12,可以出8 个数;

而从 2 开始 2, 3, 5,7, 8, 9, 11, 12,也是可以出8 个数.

3包含在内,因此只用考两种情况即可.

所以,在足意情况下,最多可以出8 个数.

方法二:我知道多少个奇数均足,有1, 3, 5,7, 9, 11 均奇数,并且有偶数中 4 的倍数,但不是 8 的倍数的也足,有4,12 是的数.

所以,在足意情况下最多可以出8 个数.

4.从 1, 3, 5, 7,?, 97, 99 中最多可以出多少个数,使得出的数中,每一个数都不是另一个数的倍

数 ?

【分析与解】方法一:因均是奇数,所以如果存在倍数关系,那么也一定是3、 5、 7 等奇数倍 .

3×33: 99,于是从 35 开始, 1 : 99 的奇数中没有一个是 35~ 99 的奇数倍 ( 不包括 1 倍 ) ,所以出35,37, 39,?, 99 些奇数即可.

共可出33 个数,使得出的数中,每一个数都不是另一个数的倍数.

方法二:利用 3 的若干次与数的乘50 个奇数分.

(1 , 3, 9, 27,81) , (5 , 15, 45) , (7 , 21, 63) ,(11 , 33) , (13 , 39) , (17 ,51) , (19 , 57) , (23 , 69) ,(25 , 75) , (29 ,87) , (31 , 93) , (35) , (37) , (41) ,(43) ,?, (97) 共 33 .

前11 ,每内任意两个数都存在倍数关系,所以每内最多只能一

个数.

即最多可以出 33 个数,使得出的数中,每一个数都不是另一个数的

倍数.

注: 1 : 2n 个自然数中,任意取出 n+1 个数,其中必定有两个数,它一个是另一个的整数倍;

从 2,3.??, 2n+1 中任取 n+2个数,必有两个数,它一个是另一个的整数倍;

从 1,2, 3.?? 3n 中任取 2n+1个数,其中必有两个数,它中一个是另一个的整数倍,且至少是3倍;

从1, 2, 3,??, mn 中任取 (m-1)n+1 个数,其中必有两个数,它中一个是另一个的整数倍,且至少是 m倍

(m、 n 正整数 ).

5.明:任12 个不同的两位数,其中一定存在着的两个数,它的差是个位与十位数字相同的两位

数.

【分析与解】因两个不同的两位数相减得到的差不可能三位或三位以上的数.如果个差是1l 的倍数,那么一定有个差的个位与十位数字相同.

两个数的差除以1l 的余数有0、1、 2、 3、?、 1011 种情况.将11 种情况11 个抽.

将 12 个数12 个苹果,那么必定有两个苹果在同一抽,也就是有两个数除以11 的余数相同,那么它的差一定是11 的倍数.

而两个两位数的差一定是一个两位数,如果个差是11 的倍数,那么就有个数与十位数字相等.得

注:抽原理一:将

抽原理二:将nr+1

n+1 个元素放到n 个抽中去,无怎么放,必定有一个抽至少有两个元素.

个元素放到n 个抽中去,无怎么放,必定有一个抽至少有r+1 个元素.

抽原理三:将 m个元素放到 n 个抽中去 (m≥n) ,无怎么放,必定有一个抽至少有m 1

1

n

元素.

6.从 1, 2, 3,?, 49, 50 50 个数中取出若干个数,使其中任意两个数的和都不能被7整除,最多能

取出多少个数 ?

【分析与解】利用除以 7 的余数分:

余0: (7 , 14, 21, 28, 35, 42, 49) ;

余1: (1 , 8,15, 22,29, 36,43, 50) ;

余2: (2 , 9,16, 23,30, 37,44) ;

余3: (3 , 10, 17, 24, 31, 38, 45) ;

余4: (4 , 11, 18, 25, 32, 39, 46) ;

余5: (5 , 12, 19, 26, 33, 40, 47) ;

余6: (6 , 13, 20, 27, 34, 41, 48) .

第一内的数最多只能取 1 个;如果取第二,那么不能取第七内任何一个数;取第三,不能取第

六内任何一个数;取第四,不能取第五内任意一个数.

第二、三、四、五、六、七分有8、 7、 7、 7、7、 7 个数,所以最多可以取1+8+7+7=23 个数.

7.从 1, 2,3,?, 99, 100100 个数中任意出51 个数.明:

(1)在 51 个数中,一定有两个数互;

(2)在 51个数中,一定有两个数的差等于50;

(3)在 51个数中,一定存在 9 个数,它的最大公数大于1.

【分析与解】(1) 我将 1~ 100 分成 (1 ,2) , (3 ,4) , (5 ,6) , (7 ,8) ,?, (99 , 100) 50 ,每

内的数相.而相的两个自然数互.

将 50 数作50 个抽,同一个抽内的两个数互.

而在 51 个数,放50 个抽,必定有两个数在同一抽,于是两个数互.得.

(2)我将 1— 100 分成 (1 ,51) , (2 ,52) ,(3 ,53) ,?, (40 , 90) ,? (50 , 100) 50 ,每内的数

相差 50.将 50 数抽,在有51 个数放50 个抽内,必定有 2 个数在同一抽,那么

两个数的差50.得.

(3)我将 1— 100 按 2 的倍数、 3 的奇数倍、既不是 2 又不是 3 的倍数的情况分,有(2 ,4,6, 8,?,

98, 100) , (3 ,9, 15, 21,27,?, 93, 99) , (5 , 7, 11, 13, 17, 19,23,?, 95,97) 三.第一、二、三分有 50、 17、33 个元素.

最不利的情况下, 51 个数中有 33 个元素在第三 ,那么剩下的

18 个数分到第一、二两 内,那么至少

有 9 个数在同一 .所以

9 个数的最大公 数

2 或

3 或它 的倍数, 然大于

1. 得

8. 求 :可以找到一个各位数字都是 4 的自然数,它是 1996 的倍数.

【分析与解】注意到 1996=4×499;

于 l , 1l , 11l ,?, 111L 1中必定有两个数关于

499 同余.

1 2 3

440 个1

于是 111L 1

111L 1(mod 499)(m>n) .

1 2 3

1 2 3

m 个1

n 个1

有 111L 1 - 111L 1=111L 1000L 0 ,所以 499

111L 1000L 0 ,因 (499 ,

1 2 3

1 2 3

1 2 3

14 2 43

1 2 3

14 2 43

m 个1

n 个1

m n 个1

n 个0

m n 个1 n 个 0

444L 4

1000L 0 )=l ,所以 499

111L 1

;于是有 (499 ×4)

111L 1

4),即

1996 1 2 3

1 2 3

14 2 43

14 2 43

n 个 0

m-n 个

1

m-n 个 1

m-n 个 4

于是,就找到 的全部都是由

4 成的数字,是

1996 的倍数.

注:

111L

1、 333L 3、 777L 7 、

999L

9 可整除不合 2, 5 因数的任何整数;

1 2 3

14 2 43

14 2 43

14 2 43

k 个1

k 个 3

k 个 7

k 个 9

222L 2 、 444L 4 、 666L 6 、 888L 8 整除不含因数 5( 因数 2 分 只能含

1, 2, 2, 3 个 ) 的任何整

14 2 43

14 2 43 14 2 43

14 2 43

k 个 2

k 个 4

k 个6

k 个 8

数;

555L 5 整除不含因数

2( 因数 5 只能含 1 个) 的任何整数.

14 2 43

k 个 5

9.有 49 个小孩, 每人胸前有一个号 , 号 从 1 到 49 各不相同. 在 你挑 若干个小孩, 使任何相 两个小孩的号 数的乘 小于

100,那么你最多能挑 出多少个孩子

?

【分析与解】

将 1 至 49 中相乘小于 100 的两个数,按被乘数分成

9 ,

如下:

排成一个 圈,

(1 ×2) 、(1 ×3) 、(1 ×4) 、?、 (1 ×49) ; (2 ×3) 、(2 ×4) 、(2 ×5) 、?、 (2 ×49) ;

L L L L L L

L

(8 ×9) 、(8 × 10) 、(8 (9 ×10) 、(9 ×11) .

×11) 、(8 ×12) ;

因 每个数只能与左右两个数相乘,

两 数出 在 圈中,最多可以取出 18

数.

也就是每个数作 被乘数或乘数最多两次, 所以每一 中最多会有

个数 ,共

18 ×2=36 次,但是每个数都出 两次,故出 了

18 个

例如: (10 ×9) 、(9 ×11) 、 (1 ×8) 、(8 ×12) 、(12 ×7) 、 (7 × 13) 、(13 ×6) 、(6 ×14) 、 (14 ×5) 、(5 ×15) 、 (15

×4) 、(4 ×16) 、 (16 X 3) 、(3 ×17) 、(17 ×2) 、(2 ×18) 、(18 ×1) 、(1 ×10) .共出 l ~ 18 号,共

18 个孩子.

若随意 取出

19 个孩子,那么共有

19 个号 ,由于每个号 数要与旁 两数分 相乘, 会形成 个相乘的数 .

那么在 9 中取出 19 个数 ,有

19=9×2+1,由抽 原 知,必有三个数 落入同一 中, 某个

数字会在数 中出 三次

( 或三次以上 ) ,由分析知, 是不允 的.故最多挑出

18 个孩子.

19

10. 在边长为

1 的正方形内随意放进

9 个点,证明其中必有

3 个点构成的三角形的面积不大于

1 .

8

【分析与解】

如下 ,把正方形分成四个形状相同、大小相等的正方形.

9 个点任意放人 四个正方

形中.

根据抽 原理,多于

2×4个点放入四个 方形中,至少有

2+1 个点 ( 即

3 个点 ) 落在

一个正方形之内.现在,特别取出这个正方形来加以讨论.

把落在这正方形中的三点组成的三角形记为△ABC,其面积不超过小正方形面积的1

,所以其面积

不超过1

.这样就得到了需要证明的结论.

2

8 1

的两点;

评注:在边长为 1 的等边三角形中有n21个点,这 n21个点中一定有距离不大于

n

在边长为 l 的等边三角形内有n21个点,这

n2

1个点中一定有距离小

1

的两点.

n

1

已知平行四边形中,其面积为l ,现有2n2 1 个点,则必定有三点组成的三角形,其面积不大于;

12n2

已知三角形中,其面积为1,现有2n21个点,则必定有三点组成的三角形,其面积不大于.

n2

11.某班有 16 名学生,每个月教师把学生分成两个小组.问最少要经过几个月,才能使该班的任意两个学生

总有某个月份是分在不同的小组里?

【分析与解】经过第一个月,将16 个学生分成两组,至少有8 个学生分在同一组,下面只考虑这8 个学生.

经过第二个月,将这8 个学生分成两组,至少有 4 个学生是分在同一组,下面只考虑这 4 个学生.经过第三个月,将这 4 个学生分成两组,至少有 2 个学生仍分在同一组,这说明只经过 3 个月是无法满足题目要求的.

如果经过四个月,将每个月都一直保持同组的学生一分为二,放人两个组,那么第一个月保持同组的人

数为 16÷2=8 人,第二个月保持同组的人数为8÷2=4 人,第三个月保持同组人数为4÷2=2 人,这说明,照此分法,不会有 2 个人一直保持在同一组内,即满足题目要求,故最少要经过 4 个月.

12.上体育课时,21 名男、女学生排成 3 行 7 列的队形做操.老师是否总能从队形中划出一个长方形,使得

站在这个长方形 4 个角上的学生或者都是男生,或者都是女生?如果能,请说明理由;如果不能,请举出实例.【分析与解】因为只有男生或女生两种情况,所以第 1 行的 7 个位置中至少有 4 个位置同性别.

为了确定起见,不妨设前 4 个位置同是男生,如果第二行的前 4 个位置有 2 名男生,那么 4 个角同是男生的情况已经存在,所以我们假定第二行的前 4 个位置中至少有 3 名女生,不妨假定前 3 个是女生.又第三行的前 3 个位置中至少有 2 个位置是同性别学生,当是2名男生时与第一行构成一个四角同性别

的矩形,当有 2 名女生时与第二行构成四角同性别的矩形.

所以,不论如何,总能从队形中划出一个长方形,使得站在这个长方形 4 个角上的学生同性别.问题得证.

13. 8 个学生解8 道题目.

(1)若每道题至少被 5 人解出,请说明可以找到两个学生,每道题至少被过两个学生中的一个解出.

(2)如果每道题只有 4 个学生解出,那么(1) 的结论一般不成立.试构造一个例子说明这点.

【分析与解】(1)先设每道题被一人解出称为一次,那么8 道题目至少共解

出 5 8=40 次,分到8 个学生身上,至少有一个学生解出了 5 次或 5 次以上题目,即这个学生至少解出 5 道题,称这个学生为4,我们讨论以下 4 种可能:

第一种可能:若 4 只解出 5 道题,则另 3 道题应由其他7 个人解出,而 3 道题至少共被解出35=15 次,分到 7 个学生身上,至少有一名同学解出了 3 次或 3 次以上的题目(15=2 7+1,由抽屉原则便知) 由于只有3道题,那么这 3 道题被一名学生全部解出,记这名同学为B.

那么,每道题至少被A、B 两名同学中某人解出.

第二种可能:若 A 解出 6 道题,则另 2 道题应由另7 人解出,而 2 道题至少共被解出2×5=10 次,分到

7 个同学身上,至少有一名同学解出 2 次或 2 次以上的目(10=1 7+3,由抽原便知) .与 l 第一种可能

I 同理,两道必被一名学生全部解出,名同学C.

那么,每道目至少被A、 C 学生中一人解出.

第三种可能:若 A 解出 7 道目,另一必由另一人解出,此人D.那么,每道目至少被A、D 两名学生中一人解出.

第四种可能:若 A 解出 8 道目,随意找一名学生,E,那么,每道目至少被A、 E 两名学生中一人解出,所以(1) 得.

(2)似 (1) 中的想法,目共被解出8 4=32 次,可以使每名学生都解出 4 次,那么每人解出 4 道.

随便找一名学生,必有 4 道未被他解出, 4 道共被 7 名同学解出 4 4=16 次,由于16=2×7+2,可以使每名同学解出目不超 3 道,就无法找到两名学生,使每道目至少被其中一人解出.

具体构造如下表,其中字代表号,数字代表学生,打√代表位置的目被位置的学生

解出.

14.的表上按准的方式着1,2, 3,?, 11,1212 个数,在其上任意做n 个120o的扇形,每一个都恰好覆盖 4 个数,每两个覆盖的数不全相同.如果从任做的

面的全部12 个数,求n 的最小.

n 个扇形中能恰好取出 3 个覆盖整个【分析与解】如下,只要从某个数字的位置开始,做出的120o扇形,一定能覆盖 4 个数.

从最不利的情况出,n 个扇形中最大程度的重叠,需做(12 , 1, 2, 3) ,2, 3,4) , (2 , 3,4, 5) , (3 , 4, 5,6) ,(4 , 5, 6,7) , (5 , 6,7, 8) , (6 ,

9) , (7 , 8, 9, 10) , (8 , 9, 10, 11)

9 个 120。扇形才能将整个面覆盖.从中可以挑出 3 个覆盖整个面全部12(1,7,8,

数.

也就是n 最小取9 ,才能保意的足.

注:如果 n 取 8 那么就能出一种做法,使得不出 3 个扇形覆盖整个面的全部12 个数,如: (12 ,1, 2, 3) , (1 ,2, 3, 4) , (2 , 3, 4, 5) , (3 , 4, 5, 6) ,(4 , 5, 6, 7) , (5 , 6, 7, 8) , (6 , 7, 8, 9) ,

(7 , 8, 9,10) , 8 个扇形的数中都不包含11 个数,当然没法取得全部的12 个数.

15.卷上共有 4 道,每有 3 个可供的答案.一群学生参加考,果是于其中任何 3 人,都有一个目的答案互不相同.参加考的学生最多有多少人?

【分析与解】人数A,再由分析可第一取出的人数A1,第二的人数A2,第三取的人数A3,第四的人数A4.

如果不能足目要求,:

A4至少是3,即3个人只有两种答案.

由于A4是 A3人做第四题后筛选取出的人数,则由抽屉原则知,

A3

个苹( 两种答案 ) 中至少放有A 3

3

果 ( 即A4 ).

A3A3

= A4 =3,则 A3 至少为4,即 4 人只有两种答案.3

由于 A3是 A2人做第三题后筛选的人数,则由抽屉原则知,将 A2个苹果放久三个抽屉( 三种答案 ) ,那么

必然有两个抽屉 ( 两种答案 ) 中至少放有A2A2

个苹果 ( 即A3 ) .3

A2A2= A3 =4,则A2至少为5,即 5 人只有两种答案.3

同理,有A1A1

= A2 =5 则A1至少为7 ,即做完第一道题必然有7个人只有两种答案;则有3

A0A0= A1=7.则A0至少为 10,即当有10 人参加考试时无法满足题目的要求.3

考虑 9 名学生参加考试,令每人答题情况如下表所示( 汉字表示题号,数字表示学生) .故参加考试的学生最多有9 人.

小学奥数:抽屉原理(含答案)

教案 抽屉原理 1、概念解析 把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到: 抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。 如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。 比如,我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证明这个结论是正确的呢?只要利用抽屉原理就很容易把道理讲清楚.事实上,由于人数(13)比属相数(12)多,因此至少有两个人属相相同(在这里,把13人看成13个“苹果”,把12种属相看成12个“抽屉”)。 应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。 2、例题讲解 例1 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。 例2 一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的? 例3 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

小学六年级奥数题集锦及答案

小学六年级奥数题集锦 及答案

小学六年级奥数题集锦及答案 工程问题? 1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时? 2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天? 3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时? 4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成? 5.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个? 6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵? 7.一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完? 8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?

四年级奥数抽屉原理

一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决. 二、抽屉原理的定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是组合数学中一个重要的原理。 (2)定义 一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。 三、抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()1 1x n -, 结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题 将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法. 四、应用抽屉原理解题的具体步骤 知识框架 抽屉原理 发现不同

第二步:构造抽屉。这是个关键的一步,这一步就是如何设计抽屉,根据题目的结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的“苹果”及其个数,为使用抽屉铺平道路。第三步:运用抽屉原理。观察题设条件,结合第二步,恰当运用各个原则或综合几个原则,将问题解决。 例题精讲 【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗? 【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业. 【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天? 【巩固】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。

小学六年级奥数专项练习29 抽屉原理

小学六年级奥数专项练习 专题29 抽屉原理(一)

【理论基础】 如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。这些简单内的例子就是数学中的“抽屉原理”。 基本的抽屉原理有两条:(1)如果把x+k(k≥1)个元素放到x 个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。(2)如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。 利用抽屉原理解题时要注意区分哪些是“抽屉”?哪些是“元素”?然后按以下步骤解答:a、构造抽屉,指出元素。b、把元素放入(或取出)抽屉。C、说明理由,得出结论。 本周我们先来学习第(1)条原理及其应用。 例题1 某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么? 把一年中的天数看成是抽屉,把学生人数看成是元素。把367个元素放到366个抽屉中,至少有一个抽屉中有2个元素,即至少有两

个学生的生日是同一天。 平年一年有365天,闰年一年有366天。把天数看做抽屉,共366个抽屉。把367个人分别放入366个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。 练习1 1、某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,为什么? 2、某校有30名学生是2月份出生的,能否至少有两个学生生日是在同一天? 3、15个小朋友中,至少有几个小朋友在同一个月出生? 例题2 某班学生去买语文书、数学书、外语书。买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)? 首先考虑买书的几种可能性,买一本、二半、三本共有7种类型,把7种类型看成7个抽屉,去的人数看成元素。要保证至少有一个抽屉里有2人,那么去的人数应大于抽屉数。所以至少要去7+1=8(个)学生才能保证一定有两位同学买到相同的书。 买书的类型有:

我们在小学四年级奥数已经学过抽屉原理

追击问题练习题 专题简析 追击问题也是行程问题中的一种情况,这类问题的特点是:两个物体同时向同一方向运动,出发的地点不同(或者从同一地点不同时出发,向同一方向运动),慢者在前,快者在后,因而快者离慢者越来越近,最后终于可与追上。 解答这类问题,关键是明确速度差的含义(即单位时间内快者追上慢者的路程)。 追击问题的解答公式:速度差×追击时间=路程差 路程差÷速度差=追击时间 路程差÷追击时间=速度差 速度差+慢者速度=快者速度 快者速度-速度差=慢者速度 例题精讲 例1、甲乙两车相距90千米,两车同时同向而行,甲车每小时行65千米,乙车每小时行50千米,经过多少小时甲车能追上乙车? 分析:从“甲乙两车相距90千米”可知甲乙两车的路程差是90千米,甲与乙的速度差是65-50=15千米,即每小时甲比乙多行14千米,那么相差90千米的路程,甲追上乙的时间就是90÷15=6小时 解:90÷(65-50)=6(小时) 答:经过6小时甲车能追上乙车。 例2、某港停有甲乙两船,某一天,甲船以每小时24千米,乙船以每小时16千米的速度,同时同地背向出发,2小时后,甲船因事调转船头追乙船,几小时才能追上? 分析:甲、乙两船背向而行,2小时后两船相距(24+16)×2=80千米,即为甲船的追击路程,甲乙的速度知道,速度差为24-16=8千米/小时,追击时间也就好算了。

解:甲、乙路程差(24+16)×2=80(千米)甲追上乙的时间80÷(24-16)=10(小时) 答:甲10小时才能追上乙。 例3、有快慢两列火车从南京开往天津,慢车上午5时出发,每小时48千米,快车上午9时出发,8小时后追上慢车,快车每小时比慢车多行多少千米? 分析:慢车比快车早出发9-5=4小时,慢车每小时行48千米,4小时行48×4=182千米,也就是快车要追192千米才能追上,1小时追192÷8=24千米,也就是快车每小时比慢车多行24千米。 解:快车与慢车的路程差48×4=182(千米)快车1小时比慢车多 行192÷8=24(千米) 答:快车每小时比慢车多行24千米。 例4、A、B两城之间的路程长240千米,快车从A城、慢车从B城同时相向开出,3小时相遇,如果两车分别在两城同时向同一方向开出,慢车在前,快车在后,那么15小时快车可以追上慢车,求两车的速度? 分析:由相遇棵知道速度和是240÷15=16千米/小时,由追击可求出速度差是240÷15=16千米/小时,根据和差公式就能求出两车的速度。 解:快车与慢车的速度和240÷3=80(千米/小时)快车和慢车的速度 差240÷15=16(千米/小时) 快车速度(80+16)÷2=48(千米/小时)慢车速度(80-16)=32(千米/小时) 答:快车速度为48千米每小时,慢车速度为32千米每小时 练习题 1、A 、B两地相距60千米,一辆快车和一辆慢车同时分别从A、B两地朝一个方向出发,快车每小时120千米,慢车每小时90千米,几小时快车追上慢车? 2、两船从甲码头开往乙码头。客船每小时行30千米,快艇每小时行45千米,客船先出发4小时,多少小时以后快艇能追上客船? 3、甲、乙两人分别从吴村到刘村,甲骑摩托车每小时行50千米,乙骑自行车每小时20千米,乙先行3小时,结果两人同时到达。求两村的距离。 4、两船从北岸开往南岸,第一艘船以每小时45千米的速度先开了6小时,经过4小时后两船还相距190千米,求第二艘船每小时行多少千米?

高斯小学奥数六年级下册含答案第05讲_抽屉原理

第五讲抽屉原理二 本讲知识点汇总: 一、最不利原则:为了保.证.能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能 达到目标. 二、抽屉原理: 形式1:把n 1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里; 形式2:把m n 1个苹果放到n 个抽屉中,一定有m 1个苹果放在一个抽屉里. 例1.中国奥运代表团的173 名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水 6 种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?「分析」本题的“抽屉”是饮料的选法,“苹果”是 1 73名运动员. 练习1、中国奥运代表团的83 名运动员到超市买饮料.超市有可乐、雪碧、芬达和橙汁,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同? 例2.国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项.那么至少有多少个学生,才能保证至少有 4 个人参加的活动完全相同?「分析」本题的“抽屉”是参加活动的方法. 练习2、高思运动会共有 4 个项目,每个学生至多参加3项,至少参加 1 项.那么至少有多少个学生,才能保证至少有 5 个人参加的活动完全相同?

例3.从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50? 「分析」思考一下:哪两个数的和是50? 练习3、从1到35这35 个自然数中,至少选出多少个数才能保证其中一定有两个数的和为34? 例4.从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是 6 的倍数呢?「分析」两个数的和是7 的倍数,这两个数除以7 的余数要符合什么条件哪? 练习4、从1至99这99 个自然数中任意取出一些数,要保证其中一定有两个数的和是 5 的倍数,至少要取多少个? 例5.至少取出多少个正整数,才能保证其中一定有两个整数的和或差是100 的倍数? 「分析」从余数角度思考一下:什么样的两个数的和或差是100? 例6.在边长为 2 的正六边形中,放入50 个点,任意三点不共线,请证明:一定能从中选出三个点,以它们为顶点的三角形面积不大于 「分析」通过把正六边形均分,来构造“抽屉” 1.

小学奥数竞赛专题训练之抽屉原理

小学奥数竞赛专题训练之抽屉原理 竞赛专题选讲囊括了希望杯、华罗庚金杯、走进美妙的数学花园、EMC、全国小学数学联赛和数学解题能力展示等在内的国内主要数学竞赛的精华试题 [专题介绍] 把4只苹果放到3个抽屉里去,共有4种放法(请小朋友们自己列举),不论如何放,必有一个抽屉里至少放进两个苹果。 同样,把5只苹果放到4个抽屉里去,必有一个抽屉里至少放进两个苹果。 …… 更进一步,我们能够得出这样的结论:把n+1只苹果放到n个抽屉里去,那么必定有一个抽屉里至少放进两个苹果。这个结论,通常被称为抽屉原理。 利用抽屉原理,可以说明(证明)许多有趣的现象或结论。不过,抽屉原理不是拿来就能用的,关键是要应用所学的数学知识去寻找“抽屉”,制造“抽屉”,弄清应当把什么看作“抽屉”,把什么看作“苹果”。 [经典例题] 【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么? 【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。 【例2】任意4个自然数,其中至少有两个数的差是3的倍数。这是为什么? 【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。换句话说,4个自然数分成3类,至少有两个是同一类。既然是同一类,那么这两个数被3除的余数就一定相同。所以,任意4个自然数,至少有2个自然数的差是3的倍数。 想一想,例2中4改为7,3改为6,结论成立吗? 【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)? 【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。 按5种颜色制作5个抽屉,根据抽屉原理1,只要取出6只袜子就总有一只抽屉里装2只,这2只就可配成一双。拿走这一双,尚剩4只,如果再补进2只又成6只,再根据抽屉原理1,又可配成一双拿走。如果再补进2只,又可取得第3双。所以,至少要取6+2+2=10只袜子,就一定会配成3双。 思考:1.能用抽屉原理2,直接得到结果吗? 2.把题中的要求改为3双不同色袜子,至少应取出多少只? 3.把题中的要求改为3双同色袜子,又如何? 【例4】一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少

2018最新四年级奥数.杂题.抽屉原理(C级).学生版

知识框架 一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决. 二、抽屉原理的定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。 (2)定义 一般情况下,把n+1或多于n+1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。 三、抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1,结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11x n - ,结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题 将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.抽屉原理

例题精讲 一、直接利用公式进行解题 【例1】“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.欢迎关注:“奥数轻松学” 【巩固】五年级数学小组共有20名同学,他们在数学小组中都有一些朋友,请你说明:至少有两名同学,他们的朋友人数一样多. 【例2】证明:任取8个自然数,必有两个数的差是7的倍数. 【巩固】证明:任取6个自然数,必有两个数的差是5的倍数。 【例3】任意给定2008个自然数,证明:其中必有若干个自然数,和是2008的倍数(单独一个数也当做和).

六年级奥数题:抽屉原理.doc

学习好资料欢迎下载 十八抽屉原理(1) 年级班姓名得分 一、填空题 1.一个联欢会有 100 人参加 , 每个人在这个会上至少有一个朋友 . 那么这 100 人中至少有个人的朋友数目相同 . 2.在明年 ( 即 1999 年 ) 出生的 1000 个孩子中 , 请你预测 : (1) 同在某月某日生的孩子至少有个 . (2) 至少有个孩子将来不单独过生日 . 3.一个口袋里有四种不同颜色的小球 . 每次摸出 2 个 , 要保证有 10 次所摸的 结果是一样的 , 至少要摸次. 4.有红、黄、蓝三种颜色的小珠子各 4 颗混放在口袋里 , 为了保证一次能取 到 2 颗颜色相同的珠子 , 一次至少要取颗 . 2 颗, 那么一定至少要取出 如果要保证一次取到两种不同颜色的珠子各 颗 . 5.从 1,2,3 ,12 这十二个数字中 , 任意取出 7 个数 , 其中两个数之差是 6 的 至少有对. 6.某省有 4 千万人口 , 每个人的头发根数不超过 15 万根 , 那么该省中至少有人 的头发根数一样多 . 7.在一行九个方格的图中 , 把每个小方格涂上黑、白两种颜色中的一种 , 那么 涂色相同的小方格至少有个. 8. 一付扑克牌共有54 张 ( 包括大王、小王 ), 至少从中取张牌,才能保证其中必有 3 种花色 . 9.五个同学在一起练习投蓝 , 共投进了 41 个球 , 那么至少有一个人投进了 个球 . 10.某班有 37 名小学生 , 他们都订阅了《小朋友》、《儿童时代》、《少年报》中的一种或几种 , 那么其中至少有名学生订的报刊种类完全相同. 二、解答题 11. 任给 7 个不同的整数 , 求证其中必有两个整数 , 它们的和或差是10 的倍数 . 12.在边长为 1 的正方形内任取 51 个点 , 求证 : 一定可以从中找出 3 点, 以它们为顶点的三角形的面积不大于 1/50. 13.某幼儿园有 50 个小朋友 , 现在拿出 420 本连环画分给他们 , 试证明 : 至少有4 个小朋友分到连环画一样多 ( 每个小朋友都要分到连环画 ). 2, 或 3, 要使每 14. 能否在 8 8 的棋盘上的每一个空格中分别填入数字1, 或 行、每列及两条对角线上的各个数字之和互不相同?请说明理由 .

四年级数学A班奥数专题-“最大与最小”问题

四年级数学A班奥数专题->“最大与最小”问题 在应用数学知识解决日常生活中的一些实际问题时,经常会出现解决方案不止一种,有时还会有无数种的情况。在这种情况下,我们往往需要找最大量或最小量。 例1试求乘积为36,和为最小的两个自然数。 分析与解不考虑因数顺序,乘积是36的两个自然数有以下五种情况:1×36、2×18、3×12、4×9、6×6。相应的两个乘数的和是:1+36=37、2+18=20、3+12=15、4+9=13、6+6=12。显然,乘积是36,和为最小的两个自然数是6与6。 例2试求乘积是80,和为最小的三个自然数。 分析与解不考虑因数顺序,乘积是80的三个自然数有以下八种情况:1×2×40、1×4×20、1×5×16、1×8×10、2×2×20、2×4×10、2×5×8、4×4×5。经过计算,容易得知,乘积是80,和为最小的三个自然数是4、4、5。 结论一:从上述两例可见,m个自然数的乘积是一个常数,则当这m 个乘数相等或最相近时,其和最小。 例3试求和为8,积为最大的两个自然数。

分析与解不考虑加数顺序,和为8的两个自然数有以下四种情况:1+7、2+6、3+5、4+4。相对应的两个加数的积是:1×7=7、2×6=12、3×5=15、4×4=16。显然,和为8,积为最大的两个自然数是4和4。例4试求和为13,积为最大的两个自然数。 分析与解不考虑加数顺序,和为13的两个自然数有以下六种情况:1+12、2+11、3+10、4+9、5+8、6+7。经过计算,不难发现,和为13,积为最大的两个 结论二:从上述两例可知,m个自然数的和是一个常数,则当这m个数相等或最相近时,其积最大。 例5砌一平方米的围墙要用砖50块,现有5600块砖,用来砌一个矩形晒谷场的围墙。如果围墙高2米,则砌成的晒谷场的长和宽各是多少米时,晒的谷最多? 分析与解根据题意,首先可知5600块砖可砌围墙(5600÷50÷2=)56米,即长方形晒谷场的周长为56米。要使晒谷场晒的谷最多,实际就是长方形晒谷场的面积(长×宽)要最大。而长方形的周长56米一定,即长与宽的和(56÷2=)28米也一定,因此只有当长与宽相等(都是14米)时,面积才最大。所以,晒谷场的长和宽都是14米时,晒的谷最多。这时晒谷场的面积是: 14×14=196(平方米)

最新小学六年级数学抽屉原理练习题

小学六年级数学抽屉原理练习题 1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求. 2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数? 解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同.这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相 同. 3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本.试证明:必有两个学生所借的书的类型相同. 证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种.共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”.如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相 同. 4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同. 证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能,以这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定有两名运动员得分相同. 5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致 的? 解题关键:利用抽屉原理2. 解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜.以这9种配组方式制造9个抽屉,将这50个同学看作苹果50÷9 =5 (5) 由抽屉原理2k=[m/n ]+1可得,至少有6人,他们所拿的球类是完全一致的. 6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人生为 __________人. 解:因为任意分成四组,必有一组的女生多于2人,所以女生至少有4×2+1=9(人);因为任意10人中必有男生,所以女生人数至多有9人.所以女生有9人,男生有55-9=46(人)

小学六年级奥数 抽屉原理(含答案)

抽屉原理 知识要点 1.抽屉原理的一般表述 (1)假设有3个苹果放入2个抽屉中,必然有一个抽屉中至少有2个苹果。它的一般表述为: 第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。 (2)若把3个苹果放入4个抽屉中,则必然有一个抽屉空着。它的一般表述为: 第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。 2.构造抽屉的方法 常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。 例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点, (13) 点牌各一张),洗好后背面朝上放。一次至少抽取张牌,才能保证其中必定有2张牌的点数和颜色都相同。如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。 点拨对于第一问,最不利的情况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都相同。 点拨对于第二问,最不利的情况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。 解(1)13×2+1=27(张)(2)9×4+1=37(张) 例2 证明:37人中,(1)至少有4人属相相同;(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围内? 点拨可以把12个属相看做12个抽屉,根据第一抽屉原理即可解决。 解 (1)因为37÷12=3……1,所以,根据第一抽屉原理,至少有3+1=4(人)属相相同。 (2)要保证有5人的属相相同的最少人数为4×12+1=49(人) 不保证有6人属相相同的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。例3有一副扑克牌共54张,问:至少摸出多少张才能保证:(1)其中有4张花色相同?(2)四种花色都有?点拨首先我们要弄清楚一副扑克牌有2张王牌,四种花色,每种有13张。(1)按最不利原则先取出2张为王牌,再取4张均不同花色,再连续取两次4张也均不同花色,这时必能保证每一花色都有3张,再取1张即可达到要求。(2)仍需按最不利原则去取牌,先是2张王牌,接着依次把三种花色的牌全部取出13×3,这时假设仍是没有四种花色,再取1张即可。 解 (1)2+4×3+1=15(张) (2)2+13×3+1=42(张) 例 4 学校买来红、黄、蓝三种颜色的球,规定每位学生最多可以借两种不同颜色的球。那么至少要来几名学生借球,就能保证必有两名学生借的球的颜色完全相同? 点拨根据题中“最多可借两种不同颜色的球”,可知最多有以下6种情况: 解借球有6种情况,看做6个抽屉, 所以至少要来7名学生借球,才能保证。 例5 从前面30个自然数中最少要取出几个数,才能保证取出的数中能找到两个数,其中较大的数是较小

小学四年级奥数抽屉原理二例题练习及复习资料

小学四年级奥数抽屉原理(二)例题、练习及答案 抽屉原理(二) 这一讲我们讲抽屉原理的另一种情况。先看一个例子:如果将13只鸽子放进6只鸽笼里,那么至少有一只笼子要放3只或更多的鸽子。道理很简单。如果每只鸽笼里只放2只鸽子,6只鸽笼共放12只鸽子。剩下的一只鸽子无论放入哪只鸽笼里,总有一只鸽笼放了3只鸽子。这个例子所体现的数学思想,就是下面的抽屉原理2。 抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。 说明这一原理是不难的。假定这n个抽屉中,每一个抽屉内的物品都不到(m+1)件,即每个抽屉里的物品都不多于m件,这样,n个抽屉中可放物品的总数就不会超过m×n件。这与多于m×n件物品的假设相矛盾。这说明一开始的假定不能成立。所以至少有一个抽屉中物品的件数不少于m+1。 从最不利原则也可以说明抽屉原理2。为了使抽屉中的物品不少于(m+1)件,最不利的情况就是n个抽屉中每个都放入m件物品,共放入(m×n)件物品,此时再放入1件物品,无论放入哪个抽屉,都至少有一个抽屉不少于(m+1)件物品。这就说明了抽屉原理2。 不难看出,当m=1时,抽屉原理2就转化为抽屉原理1。即抽屉原理2是抽屉原理1的推广。 例1某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具? 分析与解:将40名小朋友看成40个抽屉。今有玩具122件,122=3×40+2。应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。也就是说,至少会有一个小朋友得到4件或4件以上的玩具。 例2一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块? 分析与解:将1,2,3,4四种号码看成4个抽屉。要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块。 例3六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种。问:至少有多少名学生订阅的杂志种类相同? 分析与解:首先应当弄清订阅杂志的种类共有多少种不同的情况。 订一种杂志有:订甲、订乙、订丙3种情况; 订二种杂志有:订甲乙、订乙丙、订丙甲3种情况; 订三种杂志有:订甲乙丙1种情况。 1 / 3

六年级奥数举一反三第30周抽屉原理

六年级奥数举一反三第30周抽 屉原理 专题简析; 在抽屉原理的第【2】条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式; 元素总数=商×抽屉数+余数 如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。 例题1; 幼儿园里有120个小朋友,各种玩具有364件。把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具? 把120个小朋友看做是120个抽屉,把玩具件数看做是元素。则364=120×3+4,4<120。根据抽屉原理的第【2】条规则;如果把m×x×k【x>k≥1】个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。可知至少有一个抽屉里有3+1=4个元素,即有人会得到4件或4件以上的玩具。 练习1; 1·一个幼儿园大班有40个小朋友,班里有各种玩具125件。把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具? 2·把16枝铅笔放入三个笔盒里,至少有一个笔盒里的笔不少于6枝。这是为什么? 3·把25个球最多放在几个盒子里,才能至少有一个盒子里有7个球? 例题2; 布袋里有4种不同颜色的球,每种都有10个。最少取出多少个球,才能保证其中一定有3个球的颜色一样? 把4种不同颜色看做4个抽屉,把布袋中的球看做元素。根据抽屉原理第【2】条,要使其中一个抽屉里至少有3个颜色一样的球,那么取出的球的个数应比抽屉个数的2倍多1。即2×4+1=9【个】球。列算式为 【3—1】×4+1=9【个】 练习2; 1·布袋里有组都多的5种不同颜色的球。最少取出多少个球才能保证其中一定有3个颜色一样的球? 2·一个容器里放有10块红木块·10块白木块·10块蓝木块,它们的形状·大小都一样。当你被蒙上眼睛去容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块? 3·一副扑克牌共54张,其中1—13点各有4张,还有两张王的扑克牌。至少要取出几张牌,才能保证其中必有4张牌的点数相同? 例题3; 某班共有46名学生,他们都参加了课外兴趣小组。活动内容有数学·美术·书法和英

广东省阳江市数学小学奥数系列8-2-1抽屉原理(一)

广东省阳江市数学小学奥数系列8-2-1抽屉原理(一) 姓名:________ 班级:________ 成绩:________ 亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧! 一、 (共34题;共175分) 1. (5分)有5050张数字卡片,其中1张上面写着数字“1”,2张上面写着数字“2”,3张上面写着数字“3”…,99张上面写着数字“99”,100张上面写着数字“100”.现在要从中任意取出若干张,为了确保抽出的卡片中至少有10张完全相同的数字,至少要抽出多少张卡片? 2. (5分)一个正方体有六个面,给每个面都涂上红色或白色,至少有三个面是同一颜色。为什么? 3. (5分)在一个矩形内任意放五点,其中任意三点不在一条直线上。证明:在以这五点为顶点的三角形中,至少有一个的面积小于矩形面积的四分之一。 4. (5分)有49个小孩,每人胸前有一个号码,号码从1到49各不相同.现在请你挑选若干个小孩,排成一个圆圈,使任何相邻两个小孩的号码数的乘积小于100,那么你最多能挑选出多少个孩子? 5. (5分)小明参加飞镖比赛,投了5镖,成绩是36环,小明至少有一镖不低于8环,对吗?为什么? 6. (5分)六(1)班有49名学生,数学高老师了解到期中考试该班英语成绩除3人外,均在86分以上后就说:“我可以断定,本班至少有4人成绩相同”。王老师说的对吗?为什么? 7. (5分) 9条直线的每一条都把一个正方形分成两个梯形,而且它们的面积之比为2∶3。证明:这9 条直线中至少有3 条通过同一个点。 8. (5分)从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34. 9. (5分)一些孩子在沙滩上玩耍,他们把石子堆成许多堆,其中有一个孩子发现从石子堆中任意选出六堆,其中至少有两堆石子数之差是5的倍数,你能说一说他的结论对吗?为什么? 10. (5分)在下面每个格子中任意写上“爸爸”或“妈妈”,至少有几列所写的字是完全一样的?

六年级奥数讲义第29讲抽屉原理

抽屉原理 专题简析: 如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。这些简单内的例子就是数学中的“抽屉原理”。 基本的抽屉原理有两条:(1)如果把x+k(k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。(2)如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。 利用抽屉原理解题时要注意区分哪些是“抽屉”?哪些是“元素”?然后按以下步骤解答:a、构造抽屉,指出元素。b、把元素放入(或取出)抽屉。C、说明理由,得出结论。 例题1: 某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么? 练习1: 1、某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,

为什么? 2、某校有30名学生是2月份出生的,能否至少有两个学生生日是在同一天? 3、15个小朋友中,至少有几个小朋友在同一个月出生? 例题2: 某班学生去买语文书、数学书、外语书。买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)? 练习2:

1、某班学生去买语文书、数学书、外语书、美术书、自然书。买书的情况是:有买一本的、二本的、三本或四本的。,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)? 2、学校图书室有历史、文艺、科普三种图书。每个学生从中任意借两本,那么至少要几个同学才能保证一定有两人所借的图书属于同一种? 3、一只袋中装有许多规格相同但颜色不同的玻璃珠子,颜色有绿、红、黄三种,问最少要取出多少个珠子才能保证有两个同色的? 例题3: 一只袋中装有许多规格相同但颜色不同的手套,颜色有黑、红、蓝、黄四种。问最少要摸出多少只手套才能保证有3副同色的?

四年级奥数之抽屉原理

四年级奥数之抽屉原理 知识概要:抽屉原理1:把多于n个的物体放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的物体 原理2 :把多于m×n个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+l个的物体。 一、填空 1、四年级2班共有54名学生,他们年龄都相同,至少有()个同学在同一周出生,至少有()个同学在同一月出生。 2、在2007年出生的1000个孩子当中,至少有()个孩子是在同一天出生的。至少有()个孩子将来不单独过生日。 3、班上有50个学生,老师至少拿()本书,随意分给学生才能保证至少有一个学生分到不少于两本书。 4、黑、白、黄筷子各8根,混杂在一起,黑暗中起从这些筷子中取出颜色不同的两双筷子,问至少要取()根才能保证达到要求。 5、一只鱼缸里有很多条鱼,共有5个品种,问至少要捞出()鱼,才能保证有5条相同品种的鱼。 6、参加元旦文艺演出的合唱队中,最小的队员8岁,最大的队员14岁,从这些队员中任选()位就一定能保证其中有两位队员的年龄相同。 7、有红、黄、蓝三色的球各10个,混在一个布袋中,一次摸出13个球,其中至少有()个球是同色的。 8、学校图书室里有甲乙丙丁四类书,规定每个同学最多可以借2本书,在借书的86名同学中,至少有()个人所借书的类型是完全一样的。 9、第一组有16名学生至少有()个学生在同一个月过生日。 10、某班有个小图书库,有诗歌、童话、小人书三类课外读物。规定每位同学最多可以借阅两本书,问至少有()位同学来借阅图书才一定有两名同学借阅书的类型相同。 二、论述题 1、三位同学在操场上玩,其中必有两位同学都是男的或都是女的,这话对吗?

小学奥数-抽屉原理(教师版)

抽屉原理 如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。这些简单内的例子就是数学中的“抽屉原理”。 抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。 假定这n个抽屉中,每一个抽屉内的物品都不到2件,那么每一个抽屉中的物品或者是一件,或者没有。这样n个抽屉中所放物品的总数就不会超过n件。这与有多于n个物品的假设相矛盾。说明抽屉原理1成立。 抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+l。 假定这n个抽屉中,每一个抽屉中的物品都不到(m+l)件,即每个抽屉里的物品不多于m件,这样n个抽屉中可放物品的总数就不会超过m×n件。这与多于m×n件物品的假设相矛盾。说明原来的假设不成立。所以抽屉原理2成立。 运用抽屉原理解题的关键是选好“抽屉”,而构造“抽屉”的方法多种多样,会因题而异。运用原理1还是原理2要看题目的问题和哪一个更直观。抽屉原理2实际上是抽屉原理1的变形。 【例1】★某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么? 【解析】平年一年有365天,闰年一年有366天。把天数看做抽屉,共366个抽屉。把367个人分别放入366个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。 【小试牛刀】某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,为什么?【解析】1992年共有366天,把它看成是366个抽屉,把370个人放入366个抽屉中,至少有一个抽屉里有两个人,因此其中至少有2个学生的生日是同一天的。 【例2】★某班学生去买语文书、数学书、外语书。买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)? 【解析】首先考虑买书的几种可能性,买一本、二半、三本共有7种类型,把7种类型看成7个抽屉,去的人数看成元素。要保证至少有一个抽屉里有2人,那么去的人数应大于抽屉数。所以至少要去7+1=8(个)学生才能保证一定有两位同学买到相同的书。 买书的类型有: 买一本的:有语文、数学、外语3种。 买二本的:有语文和数学、语文和外语、数学和外语3种。 买三本的:有语文、数学和外语1种。 3+3+1=7(种)把7种类型看做7个抽屉,要保证一定有两位同学买到相同的书,至少要去8位学生。 【小试牛刀】某班学生去买语文书、数学书、外语书、美术书、自然书。买书的情况是:有买一本的、二本的、三本或四本的。,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书

六年级奥数举一反三第29周抽屉原理

六年级奥数举一反三第29周抽屉原理 专题简析; 如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。这些简单内的例子就是数学中的“抽屉原理”。 基本的抽屉原理有两条;(1)如果把x+k(k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。(2)如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。 利用抽屉原理解题时要注意区分哪些是“抽屉”?哪些是“元素”?然后按以下步骤解答;a·构造抽屉,指出元素。b·把元素放入(或取出)抽屉。C·说明理由,得出结论。 本周我们先来学习第(1)条原理及其应用。 例题1; 某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么? 把一年中的天数看成是抽屉,把学生人数看成是元素。把367个元素放到366个抽屉中,至少有一个抽屉中有2个元素,即至少有两个学生的生日是同一天。 平年一年有365天,闰年一年有366天。把天数看做抽屉,共366个抽屉。把367个人分别放入366个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。 练习1; 1·某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,为什么? 2·某校有30名学生是2月份出生的,能否至少有两个学生生日是在同一天? 3·15个小朋友中,至少有几个小朋友在同一个月出生? 例题2; 某班学生去买语文书·数学书·外语书。买书的情况是;有买一本的·二本的·也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)? 首先考虑买书的几种可能性,买一本·二半·三本共有7种类型,把7种类型看成7个抽屉,去的人数看成元素。要保证至少有一个抽屉里有2人,那么去的人数应大于抽屉数。所以至少要去7+1=8(个)学生才能保证一定有两位同学买到相同的书。 买书的类型有; 买一本的;有语文·数学·外语3种。 买二本的;有语文和数学·语文和外语·数学和外语3种。 买三本的;有语文·数学和外语1种。 3+3+1=7(种)把7种类型看做7个抽屉,要保证一定有两位同学买到相同的书,至少要去8位学生。 练习2;

相关主题
文本预览
相关文档 最新文档