中考数学模拟试题(含答案)
- 格式:doc
- 大小:308.29 KB
- 文档页数:10
2019年广东省中考数学模拟试卷一、选择题(共10小题,每小题3分,满分30分)1.﹣2的相反数是()A.2 B.﹣2 C. D.﹣2.如图所示,a与b的大小关系是()A.a<b B.a>b C.a=b D.b=2a3.下列所述图形中,是中心对称图形的是()A.直角三角形 B.平行四边形 C.正五边形 D.正三角形4.据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27700000人,将27700000用科学记数法表示为()A.0.277×107 B.0.277×108 C.2.77×107 D.2.77×1085.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A. B.2C.+1 D.2+16.某公司的拓展部有五个员工,他们每月的工资分别是3000元,4000元,5000元,7000元和10000元,那么他们工资的中位数是()A.4000元 B.5000元 C.7000元 D.10000元7.在平面直角坐标系中,点P(﹣2,﹣3)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A. B.C. D.9.已知方程x﹣2y+3=8,则整式x﹣2y的值为()A.5 B.10 C.12 D.1510.如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是()A. B.C. D.二、填空题(共6小题,每小题4分,满分24分)11. 9的算术平方根是.12.分解因式:m2﹣4= .13.不等式组的解集是.14.如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中的长是cm(计算结果保留π).15.如图,矩形ABCD中,对角线AC=2,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB= .16.如图,点P是四边形ABCD外接圆上任意一点,且不与四边形顶点重合,若AD是⊙O的直径,AB=BC=CD.连接PA、PB、PC,若PA=a,则点A到PB和PC的距离之和AE+AF= .三、解答题(共3小题,每小题6分,满分18分)17.(6分)计算:|﹣3|﹣(2016+sin30°)0﹣(﹣)﹣1.18.(6分)先化简,再求值:•+,其中a=﹣1.19.(6分)如图,已知△ABC中,D为AB的中点.(1)请用尺规作图法作边AC的中点E,并连结DE(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若DE=4,求BC的长.四、解答题(共3小题,每小题7分,满分21分)20.(7分)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?21.(7分)如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的长.22.(7分)某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:(1)这次活动一共调查了名学生;(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于度;(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是人.五、解答题(共3小题,每小题9分,满分27分)23.(9分)如图,在直角坐标系中,直线y=kx+1(k≠0)与双曲线y=(x>0)相交于点P(1,m ).(1)求k的值;(2)若点Q与点P关于直线y=x成轴对称,则点Q的坐标是Q();(3)若过P、Q二点的抛物线与y轴的交点为N(0,),求该抛物线的函数解析式,并求出抛物线的对称轴方程.24.(9分)如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.(1)求证:△ACF∽△DAE;(2)若S△AOC=,求DE的长;(3)连接EF,求证:EF是⊙O的切线.25.(9分)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.2019年广东省中考数学模拟试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2016•黔东南州)﹣2的相反数是()A.2 B.﹣2 C.D.﹣【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.2.(3分)(2016•广东)如图所示,a与b的大小关系是()A.a<b B.a>b C.a=b D.b=2a【解答】根据数轴得到a<0,b>0,∴b>a,故选A3.(3分)(2016•广东)下列所述图形中,是中心对称图形的是()A.直角三角形B.平行四边形C.正五边形 D.正三角形【解答】解:A、直角三角形不是中心对称图形,故本选项错误;B、平行四边形是中心对称图形,故本选项正确;C、正五边形不是中心对称图形,故本选项错误;D、正三角形不是中心对称图形,故本选项错误.故选B.4.(3分)(2016•广东)据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27700000人,将27700000用科学记数法表示为()A.0.277×107B.0.277×108C.2.77×107D.2.77×108【解答】解:将27700000用科学记数法表示为2.77×107,故选C.5.(3分)(2016•广东)如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A. B.2 C.+1 D.2+1【解答】解:∵正方形ABCD的面积为1,∴BC=CD==1,∠BCD=90°,∵E、F分别是BC、CD的中点,∴CE=BC=,CF=CD=,∴CE=CF,∴△CEF是等腰直角三角形,∴EF=CE=,∴正方形EFGH的周长=4EF=4×=2;故选:B.6.(3分)(2016•广东)某公司的拓展部有五个员工,他们每月的工资分别是3000元,4000元,5000元,7000元和10000元,那么他们工资的中位数是()A.4000元B.5000元C.7000元D.10000元【解答】解:从小到大排列此数据为:3000元,4000元,5000元,7000元,10000元,5000元处在第3位为中位数,故他们工资的中位数是5000元.故选B.7.(3分)(2016•广东)在平面直角坐标系中,点P(﹣2,﹣3)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【解答】解:点P(﹣2,﹣3)所在的象限是第三象限.故选C.8.(3分)(2016•广东)如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A.B.C.D.【解答】解:由勾股定理得OA==5,所以cosα=.故选D.9.(3分)(2016•广东)已知方程x﹣2y+3=8,则整式x﹣2y的值为()A.5 B.10 C.12 D.15【解答】解:由x﹣2y+3=8得:x﹣2y=8﹣3=5,故选A10.(3分)(2016•广东)如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是()A. B.C. D.【解答】解:设正方形的边长为a,当P在AB边上运动时,y=ax;当P在BC边上运动时,y=a(2a﹣x)=﹣ax+a2;当P在CD边上运动时,y=a(x﹣2a)=ax﹣a2;当P在AD边上运动时,y=a(4a﹣x)=﹣ax﹣2a2,大致图象为:故选C.二、填空题(共6小题,每小题4分,满分24分)11.(2016•广东)9的算术平方根是 3 .【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.12.(4分)(2016•广东)分解因式:m2﹣4= (m+2)(m﹣2).【解答】解:m2﹣4=(m+2)(m﹣2).故答案为:(m+2)(m﹣2).13.(4分)(2016•广东)不等式组的解集是﹣3<x≤1 .【解答】解:,解①得x≤1,解②得x>﹣3,所以不等式组的解集为﹣3<x≤1.故答案为﹣3<x≤1.14.(4分)(2016•广东)如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中的长是10πcm(计算结果保留π).【解答】解:∵圆锥的高h为12cm,OA=13cm,∴圆锥的底面半径为=5cm,∴圆锥的底面周长为10πcm,∴扇形AOC中的长是10πcm,故答案为:10π.15.(4分)(2016•广东)如图,矩形ABCD中,对角线AC=2,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB= .【解答】解:由折叠得:BE=B′E,∠AB′E=∠B=90°,∴∠EB′C=90°,∵BC=3BE,∴EC=2BE=2B′E,∴∠ACB=30°,在Rt△ABC中,AC=2AB,∴AB=AC=×2=,故答案为:.16.(4分)(2016•广东)如图,点P是四边形ABCD外接圆上任意一点,且不与四边形顶点重合,若AD是⊙O的直径,AB=BC=CD.连接PA、PB、PC,若PA=a,则点A到PB和PC 的距离之和AE+AF= a .【解答】解:如图,连接OB、OC.∵AD是直径,AB=BC=CD,∴==,∴∠AOB=∠BOC=∠COD=60°,∴∠APB=∠AOB=30°,∠APC=∠AOC=60°,在Rt△APE中,∵∠AEP=90°,∴AE=AP•sin30°=a,在Rt△APF中,∵∠AFP=90°,∴AF=AP•sin60°=a,∴AE+AF=a.故答案为a.三、解答题(共3小题,每小题6分,满分18分)17.(6分)(2016•广东)计算:|﹣3|﹣(2016+sin30°)0﹣(﹣)﹣1.【解答】解:|﹣3|﹣(2016+sin30°)0﹣(﹣)﹣1=3﹣1+2=2+2=4.18.(6分)(2016•广东)先化简,再求值:•+,其中a=﹣1.【解答】解:原式=•+=+==,当a=﹣1时,原式===+1.19.(6分)(2016•广东)如图,已知△ABC中,D为AB的中点.(1)请用尺规作图法作边AC的中点E,并连结DE(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若DE=4,求BC的长.【解答】解:(1)作线段AC的垂直平分线MN交AC于E,点E就是所求的点.(2)∵AD=DB,AE=EC,∴DE∥BC,DE=BC,∵DE=4,∴BC=8.四、解答题(共3小题,每小题7分,满分21分)20.(7分)(2016•广东)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【解答】解:(1)设原计划每天修建道路x米,可得:,解得:x=100,经检验x=100是原方程的解,答:原计划每天修建道路100米;(2)设实际平均每天修建道路的工效比原计划增加y%,可得:,解得:y=20,经检验y=20是原方程的解,答:实际平均每天修建道路的工效比原计划增加百分之二十.21.(7分)(2016•广东)如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的长.【解答】解:在Rt△ACB中,∠B=30°,∠ACB=90°,∴∠A=90°﹣30°=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=30°,在Rt△ACD中,AC=a,∴AD=a,由勾股定理得:CD==,同理得:FC=×=,CH=×=,在Rt△HCI中,∠I=30°,∴HI=2HC=,由勾股定理得:CI==,答:CI的长为.22.(7分)(2016•广东)某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:(1)这次活动一共调查了250 名学生;(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于108 度;(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是480 人.【解答】解:(1)这次活动一共调查学生:80÷32%=250(人);(2)选择“篮球”的人数为:250﹣80﹣40﹣55=75(人),补全条形图如图:(3)选择篮球项目的人数所在扇形的圆心角为:×360°=108°;(4)估计该学校选择足球项目的学生人数约是:1500×32%=480(人);故答案为:(1)250;(3)108;(4)480.五、解答题(共3小题,每小题9分,满分27分)23.(9分)(2016•广东)如图,在直角坐标系中,直线y=kx+1(k≠0)与双曲线y=(x>0)相交于点P(1,m ).(1)求k的值;(2)若点Q与点P关于直线y=x成轴对称,则点Q的坐标是Q(2,1 );(3)若过P、Q二点的抛物线与y轴的交点为N(0,),求该抛物线的函数解析式,并求出抛物线的对称轴方程.【解答】解:(1)∵直线y=kx+1与双曲线y=(x>0)交于点A(1,m),∴m=2,把A(1,2)代入y=kx+1得:k+1=2,解得:k=1;(2)连接PO,QO,PQ,作PA⊥y轴于A,QB⊥x轴于B,则PA=1,OA=2,∵点Q与点P关于直线y=x成轴对称,∴直线y=x垂直平分PQ,∴OP=OQ,∴∠POA=∠QOB,在△OPA与△OQB中,,∴△POA≌△QOB,∴QB=PA=1,OB=OA=2,∴Q(2,1);故答案为:2,1;(3)设抛物线的函数解析式为y=ax2+bx+c,∵过P、Q二点的抛物线与y轴的交点为N(0,),∴,解得:,∴抛物线的函数解析式为y=﹣x2+x+,∴对称轴方程x=﹣=.24.(9分)(2016•广东)如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.(1)求证:△ACF∽△DAE;(2)若S△AOC=,求DE的长;(3)连接EF,求证:EF是⊙O的切线.【解答】(1)证明:∵BC是⊙O的直径,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°∵OA=OC,∴∠AOC=60°,∵AF是⊙O的切线,∴∠OAF=90°,∴∠AFC=30°,∵DE是⊙O的切线,∴∠DBC=90°,∴∠D=∠AFC=30°∴∠DAE=∠ACF=120°,∴△ACF∽△DAE;(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF∴OC=CF,∵S△AOC=,∴S△ACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴=,∵△ACF∽△DAE,∴=()2=,∴S△DAE=,过A作AH⊥DE于H,∴AH=DH=DE,∴S△ADE=DE•AH=וDE2=,∴DE=;(3)∵∠EOF=∠AO B=120°,在△AOF与△BOE中,,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,过O作OG⊥EF于G,∴∠OAF=∠OGF=90°,在△AOF与△OGF中,,∴△AOF≌△GOF,∴OG=OA,∴EF是⊙O的切线.25.(9分)(2016•广东)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.【解答】(1)四边形APQD为平行四边形;(2)OA=OP,OA⊥OP,理由如下:∵四边形ABCD是正方形,∴AB=BC=PQ,∠ABO=∠OBQ=45°,∵OQ⊥BD,∴∠PQO=45°,∴∠ABO=∠OBQ=∠PQO=45°,∴OB=OQ,在△AOB和△OPQ中,∴△AOB≌△POQ(SAS),∴OA=OP,∠AOB=∠POQ,∴∠AOP=∠BOQ=90°,∴OA⊥OP;(3)如图,过O作OE⊥BC于E.①如图1,当P点在B点右侧时,则BQ=x+2,OE=,∴y=וx,即y=(x+1)2﹣,又∵0≤x≤2,∴当x=2时,y有最大值为2;②如图2,当P点在B点左侧时,则BQ=2﹣x,OE=,∴y=וx,即y=﹣(x﹣1)2+,又∵0≤x≤2,∴当x=1时,y有最大值为;综上所述,∴当x=2时,y有最大值为2;。
九年级中考数学模拟考试试题满分150分时间:120分钟一、单选题。
(每小题4分,共40分)1.2023的相反数是()A.2023B.﹣2023C.﹣12023 D.120232.如图是由8个完全相同的小正方体组成的几何体,从正面看到的形状图是()3.我国自主研发的北斗系统技术世界领先,在西昌卫星发射中心成功发射最后一颗北斗三号卫星,该卫星发射升空的速度约7100米/秒,其中“7100”用科学记数法表示为()A.7100B.0.71×104C.7.1×103D.71×1024.将一副三角板按如图所示的方式放置,则∠AOB=()A.75°B.45°C.30°D.80°(第4题图)(第6题图)(第9题图)5.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,下列既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图数轴上A,B两点表示的数分别为a,b,下列结论中,错误的是()A.a+b <0B.a -b <0C.ab <0D.ab <07.二十四节气是中华上古农耕文明的智意结晶,小明购买了二十四节气主题邮票,他要将立春,立夏,秋分,大寒四张邮票中的两张送给小鹏,小明将它们背面朝上放在桌面上,让小鹏从中随机抽取一张,(不放回),再从中随机抽取一张,则小鹏抽到的两张恰好是立夏和秋分的概率是( )A.12 B.16 C.13 D.34 8.函数y=ax 与y=ax -a 在同一坐标系中的大致图象是( )9.如图,在△ABC 中,∠C=90°,以A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E ,已知CE=3,BE=5,则AC 的长为( )A.8B.7C.6D.510.已知函数y=x 2-2ax+5,当x ≤2时,函数值随x 增大而减小,且对任意的1≤x 1≤a+1和1≤x 2≤a+1,x 1,x 2相对应的函数值为y 1,y 2,总满足|y 1-y 2|≤4,则实数a 的取值范围是( ) A.﹣1≤a ≤3 B.﹣1≤a ≤2 C.2≤a ≤3 D.2≤a ≤4 二.填空题。
九年级中考数学二模考试试题满分150分时间:120分钟一、单选题。
(每小题4分,共40分)1.﹣2023的相反数是()A.2023B.﹣2023C.﹣12023 D.120232.如图所示的几何体,从正面看是()3.2022年12月4日,神舟14号载人飞船返回舱在东风着陆场成功着陆,它在轨飞行183Tina,共飞行里程约125 000 000千米,其中“125 000 000”用科学记数法表示为()A.125×106B.1.25×109C.1.25×108D.1.25×10104.如图,AB∥CD,BE平分∠ABC,且交CD于D点,∠CDE=150°,则∠C的度数为()A.30°B.60°C.124°D.150°(第4题图)(第8题图)(第9题图)5.下列图形中既是轴对称图形又是中心对称图形的是()6.下列计算正确的是()A.(3a3)2=9a6B.a3+a2=2a5C.(a+b)2=a2+b2D.(a4)3=a77.二十四节气是中华上古农耕文明的智意结晶,小明购买了二十四节气主题邮票,他要将立春,立夏,秋分,大寒四张邮票中的两张送给小鹏,小明将它们背面朝上放在桌面上,让小鹏从中随机抽取一张,(不放回),再从中随机抽取一张,则小鹏抽到的两张恰好是立春和立夏的概率是( )A.16 B.18 C.23 D.128.如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ’B ’C ’,则点P 的坐标是( )A.(0,4)B.(1,1)C.(1,2)D.(2,1) 9.如图1,AD 是△ABC 的高,以点B 为圆心,适当长为半径画弧交AB 于点M ,交BC 于点N ,分别以M ,N 为圆心,大于12MN 的长为半径作弧,两弧相交于P ,作射线BP 交AD 于点E ,若∠ABC=45°,AB ⊥AC ,DE=1,则CD 的长为( )A.√2B.√2+1C.√3D.√2-110.在平面直角坐标系中,抛物线y=x 2-2mx+3与y 轴交于点A ,过点A 作x 轴的平行线与抛物线交于另一点B ,点M (m+2,3),N (0,m+3),若抛物线与线段MN 有且只有一个公共点,则m 的取值范围是( )A.0<m ≤2或m <﹣2B.0<m ≤2或m ≤﹣2C.0≤m ≤2或m ≤﹣2D.0≤m <2或m <﹣2二.填空题。
中考数学模拟试题(含答案)中考数学模拟试题本试卷共8页,考试时间100分钟,满分120分。
选择题(共10小题,每小题3分,共30分)1.求-3的倒数。
()A。
-1/3 B。
-1/-3 C。
1/-3 D。
1/32.函数y=1/(x-8),x的取值范围是()。
A。
x8 D。
x≥83.国家游泳中心“水立方”的外层膜展开面积约为平方米,科学记数法表示为()。
A。
2.6×10^5 B。
26×10^4 C。
0.26×10^6 D。
2.6×10^64.下列简单几何体的左视图是()。
A。
B。
C。
D.5.某市市区一周空气质量报告中某项污染指数的数据是:31、35、31、34、30、32、31,这组数据的中位数和众数分别是()。
A。
32、31 B。
31、32 C。
31、31 D。
32、356.下列命题中,错误的是()。
A。
矩形的对角线互相平分且相等 B。
对角线互相垂直的四边形是菱形 C。
等腰梯形的两条对角线相等 D。
等腰三角形两底角相等7.下列图形中,能肯定∠1>∠2的是()。
A。
B。
C。
D.8.下列各式计算结果正确的是()。
A。
2a+a=3a B。
(3a)^2=9a^2 C。
(a-1)^2=a^2-1 D。
a×a=a^2非选择题9.已知△ABC中,∠A=60°,AB=√3,AC=2.求BC的长度。
10.已知函数y=2x^2-x-3,求其对称轴的方程。
答案区:1.1/(-3)2.x>83.2.6×10^54.C5.31、316.A7.D8.a×a=a^29.BC=210.x=1/49、在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,则菱形ABCD的周长为12.10、圆柱底面直径为2cm,高为4cm,则圆柱的侧面积为8π cm²。
11、一对互为相反数的数为x和-x。
12、b²-2b可以分解为b(b-2)。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________满分150分,答题时间120分钟.一、选择题(本题共10小题,每小题3分,共30分)1.下列算式中,计算结果是负数的是()A.3×(﹣2) B.|﹣1| C.7+(﹣2) D.(﹣1)22.如图是由4个相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.3.下列运算中,正确的是()A.x3+x2=x5B.(x3)2=x5C.(x+y)2=x2+y2D.3x2+2x2=5x24.矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角8.将分别标有“停”“课”“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是()A.B.C.D.6.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=54°,则∠ADB等于()A.42°B.46°C.50°D.54°7.如图是某组15名学生数学测试成绩的频数分布直方图,则成绩低于60分的人数是()A.3人B.6人C.10人D.14人8.如图,若数轴上的两点A,B表示的数分别为a,b,则下列结论正确的是()A.b﹣a<0 B.|a|>|b﹣1| C.ab>0 D.a+b>09.如图,在△ABC中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13 B.15 C.18 D.2110.已知二次函数y=ax2+bx+1的图象与x轴没有交点,且过点A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3),则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y3>y2D.y1>y2>y3二、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为(﹣1,﹣2),棋子②的坐标为(2,﹣3),那么棋子③的坐标是.13.一个袋子中装有4个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是.14.如图,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB 上,若PA长为8,则△PEF的周长是.15.如图,在Rt△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=26,BG =10,则CF的长为.三、解答题(本题共10小题,共100分)16.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y大于零的概率.18.如图,在△ABC中,D,E,F分别是AB,BC,AC的中点.(1)求证:四边形ADEF是平行四边形;(2)当AB=AC时,若AB=10cm,求四边形ADEF的周长.19.亮亮刚进入初三学习感到紧张,计划元旦节到附近的几个景点旅游放松.现有四个景点供选择,其中两个景点以自然风光为主,另两个景点以人文景观为主.假设每个景点被选中的机会是等可能的.(1)任选一个景点,求选中以人文景观为主的概率;(2)任意选择三个景点制作一条旅游线路,求亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率.20.疫情防控期间,某校为实现学生上下学“点对点”接送,计划组织本校全体走读生统一乘坐校园专线上下学.若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该校共有多少名走读生?(2)若同时调配36座和22座两种客车若干辆,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?21.时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC=1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)22.如图,一次函数y=x+3的图象l1与x轴交于点B,与过点A(3,0)的一次函数的图象l2交于点C(1,m).(1)求m的值;(2)求一次函数图象l2相应的函数表达式;(3)求△ABC的面积.23.如图,已知△ABC是⊙O的圆内接三角形,AD为⊙O的直径,DE为⊙O的切线,AE交⊙O于点F,∠C=∠E.(1)求证:AB=AF;(2)若AB=5,AD=,求线段DE的长.24.如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)如图2,过B、C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,PF∥y轴交线段BC 于F点,过点F作FE⊥AC于E点.设m=PF+FE,求m的最大值及此时P点坐标;(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线y=kx+k﹣6与新图象G 有4个公共点时,求k的取值范围.25.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?参考答案四、选择题(本题共10小题,每小题3分,共30分)1.下列算式中,计算结果是负数的是()A.3×(﹣2) B.|﹣1| C.7+(﹣2) D.(﹣1)2【解答】解:A、原式=﹣6,符合题意;B、原式=1,不符合题意;C、原式=5,不符合题意;D、原式=1,不符合题意.故选:A.2.如图是由4个相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.【解答】解:从上面看,底层右边是一个小正方形,上层是两个小正方形.故选:B.3.下列运算中,正确的是()A.x3+x2=x5B.(x3)2=x5C.(x+y)2=x2+y2D.3x2+2x2=5x2【解答】解:A,x3+x2≠x5,故A运算错误;B,(x3)2=x3×2=x6,故B运算错误;C,(x+y)2=x2+2xy+y2,故C运算错误;D,3x2+2x2=5x2,故D运算正确.故选:D.4.矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角【解答】解:矩形具有而菱形不一定具有的性质是对角线相等,故选:B.5.将分别标有“停”“课”“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是()A.B.C.D.【解答】解:根据题意画图如下:共有20种等情况数,其中两次摸出的球上的汉字是“不”“停”的有4种,则随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是=;故选:D.6.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=54°,则∠ADB等于()A.42°B.46°C.50°D.54°【解答】解:∵A为中点,∴,∵AB=CD,∴,∴,∴∠ADB=∠CBD=∠ABD,∵∠ABC+∠ADC=180°,∴∠ADB+∠CBD+ABD=180°﹣∠BDC=180°﹣54°=126°,∴3∠ADB=126°,∴∠ADB=42°.故选:A.7.如图是某组15名学生数学测试成绩的频数分布直方图,则成绩低于60分的人数是()A.3人B.6人C.10人D.14人【解答】解:由直方图可知,成绩低于60分的人数是1+2=3,故选:A.8.如图,若数轴上的两点A,B表示的数分别为a,b,则下列结论正确的是()A.b﹣a<0 B.|a|>|b﹣1| C.ab>0 D.a+b>0【解答】解:由a,b所表示的数在数轴上的位置可知,a<0且|a|>1,b>0且0<|b|<1,则ab<0,a+b<0则选项C,D不正确;∵b>0,﹣a>0,∴b﹣a=b+(﹣a)>0,则选项A不正确;∵a<0且|a|>1,b>0且0<|b|<1,∴0<|b﹣1|<1,∴|a|>1>|b﹣1,故选项B正确.故选:B.9.如图,在△ABC中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13 B.15 C.18 D.21【解答】解:连接OC,∵点O是边BC,AC的垂直平分线的交点,∴OB=OC,OA=OC,∴OA=OB,∵OB=5,∴OA=OB=5,∵AB=8,∴△AOB的周长是AB+OA+OB=8+5+5=18,故选:C.10.已知二次函数y=ax2+bx+1的图象与x轴没有交点,且过点A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3),则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y3>y2D.y1>y2>y3【解答】解:由二次函数y=ax2+bx+1知c=1,即二次函数和y轴交于点(0,1),而二次函数图象与x轴没有交点,故抛物线开口向上,点B、C的纵坐标相同,则二次函数的对称轴为直线x=(﹣3+1)=﹣1,而点离函数对称轴的距离从大到小的顺序是D、B(C)、A,故y3>y2>y1,故选:B.五、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是x≠0且x≠1.【解答】解:由题意得x(x﹣1)≠0,解得x≠0且x≠1,故答案为x≠0且x≠1.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为(﹣1,﹣2),棋子②的坐标为(2,﹣3),那么棋子③的坐标是(﹣3,﹣1).【解答】解:如图所示:棋子③的坐标是(3,﹣1).故答案为:(3,﹣1).13.一个袋子中装有4个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是.【解答】解:根据题意画图如下:共有42种等情况数,其中摸出两个球为一个黑球和一个白球的有24种,则随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是=;故答案为:.14.如图,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB 上,若PA长为8,则△PEF的周长是16.【解答】解:∵PA、PB、EF分别与⊙O相切于点A、B、C,∴AE=CE,FB=CF,PA=PB=8,∴△PEF的周长=PE+EF+PF=PA+PB=16.故答案为:16.15.如图,在Rt△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=26,BG =10,则CF的长为12.【解答】解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵BD为AC边上的中线,∠ABC=90°,∴BD=DF=AC,∴四边形BGFD是菱形,∴BD=DF=GF=BG=10,则AF=AG﹣GF=26﹣10=16,AC=2BD=20,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即162+CF2=202,解得:CF=12.故答案是:12.六、解答题(本题共10小题,共100分)16.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.【解答】解:(1)S=2m×2n﹣m(2n﹣n﹣0.5n)=4mn﹣0.5mn=3.5mn;(2)由题意得m﹣6=0,n﹣8=0,∴m=6,n=8,代入,可得原式=3.5×6×8=168.17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y大于零的概率.【解答】解:(1)由前三年六月份各天的最高气温数据,得到最高气温位于区间[20,25)和最高气温低于20的天数为2+16+36=54,根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶,如果最高气温位于区间[20,25),需求量为300瓶,如果最高气温低于20,需求量为200瓶,∴六月份这种酸奶一天的需求量不超过300瓶的概率p==;(2)∵当温度大于等于25℃时,需求量为500,Y=450×2=900元;当温度在[20,25)℃时,需求量为300,Y=300×2﹣(450﹣300)×2=300元;当温度低于20℃时,需求量为200,Y=400﹣(450﹣200)×2=﹣100元;∴当温度大于等于20时,Y>0,∵由前三年六月份各天的最高气温数据,得当温度大于等于20℃的天数有:90﹣(2+16)=72,∴估计Y大于零的概率P==.18.如图,在△ABC中,D,E,F分别是AB,BC,AC的中点.(1)求证:四边形ADEF是平行四边形;(2)当AB=AC时,若AB=10cm,求四边形ADEF的周长.【解答】(1)证明:∵D,E,F分别是AB,BC,AC的中点,∴DE,EF分别是△ABC 的中位线,∴DE∥AC,EF∥AB,∴DE∥AF,EF∥AD,∴四边形ADEF是平行四边形;(2)解:∵D是AB的中点,F是AC的中点,AB=10cm,AB=AC,∴AD=AF=AB=5(cm),∵四边形ADEF是平行四边形,∴四边形ADEF是菱形,∴四边形ADEF的周长为4AD=4×5=20(cm).19.亮亮刚进入初三学习感到紧张,计划元旦节到附近的几个景点旅游放松.现有四个景点供选择,其中两个景点以自然风光为主,另两个景点以人文景观为主.假设每个景点被选中的机会是等可能的.(1)任选一个景点,求选中以人文景观为主的概率;(2)任意选择三个景点制作一条旅游线路,求亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率.【解答】解:(1)任选一个景点,选中以人文景观为主的概率为=;(2)把自然风光记为A,人文景观记为B,画树状图如图:共有24个等可能的结果,亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的结果有4个,∴亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率为=.20.疫情防控期间,某校为实现学生上下学“点对点”接送,计划组织本校全体走读生统一乘坐校园专线上下学.若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该校共有多少名走读生?(2)若同时调配36座和22座两种客车若干辆,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【解答】解:(1)设计划调配36座新能源客车x辆,该校共有y名走读生.由题意,得,解得,答:计划调配36座新能源客车6辆,该校共有218名走读生.(2)设36座和22座两种车型各需m,n辆.由题意,得36m+22n=218,且m,n均为非负整数,经检验,只有m=3,n=5符合题意.答:需调配36座客车3辆,22座客车5辆.21.时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC=1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)【解答】解:(1)由题意可知:∠BAD=18°,在Rt△ABD中,AB=18≈≈5.6(m),答:应在地面上距点B约5.6m远的A处开始斜坡的施工;(2)能,理由如下:如图,过点C作CE⊥AD于点E,则∠ECD=∠BAD=18°,在Rt△CED中,CE=CD•cos18°≈2.8×0.95=2.66(m),∵2.66>2.5,∴能保证货车顺利进入地下停车场.22.如图,一次函数y=x+3的图象l1与x轴交于点B,与过点A(3,0)的一次函数的图象l2交于点C(1,m).(1)求m的值;(2)求一次函数图象l2相应的函数表达式;(3)求△ABC的面积.【解答】解:(1)∵点C(1,m)在一次函数y=x+3的图象上,∴m=1+3=4;(2)设一次函数图象l2相应的函数表达式为y=kx+b,把点A(3,0),C(1,4)代入得,解得,∴一次函数图象l2相应的函数表达式y=﹣2x+6;(3)∵一次函数y=x+3的图象l1与x轴交于点B,∴B(﹣3,0),∵A(3,0),C(1,4),∴AB=6,∴S△ABC=×6×4=12.23.如图,已知△ABC是⊙O的圆内接三角形,AD为⊙O的直径,DE为⊙O的切线,AE交⊙O于点F,∠C=∠E.(1)求证:AB=AF;(2)若AB=5,AD=,求线段DE的长.【解答】(1)证明:如图1,连接BF,∴∠AFB=∠C,∵∠C=∠E,∴∠AFB=∠E,∴BF∥DE,∵DE为⊙O的切线,AD为⊙O的直径,∴AD⊥DE,∴AD⊥BF,∴AD平分BF,∴AB=AF;(2)解:如图2,连接BD,∴∠C=∠ADB,∵∠C=∠E,∴∠ADB=∠E,∵AD为⊙O的直径,∴∠ABD=90°,∴∠ABD=∠ADE,∴△ABD∽△ADE,∴=,∴AE=,∴DE==.24.如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)如图2,过B、C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,PF∥y轴交线段BC 于F点,过点F作FE⊥AC于E点.设m=PF+FE,求m的最大值及此时P点坐标;(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线y=kx+k﹣6与新图象G 有4个公共点时,求k的取值范围.【解答】解:(1)y=mx2+(m2﹣m)x﹣2m+1顶点D的横坐标为1,∴=1,解得m=﹣1,∴二次函数的表达式为y=﹣x2+2x+3,令y=0得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)过B作BH⊥AC于H,过F作FG⊥y轴于G,如图:∵二次函数y=﹣x2+2x+3与y轴交点C(0,3),且A(﹣1,0),B(3,0),∴AB=4,OC=3,AC=,BC=3,∵S△ABC=AB•OC=AC•BH,∴BH=,Rt△BHC中,sin∠HCB===,Rt△EFC中,EF=CF•sin∠HCB=CF,∴FE=•CF=CF,设P(n,﹣n2+2n+3),由B(3,0),C(0,3)得BC解析式为y=﹣x+3,∴△BCO是等腰直角三角形,F(n,﹣n+3),∴△GFC是等腰直角三角形,GF=n,∴CF=GF=n,∴CF=2n,即FE=2n,∴m=PF+FE=PF+2n=(﹣n2+2n+3)﹣(﹣n+3)+2n=﹣n2+5n,∴当n==时,m最大,最大为﹣()2+5×=,此时P(,);(3)直线y=kx+k﹣6总过(﹣1,﹣6),k<0时,它和新图象G不可能有4个公共点,如图:k>0时,若二次函数的表达式为y=﹣x2+2x+3刚好经过B(3,0),由(﹣1,﹣6),B(3,0)可得直线解析式为y=x﹣,此时直线y=x﹣与新图象G有3个交点,∴直线y=kx+k﹣6与新图象G有4个公共点,需满足k<,而抛物线y=﹣x2+2x+3关于x轴对称的抛物线解析式为y=x2﹣2x﹣3,若直线y=kx+k﹣6与抛物线y=x2﹣2x﹣3有两个交点,即是有两组解,∴x2﹣(2+k)x+3﹣k=0有两个不相等的实数根,∴△>0,即[﹣(2+k)]2﹣4(3﹣k)>0,解得k>﹣4+2或k<﹣4﹣2(小于0,舍去),∴k>﹣4+2,因此,直线y=kx+k﹣6与新图象G有4个公共点,﹣4+2<k<.25.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?【解答】解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB==,∴△ABP的周长为:AP+PB+AB=2+5+=7.(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm,作CD⊥AB于点D,在Rt△PCD中,PD===1.8,所以BP=2PD=3.6cm,所以P运动的路程为9﹣3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm 则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形(3)如图6,当P点在AC上,Q在AB上,则PC=t,BQ=2t﹣3,∵直线PQ把△ABC的周长分成相等的两部分,∴t+2t﹣3=3,∴t=2;如图7,当P点在AB上,Q在AC上,则AP=t﹣4,AQ=2t﹣8,∵直线PQ把△ABC的周长分成相等的两部分,∴t﹣4+2t﹣8=6,∴t=6,∴当t为2或6秒时,直线PQ把△ABC的周长分成相等的两部分.。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 下列实数中,无理数是( )A. B. 3.333 C. π- D. 42. 下列计算中,结果是6a 的是A. 24a a +B. 23a a ⋅C. 122a a ÷D. 23()a3. 一粒米的质量约是0.000021kg ,这个数据用科学记数法表示为( )A 40.1210-⨯ B. 5 2. 110-⨯ C. 42.110-⨯ D. 62110-⨯ 4. 下列命题是假命题的是( )A 经过两点有且只有一条直线B. 三角形的中位线平行且等于第三边的一半C. 平行四边形的对角线相等D. 圆的切线垂直于经过切点的半径5. 在线段、角、平行四边形、矩形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是( )A. 2个B. 3个C. 4个D. 5个6. 实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A. a >﹣2B. a <﹣3C. a >﹣bD. a <﹣b 7. (2016广西贺州市)从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是( )A. 17B. 27C. 37D. 478. 已知反比例函数10y x =,当1<x <2时,y 的取值范围是( ) A. 0<y <5 B. 1<y <2 C. 5<y <10 D. y >109. 如图,在边长为6的菱形ABCD 中,60DAB ∠=︒ ,以点为圆心,菱形的高DF 为半径画弧,交AD 于点,交CD 于点,则图中阴影部分的面积是( )A. 183π-B. 1839π-C. 9932π-D. 1833π-10. 观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有 11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A. 53B. 51C. 45D. 43二、填空题(本大题共8小题,每小题4分,满分32分.)11. 若二次根式x 1-有意义,则x 的取值范围是 ▲ .12. 在一次”爱心互助”捐款活动中,某班第一小组7名同学捐款的金额(单位:元)分别为6, 7,6,15,9,6,9.这组数据的众数和中位数分别是________.13. 钟表在12时15分时刻的时针与分针所成的角是_______°.14. 一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为________.15. 如图,将线段AB 绕点O 顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是_________________.16. 如图,Rt △ABC 中,AB ⊥BC ,AB=6,BC=4,P 是△ABC 内部的一个动点,且满足∠PAB=∠PBC ,则线段CP 长的最小值为_____.17. 某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m 2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是_____m 2.18. 定义:有三个内角相等的四边形叫三等角四边形.三等角四边形ABCD 中,∠A =∠B=∠C ,则∠A 的取值范围________.三、解答题(本大题共8小题,满分78分,解答应写出文字说明、证明过程或演算步骤) 19. 计算:|1﹣3|﹣3tan30°﹣(35-)°. 20. 先化简,再求值:()221111x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中313x -= 21. 如图,某学校在”国学经典”中新建了一座吴玉章雕塑,小林站在距离雕塑3米的A 处自B 点看雕塑头顶D 的仰角为45°,看雕塑底部C 的仰角为30°,求塑像CD 的高度.(最后结果精确到0.1米,参考数据:3 1.732≈)22. 今年我县中考的体育测试成绩改为等级制,即把测试结果分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格.我县5月份举行了全县九年级学生体育测试.现从中随机抽取了部分学生的体育成绩,并将其绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)该县九年级有学生9000名,如果全部参加这次中考体育科目测试,请估算不及格的人数是多少?23. 某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元. 则有哪几种购车方案?24. 如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=22,求圆O的半径.25. 已知正方形ABCD,P为射线AB上一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.26. 将抛物线C1:y=﹣2x2+3沿x轴翻折,得到抛物线C2,如图所示(1)请直接写出抛物线C2解析式(2)现将抛物线C1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线C2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.①当B、D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A、N、E、M为顶点四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由答案与解析一、选择题(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 下列实数中,无理数是( )A.B. 3.333C. π-D. 【答案】C【解析】A. 是有理数;B. 3.333 是有理数;C. π- 是无理数;D. 2=是有理数;故选C.2. 下列计算中,结果是6a 的是A. 24a a +B. 23a a ⋅C. 122a a ÷D. 23()a【答案】D【解析】【分析】根据幂的乘方、同底数幂的乘法的运算法则计算后利用排除法求解.【详解】解:A 、a 2+a 4≠a 6,不符合;B 、a 2•a 3=a 5,不符合;C 、a 12÷a 2=a 10,不符合;D 、(a 2)3=a 6,符合.故选D.【点睛】本题考查了合并同类项、同底数幂的乘法、幂的乘方.需熟练掌握且区分清楚,才不容易出错. 3. 一粒米质量约是0.000021kg ,这个数据用科学记数法表示为( )A. 40.1210-⨯B. 5 2. 110-⨯C. 42.110-⨯D. 62110-⨯ 【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000021=2.1×10−5;故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4. 下列命题是假命题的是( )A. 经过两点有且只有一条直线B. 三角形的中位线平行且等于第三边的一半C. 平行四边形的对角线相等D. 圆的切线垂直于经过切点的半径【答案】C【解析】【分析】【详解】选项A,经过两点有且只有一条直线,正确;选项B,三角形的中位线平行且等于第三边的一半,正确;选项C,平行四边形的对角线相等,错误.矩形的对角线相等,平行四边形的对角线不一定相等.选项D,圆的切线垂直于经过切点的半径,正确.故答案选C.5. 在线段、角、平行四边形、矩形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是( )A. 2个B. 3个C. 4个D. 5个【答案】B【解析】角只是轴对称图形;平行四边形只是中心对称图形;线段、矩形、圆既是轴对称图形又是中心对称图形,故选B.6. 实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )A. a >﹣2B. a <﹣3C. a >﹣bD. a <﹣b【答案】D【解析】 试题分析:A .如图所示:﹣3<a <﹣2,故此选项错误;B .如图所示:﹣3<a <﹣2,故此选项错误;C .如图所示:1<b <2,则﹣2<﹣b <﹣1,又﹣3<a <﹣2,故a <﹣b ,故此选项错误;D .由选项C 可得,此选项正确.故选D .考点:实数与数轴7. (2016广西贺州市)从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是( ) A. 17 B. 27 C. 37 D. 47【答案】D【解析】试题分析:∵标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的有4种情况,∴随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是:47.故选D . 考点:1.概率公式;2.绝对值.8. 已知反比例函数10y x =,当1<x <2时,y 的取值范围是( ) A. 0<y <5B. 1<y <2C. 5<y <10D. y >10 【答案】C【解析】∵反比例函数y=10x中当x=1时y=10,当x=2时,y=5, ∴当1<x<2时,y 的取值范围是5<y<10,故选C.9. 如图,在边长为6的菱形ABCD 中,60DAB ∠=︒ ,以点为圆心,菱形的高DF 为半径画弧,交AD 于点,交CD 于点,则图中阴影部分的面积是( )A. 183π-B. 1839π-C. 9932π-D. 1833π-【答案】B【解析】【分析】 由菱形的性质得出AD=AB=6,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可.【详解】∵四边形ABCD 是菱形,∠DAB=60°,∴AD=AB=6,∠ADC=180°-60°=120°,∵DF 是菱形的高,∴DF ⊥AB ,∴DF=AD•sin60°=6×3? 2=33, ∴阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积=6×32120(33)3? 360π⨯-=183-9π. 故选B .【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.10. 观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有 11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A. 53B. 51C. 45D. 43【答案】B【解析】【分析】根据给出的图示可得:我们可以将这些星星分成两部分,找出其规律即可得出解. 【详解】根据给出的图示可得:我们可以将这些星星分成两部分,最下面的一横作为一部分,规律为(2n-1),上面的就是等差数列求和,规律为:(1)2n n+,则所有的五角星的数量的和的规律为:(1)2n n++(2n-1),则图形8中的星星的个数=89(281)2⨯+⨯-=36+15=51.故选:B考点:规律题.二、填空题(本大题共8小题,每小题4分,满分32分.)11. 有意义,则x的取值范围是▲ .【答案】x1≥.【解析】【分析】根据二次根式有意义的条件:被开方数大于等于0列出不等式求解.【详解】根据二次根式被开方数必须是非负数的条件,得x10x1-≥⇒≥.【点睛】本题考查二次根式有意义条件,牢记被开方数必须是非负数.12. 在一次”爱心互助”捐款活动中,某班第一小组7名同学捐款的金额(单位:元)分别为6, 7,6,15,9,6,9.这组数据的众数和中位数分别是________.【答案】6,7【解析】∵6出现了3次,出现的次数最多,∴众数是6;∵从小到大排列后7排在中间位置,∴中位数是7;13. 钟表在12时15分时刻的时针与分针所成的角是_______°.【答案】82.5【解析】90°-30°÷4=82.5°.14. 一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为________.【答案】3【解析】试题分析:设这个圆锥的底面半径为r,根据题意得2πr=,解得r=3.故答案为3.考点:圆锥的计算.15. 如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是_________________.【答案】(5,2)【解析】【详解】解:∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O′,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,∴∠AOC=∠A′OC′.在△ACO和△A′C′O中,∵∠ACO=∠A′C′O,∠AOC=∠A′OC′,AO=A′O,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵A(﹣2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故答案为(5,2).考点:坐标与图形变化-旋转.16. 如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为_____.【答案】2【解析】分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC 即可解决问题.【详解】如图所示,以为直径作圆,圆心为,解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,在中,2222=+=+=,OC OB BC345∴PC=OC-OP=5-3=2.∴PC最小值为2.故答案为2.【点睛】本题考查点与圆位置关系、圆周角定理、最短问题等知识,解题的关键是确定点P位置,学会求圆外一点到圆的最小、最大距离,属于中考常考题型.17. 某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是_____m2.【答案】150【解析】设绿化面积与工作时间的函数解析式为,因为函数图象经过,两点,将两点坐标代入函数解析式得得,将其代入得,解得,∴一次函数解析式为,将代入得,故提高工作效率前每小时完成的绿化面积为.18. 定义:有三个内角相等的四边形叫三等角四边形.三等角四边形ABCD中,∠A =∠B=∠C,则∠A的取值范围________.【答案】60°<∠A<120°【解析】由”四边形内角和为“得,,即.因为,所以,即,即.三、解答题(本大题共8小题,满分78分,解答应写出文字说明、证明过程或演算步骤)19. 计算:|13﹣3tan30°﹣35)°.【答案】-2【解析】解:|1﹣3|﹣3tan30°﹣(35-)° =﹣=﹣2. 20. 先化简,再求值:()221111x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中313x -= 【答案】3x+1;3. 【解析】 【分析】首先将括号里面的分式进行通分,然后根据分式的乘法法则进行计算. 【详解】原式=[2(1)1(1)(1)(1)(1)x x x x x x +-++-+-] (x+1)(x -1)=221(1)(1)x x x x ++-+- (x+1)(x -1)=3x+1当x=313-时,原式=3x+1=3×313-+1=3-1+1=3. 考点:分式的化简求值.21. 如图,某学校在”国学经典”中新建了一座吴玉章雕塑,小林站在距离雕塑3米的A 处自B 点看雕塑头顶D 的仰角为45°,看雕塑底部C 的仰角为30°,求塑像CD 的高度.(最后结果精确到0.1米,参考数据:3 1.732≈)【答案】1.2米 【解析】试题分析:根据锐角三角函数,在Rt △DEB 中,求得DE 的长,在Rt △CEB 中,求得CE 的长,再根据CD=DE-CE 即可求出塑像CD 的高度.试题解析:解:在Rt△DEB中,DE=BE•tan45°=2.7米,在Rt△CEB中,CE=BE•tan30°=0.93米,则CD=DE-CE=2.7-0.93≈1.2米.故塑像CD的高度大约为1.2米.考点:解直角三角形的应用.22. 今年我县中考的体育测试成绩改为等级制,即把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格.我县5月份举行了全县九年级学生体育测试.现从中随机抽取了部分学生的体育成绩,并将其绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)该县九年级有学生9000名,如果全部参加这次中考体育科目测试,请估算不及格的人数是多少?【答案】(1)40;(2)54°,补全条形图见解析;(3)这次不及格的人数约是1800人.【解析】解:(1)本次抽样测试的学生人数是:12÷30%=40(人).(2)54°(3)89000180040⨯=,∴这次不及格的人数约是1800人.23. 某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元. 则有哪几种购车方案?【答案】(1)18,26;(2)两种方案:方案1:购买A型车2辆,购买B型车4辆;方案2:购买A型车3辆,购买B型车3辆.【解析】【分析】(1)方程组的应用解题关键是设出未知数,找出等量关系,列出方程组求解.本题设每辆A型车的售价为x 万元,每辆B型车的售价为y万元,等量关系为:售1辆A型车和3辆B型车,销售额为96万元;售2辆A型车和1辆B型车,销售额为62万元.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解.本题不等量关系为:购车费不少于130万元,且不超过140万元.【详解】(1)设每辆A型车的售价为x万元,每辆B型车的售价为y万元,根据题意,得396{262x yx y+=+=,解得18{26xy==.答;每辆A型车的售价为18万元,每辆B型车的售价为26万元.(2)设购买A型车a辆,则购买B型车(6-a)辆,根据题意,得1826(6)130{1826(6)140a aa a+-≥+-≤,解得1234a≤≤.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案1:购买A型车2辆,购买B型车4辆;方案2:购买A型车3辆,购买B型车3辆考点:二元一次方程组的应用;一元一次不等式的应用.24. 如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=22,求圆O的半径.【答案】(1)证明见解析;(2)⊙O的半径为4.【解析】试题分析:(1)、根据题意得出△CAD和△CDE相似,从而得出∠CAD=∠CDE,结合∠CAD=∠CBD得出∠CDB=∠CBD,从而得出答案;(2)、连接OC,根据OC∥AD得出PC=2CD,根据题意得出△PCB和△PAD相似,即PC PBPA PD,从而得出r的值.试题解析:(1)、∵DC2=CE•CA,∴=,而∠ACD=∠DCE,∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CB D,∴BC=DC;(2)、连结OC,如图,设⊙O的半径为r,∵CD=CB,∴=,∴∠BOC=∠BAD,∴OC∥AD,∴===2,∴PC=2CD=4,∵∠PCB=∠PAD,∠CPB=∠APD,∴△PCB∽△PAD,∴=,即=,∴r=4,即⊙O的半径为4.25. 已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.【答案】(1)详见解析;(2)△ACE为直角三角形,理由见解析;(3)∠AEC=45°.【解析】试题分析:(1)根据正方形的性质和全等三角形的判定定理易证△APE≌△CFE,由全等三角形的性质即可得结论;(2)①根据正方形的性质、等腰直角三角形的性质即可判定△ACE为直角三角形;②根据PE∥CF,得到,代入a、b的值计算求出a:b,根据角平分线的判定定理得到∠HCG=∠BCG,证明∠AEC=∠ACB,即可求出∠AEC的度数.试题解析:(1)证明:∵四边形ABCD为正方形∴AB=AC∵四边形BPEF为正方形∴∠P=∠F=90°,PE=EF=FB=BP∵AP=AB+BP,CF=BC+BF∴CF=AP在△APE和△CFE中:EP="EF," ∠P="∠F=90°," AP= CF∴△APE≌△CFE∴EA=EC(2)①∵P为AB的中点,∴PA=PB,又PB=PE,∴PA=PE,∴∠PAE=45°,又∠DAC=45°,∴∠CAE=90°,即△ACE是直角三角形;②∵EP平分∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a∵PE∥CF,∴,即,解得,a=b;作GH⊥AC于H,∵∠CAB=45°,∴HG=AG=×(2b﹣2b)=(2﹣)b,又BG=2b﹣a=(2﹣)b,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.∴a:b=:1;∴∠AEC=45°.考点:四边形综合题.26. 将抛物线C1:y=2x23x轴翻折,得到抛物线C2,如图所示(1)请直接写出抛物线C2的解析式(2)现将抛物线C1向左平移m个单位长度,平移后得到新抛物线顶点为M,与x轴的交点从左到右依次为A、B;将抛物线C2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.①当B、D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由【答案】(1)233y x =-(2)①2,1/2,②是矩形,m =1 【解析】试题分析:因为二次函数的图像关于x 轴对称时,函数中的a,c,互为相反数,b 值不变,函数向左平移时,纵坐标不变,横坐标均减少平移个单位,可假定成立,由直角三角形性质得到验证.解:(1)抛物线c 2的表达式是; 2分;(2)①点A 的坐标是(1m --,0), 3分; 点E 的坐标是(1m +,0). 4分;②假设在平移过程中,存在以点A ,M ,E 为顶点的三角形是直角三角形. 由题意得只能是90AME ∠=. 过点M 作MG ⊥x 轴于点G . 由平移得:点M 的坐标是(m -3, 5分; ∴点G 的坐标是(m -,0), ∴1GA =,3MG =,21EG m =+,在Rt △AGM 中, ∵ tan 3MG MAG AG ∠==,∴60MAG ∠=, 6分;∵ 90AME ∠=,∴30MEA ∠=,∴tan MG MEG EG ∠==,=, 7分; ∴1m =. 8分.所以在平移过程中,当1m =时,存在以点A ,M ,E 为顶点的三角形是直角三角形.考点:二次函数的图像与性质,直角三角形的性质.函数图像翻折时,解析式的系数的变换.点评:要熟练掌握以上各种性质,在解题时要掌握正确的方法,本题由一定的难度有三问需认真的思考一一作答,属于中档题.。
中考数学模拟题《几何综合》专项测试题(附带参考答案)学校:___________班级:___________姓名:___________考号:___________考点解读在中考数学中有这么一类题它是以点线几何图形的运动为载体集合多个代数知识几何知识及数学解题思想于一题的综合性试题它就是动态几何问题。
动态几何问题经常在各地以中考试卷解答压轴题出现也常会出现在选择题最后一题的位置考察知识面较广综合性强可以提升学生的空间想象能力和综合分析问题的能力但同时难度也很大令无数初中学子闻风丧胆考场上更是丢盔弃甲解题思路1 熟练掌握平面几何知识﹕要想解决好有关几何综合题首先就是要熟练掌握关于平面几何的所有知识尤其是要重点把握三角形特殊四边形圆及函数三角函数相关知识.几何综合题重点考查的是关于三角形特殊四边形(平行四边形矩形菱形正方形)圆等相关知识2 掌握分析问题的基本方法﹕分析法综合法“两头堵”法﹕1)分析法是我们最常用的解决问题的方法也就是从问题出发执果索因去寻找解决问题所需要的条件依次向前推直至已知条件例如我们要证明某两个三角形全等先看看要证明全等需要哪些条件哪些条件已知了还缺少哪些条件然后再思考要证缺少的条件又需要哪些条件依次向前推直到所有的条件都已知为止即可综合法﹕即从已知条件出发经过推理得出结论适合比较简单的问题3)“两头堵”法﹕当我们用分析法分析到某个地方不知道如何向下分析时可以从已知条件出发看看能得到什么结论把分析法与综合法结合起来运用是我们解决综合题最常用的办策略3 注意运用数学思想方法﹕对于几何综合题的解决我们还要注意运用数学思想方法这样会大大帮助我们解决问题或者简化我们解决问题的过程加快我们解决问题的速度毕竟考场上时间是非常宝贵的.常用数学思想方法﹕转化类比归纳等等模拟预测1 (2024·江西九江·二模)如图 在矩形()ABDC AB AC >的对称轴l 上找点P 使得PAB PCD 、均为直角三角形 则符合条件的点P 的个数是( )A .1B .3C .4D .52 (2024·江西吉安·模拟预测)如图 在平面直角坐标系中 边长为23ABC 的顶点A B ,分别在y 轴的正半轴 x 轴的负半轴上滑动 连接OC 则OC 的最小值为( )A .2B .3C .33D .333 (2024·江西吉安·一模)如图 矩形ABCD 中 4AB = 6AD = 点E 在矩形的边上 则当BEC 的一个内角度数为60︒时 符合条件的点E 的个数共有( )A .4个B .5个C .6个D .7个4 (2023·江西·中考真题)如图 在ABCD 中 602B BC AB ∠=︒=, 将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP 连接PC PD .当PCD 为直角三角形时 旋转角α的度数为 .5 (2024·江西吉安·二模)如图 在矩形ABCD 中 6,10,AB AD E ==为CD 的中点 点P 在AE 下方矩形的边上.当APE 为直角三角形 且P 为直角顶点时 BP 的长为 .6 (2024·江西九江·二模)如图 在平面直角坐标系中 已知矩形OABC 的顶点()20,0A ()0,8C D 为OA 的中点 点P 为矩形OABC 边上任意一点 将ODP 沿DP 折叠得EDP △ 若点E 在矩形OABC 的边上 则点E 的坐标为 .7 (2024·江西·模拟预测)如图 ABC 中 AB AC = 30A ∠=︒ 射线CP 从射线CA 开始绕点C 逆时针旋转α角()075α︒<<︒ 与射线AB 相交于点D 将ACD 沿射线CP 翻折至A CD '△处 射线CA '与射线AB 相交于点E .若A DE '是等腰三角形 则α∠的度数为 .8 (2024·江西赣州·二模)在Rt ABC △中 已知90C ∠=︒ 10AB = 3cos 5B = 点M 在边AB 上 点N 在边BC 上 且AM BN = 连接MN 当BMN 为等腰三角形时 AM = .9 (2024·江西吉安·模拟预测)如图 在矩形ABCD 中 6,10AB AD == E 为BC 边上一点 3BE = 点P 沿着边按B A D →→的路线运动.在运动过程中 若PAE △中有一个角为45︒ 则PE 的长为 .10 (2024·江西吉安·三模)如图 在ABC 中 AB AC = 30B ∠=︒ 9BC = D 为AC上一点 2AD DC = P 为边BC 上的动点 当APD △为直角三角形时 BP 的长为 .11 (2024·江西吉安·一模)如图 矩形ABCD 中 4AB = 6AD = E 为CD 的中点 连接BE 点P 在矩形的边上 且在BE 的上方 则当BEP △是以BE 为斜边的直角三角形时 BP 的长为 .12 (2024·江西九江·二模)如图 在等腰ABC 中 2AB AC == 30B ∠=︒ D 是线段BC 上一动点 沿直线AD 将ADB 折叠得到ADE 连接EC .当DEC 是以DE 为直角边的直角三角形时 则BD 的长为 .13 (2024·江西·模拟预测)如图 在菱形ABCD 中 对角线AC BD 相交于点O 23AB = 60ABC ∠=︒ E 为BC 的中点 F 为线段OD 上一动点 当AEF △为等腰三角形时 DF 的长为 .14 (2024·江西上饶·一模)如图 在三角形纸片ABC 中 90,60,6C B BC ∠=︒∠=︒= 将三角形纸片折叠 使点B 的对应点B '落在AC 上 折痕与,BC AB 分别相交于点E F 当AFB '为等腰三角形时 BE 的长为 .15 (2024·江西抚州·一模)课本再现(1)如图1 CD 与BE 相交于点,A ABC 是等腰直角三角形 90C ∠=︒ 若DE BC ∥ 求证:ADE 是等腰直角三角形.类比探究(2)①如图2 AB 是等腰直角ACB △的斜边 G 为边AB 的中点 E 是BA 的延长线上一动点 过点E 分别作AC 与BC 的垂线 垂足分别为,D F 顺次连接,,DG GF FD 得到DGF △ 求证:DGF △是等腰直角三角形.②如图3 当点E 在边AB 上 且①中其他条件不变时 DGF △是等腰直角三角形是否成立?_______(填“是”或“否”).拓展应用(3)如图4 在四边形ABCD 中 ,90,BC CD BCD BAD AC =∠=∠=︒平分BAD ∠ 当1,22AD AC == 求线段BC 的长.16 (2023·江西·中考真题)课本再现思考我们知道菱形的对角线互相垂直.反过来对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理对角线互相垂直的平行四边形是菱形.(1)定理证明:为了证明该定理小明同学画出了图形(如图1)并写出了“已知”和“求证”请你完成证明过程.已知:在ABCD中对角线BD AC⊥垂足为O.求证:ABCD是菱形.(2)知识应用:如图2在ABCD中对角线AC和BD相交于点O586AD AC BD===,,.①求证:ABCD是菱形②延长BC至点E连接OE交CD于点F若12E ACD∠=∠求OFEF的值.17 (2022·江西·中考真题)问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板()90,60PEF P F ∠=︒∠=︒的一个顶点放在正方形中心O 处 并绕点O 逆时针旋转 探究直角三角板PEF 与正方形ABCD 重叠部分的面积变化情况(已知正方形边长为2).(1)操作发现:如图1 若将三角板的顶点P 放在点O 处 在旋转过程中 当OF 与OB 重合时 重叠部分的面积为__________ 当OF 与BC 垂直时 重叠部分的面积为__________ 一般地 若正方形面积为S 在旋转过程中 重叠部分的面积1S 与S 的关系为__________(2)类比探究:若将三角板的顶点F 放在点O 处 在旋转过程中 ,OE OP 分别与正方形的边相交于点M N .①如图2 当BM CN =时 试判断重叠部分OMN 的形状 并说明理由②如图3 当CM CN =时 求重叠部分四边形OMCN 的面积(结果保留根号)(3)拓展应用:若将任意一个锐角的顶点放在正方形中心O 处 该锐角记为GOH ∠(设GOH α∠=) 将GOH ∠绕点O 逆时针旋转 在旋转过程中 GOH ∠的两边与正方形ABCD 的边所围成的图形的面积为2S 请直接写出2S 的最小值与最大值(分别用含α的式子表示)(参考数据:6262sin15tan1523-+︒=︒=︒=18 (2024·江西吉安·二模)如图 在ABC 和ADE 中 (),AB AC AD AE AD AB ==< 且BAC DAE ∠=∠.连接CE BD .(1)求证:BD CE =.(2)在图2中 点B D E 在同一直线上 且点D 在AC 上 若,AB a BC b == 求AD CD的值(用含a b 的代数式表示).19 (2024·江西九江·二模)初步探究(1)如图1 在四边形ABCD 中 ,AC BD 相交于点O AC BD ⊥ 且ABD CBD S S = 则OA 与OC 的数量关系为 .迁移探究(2)如图2 在四边形ABCD 中 ,AC BD 相交于点O ABD CBD SS = (1)中OA 与OC 的数量关系还成立吗?如果成立 请说明理由.拓展探究(3)如图3 在四边形ABCD 中 ,AC BD 相交于点O 180,ABD CBD BAD BCD S S ∠∠+=︒=△△ 且 33OB OD == 求AC 的长.20 (2024·江西九江·二模)课本再现如图1 四边形ABCD 是菱形 30ACD ∠=︒ 6BD =.(1)求,AB AC 的长.应用拓展(2)如图2 E 为AB 上一动点 连接DE 将DE 绕点D 逆时针旋转120︒ 得到DF 连接EF .①直接写出点D 到EF 距离的最小值②如图3 连接,OF CF 若OCF △的面积为6 求BE 的长.21 (2024·江西赣州·三模)某数学小组在一次数学探究活动过程中经历了如下过程:AB=P为对角线AC上的一个动点以P为直角顶问题提出:如图正方形ABCD中8△.点向右作等腰直角DPM(1)操作发现:DM的最小值为_______ 最大值为_______(2)数学思考:求证:点M在射线BC上=时求CM的长.(3)拓展应用:当CP CM22 (2024·江西赣州·二模)【课本再现】 思考我们知道 角的平分线上的点到角的两边的距离相等 反过来 角的内部到角的两边的距离相等的点在角的平分线上吗?可以发现并证明角的平分线的性质定理的逆定理角的内部到角的两边的距离相等的点在角的平分线上.【定理证明】(1)为证明此逆定理 某同学画出了图形 并写好“已知”和“求证” 请你完成证明过程.已知:如图1 在ABC ∠的内部 过射线BP 上的点P 作PD BA ⊥ PE BC ⊥ 垂足分别为D E 且PD PE =.求证:BP 平分ABC ∠.【知识应用】(2)如图2 在ABC 中 过内部一点P 作PD BC ⊥ PE AB ⊥ PF AC ⊥ 垂足分别为D E F 且PD PE PF == 120A ∠=︒ 连接PB PC .①求BPC ∠的度数②若6PB=23PC=求BC的长.23 (2024·江西吉安·模拟预测)一块材料的形状是锐角三角形ABC下面分别对这块材料进行课题探究:课本再现:(1)在图1中若边120mmBC=高80mmAD=把它加工成正方形零件使正方形的一边在BC上其余两个顶点分别在AB AC上这个正方形零件的边长是多少?类比探究(2)如图2 若这块锐角三角形ABC材料可以加工成3个相同大小的正方形零件请你探究高AD与边BC的数量关系并说明理由.拓展延伸(3)①如图3 若这块锐角三角形ABC材料可以加工成图中所示的4个相同大小的正方形零件则ADBC的值为_______(直接写出结果)②如图4 若这块锐角三角形ABC材料可以加工成图中所示的()3n m≥相同大小的正方形零件求ADBC的值.24 (2024·江西吉安·三模)课本再现 矩形的定义 有一个角是直角的平行四边形是矩形.定义应用(1)如图1 已知:在四边形ABCD 中 90A B C ∠=∠=∠=︒用矩形的定义求证:四边形ABCD 是矩形.(2)如图2 在四边形ABCD 中 90A B ∠=∠=︒ E 是AB 的中点 连接DE CE 且DE CE = 求证:四边形ABCD 是矩形.拓展延伸(3)如图3 将矩形ABCD 沿DE 折叠 使点A 落在BC 边上的点F 处 若图中的四个三角形都相似 求AB BC的值.25 (2024·江西吉安·一模)课本再现在学习了平行四边形的概念后进一步得到平行四边形的性质:平行四边形的对角线互相平分.=(1)如图1 在平行四边形ABCD中对角线AC与BD交于点O 求证:OA OC =.OB OD知识应用=延长AC到E 使得(2)在ABC中点P为BC的中点.延长AB到D 使得BD AC∠=︒请你探究线段BE与线段AP之间的BACCE AB=连接DE.如图2 连接BE若60数量关系.写出你的结论并加以证明.26 (2024·江西九江·二模)问题提出在综合与实践课上 某数学研究小组提出了这样一个问题:如图1 在边长为4的正方形ABCD 的中心作直角EOF ∠ EOF ∠的两边分别与正方形ABCD 的边BC CD 交于点E F (点E 与点B C 不重合) 将EOF ∠绕点O 旋转.在旋转过程中 四边形OECF 的面积会发生变化吗?爱思考的浩浩和小航分别探究出了如下两种解题思路.浩浩:如图a 充分利用正方形对角线垂直 相等且互相平分等性质 证明了OEC OFD ≌ 则OEC OFD S S = OEC OCF OFD OCF OCD OECF S S S S S S =+=+=四边形.这样 就实现了四边形OECF 的面积向OCD 面积的转化.小航:如图b 考虑到正方形对角线的特征 过点O 分别作OG BC ⊥于点G OH CD ⊥于点H 证明OGE OHF ≌△△ 从而将四边形OECF 的面积转化成了小正方形OGCH 的面积.(1)通过浩浩和小航的思路点拨﹐我们可以得到OECF S =四边形__________ CE CF +=__________.类比探究(2)①如图⒉ 在矩形ABCD 中 3AB = 6AD = O 是边AD 的中点 90EOF ∠=︒ 点E 在AB 上 点F 在BC 上 则EB BF +=__________.②如图3 将问题中的正方形ABCD 改为菱形ABCD 且45ABC ∠=︒ 当45EOF ∠=︒时 其他条件不变 四边形OECF 的面积还是一个定值吗?若是 请求出四边形OECF 的面积 若不是 请说明理由.拓展延伸(3)如图4 在四边形ABCD 中 7AB = 2DC = 60BAD ∠=︒ 120BCD ∠=︒ CA 是BCD ∠的平分线 求四边形ABCD 的面积.27 (2024·江西九江·模拟预测)【课本再现】(1)如图1 四边形ABCD 是一个正方形 E 是BC 延长线上一点 且AC EC = 则DAE ∠的度数为 .【变式探究】(2)如图2 将(1)中的ABE 沿AE 折叠 得到AB E ' 延长CD 交B E '于点F 若2AB = 求B F '的长.【延伸拓展】(3)如图3 当(2)中的点E 在射线BC 上运动时 连接B B ' B B '与AE 交于点P .探究:当EC 的长为多少时 D P 两点间的距离最短?请求出最短距离.28 (2024·江西上饶·一模)课本再现:(1)如图1 ,D E 分别是等边三角形的两边,AB AC 上的点 且AD CE =.求证:CD BE =.下面是小涵同学的证明过程:证明:ABC 是等边三角形,60AC BC A ACB ∴=∠=∠=︒.AD CE =()SAS ADC CEB ∴≌CD BE ∴=.小涵同学认为此题还可以得到另一个结论:BFD ∠的度数是______迁移应用:(2)如图2 将图1中的CD 延长至点G 使FG FB = 连接,AG BG .利用(1)中的结论完成下面的问题.①求证:AG BE ∥②若25CF BF = 试探究AD 与BD 之间的数量关系.参考答案考点解读在中考数学中有这么一类题它是以点线几何图形的运动为载体集合多个代数知识几何知识及数学解题思想于一题的综合性试题它就是动态几何问题。
湖北省黄冈市中考数学全真模拟试卷(二)一.选择题(共6小题,满分15分)1.已知x的取值能使|x﹣3|+|x+2|取得最小值,则所有中整数有()A.1个 B.2个 C.3个 D.4个2.(3分)下列运算正确的是()A.m6÷m2=m3B.(x+1)2=x2+1 C.(3m2)3=9m6D.2a3•a4=2a73.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④4.(3分)一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.45.(3分)小华五次跳远的成绩如下(单位:m):3.9,4.1,3.9,3.8,4.2.关于这组数据,下列说法错误的是()A.极差是0.4 B.众数是3.9 C.中位数是3.98 D.平均数是3.986.(3分)已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为()A.B.2 C.D.二.填空题(共8小题,满分24分,每小题3分)7.(3分)计算:=.8.(3分)分解因式:3x2﹣6x2y+3xy2=.9.(3分)=.10.(3分)现在网购越来越多地成为人们的一种消费方式,刚刚过去的的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为.11.(3分)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果y n=(用含字母x和n的代数式表示).12.(3分)如图,E是正方形ABCD内一点,如果△ABE为等边三角形,那么∠DCE=度.13.(3分)已知圆锥的底面半径为2cm,母线长是4cm,则圆锥的侧面积是cm2(结果保留π).14.(3分)两个直角三角板如图放置,其中AC=5,BC=12,点D为斜边AB的中点.在三角板DEF绕着点D的旋转过程中,边DE与边AC始终相交于点M,边DF与边BC始终相交于点N,则线段MN的最小值为.三.解答题(共10小题,满分64分)15.(5分)解关于x的不等式组:,其中a为参数.16.(6分)如图1,在锐角△ABC中,∠ABC=45°,高线A D、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.17.(6分)已知x1,x2是方程2x2﹣2nx+n(n+4)=0的两根,且(x1﹣1)(x2﹣1)﹣1=,求n的值.18.(6分)甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?19.(7分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.20.(7分)如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB﹣BO﹣OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t >0).(1)求直线AB的解析式;(2)在点P从O向A运动的过程中,求△APQ的面积S与t之间的函数关系式(不必写出t的取值范围);(3)在点E从B向O运动的过程中,完成下面问题:①四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;②当DE经过点O时,请你直接写出t的值.21.(7分)如图,反比例函数y=(m≠0)与一次函数y=kx+b(k≠0)的图象相交于A、B两点,点A的坐标为(﹣6,2),点B的坐标为(3,n).求反比例函数和一次函数的解析式.22.(8分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.23.(12分)如图,实验数据显示,一般成年人喝半斤低度白酒后,1.5时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可以近似的用二次函数y=﹣200x2+400x刻画,1.5小时后(包括1.5小时)y与x可近似的用反比例函数y=(k>0)刻画.(1)根据上述数学模型计算;①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按照国家规定,车辆驾驶人员血液中酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早晨7:00能否驾车去上班?请说明理由.24.综合与探究:如图,抛物线y=x2﹣x﹣4与x轴交与A,B两点(点B在点A的右侧),与y 轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x 轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A,B,C的坐标.(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m 为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.湖北省黄冈市中考数学全真模拟试卷(二)参考答案与试题解析一.选择题(共6小题,满分15分)1.【解答】解:∵已知x的取值能使|x﹣3|+|x+2|取得最小值,∴当x≥3时,有|x﹣3|+|x+2|=x﹣3+x+2=2x﹣1,∴当x=3时有最小值:2×3﹣1=5;∴当﹣2<x<3时,有|x﹣3|+|x+2|=3﹣x+x+2=5,∴其有最小值5;当x≤﹣2时,有|x﹣3|+|x+2|=3﹣x﹣x﹣2=1﹣2x,∴当x=﹣2时有最小值5,∴﹣2≤x≤3可以使|x﹣3|+|x+2|取得最小值,∴﹣1≤≤,∴所有中整数有﹣1,0,1,共3个,故选:C.2.【解答】解:A、原式=m4,不符合题意;B、原式=x2+2x+1,不符合题意;C、原式=27m6,不符合题意;D、原式=2a7,符合题意,故选:D.3.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.4.【解答】解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,那么它的表面积=2π×2+π×1×1×2=6π,故选A.5.【解答】解:A、极差是4.2﹣3.8=0.4;B、3.9有2个,众数是3.9;C、从高到低排列后,为4.2,4.1,3.9,3.9,3.8.中位数是3.9;D、平均数为(3.9+4.1+3.9+3.8+4.2)÷5=3.98.故选:C.6.【解答】解:如图,设AC与BD的交点为O,过点O作GH⊥CD于G,交AB于H;作MN⊥AB于M,交CD于点N.在Rt△COD中,∠COD=90°,OG⊥CD;∴∠DOG=∠DCO;∵∠GOD=∠BOH,∠DCO=∠ABO,∴∠ABO=∠BOH,即BH=OH,同理可证,AH=OH;即H是Rt△AOB斜边AB上的中点.同理可证得,M是Rt△COD斜边CD上的中点.设圆心为O′,连接O′M,O′H;则O′M⊥CD,O′H⊥AB;∵MN⊥AB,GH⊥CD;∴O′H∥MN,OM∥GH;即四边形O′HOM是平行四边形;因此OM=O′H.由于OM是Rt△OCD斜边CD上的中线,所以OM=O′H=CD=2.故选:B.二.填空题(共8小题,满分24分,每小题3分)7.【解答】解:原式==,故答案为:8.【解答】解:原式=3x(x﹣2xy+y2),故答案为:3x(x﹣2xy+y2)9.【解答】解:∵=﹣,∴原式=(﹣)+(﹣)+…+(﹣),=1﹣,=.故答案为.10.【解答】解:67 000 000 000=6.7×1010,故答案为:6.7×1010.11.【解答】解:将y1=代入得:y2==;将y2=代入得:y3==,依此类推,第n次运算的结果y n=.故答案为:.12.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,∵△ABE为等边三角形,∴AE=AB=BE,∠ABE=60°,∴∠EBC=90°﹣60°=30°,BC=BE,∴∠ECB=∠BEC=(180°﹣30°)=75°,∴∠DCE=90°﹣75°=15°.故答案为15.13.【解答】解:底面圆的半径为2,则底面周长=4π,侧面面积=×4π×4=8πcm2.14.【解答】解:当M、N分别为AC、BC的中点时,MN最小.在△ABC中,∵∠C=90°,AC=5,BC=12,∴AB==13.∵M、N分别为AC、BC的中点,∴MN=AB=.故答案为.三.解答题(共10小题,满分64分)15.【解答】解:,解不等式①得:﹣3a<5x≤1﹣3a,﹣a<x≤,解不等式②得:3a<5x≤1+3a,a<x≤,∵当﹣a=a时,a=0,当=时,a=0,当﹣a=时,a=﹣,当a=时,a=,∴当或时,原不等式组无解;当时,原不等式组的解集为:;当时,原不等式组的解集为:.16.【解答】解:(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC和△BDF中,∵,∴△ADC≌△BDF(AAS),∴BF=AC;(2)NE=AC,理由是:如图2,由折叠得:MD=DC,∵D E∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=AC.17.【解答】解:∵x1、x2是方程2x2﹣2nx+n(n+4)=0的两根,∴x1+x2=﹣=n ①,x1x2==n(n+4)②,又∵(x1﹣1)(x2﹣1)﹣1=,∴x1x2﹣(x1+x2)=,把①②代入上式得n(n+4)﹣n=,化简得n2=,即n=±.又∵△=b2﹣4ac=4n2﹣4×2×n(n+4)=﹣16n,而原方程有根,∴﹣16n≥0,∴n≤0,∴n=﹣.18.【解答】解:设甲公司人均捐款x元,则乙公司人均捐款x+20元,×=解得:x=80,经检验,x=80为原方程的根,80+20=100(元)答:甲、乙两公司人均捐款分别为80元、100元.19.【解答】解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)700×=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.20.【解答】解:(1)在Rt△AOB中,OA=3,AB=5,由勾股定理得OB==4.∴A(3,0),B(0,4).设直线AB的解析式为y=kx+b.∴解得∴直线AB的解析式为;(2)如图1,过点Q作QF⊥AO于点F.∵AQ=OP=t,∴AP=3﹣t.由△AQF∽△ABO,得.∴=.∴QF=t,∴S=(3﹣t)•t,∴S=﹣t2+t;(3)四边形QBED能成为直角梯形.①如图2,当DE∥QB时,∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.此时∠AQP=90°.由△APQ∽△ABO,得.∴=.解得t=;如图3,当PQ∥BO时,∵DE⊥PQ,∴DE⊥BO,四边形QBED是直角梯形.此时∠APQ=90°.由△AQP∽△ABO,得.即=.3t=5(3﹣t),3t=15﹣5t,8t=15,解得t=;(当P从A向0运动的过程中还有两个,但不合题意舍去)②当DE经过点O时,∵DE垂直平分PQ,∴EP=EQ=t,由于P与Q相同的时间和速度,∴AQ=EQ=EP=t,∴∠AEQ=∠EAQ,∵∠AEQ+∠BEQ=90°,∠EAQ+∠EBQ=90°,∴∠BEQ=∠EBQ,∴BQ=EQ,∴EQ=AQ=BQ=AB所以t=,当P从A向O运动时,过点Q作QF⊥OB于F,EP=6﹣t,即EQ=EP=6﹣t,AQ=t,BQ=5﹣t,∴FQ=(5﹣t)=3﹣t,BF=(5﹣t)=4﹣t,∴EF=4﹣BF=t,∵EF2+FQ2=EQ2,即(3﹣t)2+(t)2=(6﹣t)2,解得:t=.∴当DE经过点O时,t=或.21.【解答】解:把点A(﹣6,2)代入中,得m=﹣12.∴反比例函数的解析式为.把点B(3,n)代入中,得n=﹣4.∴B点的坐标为(3,﹣4).把点A(﹣6,2),点B(3,﹣4)分别代入y=kx+b中,得,解得.∴一次函数的解析式为y=﹣x﹣2.22.【解答】解:由题意得:BE=,AE=,∵AE﹣BE=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,∴CD=+n(米).∴该建筑物的高度为:(+n)米.23.【解答】解:(1)∵y=﹣200x2+400x=﹣200(x﹣1)2+200,①∴当x=1时,y取得最大值,此时y=200,答:喝酒后1时血液中的酒精含量达到最大值,最大值为200毫克/百毫升;②∵当x=5时,y=45,∴45=,得k=225,即k的值是225;(2)该驾驶员第二天早晨7:00不能驾车去上班,理由:由(1)知k=225,∴y=,∵晚上20:00到第二天早晨7:00是11个小时,∴将x=11代入y=,得y=,∵,∴该驾驶员第二天早晨7:00不能驾车去上班.24.【解答】解:(1)当y=0时,x2﹣x﹣4=0,解得x1=﹣2,x2=8,∵点B在点A的右侧,∴点A的坐标为(﹣2,0),点B的坐标为(8,0).当x=0时,y=﹣4,∴点C的坐标为(0,﹣4).(2)由菱形的对称性可知,点D的坐标为(0,4).设直线BD的解析式为y=kx+b,则,解得k=﹣,b=4.∴直线BD的解析式为y=﹣x+4.∵l⊥x轴,∴点M的坐标为(m,﹣m+4),点Q的坐标为(m,m2﹣m﹣4).如图,当MQ=DC时,四边形CQMD是平行四边形,∴(﹣m+4)﹣(m2﹣m﹣4)=4﹣(﹣4).化简得:m2﹣4m=0,解得m1=0(不合题意舍去),m2=4.∴当m=4时,四边形CQMD是平行四边形.此时,四边形CQBM是平行四边形.解法一:∵m=4,∴点P是OB的中点.∵l⊥x轴,∴l∥y轴,∴△BPM∽△BOD,∴==,∴BM=DM,∵四边形CQMD是平行四边形,∴DM CQ,∴BM CQ,∴四边形CQBM是平行四边形.解法二:设直线BC的解析式为y=k1x+b1,则,解得k1=,b1=﹣4.故直线BC的解析式为y=x﹣4.又∵l⊥x轴交BC于点N,∴x=4时,y=﹣2,∴点N的坐标为(4,﹣2),由上面可知,点M的坐标为(4,2),点Q的坐标为(4,﹣6).∴MN=2﹣(﹣2)=4,NQ=﹣2﹣(﹣6)=4,∴MN=QN,又∵四边形CQMD是平行四边形,∴DB∥CQ,∴∠3=∠4,∵在△BMN与△CQN中,,∴△BMN≌△CQN(ASA)∴BN=CN,∴四边形CQBM是平行四边形.(3)抛物线上存在两个这样的点Q,分别是Q1(﹣2,0),Q2(6,﹣4).若△BDQ为直角三角形,可能有三种情形,如答图2所示:①以点Q为直角顶点.此时以BD为直径作圆,圆与抛物线的交点,即为所求之Q点.∵P在线段EB上运动,∴﹣8≤x Q≤8,而由图形可见,在此范围内,圆与抛物线并无交点,故此种情形不存在.②以点D为直角顶点.连接AD,∵OA=2,OD=4,OB=8,AB=10,由勾股定理得:AD=,BD=,∵AD2+BD2=AB2,∴△ABD为直角三角形,即点A为所求的点Q.∴Q1(﹣2,0);③以点B为直角顶点.如图,设Q2点坐标为(x,y),过点Q2作Q2K⊥x轴于点K,则Q2K=﹣y,OK=x,BK=8﹣x.易证△Q2KB∽△BOD,∴,即,整理得:y=2x﹣16.∵点Q在抛物线上,∴y=x2﹣x﹣4.∴x2﹣x﹣4=2x﹣16,解得x=6或x=8,当x=8时,点Q2与点B重合,故舍去;当x=6时,y=﹣4,∴Q2(6,﹣4).综上所述,符合题意的点Q的坐标为(﹣2,0)或(6,﹣4).。
广东数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题1.2020-的倒数为( ). A. 12020 B. 12020- C. 2020- D. 20202.据民政部网站消息截至2018年底,我国60岁以上老年人口已经达到2.56亿人.其中2.56 亿用科学记数法表示为( )A 2.56×107 B. 2.56×108 C. 2.56×l09 D. 2.56×l010 3.如图是由几个相同的小正方体堆砌成的几何体,它的左视图是( )A B.C. D.4.已知一个多边形内角和等于900º,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形 5.下列图形中,是轴对称图形但不是中心对称图形的是( )A. 等边三角形B. 正六边形C. 正方形D. 圆 6.不等式组2312x x -≥-⎧⎨-≥-⎩的解为( ) A. 5x ≥ B. 1x ≤- C. 15x -≤≤ D. 5x ≥或1x ≤-7.如图,已知直线12 //l l ,一块含30°角的直角三角板如图所示放置,235∠=︒,则1∠等于( )A. 25°B. 35°C. 40°D. 45°8.关于x 的一元二次方程(m ﹣2)x 2+5x +m 2﹣4=0的常数项是0,则( )A. m =4B. m =2C. m =2或m =﹣2D. m =﹣29.在△ABC 中,DE ∥BC ,AE :EC =2:3,则S △ADE :S 四边形BCED 的值为( )A. 4:9B. 4:21C. 4:25D. 4:510.如图,在△ABC 中,∠C=90°,AC=BC=3cm.动点P 从点A 出发,以2cm/s 的速度沿AB 方向运动到点B.动点Q 同时从点A 出发,以1cm/s 的速度沿折线ACCB 方向运动到点B.设△APQ 的面积为y(cm 2).运动时间为x(s ),则下列图象能反映y 与x 之间关系的是 ( )A. B.C. D.二、填空题11.x 1+有意义,则x 的取值范围为_____. 12.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是 .13.分解因式:22a 4a 2-+=_____.14.如图,⊙的弦AC 与半径OB 交于点,//BC OA ,AO AD =,则C ∠的度数为______º.15.已2|2|(2)0x y y -+-=,y x =__________.16.如图,Rt △ABC 中,∠ACB =90°,AC =BC =2,在以AB 的中点O 为坐标原点,AB 所在直线为x 轴建立的平面直角线坐标系中,将△ABC 绕点B 顺时针旋转,使点A 旋转至y 轴正半轴上的A ′处,则图中阴影部分面积为_____.17.将一些形状相同的小五角星如图所示的规律摆放,据此规律,第10个图形有_______个五角星.三、解答题18.计算:12+(π﹣2019)0﹣(﹣13)﹣2﹣4cos30° 19.先化简,再求值:24224a a a a a a ⎛⎫÷- ⎪---⎝⎭,其中22a =+. 20.如图,△ABC 中,AB =AC =10,BC =16.点D 在边BC 上,且点D 到边AB 和边AC 的距离相等.(1)用直尺和圆规作出点D (不写作法,保留作图痕迹,在图上标注出点D );(2)求点D 到边AB 的距离.21.某校积极开展”阳光体育”活动,并开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)该校共有3000名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?22.如图,把矩形纸片ABCD 沿EF 折叠后,使得点落在点的位置上,点恰好落在边AD 上的点处,连接EG .(1)求证:GEF △是等腰三角形;(2)若4CD =,8GD =,求HF 长度.23.六•一前夕,某幼儿园园长到厂家选购A 、B 两种品牌的儿童服装,每套A 品牌服装进价比B 品牌服装每套进价多25元,用2000元购进A 种服装数量是用750元购进B 种服装数量的2倍.(1)求A 、B 两种品牌服装每套进价分别为多少元;(2)该服装A 品牌每套售价为130元,B 品牌每套售价为95元,服装店老板决定,购进B 品牌服装的数量比购进A 品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A 品牌的服装多少套.24.如图,在O 中,弦AB 与弦 C D 相交于点,OA CD ⊥于点,过点的直线与 C D 的延长线交于点,//AC BF .(1)若FGB FBG ∠=∠,求证:BF 是O 的切线; (2)若3tan 4F ∠=,CD a =,请用表示O 的半径; (3)求证:22GF GB DF GF -=⋅.25.已知二次函数y=ax 2+bx ﹣3a 经过点A (﹣1,0)、C (0,3),与x 轴交于另一点B ,抛物线的顶点为D ,(1)求此二次函数解析式;(2)连接DC 、BC 、DB ,求证:△BCD 直角三角形;(3)在对称轴右侧的抛物线上是否存在点P ,使得△PDC 为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.答案与解析一、选择题1.2020-的倒数为( ). A. 12020 B. 12020- C. 2020- D. 2020【答案】B【解析】【分析】根据倒数的定义:乘积为1的两数互为倒数,即可求出结论.【详解】解:2020-的倒数为12020-故选B .【点睛】此题考查的是求一个数的倒数,掌握倒数的定义是解决此题的关键.2.据民政部网站消息截至2018年底,我国60岁以上老年人口已经达到2.56亿人.其中2.56 亿用科学记数法表示为( )A 2.56×107 B. 2.56×108 C. 2.56×l09 D. 2.56×l010 【答案】B【解析】【分析】科学记数法表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n 是负数.【详解】解:2.56亿=256000000=2.56×108, 故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.如图是由几个相同的小正方体堆砌成的几何体,它的左视图是( )A. B. C.D.【答案】A【解析】【分析】 从左边看有2列,左数第1列有两个正方形,第2列有1个正方形,据此可得.【详解】从左边看有2列,左数第1列有两个正方形,第2列有1个正方形,故它的左视图是故选A .【点睛】此题考查三视图的知识;左视图是从几何体左面看得到的平面图形.4.已知一个多边形的内角和等于900º,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形【答案】C【解析】试题分析:多边形的内角和公式为(n -2)×180°,根据题意可得:(n -2)×180°=900°,解得:n=7.考点:多边形的内角和定理.5.下列图形中,是轴对称图形但不是中心对称图形的是( )A. 等边三角形B. 正六边形C. 正方形D. 圆 【答案】A【解析】因为平行四边形是中心对称图形,而非轴对称图形;正六边形和圆既是中心对称图形也轴对称图形;等边三角形是轴对称图形而非中心对称图形,所以答案B 、C 、D 错误,应选答案A . 6.不等式组2312x x -≥-⎧⎨-≥-⎩的解为( ) A. 5x ≥B. 1x ≤-C. 15x -≤≤D. 5x ≥或1x ≤-【答案】C【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式2−x≥−3,得:x≤5,解不等式x−1≥−2,得:x≥−1,则不等式组的解集为15x -≤≤.故选C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.如图,已知直线12 //l l ,一块含30°角的直角三角板如图所示放置,235∠=︒,则1∠等于( )A. 25°B. 35°C. 40°D. 45°【答案】A【解析】【分析】 过C 点作CM ∥直线l ₁,求出CM ∥直线l ₁∥直线l ₂,根据三角形内角和定理得∠ACB =60°根据平行线的性质∠2=∠ACM=35°, ∠MCB=∠CDE=25°,再由对顶角相等得出∠1= ∠CDE=∠MCB ,即可求出答案.【详解】解:过C 作CM ∥l ₁,∵直线l ₁∥直线l ₂,∴CM∥l₁∥l₂∴∠2=∠ACM,∠MCB=∠CDE∵∠B=30°∴∠ACB=60°∴∠ACM+∠MCB=60°∵∠2=∠ACM =35°∴∠MCB=25°∴∠1=∠CDE=∠MCB=25°故选:A【点睛】本题考查了平行线的性质、三角形内角和定理、对顶角相等,能正确作出辅助线是解题的关键.8.关于x的一元二次方程(m﹣2)x2+5x+m2﹣4=0的常数项是0,则( )A. m=4B. m=2C. m=2或m=﹣2D. m=﹣2【答案】D【解析】【分析】根据常数项为0,可得m2-4=0,同时还要保证m-2≠0,即可.【详解】由题意得:m2-4=0,且m-2≠0,解得:m=-2,故选D.【点睛】此题主要考查了一元二次方程的一般形式,关键是掌握ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.9.在△ABC中,DE∥BC,AE:EC=2:3,则S△ADE:S四边形BCED的值为( )A. 4:9B. 4:21C. 4:25D. 4:5【答案】B【解析】分析】由已知条件得到AE:AC=2:5,根据DE∥BC,得到△ADE∽△ABC,根据相似三角形的性质得到S△ADE:S△ABC =(AE:AB)2=4:25,即可得到结论.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∴2ADEABCS AES AC⎛⎫= ⎪⎝⎭,∵23 AEEC=,∴25 AEAC=,∴425ADEABCSS=,∴S△ADE:S四边形BCED=4:21.故选B.【点睛】本题考查了相似三角形的判定及性质,比例的基本性质的运用,相似三角形的面积与相似比的关系,熟练掌握相似三角形的判定定理是解题的关键.10.如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以2cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线ACCB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是( )A. B.C. D.【答案】D【解析】【分析】在△ABC中,∠C=90°,AC=BC=3cm,可得AB=32,∠A=∠B=45°,分当0<x≤3(点Q在AC上运动,点P在AB上运动)和当3≤x≤6时(点P与点B重合,点Q在CB上运动)两种情况求出y与x的函数关系式,再结合图象即可解答.【详解】在△ABC中,∠C=90°,AC=BC=3cm,可得AB=32,∠A=∠B=45°,当0<x≤3时,点Q在AC 上运动,点P在AB上运动(如图1),由题意可得AP=2x,AQ=x,过点Q作QN⊥AB于点N,在等腰直角三角形AQN中,求得QN=22x,所以y=12AP QN⋅=21212=222x x x⨯⨯(0<x≤3),即当0<x≤3时,y随x的变化关系是二次函数关系,且当x=3时,y=4.5;当3≤x≤6时,点P与点B重合,点Q在CB上运动(如图2),由题意可得PQ=6-x,AP=32,过点Q作QN⊥BC于点N,在等腰直角三角形PQN中,求得QN=22(6-x),所以y=12AP QN⋅=12332(6)=9222x x⨯⨯--+(3≤x≤6),即当3≤x≤6时,y随x的变化关系是一次函数,且当x=6时,y=0.由此可得,只有选项D符合要求,故选D.【点睛】本题考查了动点函数图象,解决本题要正确分析动线运动过程,然后再正确计算其对应的函数解析式,由函数的解析式对应其图象,由此即可解答.二、填空题11.若分式x 1x 2+-有意义,则x 的取值范围为_____. 【答案】x ≥﹣1且x ≠2.【解析】【分析】根据被开方式是非负数,且分母不等于零列式求解即可.【详解】解:由题意得:x +1≥0,且x ﹣2≠0,解得:x ≥﹣1且x ≠2,故答案为x ≥﹣1且x ≠2.【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.12.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是 .【答案】14. 【解析】试题分析:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=14.故答案为14. 考点:列表法与树状图法.13.分解因式:22a 4a 2-+=_____.【答案】()22a 1-【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式2后继续应用完全平方公式分解即可:()()2222a 4a 22a 2a 12a 1-+=-+=-. 14.如图,⊙的弦AC 与半径OB 交于点,//BC OA ,AO AD =,则C ∠的度数为______º.【答案】36°. 【解析】【分析】利用同弧所对的圆心角的度数是圆周角度数的2倍得∠O=2∠C,再利用平行线性质得∠O=∠B 即可证明OA=AD,最后利用三角形内角和即可解题.【详解】解:设∠C=x,由图可知∠O=2∠C=2x,(同弧所对的圆心角的度数是圆周角度数的2倍)∵//BC OA ,∴∠O=∠B=2x,∵AO AD =,∴∠O=∠ADO=∠CDB=2x,在△CDB 中,5x=180°,(三角形内角和) 解得:x=36°, ∴∠C=36°. 【点睛】本题考查了圆周角和圆心角的关系,平行线的性质,三角形内角和的性质,中等难度,熟悉圆周角的性质是解题关键.15.已2|2|(2)0x y y -+-=,y x =__________.【答案】16【解析】【分析】根据非负性的性质列方程式求出x 、y ,然后再求值即可.【详解】解:根据题意得,x-2y=0,y-2=0,解得,x=4,y=2,∴y x =42=16故答案为:16【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.如图,Rt△ABC中,∠ACB=90°,AC=BC=2,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角线坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴正半轴上的A′处,则图中阴影部分面积为_____.【答案】2 3π【解析】【分析】根据等腰直角三角形的性质求出AB,再根据旋转的性质可得A′B=AB,然后求出∠OA′B=30°,再根据直角三角形两锐角互余求出∠A′BA=60°,即旋转角为60°,再根据S阴影=S扇形ABA′+S△A′BC′﹣S△ABC﹣S扇形CBC′=S扇形ABA′﹣S扇形CBC′,然后利用扇形的面积公式列式计算即可得解.【详解】解:∵∠ACB=90°,AC=BC,∴△ABC是等腰直角三角形,∴AB=2OA=2OB2AC=2,∵△ABC绕点B顺时针旋转点A在A′处,∴BA′=AB,∴BA′=2OB,∴∠OA′B=30°,∴∠A′BA=60°,即旋转角为60°,S阴影=S扇形ABA′+S△A′BC′﹣S△ABC﹣S扇形CBC′=S扇形ABA′﹣S扇形CBC′=22 60(22)602 360360ππ⋅⋅⨯-=42 33ππ-=23π.故答案为23π. 【点睛】本题主要考查了旋转的性质、等腰直角三角形的性质、直角三角形30°角所对的直角边等于斜边的一半的性质的知识点,表示出阴影部分的面积等于两个扇形的面积的差是解题的关键,难点在于求出旋转角的度数.17.将一些形状相同的小五角星如图所示的规律摆放,据此规律,第10个图形有_______个五角星.【答案】120.【解析】寻找规律:不难发现,第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n 个图形有(n +1)2-1个小五角星.∴第10个图形有112-1=120个小五角星.三、解答题18.12(π﹣2019)0﹣(﹣13)﹣2﹣4cos30° 【答案】-8.【解析】【分析】先根据二次根式的性质,零指数幂的意义,负整数指数幂的意义及特殊角的三角函数值逐项化简,再合并同类二次根式和同类项即可.【详解】解:原式=3﹣9﹣38【点睛】本题考查了实数的缓和运算,熟练掌握二次根式的性质,零指数幂的意义,负整数指数幂的意义及特殊角的三角函数值是解答本题的关键.19.先化简,再求值:24224a a a a a a ⎛⎫÷- ⎪---⎝⎭,其中22a =. 【答案】22a a +-;122+【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a 的值代入计算即可求出值. 【详解】24224a a a a a a ⎛⎫÷- ⎪---⎝⎭()()()24222a a a a a a a +-=÷-+- ()()()2222a a a a a a +-=-- 22a a +=-, 当22a =+时,原式222241222222+++===++- 【点睛】此题考查了分式的化简求值,熟练掌握运算法则是争本题的关键.20.如图,△ABC 中,AB =AC =10,BC =16.点D 在边BC 上,且点D 到边AB 和边AC 的距离相等.(1)用直尺和圆规作出点D (不写作法,保留作图痕迹,在图上标注出点D );(2)求点D 到边AB 的距离.【答案】(1)见解析(2)4.8【解析】【分析】(1)作∠A 的角平分线交BC 于D ,则根据角平分线的性质可判断点D 到边AB 和边AC 的距离相等;(2)利用勾股定理计算出AD=6,设设点D 到AB 的距离为h ,,利用等面积法得到12×10h=8×6×12,然后解方程求出h 即可.【详解】解:(1)作∠A 的角平分线(或BC 的垂直平分线)与BC 的交点即为点D .如图:(2)∵AB=AC,AD是∠A角平分线∴AD⊥BC,垂足为D,∵BC=16,∴BD=CD=8,∵AB=10,在RT△ABD中∴根据勾股定理求得AD=6,设点D到AB的距离为h,则12×10h=8×6×12,解得h=4.8,所以点D到边AB的距离为4.8.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了角平分线的性质.21.某校积极开展”阳光体育”活动,并开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)该校共有3000名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?【答案】(1)40人(2)12人(3)1125人【解析】【分析】(1)用喜欢跳绳的人数除以其所占的百分比即可求得被调查的总人数;(2)用总人数乘以足球所占的百分比即可求得喜欢足球的人数,用总数减去其他各小组的人数即可求得喜欢跑步的人数,从而补全条形统计图;(3)用样本估计总体即可确定最喜爱篮球的人数比最喜爱足球的人数多多少.【详解】解:(1)观察条形统计图与扇形统计图知:喜欢跳绳的有10人,占25%,故总人数有10÷25%=40人; (2)喜欢足球的有40×30%=12人, 喜欢跑步的有40-10-15-12=3人,故条形统计图补充:(3)全校最喜爱篮球的人数比最喜爱足球的人数多1512300022540-⨯=人. 【点睛】本题考查了扇形统计图、条形统计图及用样本估计总体的知识,解题的关键是能够读懂两种统计图并从中整理出进一步解题的有关信息,难度不大.22.如图,把矩形纸片ABCD 沿EF 折叠后,使得点落在点位置上,点恰好落在边AD 上的点处,连接EG .(1)求证:GEF △是等腰三角形;(2)若4CD =,8GD =,求HF 的长度.【答案】(1)见解析;(2)HF 的长为3【解析】【分析】(1)根据折叠性质可知FEC GEF ∠=∠,由平行线的性质可知GFE FEC ∠=∠,根据等量代换得GFE GEF ∠=∠,再根据等角对等边得到答案;(2)由折叠的性质可知HF DF =,90C H∠=∠=︒,8GD =,CD=GH=4,再根据勾股定理求得答案即可.【详解】解:(1)∵长方形纸片ABCD ,∴//AD BC ,∴GFE FEC ∠=∠∵FEC GEF ∠=∠∴GFE GEF ∠=∠∴GEF △是等腰三角形.(2)∵90C H ∠=∠=︒,HF DF =,8GD =,CD=GH=4设HF 长为,则GF 长为(8)x -,在Rt FGH △中,2224(8)x x +=-解得3x =,∴HF 的长为3.【点睛】本题考查了折叠的性质和平行线的性质,以及勾股定理的应用,根据折叠性质求出相关的量是解题的关键.23.六•一前夕,某幼儿园园长到厂家选购A 、B 两种品牌的儿童服装,每套A 品牌服装进价比B 品牌服装每套进价多25元,用2000元购进A 种服装数量是用750元购进B 种服装数量的2倍.(1)求A 、B 两种品牌服装每套进价分别为多少元;(2)该服装A 品牌每套售价为130元,B 品牌每套售价为95元,服装店老板决定,购进B 品牌服装的数量比购进A 品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A 品牌的服装多少套.【答案】(1)A 、B 两种品牌服装每套进价分别为100元、75元;(2)17套.【解析】【分析】(1)首先设A 品牌服装每套进价为x 元,则B 品牌服装每套进价为(x-25)元,根据关键语句”用2000元购进A 种服装数量是用750元购进B 种服装数量的2倍.”列出方程,解方程即可;(2)首先设购进A 品牌的服装a 套,则购进B 品牌服装(2a+4)套,根据”可使总的获利超过1200元”可得不等式(130-100)a+(95-75)(2a+4)>1200,再解不等式即可.【详解】解:(1)设A 品牌服装每套进价为x 元,则B 品牌服装每套进价为()25x -元,由题意得:2000750225x x =⨯-, 解得:100x =, 经检验:100x =是原分式方程的解,251002575x -=-=,答:A 、B 两种品牌服装每套进价分别为100元、75元;(2)设购进A 品牌的服装a 套,则购进B 品牌服装()24a +套,由题意得:()()()1301009575241200a a -+-+>,解得:16a >,答:至少购进A 品牌服装的数量是17套.【点睛】本题考查了分式方程组的应用和一元一次不等式的应用,弄清题意,表示出A 、B 两种品牌服装每套进价,根据购进的服装的数量关系列出分式方程,求出进价是解决问题的关键.24.如图,在O 中,弦AB 与弦 C D 相交于点,OA CD ⊥于点,过点的直线与 C D 的延长线交于点,//AC BF .(1)若FGB FBG ∠=∠,求证:BF 是O 的切线; (2)若3tan 4F ∠=,CD a =,请用表示O 的半径; (3)求证:22GF GB DF GF -=⋅.【答案】(1)见解析;(2)2548r a =;(3)见解析 【解析】【分析】 (1) 根据等边对等角可得∠OAB=∠OBA ,然后根据OA ⊥CD 得到∠OAB+∠AGC=90°推出∠FBG+∠OBA=90°,从而得到OB ⊥FB ,再根据切线的定义证明即可;(2)根据两直线平行,内错角相等可得∠ACF=∠F ,根据垂径定理可得1122CE CD a ==,连接OC ,设圆的半径为r ,表示出OE ,然后利用勾股定理列式计算即可求出r ;(3)连接BD ,根据在同圆或等圆中,同弧所对的圆周角相等可得∠DBG=∠ACF ,然后求出∠DBG=∠F ,从而求出△BDG 和△FBG 相似,根据相似三角形对应边成比例列式表示出BG 2,然后代入,整理等式左边即可得证.【详解】(1)∵OA OB =∴OAB OBA ∠=∠,∵OA CD ⊥,∴90OAB AGC ∠+∠=︒又∵FGB FBG ∠=∠,FGB AGC ∠=∠,∴90FBG OBA ∠+∠=︒即90OBF ∠=︒,∴OB FB ⊥∴BF 是O 的切线;(2)∵CD a =,OA CD ⊥∴1122CE CD a ==,∵//AC BF ,∴ACF F ∠=∠, ∵3tan 4F =, ∴3tan 4AE ACF CE ∠==,即3142AE a =, 解得38AE a =, 连接OC ,设圆的半径为,则38OE r a =-, 在Rt OCE 中,222CE OE OC +=, 即2221328a r a r ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭, 解得2548r a =; (3)证明:连接BD ,∵DBG ACF ∠=∠,ACF F ∠=∠(已证)∴DBG F ∠=∠又∵FGB BGF =∠∠,∴BDG FBG ∽△△ ∴DG GB GB GF= 即2GB DG GF =⋅,∴222()GF GB GF DG GF GF GF DG GF DF -=-⋅=-=⋅,即22GF GB DF GF -=⋅.【点睛】本题是圆的综合题型,主要考查了切线的定义,解直角三角形,勾股定理的应用,相似三角形的判定与性质,作辅助线构造出直角三角形与相似三角形是解题的关键,(3) 的证明比较灵活,想到计算整理后得证是解题的关键.25.已知二次函数y=ax 2+bx ﹣3a 经过点A (﹣1,0)、C (0,3),与x 轴交于另一点B ,抛物线的顶点为D ,(1)求此二次函数解析式;(2)连接DC 、BC 、DB ,求证:△BCD 是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P ,使得△PDC 为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.【答案】(1)抛物线的解析式为y=﹣x 2+2x+3.(2)证明见解析;(3)点P 坐标为35+55-或(2,3). 【解析】试题分析:(1)将A(﹣1,0)、C(0,3),代入二次函数y=ax 2+bx ﹣3a ,求得a 、b 的值即可确定二次函数的解析式;(2)分别求得线段BC 、CD 、BD 的长,利用勾股定理的逆定理进行判定即可;(3)分以CD 为底和以CD 为腰两种情况讨论.运用两点间距离公式建立起P 点横坐标和纵坐标之间的关系,再结合抛物线解析式即可求解.试题解析:(1)∵二次函数y=ax 2+bx ﹣3a 经过点A(﹣1,0)、C(0,3),∴将A(﹣1,0)、C(0,3),代入,得30{33a b a a --=-=,解得12a b =-=⎧⎨⎩,∴抛物线的解析式为y=﹣x 2+2x+3;(2)如图,连接DC 、BC 、DB ,由y=﹣x 2+2x+3=﹣(x ﹣1)2+4得,D 点坐标为(1,4),∴22(10)(43)-+-2,2233+2,22(31)(40)-+-5∵CD 2+BC 22)2+(32)2=20,BD 252=20,∴CD 2+BC 2=BD 2,∴△BCD 是直角三角形;(3)y=﹣x 2+2x+3对称轴为直线x=1.假设存在这样的点P,①以CD 为底边,则P 1D=P 1C ,设P 1点坐标为(x ,y),根据勾股定理可得P 1C 2=x 2+(3﹣y)2,P 1D 2=(x ﹣1)2+(4﹣y)2,因此x 2+(3﹣y)2=(x ﹣1)2+(4﹣y)2,即y=4﹣x .又P 1点(x ,y)在抛物线上,∴4﹣x=﹣x 2+2x+3,即x 2﹣3x+1=0,解得x 135+x 235-1,(不满足在对称轴右侧应舍去),∴35+∴y=4﹣55-P 1坐标为35+55-.②以CD 为一腰,∵点P 2在对称轴右侧的抛物线上,由抛物线对称性知,点P2与点C关于直线x=1对称,此时点P2坐标为(2,3).∴符合条件的点P坐标为(352+,552-)或(2,3).考点:1.二次函数图象性质;2.等腰三角形性质;3.直角三角形的判定.。
中考数学模拟测试题(附有答案)(满分:120分考试时间120分钟)第Ⅰ卷(选择题共30分)一选择题:本大题共10小题共30.0分。
在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得3分选错不选或选出的答案超过一个均记零分. 211.下列实数中有理数是()A. √12B. √13C. √14D. √152.下列计算正确的是()A. a3+a2=a5B. a3÷a2=aC. 3a3⋅2a2=6a6D. (a−2)2=a2−43.如图AB//CD点E F在AC边上已知∠CED=70°∠BFC=130°则∠B+∠D的度数为()A. 40°B. 50°C. 60°D. 70°(第3题图)4.如图是我们数学课本上采用的科学计算器面板利用该型号计算器计算√23cos35°按键顺序正确的是()A.B.C.D.5.如图二次函数y=ax2+bx+c的图象的对称轴为x=−12且经过点(−2,0)下列说法错误的是()A. bc<0B. a=bC. 当x1>x2≥−12时D. 不等式ax 2+bx +c <0的解集是−2<x <32(第5题图)6. 《九章算术》是古代中国第一部自成体系的数学专著 其中《卷第八方程》记载:“今有甲乙二人持钱不知其数 甲得乙半而钱五十 乙得甲太半而亦钱五十 问甲 乙持钱各几何?”译文是:今有甲 乙两人持钱不知道各有多少 甲若得到乙所有钱的12 则甲有50钱 乙若得到甲所有钱的23 则乙也有50钱.问甲 乙各持钱多少?设甲持钱数为x 钱 乙持钱数为y 钱 列出关于x y 的二元一次方程组是( )A. {x +2y =5032x +y =50B. {x +12y =5023x +y =50B. C. {x +12y =5032x +y =50D. {x +23y =5012x +y =507. 如图 直角坐标系中 以5为半径的动圆的圆心A 沿x 轴移动 当⊙A 与直线l :y =512x 只有一个公共点时 点A 的坐标为( )A. (−12,0)B. (−13,0)C. (±12,0)D. (±13,0)(第7题图)8. 已知反比例函数y =bx 的图象如图所示 则一次函数y =cx +a 和二次函数y =ax 2+bx +c 在同一平面直角坐标系中的图象可能是( )A. B.C. D.9. 对于任意的有理数a b 如果满足a 2+b 3=a+b 2+3那么我们称这一对数a b 为“相随数对” 记为(a,b).若(m,n)是“相随数对” 则3m +2[3m +(2n −1)]=( ) A. −2B. −1C. 2D. 310. 如图 在正方形ABCD 中 E F 分别是AB BC 的中点 CE DF 交于点G 连接AG.下列结论:①CE =DF ②CE ⊥DF ③∠AGE =∠CDF.其中正确的结论是( ) A. ①② B. ①③ C. ②③ D. ①②③(第10题图)第Ⅱ卷(非选择题 共90分)二 填空题:本大题共8小题 其中11-14题每小题3分 15-18题每小题4分 共28分.只要求填写最后结果.11. “先看到闪电 后听到雷声” 那是因为在空气中光的传播速度比声音快.科学家发现 光在空气里的传播速度约为3×108米/秒 而声音在空气里的传播速度大约为3×102米/秒 在空气中声音的速度是光速的_______倍.(用科学计数法表示) 12. 分解因式:ax 2+2ax +a =______.13. “共和国勋章”获得者 “杂交水稻之父”袁隆平为世界粮食安全作出了杰出贡献.全球共有40多个国家引种杂交水稻 中国境外种植面积达800万公顷.某村引进了甲 乙两种超级杂交水稻品种 在条件(肥力 日照 通风…)不同的6块试验田中同时播种并核定亩产 统计结果为:x 甲−=1042kg/亩 s 甲2=6.5 x 乙−=1042kg/亩 s 乙2=1.2 则______ 品种更适合在该村推广.(填“甲”或“乙”)14. 从不等式组{x −3(x −2)≤42+2x 3≥x −1的所有整数解中任取一个数 它是偶数的概率是______.15. 如图 △ABC 中 ∠B =30° 以点C 为圆心 CA 长为半径画弧 交BC 于点D 分别以点A D 为圆心大于12AD 的长为半径画弧两弧相交于点E 作射线CE 交AB 于点F FH ⊥AC 于点H.若FH =√2 则BF 的长为______.16.如图从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形则此扇形的面积为______dm2.17.如图在Rt△OAB中∠AOB=90°OA=OB AB=1作正方形A1B1C1D1使顶点A1B1分别在OA OB上边C1D1在AB上类似地在Rt△OA1B1中作正方形A2B2C2D2在Rt△OA2B2中作正方形A3B3C3D3…依次作下去则第n个正方形A n B n C n D n的边长是______.(15题图)(16题图)(17题图)18.已知正方形ABCD的边长为3E为CD上一点连接AE并延长交BC的延长线于点F过点D作DG⊥AF交AF于点H交BF于点G N为EF的中点M为BD上一动点分别连接MC MN.若S△DCGS△FCE =14则MN+MC的最小值为______.(18题图)三解答题:本大题共7小题共62分.解答要写出必要的文字说明证明过程或演算步骤.19.(本题满分8分第(1)题3分第(2)题5分)(1)计算:(π−2021)0−3tan30°+|1−√3|+(12)−2.(2)先化简再求值:x−3x2−8x+16÷x−3x2−16−xx−4其中x=√2+4.20.(本题满分8分)为引导学生知史爱党知史爱国某中学组织全校学生进行“党史知识”竞赛该校德育处随机抽取部分学生的竞赛成绩进行统计将成绩分为四个等级:优秀良好一般不合格并绘制成两幅不完整的统计图.(第20题图)根据以上信息解答下列问题:(1)德育处一共随机抽取了______名学生的竞赛成绩在扇形统计图中表示“一般”的扇形圆心角的度数为______(2)将条形统计图补充完整(3)该校共有1400名学生估计该校大约有多少名学生在这次竞赛中成绩优秀?(4)德育处决定从本次竞赛成绩前四名学生甲乙丙丁中随机抽取2名同学参加全市“党史知识”竞赛请用树状图或列表法求恰好选中甲和乙的概率.21.(本题满分8分)如图△ABC内接于⊙O AB是⊙O的直径E为AB上一点BE=BC延长CE交AD于点D AD=AC.(1)求证:AD是⊙O的切线(2)若tan∠ACE=1OE=3求BC的长.3(第21题图)22.(本题满分8分)某工厂生产并销售A B两种型号车床共14台生产并销售1台A型车床可以获利10万元如果生产并销售不超过4台B型车床则每台B型车床可以获利17万元如果超出4台B型车床则每超出1台每台B型车床获利将均减少1万元.设生产并销售B型车床x台.(1)当x>4时完成以下两个问题:①请补全下面的表格:②若生产并销售B型车床比生产并销售A型车床获得的利润多70万元问:生产并销售B型车床多少台?(2)当0<x≤14时设生产并销售A B两种型号车床获得的总利润为W万元如何分配生产并销售AB两种车床的数量使获得的总利润W最大?并求出最大利润.23.(本题满分8分)如图在景区新建了一座垂直观光电梯.某测绘兴趣小组为测算电梯AC的高度测得斜坡AB=105米坡度i=1:2在B处测得电梯顶端C的仰角α=45°求观光电梯AC的高度.(参考数据:√2≈1.41√3≈1.73√5≈2.24.结果精确到0.1米)(第23题图)24.(本题满分10分)已知正方形ABCD E F为平面内两点.(第24题图)【探究建模】(1)如图1当点E在边AB上时DE⊥DF且B C F三点共线.求证:AE=CF【类比应用】(2)如图2当点E在正方形ABCD外部时DE⊥DF AE⊥EF且E C F三点共线.猜想并证明线段AE CE DE之间的数量关系【拓展迁移】(3)如图3当点E在正方形ABCD外部时AE⊥EC AE⊥AF DE⊥BE且D F E三点共线DE与AB交于G点.若DF=3AE=√2求CE的长.x2+bx+c与坐标轴交于A(0,−2)B(4,0) 25.(本题满分12分)如图在平面直角坐标系中抛物线y=12两点直线BC:y=−2x+8交y轴于点C.点D为直线AB下方抛物线上一动点过点D作x轴的垂线垂足为G DG分别交直线BC AB于点E F.x2+bx+c的表达式(1)求抛物线y=12(2)当GF=1时连接BD求△BDF的面积2(3)①H是y轴上一点当四边形BEHF是矩形时求点H的坐标②在①的条件下第一象限有一动点P满足PH=PC+2求△PHB周长的最小值.(第25题图)参考答案与解析1.【答案】C【解析】解:A.√12=√22不是有理数不合题意B.√13=√33不是有理数不合题意C.√14=12是有理数符合题意D.√15=√55不是有理数不合题意故选:C.2.【答案】B【解析】解:a3a2不是同类项因此不能用加法进行合并故A项不符合题意根据同底数幂的除法运算法则a3÷a2=a故B项符合题意根据单项式乘单项式的运算法则可得3a3⋅2a2=6a5故C项不符合题意根据完全平方公式展开(a−2)2=a2−4a+4故D项不符合题意.故选:B.3.【答案】C【解析】解:∵∠BFC=130°∴∠BFA=50°又∵AB//CD∴∠A+∠C=180°∵∠B+∠A+∠BFA+∠D+∠C+∠CED=360°∴∠B+∠D=60°故选:C.4.【答案】B【解析】解:根据计算器功能键正确的顺序应该是B.故选:B.5.【答案】D【解析】解:由图象可得b>0c<0则bc<0故选项A正确∵该函数的对称轴为x=−12∴−b2a =−12化简得b=a故选项B正确∵该函数图象开口向上 该函数的对称轴为x =−12 ∴x ≥−12时 y 随x 的增大而增大当x 1>x 2≥−12时 y 1>y 2 故选项C 正确 ∵图象的对称轴为x =−12 且经过点(−2,0) ∴图象与x 轴另一个交点为(1,0)不等式ax 2+bx +c <0的解集是−2<x <1 故选项D 错误 故选:D .6.【答案】B【解析】解:设甲 乙的持钱数分别为x y 根据题意可得:{x +12y =5023x +y =50故选:B .7.【答案】D【解析】解:当⊙A 与直线l :y =512x 只有一个公共点时 直线l 与⊙A 相切 设切点为B 过点B 作BE ⊥OA 于点E 如图∵点B 在直线y =512x 上 ∴设B(m,512m) ∴OE =−m在Rt △OEB 中 tan∠AOB =BEOE =512. ∵直线l 与⊙A 相切 ∴AB ⊥BO .在Rt△OAB中tan∠AOB=ABOB =512.∵AB=5∴OB=12.∴OA=√AB2+OB2=√52+122=13.∴A(−13,0).同理在x轴的正半轴上存在点(13,0).故选:D.8.【答案】D【解析】解:∵反比例函数的图象在二四象限∴b<0A∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限A错误B∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾B错误C∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾C错误D∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限D正确.故选:D.9.【答案】A【解析】解:因为(m,n)是“相随数对”所以m2+n3=m+n2+3所以3m+2n6=m+n5即9m+4n=0所以3m+2[3m+(2n−1)]=3m+2[3m+2n−1]=3m+6m+4n−2=9m+4n−2=0−2=−2故选:A.10.【答案】D【解析】解:∵四边形ABCD是正方形∴AB=BC=CD=AD∠B=∠BCD=90°∵E F分别是AB BC的中点∴BE=12AB CF=12BC∴BE=CF在△CBE与△DCF中{BC=CD∠B=∠BCD BE=CF∴△CBE≌△DCF(SAS)∴∠ECB=∠CDF CE=DF故①正确∵∠BCE+∠ECD=90°∴∠ECD+∠CDF=90°∴∠CGD=90°∴CE⊥DF故②正确∴∠EGD=90°在Rt△CGD中取CD边的中点H连接AH交DG于K ∴HG=HD=12CD∴Rt△ADH≌Rt△AGH(HL)∴AG=AD∴∠AGD=∠ADG∵∠AGE+∠AGD=∠ADG+∠CDF=90°∴∠AGE=∠CDF故③正确故选:D .11.【答案】1×10−6【解析】【解答】解:3×102米/秒÷(3×108)米/秒=10−6故答案为1×10−6.12.【答案】a(x +1)2【解析】解:ax 2+2ax +a=a(x 2+2x +1)--(提取公因式)=a(x +1)2.--(完全平方公式)13.【答案】乙【解析】解:∵x 甲−=1042kg/亩 x 乙−=1042kg/亩 s 甲2=6.5s 乙2=1.2∴x 甲−=x 乙− S 甲2>S 乙2∴产量稳定 适合推广的品种为乙故答案为:乙.14.【答案】25 【解析】解:∵{x −3(x −2)≤4①2+2x3≥x −1②由①得:x ≥1由②得:x ≤5∴不等式组的解集为:1≤x ≤5∴整数解有:1 2 3 4 5∴它是偶数的概率是25.故答案为25.15.【答案】2√2【解析】解:过F 作FG ⊥BC 于G由作图知 CF 是∠ACB 的角平分线∵FH ⊥AC 于点H.FH =√2∴FG=FH=√2∵∠FGB=90°∠B=30°.∴BF=2FG=2√2故答案为:2√2.16.【答案】2π【解析】解:连接AC∵从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形即∠ABC=90°∴AC为直径即AC=4dm AB=BC(扇形的半径相等)∵AB2+BC2=22∴AB=BC=2√2dm∴阴影部分的面积是90⋅π⋅(2√2)2360=2π(dm2).故答案为:2π.17.【答案】13n【解析】解:法1:过O作OM⊥AB交AB于点M交A1B1于点N如图所示:∵A1B1//AB∴ON⊥A1B1∵△OAB为斜边为1的等腰直角三角形∴OM=12AB=12又∵△OA1B1为等腰直角三角形∴ON=12A1B1=12MN∴ON:OM=1:3∴第1个正方形的边长A1C1=MN=23OM=23×12=13同理第2个正方形的边长A2C2=23ON=23×16=132则第n个正方形A n B n D n C n的边长13n法2:由题意得:∠A=∠B=45°∴AC1=A1C1=C1D1=B1D1=BD1AB=1∴C1D1=13AB=13同理可得:C2D2=13A1B1=132AB=132依此类推C n D n=13n.故答案为13n.18.【答案】2√10【解析】解:∵四边形ABCD是正方形∴A点与C点关于BD对称∴CM=AM∴MN+CM=MN+AM≥AN∴当A M N三点共线时MN+CM的值最小∵AD//CF∴∠DAE=∠F∵∠DAE+∠DEH=90°∵DG⊥AF∴∠CDG+∠DEH=90°∴∠DAE=∠CDG∴∠CDG=∠F∴△DCG∽△FCE∵S△DCGS△FCE =14∴CDCF =12∵正方形边长为3∴CF=6∵AD//CF∴ADCF =DECE=12∴DE=1CE=2在Rt△CEF中EF2=CE2+CF2∴EF=√22+62=2√10∵N是EF的中点∴EN=√10在Rt△ADE中EA2=AD2+DE2∴AE=√32+12=√10∴AN=2√10∴MN+MC的最小值为2√10故答案为:2√10.19.(1)【答案】解:(π−2021)0−3tan30°+|1−√3|+(12)−2=1−3×√33+√3−1+4=1−√3+√3−1+4=4.(2)【答案】解:原式=x−3(x−4)2⋅(x+4)(x−4)x−3−xx−4=x+4x−4−xx−4=4x−4.把x=√2+4代入原式=√2+4−4=2√2.20.【答案】40108°【解析】解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名)则在条形统计图中成绩“一般”的学生人数为:40−10−16−2=12(名)∴在扇形统计图中成绩“一般”的扇形圆心角的度数为:360°×1240=108°故答案为:40108°(2)把条形统计图补充完整如下:(3)1400×1040=350(名)即估计该校大约有350名学生在这次竞赛中成绩优秀(4)画树状图如图:共有12种等可能的结果恰好选中甲和乙的结果有2种∴恰好选中甲和乙的概率为212=16.21.【答案】解:(1)∵AB是⊙O的直径∴∠ACB=90°即∠ACE+∠BCE=90°∵AD=AC BE=BC∴∠ACE=∠D∠BCE=∠BEC又∵∠BEC=∠AED∴∠AED+∠D=90°∴∠DAE=90°即AD⊥AE∵OA是半径∴AD是⊙O的切线(2)由tan∠ACE=13=tan∠D可设AE=a则AD=3a=AC ∵OE=3∴OA=a+3AB=2a+6∴BE=a+3+3=a+6=BC在Rt△ABC中由勾股定理得AB2=BC2+AC2即(2a+6)2=(a+6)2+(3a)2解得a1=0(舍去)a2=2∴BC=a+6=8.22.【答案】解:(1)①由题意得生产并销售B型车床x台时生产并销售A型车床(14−x)台当x>4时每台B型车床可以获利[17−(x−4)]=(21−x)万元.故答案应为:14−x21−x②由题意得方程10(14−x)+70=[17−(x−4)]x解得x1=10x2=21(舍去)答:生产并销售B型车床10台(2)当0<x≤4时总利润W=10(14−x)+17x整理得W=7x+140∵7>0∴当x=4时总利润W最大为7×4+140=168(万元)当x>4时总利润W=10(14−x)+[17−(x−4)]x整理得W=−x2+11x+140∵−1<0=5.5时总利润W最大∴当x=−112×(−1)又由题意x只能取整数∴当x=5或x=6时∴当x=5时总利润W最大为−52+11×5+140=170(万元)又∵168<170∴当x=5或x=6时总利润W最大为170万元而14−5=914−6=8答:当生产并销售A B两种车床各为9台5台或8台6台时使获得的总利润W最大最大利润为170万元.23.【答案】解:过B作BM⊥水平地面于M BN⊥AC于N如图所示:则四边形AMBN是矩形∴AN=BM BN=MA∵斜坡AB=105米坡度i=1:2=BMAM∴设BM=x米则AM=2x米∴AB=√BM2+AM2=√x2+(2x)2=√5x=105∴x=21√5∴AN=BM=21√5(米)BN=AM=42√5(米)在Rt△BCN中∠CBN=α=45°∴△BCN是等腰直角三角形∴CN=BN=42√5(米)∴AC=AN+CN=21√5+42√5=63√5≈141.1(米)答:观光电梯AC的高度约为141.1米.24.【答案】(1)证明:如图1中∵四边形ABCD是正方形∴DA=DC∠A=∠ADC=∠DCB=∠DCF=90°∵DE⊥DF∴∠EDF=∠ADC=90°∴∠ADE=∠CDF在△DAE和△DCF中{∠ADE=∠CDF DA=DC∠A=∠DCF∴△DAE≌△DCF(ASA)∴AE=CF.(2)解:结论:EA+EC=√2DE.理由:如图2中连接AC交DE于点O过点D作DK⊥EC于点K DJ⊥EA交EA的延长线于点J.∵四边形ABCD是正方形△DEF是等腰直角三角形∴∠DAO=∠OEC=45°∵∠AOD=∠EOC∴△AOD∽△EOC∴AOEO =ODOC∴AOOD =OEOC∵∠AOE=∠DOC∴△AOE∽△DOC∴∠AEO=∠DCO=45°∴∠DEJ=∠DEK∵∠J=∠DKE=90°ED=ED∴△EDJ≌△EDK(AAS)∴EJ=EK DJ=DK∵∠J=∠DKC=90°DJ=DK DA=DC∴Rt△DJA≌Rt△DKC(HL)∴AJ=CK∴EA+EC=EJ−AJ+EK+CK=2EJ∵DE=√2EJ∴EA+EC=√2DE.(3)解:如图3中连接AC取AC的中点O连接OE OD.∵四边形ABCD是正方形AE⊥EC∴∠AEC=∠ADC=90°∵OA=OC∴OD=OA=OC=OE∴A E C D四点共圆∴∠AED=∠ACD=45°∴∠AEC=∠DEC=45°由(2)可知AE+EC=√2DE∵AE⊥AF∴∠EAF=90°∴∠AEF=∠AFE=45°∴AE=AF=√2∴EF=√2AE=2∵DF=3∴DE=5∴√2+EC=5√2∴EC=4√2.25.【答案】解:(1)∵抛物线y=12x2+bx+c过A(0,−2)B(4,0)两点∴{c=−28+4b+c=0解得{b=−32 c=−2∴y=12x2−32x−2.(2)∵B(4,0)A(0,−2)∴OB=4OA=2∵GF⊥x轴OA⊥x轴在Rt△BOA和Rt△BGF中tan∠ABO=OAOB =GFGB即24=12GB∴GB=1∴OG=OB−GB=4−1=3当x=3时y D=12×9−32×3−2=−2∴D(3,−2)即GD=2∴FD=GD−GF=2−12=32∴S△BDF=12⋅DF⋅BG=12×32×1=34.(3)①如图1中过点H作HM⊥EF于M ∵四边形BEHF是矩形∴EH//BF EH=BF∴∠HEF=∠BFE∵∠EMH=∠FGB=90°∴△EMH≌△FGB(AAS)∴MH=GB EM=FG∵HM=OGOB=2∴OG=GB=12∵A(0,−2)B(4,0)x−2∴直线AB的解析式为y=12a−2)设E(a,−2a+8)F(a,12由MH=BG得到a−0=4−a∴a=2∴E(2,4)F(2,−1)∴FG=1∵EM=FG∴4−y H=1∴y H=3∴H(0,3).②如图2中BH=√OH2+OB2=√32+42=5∵PH=PC+2∴△PHB的周长=PH+PB+HB=PC+2+PB+5=PC+PB+7要使得△PHB的周长最小只要PC+PB的值最小∵PC+PB≥BC∴当点P在BC上时PC+PB=BC的值最小∵BC=√OC2+OB2=√82+42=4√5∴△PHB的周长的最小值为4√5+7.第21页共21页。
中考数学一模试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣2的倒数是()A.﹣B.C.2D.﹣22.(3分)下列计算正确的是()A.2+=2B.a+a2=a3C.2a•3a=6a D.x6÷x2=x4 3.(3分)下列水平放置的几何体中,俯视图是三角形的()A.B.C.D.4.(3分)商店某天销售了14件衬衫,其领口尺寸统计如下表:领口尺寸(cm)3839404142件数15332则这14件衬衫领口尺寸的众数和中位数分别是()A.39cm、40cm B.39cm、39.5cmC.39cm、39cm D.40cm、40cm5.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2B.3C.4D.56.(3分)抛物线y=﹣(x+1)2+3的顶点坐标是()A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)7.(3分)用一个直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁轴截面如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L 的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为()A.60πcm2B.πcm2C.πcm2D.72πcm28.(3分)如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A’恰好在∠BCD的平分线上时,CA’的长为()A.3或4B.3或4C.3或4D.4或3二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)函数中自变量x的取值范围是.10.(3分)写分解因式a2﹣8ab+16b2的结果.11.(3分)长城是我国第一批成功入选世界遗产的文化古迹,长城总长约6700000米,将6700000用科学记数法表示应为.12.(3分)如图,AB是⊙O的直径,点C,D是圆上两点,∠AOC=100°,则∠D=度.13.(3分)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,则∠2的度数为.14.(3分)钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过的弧长是cm.15.(3分)如图,在平面直角坐标系中,将两个全等的矩形OABC和OA'B'C'按图示方式进行放置(其中OA在x轴正半轴上,点B'在y轴正半轴上),OA'与BC相交于点D,若点B坐标为(3,1),则经过点D的反比例函数解析式是.16.(3分)如图,⊙O的半径为1,正方形ABCD顶点B坐标为(5,0),顶点D在⊙O上运动,则正方形面积最大时,正方形与⊙O重叠部分的面积是.三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣2)2﹣.18.(6分)化简:19.(6分)解不等式组:20.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.21.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)22.(10分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF;(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.23.(10分)一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B 处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离(≈1.4,≈1.7,结果保留整数).24.(10分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?25.(12分)如图,A、F、B、C是⊙O上的四个点,连接OF交AB于点E,AO∥BC,AB ∥OC,∠AOF=30°,过点C作CD∥OF交AB的延长线于点D,延长AF交直线CD 于点H.(1)判断四边形ABCO的形状并说明理由;(2)求证:CD是⊙O的切线;(3)若DH=4,求EF的长.26.(12分)如图,在平面直角坐标系xOy中,直线y=x+m与坐标轴y轴交于点A,与x 轴交于点B,过A,B两点的抛物线y=x2+nx﹣8,点D为线段AB上一动点,过点D作CD垂直x轴于点C,交抛物线于点E.(1)求抛物线的解析式;(2)当DE=12时,求四边形CAEB的面积;(3)是否存在点D,使得△DEB和△DAC相似?若存在,求出点D的坐标,若不存在,请说明理由.27.(14分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证:当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=6,DE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDE,请求出相应的BF的长.中考数学一模试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣2的倒数是()A.﹣B.C.2D.﹣2【解答】解:∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.2.(3分)下列计算正确的是()A.2+=2B.a+a2=a3C.2a•3a=6a D.x6÷x2=x4【解答】解:A、2+和2不相等,故本选项不符合题意;B、a和a2不能合并,故本选项不符合题意;C、2a•3a=6a2,故本选项不符合题意;D、x6÷x2=x4,故本选项符合题意;故选:D.3.(3分)下列水平放置的几何体中,俯视图是三角形的()A.B.C.D.【解答】解:俯视图是三角形的是选项D,故选:D.4.(3分)商店某天销售了14件衬衫,其领口尺寸统计如下表:领口尺寸(cm)3839404142件数15332则这14件衬衫领口尺寸的众数和中位数分别是()A.39cm、40cm B.39cm、39.5cmC.39cm、39cm D.40cm、40cm【解答】解:同一尺寸最多的是39cm,共有5件,所以众数是39cm,14件衬衫按照尺寸从小到大排列,第7,8件的尺寸都是40cm,所以中位数是(40+40)=40cm.故选:A.5.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2B.3C.4D.5【解答】解:∵点A是反比例函数y=图象上一点,且AB⊥x轴于点B,∴S△AOB=|k|=2,解得:k=±4.∵反比例函数在第一象限有图象,∴k=4.故选:C.6.(3分)抛物线y=﹣(x+1)2+3的顶点坐标是()A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)【解答】解:抛物线y=﹣(x+1)2+3的顶点坐标是(﹣1,3).故选:B.7.(3分)用一个直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁轴截面如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L 的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为()A.60πcm2B.πcm2C.πcm2D.72πcm2【解答】解:连接OB,作BH⊥OA于H,如图,∵圆锥的母线AB与⊙O相切于点B,∴OB⊥AB,在Rt△AOB中,OA=18﹣5=13,OB=5,∴AB==12,∵OA•BH=OB•AB,∴BH==,∵圆锥形纸帽的底面圆的半径为BH=,母线长为12,∴形纸帽的表面=×2π××12=π(cm2).故选:C.8.(3分)如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A’恰好在∠BCD的平分线上时,CA’的长为()A.3或4B.3或4C.3或4D.4或3【解答】解:如图所示,过点A′作A′M⊥BC于点M.∵点A的对应点A′恰落在∠BCD的平分线上,∴设CM=A′M=x,则BM=7﹣x,又由折叠的性质知AB=A′B=5,∴在直角△A′MB中,由勾股定理得到:A′M2=A′B2﹣BM2=25﹣(7﹣x)2,∴25﹣(7﹣x)2=x2,∴x=3或x=4,∵在等腰Rt△A′CM中,CA′=A′M,∴CA′=3或4.故选:B.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)函数中自变量x的取值范围是x≥﹣2.【解答】解:根据题意得:4+2x≥0,解得:x≥﹣2.故答案为:x≥﹣2.10.(3分)写分解因式a2﹣8ab+16b2的结果(a﹣4b)2.【解答】解:原式=(a﹣4b)2,故答案为:(a﹣4b)2.11.(3分)长城是我国第一批成功入选世界遗产的文化古迹,长城总长约6700000米,将6700000用科学记数法表示应为 6.7×106.【解答】解:6700000=6.7×106.故答案为:6.7×106.12.(3分)如图,AB是⊙O的直径,点C,D是圆上两点,∠AOC=100°,则∠D=40度.【解答】解:∵∠AOC=100°,∴∠BOC=180°﹣100°=80°,∴∠D=40°.13.(3分)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,则∠2的度数为35°.【解答】解:∵AB⊥BC,∠1=55°,∴∠2=90°﹣55°=35°.∵a∥b,∴∠2=∠3=35°.故答案为:35°.14.(3分)钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过的弧长是cm.【解答】解:圆心角的度数是:360°×=240°,弧长是=cm.15.(3分)如图,在平面直角坐标系中,将两个全等的矩形OABC和OA'B'C'按图示方式进行放置(其中OA在x轴正半轴上,点B'在y轴正半轴上),OA'与BC相交于点D,若点B坐标为(3,1),则经过点D的反比例函数解析式是y=.【解答】解:∵点B坐标为(3,1),∴AO=3,AB=CO=1,∵矩形OABC和OA′B′C′全等,∴OA′=OA=3,A′B′=AB=1,∵∠A′=∠DCO=90°,∠DOC=∠B′OA′,∴△CDO∽△A′B′O,∴=,即=,∴CD=,∴D(,1),设经过点D的反比例函数解析式为y=,∴k=×1=,∴经过点D的反比例函数解析式为:y=,故答案为:y=.16.(3分)如图,⊙O的半径为1,正方形ABCD顶点B坐标为(5,0),顶点D在⊙O上运动,则正方形面积最大时,正方形与⊙O重叠部分的面积是+1.【解答】解:如图所示,当点D运动到(﹣1,0)时,BD最长,此时,正方形面积最大,∠CDO=45°,∴∠CDO=45°,又∵∠FDO=45°,∴CD经过点F,同理可得,AD经过点E,∴正方形与⊙O重叠部分的面积是△DEF的面积与半圆面积的和,即×2×1+×π×12=1+,故答案为:+1.三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣2)2﹣.【解答】解:原式=4﹣5﹣5=﹣6.18.(6分)化简:【解答】解:原式=•=•=.19.(6分)解不等式组:【解答】解:,解不等式①,得x≥﹣4,解不等式②,得x>﹣,故不等式的解集为x>﹣.20.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60人,扇形统计图中“基本了解”部分所对应扇形的圆心角为90度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.【解答】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;故答案为:60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.21.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)【解答】解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:;故答案为:;(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;∴建议小明在第一题使用“求助”.22.(10分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF;(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵BE=DF,∴△ABE≌△ADF,∴AE=AF;(2)连接AC,∵AE垂直平分BC,AF垂直平分CD,∴AB=AC=AD.∵AB=BC=CD=DA,∴△ABC和△ACD都是等边三角形.∴∠CAE=∠BAE=30°,∠CAF=∠DAF=30°.∴∠EAF=∠CAE+∠CAF=60°又∵AE=AF,∴△AEF是等边三角形.23.(10分)一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B 处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离(≈1.4,≈1.7,结果保留整数).【解答】解:∵∠BAC=53°﹣23°=30°,∴∠C=23°+22°=45°.过点B作BD⊥AC,垂足为D,则CD=BD.∵BC=10,∴CD=BC•cos45°=10×≈7.0,∴AD==5÷=5×=5×≈5×1.4×1.7≈11.9.∴AC=AD+CD=11.9+7.0=18.9≈19.答:小船到码头的距离约为19海里.24.(10分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?【解答】解:(1)当40≤x≤58时,设y与x之间的函数关系式为y=kx+b(k≠0),将(40,60),(58,24)代入y=kx+b,得:,解得:,∴当40≤x≤58时,y与x之间的函数关系式为y=2x+140;当理可得,当58<x≤71时,y与x之间的函数关系式为y=﹣x+82.综上所述:y与x之间的函数关系式为y=.(2)设当天的销售价为x元时,可出现收支平衡.当40≤x≤58时,依题意,得:(x﹣40)(﹣2x+140)=100×3+150,解得:x1=x2=55;当57<x≤71时,依题意,得:(x﹣40)(﹣x+82)=100×3+150,此方程无解.答:当天的销售价为55元时,可出现收支平衡.25.(12分)如图,A、F、B、C是⊙O上的四个点,连接OF交AB于点E,AO∥BC,AB ∥OC,∠AOF=30°,过点C作CD∥OF交AB的延长线于点D,延长AF交直线CD 于点H.(1)判断四边形ABCO的形状并说明理由;(2)求证:CD是⊙O的切线;(3)若DH=4,求EF的长.【解答】(1)解:四边形ABCO是菱形,理由如下:∵AO∥BC,AB∥OC,∴四边形ABCO是平行四边形,∵OA=OC,∴平行四边形ABCO是菱形;(2)证明:连接OB,∵四边形ABCO是菱形,∴OC=BC,∵OB=OC,∴OB=OC=BC,∴△BOC为等边三角形,同理,△BOA为等边三角形,∴∠AOB=60°,∠BOC=60°,∴∠AOC=120°,∵∠AOF=30°,∴∠COF=90°,∵CD∥OF,∴∠OCD=180°﹣90°=90°,∴CD是⊙O的切线;(3)解:∵CD∥OF,AB∥OC,∠OCD=90°,∴四边形OCDE为矩形,∴DE=OC,∠AEO=90°,∵∠AOF=30°,∴AE=OA=OC=DE,∵CD∥OF,∴==,∴EF=.26.(12分)如图,在平面直角坐标系xOy中,直线y=x+m与坐标轴y轴交于点A,与x 轴交于点B,过A,B两点的抛物线y=x2+nx﹣8,点D为线段AB上一动点,过点D作CD垂直x轴于点C,交抛物线于点E.(1)求抛物线的解析式;(2)当DE=12时,求四边形CAEB的面积;(3)是否存在点D,使得△DEB和△DAC相似?若存在,求出点D的坐标,若不存在,请说明理由.【解答】解:(1)∵直线y=x+m与抛物线y=x2+nx﹣8都经过A点,∴m=﹣8,∵直线y=x+m经过x轴上的B点,∴点B(8,0),又∵抛物线y=x2+nx﹣8经过B点,∴n=﹣7,∴抛物线为:y=x2﹣7x﹣8;(2)设点C为:(x,0),则点D为(x,x﹣8),点E为(x,x2﹣7x﹣8),∵DE=12,∴(x﹣8)﹣(x2﹣7x﹣8)=12,解得:x1=2,x2=6,当x=2时,x2﹣7x﹣8=﹣18,∴CE=18,四边形CAEB的面积=OB×CE=72,当x=6时,x2﹣7x﹣8=﹣14,∴CE=14,四边形CAEB的面积=OB×CE=56;(3)存在,当AC∥BE时,△DEB∽△DCA,过点A作AF⊥CE于点F,=,即=,∴x2+x﹣8=0,解得:x1=,x2=(舍去),当=时,△DEB∽△DAC,即=,∴x2﹣6x=0,解得:x1=6,x2=0(舍去),综上所述:当x=或x=6时,△DEB和△DAC相似,则x﹣8=或﹣2,此时点D的坐标为:(,)或(6,﹣2).27.(14分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是DE∥AC;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是S1=S2.(2)猜想论证:当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=6,DE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDE,请求出相应的BF的长.【解答】解:(1)①如图1中,由旋转可知:CA=CD,∵∠ACB=90°,∠B=30°,∴∠CAD=60°,∴△ADC是等边三角形,∴∠DCA=60°,∵∠ECD=90°,∠DEC=30°,∴∠CDE=60°,∴∠EDC=∠DCA,∴DE∥AC,②∵AB=2AC,AD=AC,∴AD=BD,∴S△BDC=S△ADC,∵DE∥AC,∴S△ADC=S△ACE,∴S1=S2.故答案为:DE∥AC,S1=S2.(2)如图3中,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴S△BDC=S△AEC.(3)如图4中,作DF∥BC交AB于F.延长CD交AB于H.∵DF∥BE,DE∥BF,∴四边形DEBF是平行四边形,∴S△BDF=S△BDE,S△BDF=S△DFC,∴S△DFC=S△BDE,∵∠ABC=60°,BD平分∠ABC,∴∠ABD=∠DBE=30°,∵DF∥BE,∴∠FDB=30°,∴∠FBD=∠FDB=30°,∴FB=FD,∴四边形DEBF是菱形,∵BD=CD=6,∴∠DBC=∠DCB=30°,∵∠DEC=∠ABC=60°,∴∠CDE=90°,∴DE=CD•tan30°=6×=2,∴BF=DE=2,∵DE∥AB,∴∠BHC=∠EDC=90°,∴CH⊥AB,作点F关于CH的对称点F′,连接DF′,易知S△DFC=S△DF′C,在Rt△DFH中,FH=HF′=DF•sin30°=,∴BF′=4,综上所述,满足条件的BF的值为2或4.。
2023—2024学年度第二学期毕业学科期中学业水平检测初四数学试题一、选择题(本题共10小题,每小题4分,共40分.在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填涂在答题纸的相应位置上)1. 若收入3元记作元,则支出5元记作()A. 元 B. 元C. 2元D. 5元【答案】A 【解析】【分析】本题考查了相反意义的量,熟记相反意义的量的定义是解题关键.根据相反意义的量的定义(按照指定方向的标准来划分,规定指定方向为正方向的数用正数表示,则向指定方向的相反的方向变化用负数表示)即可得.解:若收入3元记作元,则支出5元记作元,故选:A .2. 中国古代数学名著《九章算术注》中记载:“邪解立方,得两堑堵.”意即把一长方体沿对角面一分为二,这相同的两块叫做“堑堵”.如图是“堑堵”的立体图形,它的左视图为()A. B.C. D.【答案】C 【解析】【分析】本题考查了三视图,左视图是从左面看得到的图形,由此解答即可,考查了空间想象能力.解:由题意得:它的左视图为一个三角形,如图:,3+5-2-3+5-故选:C .3. 下列各式计算正确的是()A. B. C. D. 【答案】B 【解析】【分析】根据合并同类项,同底数幂的除法,单项式乘以单项式,积的乘方分别进行判断即可.解:A. ,故该选项错误;B. ,故该选项正确;C. ,故该选项错误;D. ,故该选项错误.故选:B .【点睛】本题考查合并同类项,同底数幂的除法,单项式乘以单项式,积的乘方,解题关键是掌握幂的相关运算.4. 如图,直线,将三角尺的直角顶点放在直线上,如果,那么的度数为( )A. B. C.D. 【答案】A 【解析】【分析】根据平行线的性质求出,由平角性质可知即可得出结论.如图:,,336a a a +=633a a a ÷=339a a a ⋅=()22ab ab =3332a a a +=633a a a ÷=2339a a a ⋅=()222ab a b =//a b b 260∠=︒1∠30︒40︒50︒60︒3∠1180390∠∠=︒--︒//a b 2360∴∠=∠=︒,故选:.【点睛】本题考查了平行线的性质,熟练运用平行线的性质推理是解题的关键.5. 某射击队要从四名运动员中选拔一名运动员参加比赛,选拔赛中每名队员的平均成绩与方差s 2如下表所示,如果要选择一个成绩高且发挥稳定的人参赛,则应该选()选手甲乙丙丁平均数8.5998.5方差S 211.211.3A 甲 B. 乙 C. 丙 D. 丁【答案】C 【解析】解:观察图形可知甲、丙方差相等,都小于乙、丁,∴只要比较甲、丙就可得出正确结果,∵甲的平均数小于丙的平均数,∴丙的成绩高且发挥稳定;故选C .6. 已知关于的一元二次方程的两根分别为、,则的值为( )A.B.C. D. 【答案】D 【解析】【分析】先根与系数的关系得,,再利用通分得到,然后利用整体代入的方法计算.解:根据根与系数的关系得:,,∴.故选:D .1180903180906030∴∠=︒-︒-∠=︒-︒-︒=︒A x x 2430x x ++=a b 11a b+432323-43-4a b +=-3ab =11a b a b ab++=4a b +=-3ab =1143a b a b ab ++==-【点睛】本题考查了根与系数的关系:若,是一元二次方程的两根时,,.7. 如图,半径为2的圆与正五边形的边相切于点A ,D ,则弧的长为()A.B.C.D. 【答案】C 【解析】【分析】本题考查了正多边形与圆,切线的性质,弧长公式等知识,设圆心为O ,连接,,利用切线的性质求出,,利用正多边形的性质求出,即可求出,然后利用弧长公式计算即可.解:设圆心为O ,连接,,∵与边相切,∴,,∵五边形正五边形,∴,∴,1x 2x ()200ax bx c a ++=≠12b x x a+=-12cx x a =ABCDE AB CD ,AD 6π514π98π52πOA OD 90ODC ∠=︒90OAB ∠=︒108B C ∠=∠=︒144AOD ∠=︒OA OD O AB CD ,90ODC ∠=︒90OAB ∠=︒ABCDE ()531801085B C -⨯︒∠=∠==︒()531801445AOD B C OAB ODC -⨯︒∠=-∠-∠-∠-∠=︒∴弧的长为,故选:C .8. 某运输公司需要装运一批货物,由于机械设备没有及时到位,只好先用人工装运,12h 完成了一半任务;后来机械装运和人工装运同时进行,2h 完成了后一半任务.如果设单独采用机械装运可以完成后一半任务,那么下面所列方程正确的是()A.B. C.D. 【答案】D 【解析】【分析】本题考查了列分式方程,根据题意找到等量关系列出方程是解题的关键.设单独采用机械装运可以完成后一半任务,由题意列出分式方程即可求解.解:根据题意,得,化简得,故选:D .9. 如图,在中,将斜边的中点绕直角顶点C 顺时针旋转得到点P ,连接.若,,则的面积为()A. 12B. 9C. 8D. 6【答案】B 【解析】【分析】找到斜边的中点D ,作,连接,过点P 作得延长线,根据旋转的性质证明,得到,利用三角形中位线的性质得到,即可求解.解:找到斜边的中点D ,作,连接,过点P 作得延长线,如图AD 144281805ππ⨯=h x 111242x +=1112122x ⎛⎫+⨯= ⎪⎝⎭11112x +=112112x ⎛⎫+⨯=⎪⎝⎭h x 111222122x ⎛⎫ ⎪+⨯= ⎪ ⎪⎝⎭112112x ⎛⎫+⨯=⎪⎝⎭Rt ABC △AB 90︒BP CP ,10AB =8AC =BCP AB DE BC ⊥CD PF BC ⊥()AAS CDE PCF ≌CE PF =132CE BC PF ===AB DE BC ⊥CD PF BC ⊥∵斜边的中点绕直角顶点C 顺时针旋转得到点P ,∴,,∵,∴∴,∴∵,,是直角三角形,∴,∵,是直角三角形,∴∵点D 为斜边的中点,∴点E 为边的中点,∴,∴的面积为:故选:B .【点睛】本题考查了全等三角形的判定与性质,旋转的性质,三角形中位线的性质,正确作出辅助线是关键.10. 我们定义:如果点在某一个函数的图象上,那么我们称点P 为这个函数的“好点”.若关于x 的二次函数对于任意的常数n ,恒有两个“好点”,则常数a 的取值范围为()A. B. C. D. 【答案】D 【解析】【分析】本题考查的是二次函数图象和性质,以及根于系数的关系,数量掌握根与系数关系是求解的关键.由AB 90︒CD CP =90ECD PCF ∠+∠=︒90ECD CDE ∠+∠=︒CDE PCF ∠=∠()AAS CDE PCF ≌CE PF=10AB =8AC =ABC 6BC ==DE BC ⊥ABC ∥D E A CAB BC 132CE BC PF ===BCP 192BC PF ⨯=(),23P m m +()22y ax n x n =++-30a -<<103a <<01a <<0<<3a“好点”的坐标可得,可得,,整理得:,根据有两个“好点”可得方程有两个不相等的实数根,,根据对于任意常数,恒有两个“好点”,可得关于的一元二次方程无解,,即可求出的取值范围.解:令,有,整理得:,有两个“好点”可得方程有两个不相等的实数根有,即,∵对于任意常数,恒有两个好点,∴关于的一元二次方程无解,∴解得:,故选:D .二、填空题(本大题共5小题,每小题4分,共计20分.不需写出解答过程,请把最后结果直接填写在答题卡相应位置上)11.a 的取值范围是__________.【答案】【解析】【分析】本题主要考查了二次根式有意义的条件,熟练掌握被开方数为非负数时,二次根式有意义是解题的关键.根据二次根式有意义的条件,即被开方数为非负数,即可求解.解:根据题意得: ,∴ .故答案为:12. 因式分解:a 3-a =______.23y x =+()2232x ax n x n +=++-230ax nx n +--=2(2)4(3)0n a n ∆=+--->n n 24120n an a ++=10∆<a 23y x =+()2232x ax n x n +=++-230ax nx n +--=24(3)0n a n ∆=--->24120n an a ++>n n 24120n an a ++=21(4)480a a ∆=-<0<<3a 1a ≤10a -≥1a ≤1a ≤【答案】a (a -1)(a + 1)【解析】【分析】先提取公因式a ,再对余下的多项式利用平方差公式继续分解.解:a 3-a =a (a 2-1)=a (a +1)(a -1)故答案为:a (a -1)(a + 1).【点睛】本题考查了提公因式法和公式法,熟练掌握公式是解题的关键.13. 在平面直角坐标系中,点关于直线对称的点的坐标为______.【答案】【解析】【分析】本题考查了坐标与图形,正方形的判定与性质,过A 作轴,交直线于B ,过B 作轴于C ,证明四边形是正方形,可得出A 、C 关于直线对称,即可求解.解:过A 作轴,交直线于B ,过B 作轴于C ,∵,∴,把代入,得,∴,∴,∴四边形是菱形,又轴,∴菱形是正方形,∴A 、C 关于对称,()3,0A y x =A '()0,3AB x ⊥y x =BC y ⊥OABC y x =AB x ⊥y x =BC y ⊥()3,0A 3AO =3x =y x =3y =()3,3B 3BC BA OC AO ====OABC ()0,3C AB x ⊥OABC OB即A 、C 关于直线对称,∴点关于直线对称的点的坐标为,故答案为:.14. 如图,在中,,,,E ,F 分别为边上的点,M ,N 分别为的中点.若,则的长为______.【解析】【分析】连接,过A 作交延长线于G ,连接,证明,,,利用勾股定理的逆定理得出,进而可得出,利用勾股定理求出,然后利用三角形的中位线定理求解即可.解:连接,过A 作交延长线于G ,连接,∴,又,,∴,∴,,∵,,,∴,∴,∴,∴,即,y x =()3,0A y x =A '()0,3()0,3ABC 3AC =4BC =5AB =AC BC ,EF AB ,2AE BF ==MN FN AG BC ∥FN EG ANG BNF ≌ 2AG BF ==FN GN =90C ∠=︒90EAG ∠=︒EG FN AG BC ∥FN EG GAN B ∠=∠ANG BNF ∠=∠AN BN =ANG BNF ≌ 2AG BF ==FN GN =3AC =4BC =5AB =22225+==AC BC AB 90C ∠=︒90CAB B ∠+∠=︒90CAB BAG ∠+∠=︒90EAG ∠=︒又,∴,∵M 为中点,,∴.【点睛】本题考查了勾股定理与逆定理,三角形的中位线定理,全等三角形的判定与性质等知识,添加合适辅助线,构造三角形中位线是解题的关键.15. 如图,分别经过点和点的动直线,交于点C ,在线段上取点D ,连接.若,且,则当的值最大时,点C 的坐标为______.【答案】或【解析】【分析】作的外接圆,连接,,,在上取点,使,连接,,,过点N 做于K ,过D 作轴于G ,过C 作轴于H ,证明是等边三角形,可得出,,根据三线合一性质可判断M 在y 轴上,证明,可求出,则点D 在以N 为圆心,为半径的上运动,当与相切时,最大,即的值最大,此时利用勾股定理可求出,证明,可求出,,,则,根据,,结合两点距离公式列方程组,然后解方程组即可求2AE =EG ==EF FN GN =12MN EG ==()1,0A -()10B ,1l 2l AC BD 30ACB ∠=︒12AD CD =tan ABD ∠ABC M AM BM CM AM N 13AN AM =ND BD BN NK AB ⊥DG x ⊥CH x ⊥ABM AM AB =60MAB ∠=︒NAD MAC ∽ 23ND NA ==ND N e BD N e ABD ∠tan ABD ∠BD =(),D m n ADG ACH ∽ 3CH n =33AH m =+32OH m =+()32,3C m n +BD =2CM =()()(2222213234m n m n ⎧⎪-+=⎪⎨⎪++=⎪⎩解.解∶作的外接圆,连接,,,在上取点,使,连接,,,过点N 做于K ,过D 作轴于G ,过C 作轴于H ,∵,∴,又,∴是等边三角形,∴,,∵,,∴,,∴,∴M 在y 轴上,在中,,,,∴,,∴,∴ABC M AM BM CM AM N 13AN AM =ND BD BN NK AB ⊥DG x ⊥CH x ⊥30ACB ∠=︒260AMB ACB ∠=∠=︒AM BM =ABM AM AB =60MAB ∠=︒()1,0A -()10B ,1AO BO ==2==AM AB MO AB ⊥OM =Rt ANK △1233AN AM ==60NAK ∠=︒90AKN ∠=︒13AK =NK =53BK AB AK =-=BN ==∵,∴,又,∴∴,即∴,∴点D 在以N 为圆心,为半径的上运动,当与相切时,最大,即的值最大此时,∴,设,∵轴,轴,∴,∴,∴,即,解得,,∴,∴,∵,∴,化简的,①-②,得,12AD CD =13AD AN ACAM ==NAD MAC ∠=∠NAD MAC∽ 13ND AN MC AM ==123ND =23ND NA ==ND N e BD N e ABD ∠tan ABD ∠90BDN ∠=︒BD ==(),D m n DG x ⊥CH x ⊥DG CH ∥ADG ACH ∽DG AG AD CH AH AC ==113n m CH AH +==3CH n =33AH m =+32OH m =+()32,3C m n +BD =2CM =(M ()()(2222213234m n m n ⎧⎪-+=⎪⎨⎪++=⎪⎩222236353431m m n m m n ⎧-+=⎪⎨++-=-⎪⎩①②106m -+=,即把代入①,得,整理,得,解得,当∴,∴点C 坐标为;当时,∴,∴点C 坐标为;综上,点C 坐标为或.故答案为:或.【点睛】本题考查了圆周角定理,相似三角形的判定与性质,等边三角形的性质与判定,解方程组等知识,明确题意,添加合适辅助线,构造辅助圆是解题的关键.三、解答题(本题共8小题,请把解答过程写在答题纸上)16.先化简,再求值:,其中.【答案】,【解析】【分析】本题是分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知53m =+()22353n m =+()22353n m =+()2236535m m m -++=27610m m ++=1m =2m =1m =1n =32m +=3n =2m =1n =32m +=3n =22244x x x x x x --⎛⎫÷- ⎪⎝⎭1x =12x -1-识点熟练掌握.首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.解:,当时,原式.17. 如图,在中,,点E ,F 在边上,,延长至点D ,使.(1)求证:;(2)若,求的度数.【答案】(1)见解析(2)【解析】【分析】(1)根据等边对等角可得,,即可证明结论;(2)根据全等三角形的性质可得,再根据即可求解.【小问1】证明:∵,,∴,,∴,∴【小问2】解:∵,由(1)得:∴,22244x x x x x x --⎛⎫÷- ⎪⎝⎭()22244=x x x x x x--+÷()()222=2x x x x x -⋅-12x =-1x =1112==--ABC AC BC =AB CE CF =CF DC BC =ACE BCF ≌△△20ACE ∠=︒BDC ∠80BDC ∠=︒A CBA ∠=∠AEC BFC ∠=∠20BCF ∠=︒DC BC =AC BC =CE CF =A CBA ∠=∠CEF CFE ∠=∠AEC BFC ∠=∠()AAS ACE BCF ≌20ACE ∠=︒()AAS ACE BCF ≌20BCF ∠=︒∵,∴【点睛】本题考查了全等三角形的性质和判定、等边对等角、三角形外角性质,三角形内角和定理等知识点,能综合运用定理进行推理是解此题的关键.18. 如图,在中.利用尺规作图,在BC 边上求作一点P ,使得点P 到AB 的距离的长等于PC 的长;利用尺规作图,作出中的线段PD .要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑【答案】作图见解析; (2)作图见解析.【解析】【分析】由点P 到AB 的距离的长等于PC 的长知点P 在平分线上,再根据角平分线的尺规作图即可得(以点A 为圆心,以任意长为半径画弧,与AC 、AB 分别交于一点,然后分别以这两点为圆心,以大于这两点距离的一半长为半径画弧,两弧交于一点,过点A 及这个交点作射线交BC 于点P ,P 即为要求的点);根据过直线外一点作已知直线的垂线的尺规作图即可得(以点P 为圆心,以大于点P 到AB 的距离为半径画弧,与AB 交于两点,分别以这两点为圆心,以大于这两点间距离一半长为半径画弧,两弧在AB 的一侧交于一点,过这点以及点P 作直线与AB 交于点D ,PD 即为所求).如图,点P即为所求;DC BC =()1180802BDC BCF ∠=︒-∠=︒Rt ABC ()1(PD ()2()1()1()1(PD BAC ∠()2()1如图,线段PD 即为所求.【点睛】本题考查了作图-复杂作图、角平分线的性质定理等知识,解题的关键是熟练掌握基本作图,灵活运用所学知识解决问题.19. 如图1,已知反比例函数的图象经过斜边的中点C ,且与直角边相交于点D ,另一直角边在x 轴上.(1)已知的面积为8,请求出k 的值;(2)如图2,直线经过C ,D 两点,在(1)的条件下,当时,请求出直线的表达式;(3)根据图象,请直接写出关于x的不等式的解集.【答案】(1)4(2)(3)或【解析】【分析】本题考查了待定系数法求一次函数和反比例函数解析式,反比例函数和一次函数的交点问题,熟练掌握待定系数法求解析式、三角形的面积、一次函数的图象是解题的关键;(1)过点C 作轴,设点C 的横坐标为a ,则点C 的纵坐标为,进而得到B 、D 两点坐标,再利用的面积,即可求出k 的值(2)根据,的面积得出点D 的横坐标,根据反比例函数得出点D 的坐标,然后根据点C 为中点得出坐标,代入一次函数即可;(3)观察图象,找到直线在双曲线下方即可得到答案;【小问1】()2()0,0k y k x x=>>Rt OAB OB AB OA Rt OAB y mx b =+45AOB ∠=︒CD k mx b x >+132y x =-+2x <>4x CE x ⊥k aRt OAB 45AOB ∠=︒Rt OAB过点C 作轴于点E ,点C 、D 在反比例函数上,设点C 的横坐标为a ,点C的纵坐标为,斜边的中点C ,,的面积为8,,.【小问2】由(1)反比例函数的解析式为,,,,的面积为8,为等腰直角三角形,,点C 的横坐标为2,点D 的横坐标为4,点C 、D 反比例函数上,,将,代入中得,,直线的表达式为;在CE x ⊥ ()0,0k y k x x=>>∴k aRt OAB OB 22,k B a a ⎛⎫∴ ⎪⎝⎭2,2k D a a ⎛⎫ ⎪⎝⎭ Rt OAB ∴1128=2=222OAB k S OA OB a k a ==⨯⨯⨯⨯△4k ∴=4y x =1=2OC OB 1=2OE OA 45AOB ∠=︒Rt OAB ∴OAB ==4OA OB ∴∴ 4y x=∴()2,2C ()4,1D ()2,2C ()4,1D y mx b =+12m =-3b =∴CD 132y x =-+小问3】由图象可知,关于x的不等式的解集是反比例函数图象总在一次函数图象的上方对应的自变量的取值范围,即∶或.20. 年月日是第三十二届“世界水日”,月日至日是第三十七届“中国水周”.某学校积极响应“世界水日•中国水周”,组织开展主题为“节约用水,珍惜水资源”的社会实践活动.小组在甲,乙两个小区各随机抽取户居民,统计其月份用水量,分别将两个小区居民的用水量分为组,第一组:,第二组:,第三组:,第四组:,第五组:,并对数据进行整理,描述和分析,得到如下信息.信息一:甲小区月份用水量频数分布表用水量频数(户)信息二:甲,乙两小区月份用水量数据的平均数和中位数如下:甲小区乙小区k mx b x>+2x <>4x 202432232228A 303()3m x 557x ≤<79x ≤<911x ≤<1113≤<x 1315x ≤<3()3/m x 57x ≤<479x ≤<9911x ≤<101113≤<x 51315x ≤<23平均数中位数信息三:乙小区月份用水量在第三组的数据为:根据以上信息,回答下列问题:(1)______;(2)在甲小区抽取的用户中,月份用水量低于本小区平均用水量的户数所占百分比为,在乙小区抽取的用户中,月份用水量低于本小区平均用水量的户数所占百分比为,比较的大小,并说明理由;(3)若甲小区共有户居民,乙小区共有户居民,估计两个小区月份用水量不低于的总户数;(4)因任务安排,需在小组和小组分别随机抽取1名同学加入小组,已知小组有名男生和名女生,小组有名男生和名女生,请用列表或画树状图的方法,求抽取的两名同学都是男生的概率.【答案】(1);(2),理由见解析;(3)户;(4).【解析】【分析】()根据中位数的定义进行计算即可求解;()根据题意分别求出月份用水量低于平均数的户数,再计算进行比较即可求解;()用甲、乙小区的用户数分别乘以用水量不低于的占比,再相加即可求解;()画树状图,根据树状图即可求解;本题考查了用树状图法求概率,中位数,频数分布直方图,样本估计总体,熟练掌握各知识点是解题的关键.【小问1】解:∵随机抽取了户居民,故中位数是数据从小到大排列的第个和第个的平均数,根据频数分布直方图可知:用水量在的有户,用水量在的有户,用水量在的有户,用水量在的有户,用水量在的有户,故中位数是在第三组中,且是第三组中第个和第个的平均数,∵乙小区月份用水量在第三组的数据为:,9.09.19.2a399.29.49.59.69.71010.310.410.6,,,,,,,,,=a 3b 3c b c ,6508503313m B C A B 3C 229.1c b >10038233313m 430151657x ≤<379x ≤<11911x ≤<101113≤<x 41315x ≤<22399.29.49.59.69.71010.310.410.6,,,,,,,,,∴乙小区月份用水量的中位数是, ∴,故答案为:;【小问2】解:,理由如下:在甲小区抽取的用户中,月份用水量的平均数为,低于本小区平均用水量的户数户,∴在甲小区抽取的用户中,月份用水量低于本小区平均用水量的户数所占百分比为, 在乙小区抽取的用户中,月份用水量的平均数为,低于本小区平均用水量的户数为户,∴在乙小区抽取的用户中,3月份用水量低于本小区 平均用水量的户数所占百分比为,∵,∴;【小问3】解:户,答:估计两个小区月份用水量不低于的总户数为户;【小问4】解:画树状图如图:由树状图可知,共有种等可能的结果,其中抽取的两名同学都是男生的结果有种, ∴抽取的两名同学都是男生的概率为.21. 2021年是脱贫攻坚的收官之年,老李在驻村干部的帮助下,利用网络平台进行“直播带货”,销售一批成本为每件30元的商品,按单价不低于成本价,且不高于60元销售,经调查发现,该商品每天的销售量y (件)与销售单价x (元)之间满足一次函数关系,部分数据如表所示.销售单价x (元)304045销售数量y (件)10080703399.29.1m 2+=9.1a =9.1c b >339.0m 4913+=31330b =339.1m 311115++=1530c =15133030>c b >()222650850650850100303030⨯+⨯=+⨯=3313m 10016663168=(1)求该商品每天的销售量y (件)与销售单价x (元)之间的函数关系式.(2)销售单价定为多少元时,每天的销售利润为800元?(3)销售单价定为多少元时,才能使销售该商品每天获得的利润w (元)最大?最大利润是多少元?【答案】(1)(2)销售单价定为40元时,每天的销售利润为800元(3)销售单价定为55元时,销售该商品每天的利润最大,最大利润1250元;【解析】【分析】(1)设该商品每天的销售量为(件)与销售单价(元)之间的函数关系式为,用待定系数法求解即可.(2)根据每件的利润乘以销售量等于利润元,列出方程并求解,再结合单价不低于成本价,且不高于元销售,可以得到符合题意的答案.(3)根据每件的利润乘以销售量等于利润得出关于的二次函数,将其写成顶点式,根据二次函数的性质及自变量的取值范围可得答案.【小问1】解:设销售量y 与销售单价x 之间的函数关系式为:将点、代入一次函数表达式得:,解得:,故函数的表达式为:;【小问2】解:由题意得解得:,销售单价不低于成本价,且不高于60元不合题意,舍去,答:销售单价定为40元时,每天的销售利润为800元;【小问3】()21603060y x x =-+≤≤y x y kx b =+80060w x y kx b=+()30,100()40,80100308040k b k b =+⎧⎨=+⎩2160k b =-⎧⎨=⎩()21603060y x x =-+≤≤()()302160800x x --+=211028000x x +=-140x =270x = 270x ∴=解:由题意得:,∵,抛物线开口向下,当时,w 有最大值,此时,,故销售单价定为55元时,销售该商品每天的利润最大,最大利润1250元;【点睛】本题考查了二次函数,和一元二次方程在销售问题中应用,明确成本利润问题的基本数量关系并熟练掌握二次函数的性质是解题关键.22. 如图1,在矩形中,,,点O 在边上,以O 为圆心为半径作,与射线的另一个交点为E ,直线与射线交于点F .(1)设,,求y 与x 之间函数关系式,并直接写出x 的取值范围;(2)如图2,连接,当时,请求出的半径;(3)如果射线与的另一个交点为Q ,连接,问是否存在为直角三角形,若存在,请直接写出的面积;若不存在,请说明理由.【答案】(1)(2)(3)的面积为或【解析】【分析】(1)过点O 作于点M ,根据垂径定理得出,根据勾股定理求出,证明,得出,即,求出函数的解析式,最后求出x 的取值范围即可;(2)过点E 作于点H ,设,则,根据勾股定理求出,的()()()23021602551250w x x x =--+=--+20-<55x =1250w =ABCD 6AB =8BC =BC BO O O BD CE AD BO x =BE y =AO AO CE ∥O EC O OQ COQ Rt COQ △588582x y x ⎛⎫≤≤ ⎪=⎝⎭4-+OCQ △21472OM BD ⊥1122BM BE y ==10BD ==BOM BDC ∽BM BO BC BD =12810y x =EH BC ⊥3EH k =4BH k =5BE k ==求出,得出,,求出,证明,得出,即,求出结果即可;(3)根据哪个角是直角分类讨论,画出图形,利用勾股定理或相似三角形的性质列方程,求出直角边长即可得出答案.【小问1】解:过点O 作于点M ,如图所示:∵,∴,∵四边形为矩形,∴,,,∴由勾股定理,,∵,,∴,∴,即,解得:,825k x =24325EH k x ==32425BH k x ==32825CH BC BH x =-=-ABO EHC ∽AB EH BO HC =2462532825x x x =-OM BD ⊥OM BD ⊥1122BM BE y ==ABCD 6AB CD ==8AD BC ==90ACD ADC BAD ===︒∠∠∠10BD ==OBM CBD ∠=∠90OMB BCD ==︒∠∠BOM BDC ∽BM BO BC BD=12810y x =85y x =当直线恰好经过A 点时,,∴,解得:,∴.【小问2】解:过点E 作于点H ,如图所示:则,,设,则,∴,∴,解得:,∴,,∴,∵,CE 152BE BD ==855y x ==258x =2588x ≤≤EH BC ⊥90EHB ∠=︒6384tan EH CD EBH BH BC ====∠3EH k =4BH k =5BE k ==855y k x ==825k x =24325EH k x ==32425BH k x ==32825CH BC BH x =-=-CE AO∴,∵,∴,∴,即,解得:(舍去),即此时的半径为.【小问3】解:①若时,过点O 作于点M ,于点N ,如图所示:∵,点Q 在上,∴此时与相切,∴E 、Q 重合,∵,∴,,ECH AOB =∠∠90ABO EHC ==︒∠∠ABO EHC ∽AB EH BO HC=2462532825x x x =-4x =-+4x =--O 4-+90OQC ∠=︒OM BD ⊥ON BD ⊥OQ CE ⊥O CE O 1122BCD S BC CD BD CN =⨯=⨯ 245BC CD CN BD ⨯==325BN ==∵,∴,∵,∴,∵,∴,∵,∴,∴,∴,∴,即,∴,解得:,∵,∴此时不符合题意;②时,此时E 与D 重合,如图所示:85BQ BE x ==32855NQ x =-OM BQ ⊥1425MQ BQ x ==63sin 105OM CD CBD BO BD ====∠35OM x =90OMQ CQO CNQ ===︒∠∠∠90OQM MOQ OQM CQN +=+=︒∠∠∠∠MOQ CQN =∠∠OMQ QNC ∽OM MQ NQ CN=345532824555x x x =-332855542455x x x -=74x =72548<90OCQ ∠=︒根据勾股定理得:,解得:,则,∵,∴,∴;③时,过点E 作,交延长线于点F ,则,,()22268x x =+-254x =2578844CO x =-=-=OC DQ ⊥6CQ CD ==17216244COQ S =⨯⨯= 90COQ ∠=︒EF BC ⊥BC OB OE OF x ===85BE y x ==∵,∴,解得:,∵,∴,解得:,∴,,∵,,∴,∴,∴,代入数据,,解得,∴.综上,的面积为或.【点睛】本题主要考查了解直角三角形、相似三角形、圆的有关性质,勾股定理,求函数解析式,解题关键是熟练综合运用所学知识,进行推理计算,注意:分类讨论思想的运用.23. 如图1,在平面直角坐标系中,抛物线与x 轴交于点,,与y 轴交于点35sin EF CD DBC BE BD ===∠3855EF x =2425EF x =45cos BF BC DBC BE BD ∠===4855BF x =3225BF x =3272525OF x x x =-=8OC x =-90EFC COQ ==︒∠∠ECF OCQ =∠∠ECF QCO ∽25242425CO x CF x OQ EF ===5492CO OF =25847259x x -=⨯7x =()117877222OCQ S OC OQ =⨯=⨯-⨯= OCQ △21472xOy ()1,0A -()3,0B,点D 为抛物线的顶点.(1)求该抛物线的表达式及顶点D 的坐标;(2)如图2,已知经过点A 的直线与抛物线在第一象限交于点E ,与y 轴交于点F ,连接.当时,求点E 的坐标;(3)如图3,在(2)的条件下,将直线与y 轴的交点F向下平移个单位长度得到点P .①连接,求的度数;②将绕点O 逆时针旋转一定的角度得到,直线与x 轴交于点M .设点N 为平面直角坐标系内的任意一点,问在旋转过程中是否存在某个位置,使得四边形为菱形?若存在,请直接写出所有满足条件的点N 的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为;顶点D 的坐标为(2)(3);所有满足条件的点N 的坐标为或或或【解析】【分析】(1)利用待定系数法求解即可;(2)连接,在上取一点G ,使,连接,过点A作,交抛物线于点E ,,此时点D 到直线的距离等于点B 到直线距离的倍,即,根据两点()0,3C -()0y kx b k =+>AD DE BE ,,43ADE ABE S S =△△AE 65+PB BPO ∠BOP △()0360αα︒<<︒B OP ''△B P ''OP MN '2(1)4y x =--(1,4)D -21156,525E ⎛⎫ ⎪⎝⎭60BPO ∠=︒32N ⎫-⎪⎪⎭32N ⎫⎪⎪⎭32N ⎛- ⎝3,2N ⎛ ⎝BE AD 34AG AD =BG AE BG ∥43AD AG =AE AE 4343ADE ABE S S =△△间距离公式先求出,从而求得直线的解析式和直线的解析式,联立即可求解;(3)先求出点P 的坐标,根据为边时和当为对角线时,结合菱形的性质即可求解.【小问1】解:由题意得,设抛物线解析式为,把代入得:,解得:∴抛物线解析式为∴顶点D 的坐标为【小问2】解:连接,在上取一点G ,使,连接,过点A 作,交抛物线于点E ,∴,此时点D 到直线的距离等于点B 到直线距离的倍,即∵,∴,∴,设直线的解析式为,1,32G ⎛⎫- ⎪⎝⎭BGAE tanOB BPO OP∠==OM OM (1)(3)y a x x =+-()0,3C -33a -=-1a =2(1)(3)(1)4y x x x =+-=--(1,4)D -BE AD 34AG AD =BG AE BG ∥43AD AG =AE AE 4343ADE ABE S S =△△()1,0A -(1,4)D -AD ==AG =AD y kx b =+∴,解得,∴直线的解析式为,设,∴,解得:或(舍)∴,设直线的解析式为,∴,解得,∴直线的解析式为,∵,∴设直线的解析式为,代入得:,∴直线的解析式为,联立得:,解得或(舍)当时,∴;【小问3】解:①∵直线解析式为,的04k b k b -+=⎧⎨+=-⎩22k b =-⎧⎨=-⎩AD 22y x =--(),22G x x --AG ==12x =52-1,32G ⎛⎫- ⎪⎝⎭BG y px q =+30132p q p q +=⎧⎪⎨+=-⎪⎩65185p q ⎧=⎪⎪⎨⎪=-⎪⎩BG 61855y x =-AE BG ∥AE 65y x m =+()1,0A -65m =AE 6655y x =+2665523y x y x x ⎧=+⎪⎨⎪=--⎩215x =1-215x =15625y =21156,525E ⎛⎫ ⎪⎝⎭AE 6655y x =+令,得,∴∴将直线与y 轴的交点F 向下平移∵∴∴;②由旋转的性质可得:,当为边时,设,当时,是等边三角形,,解得:,∴或∴,或∴,,或,,,解得:或,∴或;0x =65y =60,5F ⎛⎫ ⎪⎝⎭AE 65+(0,P ()3,0B tan OB BPO OP∠==60BPO ∠=︒'60OP B BPO ∠=∠=︒'OP OP ==OM (),0M m 'OM OP =='OP M =m =)M ()M 32P ⎫-⎪⎭'⎪32P ⎛⎫ ⎪ ⎝⎭'⎪'M O N p x x x x +=+'M O N p y y y y +=+0N x =+3002N y ⎛⎫+-=+ ⎪⎝⎭'O M N p x x x x +=+'O M N p y y y y +=+0N x =3002N y +=+N x =32N y =-N x =32N y =32N ⎫-⎪⎪⎭32N ⎫⎪⎪⎭当为对角线时,当时,∴,∴,∴∴或;综上所述:所有满足条件的点N 的坐标为或或或【点睛】本题考查了二次函数的综合问题,也考查了解直角三角形,旋转的性质,等边三角形的性质,等腰三角形的性质,一次函数的性质,以及坐标与图形,解题的关键是熟练掌握图形的运动问题,正确的确定点的位置是关键;注意运用数形结合的思想,分类讨论的思想进行解题.OM ''P M OP =='''180120OP M OP B ∠=︒-∠=︒'60OP N ∠=︒''12P Q OP NQ ===32OQ ==32N ⎛- ⎝3,2N ⎛ ⎝32N ⎫-⎪⎪⎭32N ⎫⎪⎪⎭32N ⎛- ⎝3,2N ⎛ ⎝。
中考数学模拟考试卷(附带有答案)(满分:120分 ;考试时间:120分钟)第I 卷 (选择题 共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 3-的相反数是( )A .3B .-3C .31D .31-2. 下列运算正确的是( )A .326a a a =÷ B .222a b a b -=-)( C .6223b a ab =)( D .b 3-a 2-b 3-a 2-=)(3. 如图,直线AB 、CD 相交于点O ,EO ⊥CD ,下列说法错误的是( ) A .∠AOD =∠BOC B .∠AOE +∠BOD =90° C .∠AOC =∠AOE D .∠AOD +∠BOD =180°4.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度 高中 大专 本科 硕士 博士 人数9172095关于这组文化程度的人数数据,以下说法正确的是:( )A .众数是20B .中位数是17C .平均数是12D .方差是26 5. 下列一元二次方程中,没有实数根的是( )A .2x +3x =0B .22x –4x +1=0C .2x –2x +2=0D .52x +x –1=06.如图,石拱桥的桥顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面AB 宽为A .8mB .6mC .5mD .4m7.如图,小刚从山脚A 出发,沿坡角为α的山坡向上走了300米到达B 点,则小刚上升了( )A .300sin α米B .300cos α米C .300tan α米D .300tan α米EOD CBA8. 某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,可列出的方程是 ( ) A .(x +1)(4–0.5x )=15 B .(x +3)(4+0.5x )=15 C .(x +4)(3–0.5x )=15 D .(3+x )(4–0.5x )=159. 在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )A .B .C .D .10.如图,在正方形ABCD 中,AC 、BD 相交于点O ,把△ABC 折叠,使AB 落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AG 交BD 于点F ,连结EG 、EF 下列结论:①tan ∠AGB =2; ②若将△GEF 沿EF 折叠,则点G 一定落在AC 上;③ BG =BF ; ④S 四边形GFOE =S △AOF ,上述结论中正确的个数是( ) A .1个 B .2个 C .3个 D .4个第II 卷 (非选择题共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分只要求填写最后结果.GFE OD CBA11. 华为正式发布2020年财报,报告显示,华为去年销售收入8914亿元人民币,销售收入遥遥领先。
中考数学模拟测试题(附含答案)(满分:120分;考试时间120分钟)一、单选题。
(每小题4分,共40分) 1.实数﹣2023的绝对值是( )A.2023B.﹣2023C.12023 D.﹣120232.如图是由6个相同的正方体搭成的几何体,这个几何体的主视图是( )A. B. C. D.3.山东省济南济阳区躯曲堤街道,号称中国黄瓜之乡,特产曲堤黄瓜,全国农产品地理标志,2022年,该街道黄瓜年产值超15 0000 0000元,将数字15 0000 0000用科学记数法表示为( ) A.15×108 B.1.5×109 C.0.15×1010 D.1.5×1084.如图,AB ∥CD ,点E 在AB 上,EC 平分∠AED ,若∠2=50°,则∠1的度数为( ) A.45° B.50° C.65° D.80°(第4题图) (第8题图) (第9题图)5.数学中的对称之美无处不在,下列是张强看到的他所在小区的垃圾桶上的四幅垃圾分类标志图案,如果不考虑图案下面的文字说明,那么这四幅图案既是轴对称图形,又是中心对称图形的是( )A.有害垃圾B.可回收物C.厨余垃圾D.其它垃圾 6.化简:x 2x 2-4÷xx -2=( )A.1B.xC.xx-2D.xx+27.现将正面分别标有“善”、“美”、“济”、“阳”图案的四张卡片(除卡片正面内容不同处,其余完全相同),背面朝上放在桌面上,混合洗匀后,王刚从中随机抽取两张,则这两张卡片的图案恰好可以组成济阳概率是()A.12B.13C.14D.168.反比例函数y=kx在第一象限的图案如图所示,则k的值可能是()A.9B.18C.25D.369.如图,点C是直线AB为4的半圆的中点,连接BC,分别以点B和点C为圆心,大于12BC的长为半径画弧,两弧相交于点D,作直线OD交BC于点E,连接AE,则阴影部分面积为()A.πB.2πC.3√3-πD.2√3-π10.把二次函数y=ax2+bx+c(a>0)的图象作关于y轴的对称变换,所的图象的解析式为y=a (x+1)2-a2,若(m-2)a+b+c≥0成立,则m的最小整数值为()A.2B.3C.4D.5二、填空题。
中考数学模拟试卷(含有答案)一.单选题。
(共40分) 1.√25等于( )A.5B.﹣5C.±5D.25 2.下列正面摆放的几何体中,左视图是三角形的是( )3.据推算,全国每年减少10%的过度包装纸用量,那么可排放二氧化碳3 120 000吨,数3 120 000用科学记数法表示为( )A.3.12×106B.31.2×105C.312×104D.3.12×107 4.下列平面直角坐标系内的曲线中,既是中心对称图形,又是轴对称图形的是( )5.如图,下列结论正确的是( )A.b -a >0B.a+b <0C.|a |>|b |D.ac >0(第5题图) (第9题图)6.计算x+1x-1x 的结果是( )A.1B.xC.1x D.x+1x 27.不透明袋子中装有10个球,其中有6个红球和4个白球,它们除了颜色其余都相同,从袋中随机摸出1个球,是红球的概率是( ) A.15 B.25 C.35 D.3108.在平面直角坐标系中,一次函数y=kx -1的图象向上平移2个单位长度后经过点(2,3),则k 的值是( )A.1B.﹣1C.﹣2D.29.如图,在△ABC 中,AB=AC=2BC=4,以点B 为圆心,BC 长为半径画弧,与AC 交于点D ,则线段CD 的长为( )A.12B.1C.43 D.210.二次函数y=﹣x 2+2x+8的图像与x 轴交于B ,C 两点,点D 平分BC ,若在x 轴上侧的A 点为抛物线的动点,且∠BAC 为锐角,则AD 的取值范围是( )A.3<AD ≤9B.3≤AD ≤9C.4<AD ≤10D.3≤AD ≤8 二.填空题。
(共24分)11.因式分解:m 2-4= .12.如图,是由7个全等的正六边形组成的图案,假设可以随机在图中取点,那么这个点取在阴影部分的概率是 .(第12题图) (第13题图)13.如图,一个正方形剪去四个角后形成一个边长为√2的正八边形,则这个正方形的边长为 .14.已知m 是关于x 的方程x 2-2x -3=0的一个根,则m 2-2m+2020= .15.学校食堂按如图方式摆放餐桌和椅子,若用x 表示餐桌的张数,y 表示椅子的把数,请你写出椅子数y (把)与餐桌数x (张)之间的函数关系式 .(第15题图) (第16题图)16.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE与AB交于点E,且tan∠α=34,有以下结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或214;④0<BE≤5,其中正确结论是(填序号)三.解答题。
第1页 共10页 中考数学模拟试题 说明: 1.全卷共8页,考试时间为100分钟,满分120分. 2.答卷前,考生务必在答题卡第1面、第3面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写座位号,再用2B铅笔把对应号码的标号涂黑. 3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上. 4.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图,再用用黑色字迹的钢笔或签字笔描黑.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效. 5. 考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.
一、选择题(本大题共10小题,每小题3分,共30分)说明:下面各题都给出代号为A,B,C,D的四个答案,请把唯一正确的答案代号填到题后的括号内. 1、3的倒数是( ). A.13 B.13 C.3 D.3
2、函数8yx的自变量x的取值范围是( ). A.8x B.8x C.8x≤ D.8x≥ 3、国家游泳中心--“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260 000平方米,将260 000用科学记数法表示应为( ). A.60.2610 B.42610 C.52.610 D. 62.610
4、下面简单几何体的左视图是( ).
5、2007年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31、35、31、34、30、32、31,这组数据的中位数,众数分别是( ). A.32、31 B.31、32 C.31、31 D.32、35 6、下列命题中,错误的是( ). A.矩形的对角线互相平分且相等 B.对角线互相垂直的四边形是菱形 C.等腰梯形的两条对角线相等 D.等腰三角形两底角相等
A. B. C. D. 正面 第2页 共10页 图 3O
BA35
图 2C
B
A
7、下列图形中,能肯定12∠∠的是 ( ). 8、下列各式计算结果正确的是( ). A.2a+a=2a2 B.(3a)2=6a2 C.(a-1)2=a2-1 D.a·a=a2 9、 如图1,在菱形ABCD中,EF,分别是ABAC,的中点,如果2EF,那么菱形ABCD 的周长是( )
A.4 B.8 C.12 D.16 10、圆柱底面直径为2cm,高为4cm,则圆柱的侧面积为( )2cm.
A.8π B.16π C.17π D.25π 二、填空题(本大题共6小题,每小题3分,共18分)说明:将下列各题的正确答案填写在横线上. 11、请写出一对互为相反数的数: 和 .
12、分解因式:22bb
.
13、在右边的日历中, 任意圈出一竖列上 相邻的三个数,设中间的一个数n, 则这三 个数之和为________(用含n的代数式表示).
14、已知,如图2,在Rt△ABC中,∠C=90°,3,5BCAB,则Acos .
15、如图3,⊙O的半径长为10cm,弦16ABcm,则圆心O到弦AB的距离为 . 16、某商店出售下列形状的地板砖:①正三角形;②正方形;③正五边形;④正六边形.如果只限于用一种地板砖镶嵌地面,那么不能选购的地板砖序号是________(填序号). 三、解答题(本大题共5小题,每小题5分,共25分)
1 2 1
2 2 1 2 1
O
A. B. C. D.
B A E
F 图1 D
C 第3页 共10页
17、计算: 86222 18、解分式方程:233xx.
19、解不等式组
3)1(3;23xxx
并把它的解集在数轴上表示出来.
20、一辆汽车在直线型的公路AB上由A向B行驶,M、N分别是位于公路AB两侧的村庄,汽车行驶到哪一点时,与村庄M、N的距离相等?请在图上找到这一点.(不写作法,保留作图痕迹) 第4页 共10页
21、已知:如图4,在直角梯形ABCD中,AD//BC,∠A=90°,BC=CD,BE⊥DC于点E. 求证:△ABD≌△EBD
四、解答题(本大题共4小题,每小题6分,共24分) 22、不透明的口袋里装有红、黄、黑、蓝四种颜色的小球各一个(除颜色外其余都相同), (1)求从袋中随机摸一个是黄球的概率; (2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,表示所有可能出现的结果.
23、如图5所示,已知直线xy2
1与双曲线xky(k>0)交于A、B两点,且点A的横坐
标为4. (1)求k的值; (2)判断点(-2,-4)是否在双曲线上,并说明理由. B
A
O x
y
图 5 第5页 共10页
24、如图6所示,我市某中学数学课外活动小组的同学,利用所学知识去测量北江流经我市某段的河宽.小凡同学在点A处观测到对岸C点,测得∠CAD=60°,又在距A处60米远的B处测得∠CBA=45°,请你根据这些数据算出河宽是多少?(精确到0.1m)
60° 图6
25、如图7,已知36,AACAB°,AB的中垂线MN交AC于点D,交AB于点M,有下面4个结论: ①射线BD是∠ABC的角平分线; ②△BCD是等腰三角形; ③ABC∽BCD; ④AMD≌BCD. (1)判断其中正确的结论是哪几个? (2)从你认为是正确的结论中选一个加以证明.
NDM
B
A
C 图7 第6页 共10页
五、解答题(本大题共3小题,前一小题7分,后两小题每小题8分,共23分) 26、某中学为促进课堂教学,提高教学质量,对七年级学生进行了一次“你最喜欢的课堂教学方式”的问卷调查.根据收回的问卷,学校绘制了“频率分布表”和“频数分布条形图”.请 你根据图表中提供的信息,解答下列问题. 频率分布表 代号 教学方式 最喜欢的频数 频率 1 老师讲,学生听 20 0.10 2 老师提出问题,学生探索思考 100 3 学生自行阅读教材,独立思考 30 0.15 4 分组讨论,解决问题 0.25
(1)补全“频率分布表”; (2)在“频数分布条形图”中,将代号为“4”的部分补充完整; (3)你最喜欢以上哪一种教学方式或另外的教学方式,请提出你的建议,并简要说明理由.(字数在20字以内) 第7页 共10页
FGD
ECBA
27、如图8,四边形ABCD是边长为2的正方形,其中⌒DE、⌒EF、⌒FG的圆心依次是点A、
B、C. (1)求点D沿三条圆弧运动到G所经过的路线长; (2)判断线段GB与DF的大小及位置关系,并说明理由.
图8 第8页 共10页 28、如图9,抛物线2(0)yxbxcb≤的图像与x轴交于AB,两点,与y轴交于点C,
其中点A的坐标为(20),;直线1x与抛物线交于点E,与x轴交于点F,且4560FAE≤∠≤.
(1)用b表示点E的坐标; (2)求实数b的取值范围; (3)请问BCE△的面积是否有最大值? 若有,求出这个最大值;若没有,请说明理由.
A O F B x
y
C E 图9 第9页 共10页
清远市2008中考数学科模拟考试卷(二)参考答案 一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案 A D C A C B C D D A 二、填空题 题号 11 12 13 14 15 16 答案 +1与-1(答案不唯一) b (b-2) 3n 54 6cm ③
三、解答题: 17、原式=6 18、9x 19、32x 20、(略) 21、∵BC=CD ∴∠CBD=∠CDB ∵AD∥BC ∴ ∠CBD=∠ADB ∴∠CDB=∠ADB
又∵BE⊥DC ∴∠BDE=090 又∵∠A=090 ∴∠BED=∠A 又∵BD=BD ∴△ABD≌△EBD 四、解答题: 22、(1)黄球概率4
1. (2)(略)
23、(1)k=8 (2)点(—2,—4)在双曲线上 24、约等于142.0m 25、(1)①②③结论正确(2)(略) 五、解答题 26、(1)频率0.5;频数50 (2)(3)略 27、(1)6 (2)线段GB与DF的大小相等、位置关系垂直 证明△DCF≌△GCB,实际△DCF绕着点O旋转090所得△GCB 28、解:(1)抛物线2yxbxc
过(20)A,,
24cb 点E在抛物线上,
112433ybcbbb,