当前位置:文档之家› 大学高等数学竞赛辅导题

大学高等数学竞赛辅导题

大学高等数学竞赛辅导题
大学高等数学竞赛辅导题

导数与微分

题型一 利用函数的定义研究函数的可导性 1.

设2()lim sin

()()t x f x t g x g x t t π→∞

??

=+-????

其中()g x 有二阶导数,求()f x '。 2.

设函数()f x 对任意x 均满足等式(1)()f x a f x +=,且有(0)f b

'=,求(1)f '。

3. 设()f x 可导,()()()1sin F x f x x =+,若使()F x 在0x =处可导,则必有( )。 ()(0)

A f =

()(0)0

B f '=

()(0)(0)C f f

'+=

()

(0)(0)D f f

'-=。

题型二 利用函数的导数求曲线的切线和法线方程

4. 已知()f x 是周期为5的连续函数,它在0x =的某个领域内满足关系式

(1s in )3(1s in )

8()f x f x x o x +--=+,其中()o x 是当0

x →时比x 高阶的无穷

小,且()f x 在1x =处可导,求曲线()y f x =在点()6,(6)f 处的切线方程。

5. 求曲线sin 2cos t

t

x e t

y e t

?=??=??在点(0,1)处的法线方程。 题型三 求复合函数的导数及抽象函数的导数 6. 设22

1cos()sin y x x

=,求y '。

7. 设2

sin[()]y f x =,其中f 具有二阶导数,求2

2d y dx

题型四 求隐函数的导数(或可化为隐函数的求导问题)

8. 设函数()y y x =是由()f y y xe e =确定的,其中f 具有二阶导数,且1f '≠,求

2

2d y dx

9. 已知()y f x y =+,其中()f x 为二阶可微函数,求2

2d y dx

10.设y =d y d x

题型五 求幂指函数和连乘函数的导数

11.设,(0,0)x

a

b

a b x y a b b x b ??????

=>> ? ? ???????

,求y '。

题型六 混合形式的函数的导数 12.设函数()y y x =由2

arctan 25

t

x t y ty e =??

-+=?所确定,求

d y d x

题型七 求函数的高阶导数 13.设22(21)x y x x e =++,求(100)y 。

14.设4()f x x x =,求使()(0)n f 存在的最大的n 。

15.设()()()n f x x a x ?=-,其中()x ?在x a =由1n -阶连续导数,求()

()n f

a 。

第三章 微分中值定理与导数的应用

题型一 证明存在ξ,使()0f ξ=的命题。

1.设()f x 在[,)a +∞上连续,当x a >时,()0f x K '>>(K 为常数)。试证明:若

()0

f a <,则方程()0f x =在(),f a a a K ?

?

-

??

?

上有且仅有一个实根。 2. 设函数

)

(x f 在闭区间],[b a 上具有二阶导数,且

)(,)()()(b c a c f b f a f <<==。

证明:在开区间)(b a,内至少存在一点ξ使得0)(=''ξf 。 题型二 证明结论为0)()

(=ξn f

的命题

3.若)(x f 在区间]10[,上有三阶导数,

且0)1(=f ,设)()(3x f x x F =,证明:在),(10内存在一点ξ,使得0)(='''ξF 。

4. 设函数(),()f x g x 在[,]a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,且()(),()()f a g a f b g b ==,证明:存在(,)a b ξ∈,使得()()f g ξξ''''=。 题型三 证明存在ξ,使()()(0)

n f k

k ξ=≠

5. 设()f x 在[0,1]内上连续,在(0,1)内可导,且(0)0f =,但当(0,1)x ∈时,

()0f x >,求证对任意自然数n ,在(0,1)内存在ξ,使

()(1)()

(1)

nf f f f ξξξξ''-=

-。 (提

示:将所证结论中ξ改为x ,两边积分后,可作出辅助函数[]()()(1)n

F x f x f x =-)。 6. 假设函数()f x 和()g x 在[,]a b 存在二阶导数,并且()0,g x ''≠ ()()()()0f a f b g a g b ====,试证:(1)在开区间(,)a b 内()0g x ≠; (2)在开区间(,)a b 内至少存在一点ξ,使

()()()

()

f f

g g ξξξξ''=''。

题型四 证明有两个中值)(,ηξηξ≠满足的某种关系的命题

7. 设()f x 在[,]a b 上连续,在(,)a b 内可导,且()()1f a f b ==,试证 :存在

,(,)a b ξη∈,使得[]()() 1.

e

f f ηξ

ηη-'+=

(提示:将要证结论改写为[]()().e f f e ηξηη'+=即证().x

x e f x e ξ

η

='??=??

令()()x F x e f x =,对其应用拉格朗日中值定理。)

8. 设)(x f 在闭区间]1,0[上可导,且满足关系式?=2

1

)(2)1(dx x xf f ,证明在区间

)1,0(内

至少存在一点ξ,使得0)()(='+ξξξf f 。 题型五 证明函数的单调性和求单调区间

9. 设函数)(x f 在]1,0[上,0)(>'''x f 且0)0(=''f ,则)0(,)1(f f ''

)1()0(,)0()1(f f f f --的大小顺序是(

)(A )0()1()0()1(f f f f ->'>' )

(B )0()0()1()1(f f f f '>->'

)(C )0()1()0()1(f f f f '>'>- )(D )0()1()0()1(f f f f '>->'

10. 设函数)(x f 对一切x 满足,x

e x

f x x f x --='+''1)]([3)(2,若)0(,0)(00≠='x x f

则( )

)(A )(0x f 是)(x f 的极大值 )

(B )(0x f 是)(x f 的极小值

)(C 点)(,(00x f x 是曲线)(x f y =的拐点 )(D )(0x f 不是)(x f 的极值 题型六 关于不等式的证明

12. 设()f x 在[0,1]上具有二阶导数,且满足条件(),()f x a f x b ''≤≤,其中,a b 都是非负常数,证明:对任意(0,1),x ∈必有()2.2b

f x a '≤+

(提示:2

()()()()()()

2!

f f t f x f x t x t x ξ'''=+-+-再将0,1t t ==分别代入相减。并

注意

2

2

(0,1),(1) 1.x x x ∈-+≤)

13. 设0>x ,常数e a >,证明x a a a x a +<+)(。 14. 证明:当01x <<时,

211x

x e

x

--<+。

15. 设常数ln 21k >-,证明:当0x >且1x ≠时,()2(1)ln 2ln 10x x x k x --+->。

一元函数积分学

1. 设()f x 为连续函数, 满足1

0()()sin f tx dt f x x x =+?,求()f x 。

2. 设()f x 为连续函数,且1

()2()f x x f t dt =+?,求()f x 。

3.求2

1

arctan

1x dx x +?

4. 求3

1

cos sin dx x x

?

5. 求2

2

22

1

sin cos dx a x b x

+?

6.

求?

7.

求2x

?

8. 求211x

x

e dx e

++?

9.求2

2

arctan (1)

x dx x x +?

10. 求32

4

2sin 2cos x x dx

x π

π

-+?

11.求8

1

x

dx

x -?

12.已知[]20

,01

(),()(),0,22,12

x x x f x F x f t dt x x x ?≤≤==∈?

-≤≤??

13.

求2

1-?

14. 求()22

x

x x e

dx --+?

15.设n 为自然数。计算2

sin(21)sin n dx x

π

+?

16、已知()F x 是()f x 的一个原函数,且2

()()1xF x f x x

=+,求()f x 。

17、设()f x 可导,且lim ()1x f x →+∞

=,求23lim

sin

()x x

x t f t dt

t

+→+∞

?

18.设0

()()()x F x x t f t dt =

-?

,求''()F x 。

19.对于0x ≥,证明函数2

20

()()sin

x

n

f x t t tdt =

-?

的最大值不超过

1

(22)(23)

n n ++,其中n

为正整数。

20. 设()f x 在[0,1]上可导,且满足1

()(1)xf x dx f =?,证明必有一点(0,1)ξ∈,使得

'()()0

f f ξξξ+=

. 21. 设()f x 在[0,1]上非负,单调减的连续函数,且01a b <<<,证明

()()

a b a

a

f x dx f x dx b

?

?。

22.求由曲线1,2,2

y x x y x

=+==所围图形的面积。

23.求位于曲线x y e =下方,该曲线过原点的切线的左方以及x 轴上方之间的图形的面积。

24.设()y f x =是区间[]0,1上的任一非负连续函数

(1)试证存在0(0,1)x ∈,使得在区间[]00,x 上以0()f x 为高的矩形面积等于在区间[]0,1x 上以()y f x =为曲边的曲边梯形面积; (2)又设()y f x =在区间(0,1)内可导,且2()()f x f x x

'>-,证明(1)中的0x 是

唯一的。

25.设有一正椭圆柱体,其底面的长、短轴分别为2,2a b ,用过此柱体底面的短轴且与底面成α角(02

π

α<<

)的平面截此柱体得一楔形体,求此楔形体的体积

V

26.求曲线231y x =--与x 轴围成的封闭图形绕直线3y =旋转得的旋转体的体积。

27.过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴所围成平面图形为D 。

(1)求D 的面积A ;

(2)求D 绕直线x e =旋转一周所得的旋转体的体积V 。

28.设某抛物线22y ax bx c =++通过原点()0,0,且当01x ≤≤时0y ≥,如果它

与x 轴以及直线1x =所围成的的区域的面积为1

3

,试确定,,a b c 使这个区域绕x

轴旋转而成的旋转体的体积为最小?

29

.求曲线0

x

n y θ=

?

的弧长(0)x n π≤≤。

30.由抛物线2y x =及24y x =绕y 轴旋转一周构成一旋转抛物面的容器(剖面如图1所示),高为H ,现于其中盛水,水高2

H ,问要将水全部排出外力需做多少

功?

2

H

2

4y x =2

y x

=

a

b

h

α

图1 图2

31.边长为a 和b 的矩形薄板()a b >,放置于与液面成α角的液体内,长边平行与液面而位于深h 处(如图2所示),设液体的比重为z ,求薄片所收的压力P 。 32.设有一质量均匀的细直杆A B ,其长为l ,质量为M 。

(1)在A B 的延长线上与端点B 的距离为a 处有一质量为m 的质点1N ,试求细杆对点1N 的引力;(2)在A B 的中垂线上到杆的距离为a 处有一质量为m 的质点

2N ,试求细杆对点2

N 的引力。

高等数学竞赛题库.不定积分与定积分

高等数学竞赛 不定积分 不定积分的概念与性质 1、设)10(tan 2cos )(sin 2 2 <<+='x x x x f ,求)(x f 2、设x x f +='1)(ln ,求)(x f 3、已知]1)([)(-'=-'x f x x f ,试求函数)(x f 利用基本积分法求不定积分 一、利用凑微分法求不定积分 1、 求下列不定分; (1) ?+dx x x x cos sin 12cos (2)?++dx x x 5212(3)?+x x dx 22cos 2sin (4)?+-dx x x x x 5)sin (cos cos sin 2、求下列不定积分 (1) ?+++dx e x x e x x x x )13()(22 (2)?+dx x x x )1(ln )ln (2 3 (3) dx x x ? +2 11 arctan (4) ?+-dx xe x x x x ) cos 1(cos sin cos sin 2 (5)?++dx x x x x x )ln 1(ln 2ln 2 二、利用第二换元积分法求不定积分 1、三角代换求下列积分 (1) ?-+2 2 1)1(x x xdx (2) ? +2 323) 1(x dx x (3) dx x x ? -2 29 (4)?-+211x dx 2、倒代换(即令t x 1 =)求下列积分 (1) )0(2 2 2>+?a x a x dx (2)? +) 2(7x x dx 3、指数代换(令,t a x =则t dt a dx ?= ln 1) (1)?++x x x dx 4 212 (2)?+++6 3 2 1x x x e e e dx 4、利用分部积分法求不定积分 (1)?+dx e x x 22)1( (2)? ++xdx x x 2cos )52(3 (3)?xdx x arccos 2 (4)? dx x x 2 3)(ln (5)? xdx e x cos

初中数学竞赛专题辅导因式分解一

因式分解 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4) =-2x n-1y n[(x2n)2-2x2n y2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 (4)原式=(a7-a5b2)+(a2b5-b7) =a5(a2-b2)+b5(a2-b2) =(a2-b2)(a5+b5)

最新大学生高等数学竞赛试题汇总及答案

前三届高数竞赛预赛试题(非数学类) (参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看 一些辅导书及相关题目,主要是一些各大高校的试题。) 2009-2010年第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分) 1.计算=--++??y x y x x y y x D d d 1) 1ln()(16/15,其中区域D 由直线1=+y x 与 两坐标轴所围成三角形区域. 解:令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =??? ? ??-=, ? -=10 2 d 1u u u (*) 令u t -=1,则21t u -= dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-, 2.设)(x f 是连续函数,且满足?--=2 022d )(3)(x x f x x f ,则 =)(x f ____________. 解:令?=2 0d )(x x f A ,则23)(2--=A x x f , A A x A x A 24)2(28d )23(20 2-=+-=--= ? , 解得3 4=A 。因此3 10 3)(2- =x x f 。 3.曲面22 22 -+=y x z 平行平面022=-+z y x 的切平面方程是 __________. 解:因平面022=-+z y x 的法向量为)1,2,2(-,而曲面 2 2 22-+=y x z 在 ) ,(00y x 处的法向量为 )1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平 行,因此,由 x z x =, y z y 2=知

初中数学竞赛辅导讲义及习题解答 第30讲 从创新构造入手

1 第三十讲 从创新构造入手 有些数学问题直接求解比较困难,可通过创造性构造转化问题而使问题获解. 所谓构造法,就是综合运用各种知识和方法,依据问题的条件和结论给出的信息,把问题作适当的加工处理.构造与问题相关的数学模式,揭示问题的本质,从而沟通解题思路的方法.构造法是一种创造性思维,是建立在对问题结构特点的深刻认识基础上的. 构造法的基本形式是以已知条件为“原料”,以所求结论为“方向”,构造一种新的数学形式,初中阶段常用的构造解题的基本方法有: 1.构造方程; 2.构造函数; 3.构造图形; 4.对于存在性问题,构造实例; 5.对于错误的命题,构造反例; 6.构造等价命题等. 【例题求解】 【例1】 设1a 、2a 、1b 、2b 都为实数,21a a ≠,满足))(())((22122111b a b a b a b a ++=++,求证:1))(())((22211211-=++=++b a b a b a b a . 思路点拨 可以从展开已知等式、按比例性质变形已知等式等角度尝试.仔细观察已知等式特点,1a 、2a 可看作方程1))((21=++b x b x 的两根,则))((1))((2121a x a x b x b x --=-++,通过构造方程揭示题设条件与结论的内在规律,解题思路新颖而深刻. 注:一般说来,构造法包含下述两层意思:利用抽象的普遍性,把实际问题转化为数学模型;利用具体问题的特殊性,给所解决的问题设计一个框架,强调数学应用的数学建模是前一层意思的代表,而后一层意思的“框架”含义更为广泛,如方程、函数、图形、“抽屉”等. 【例2】 求代数式1342222+-+++x x x x 的最小值. 思路点拨 用一般求最值的方法很难求出此代数式的最小值. 222222)30()2()10()1(13422-+-+-++=+-+++x x x x x x ,于是问题转化为:在x 轴上求一点C(1,0),使它到两点A(一1,1)和B(2,3)的距离和(CA+CB)最小,利用对称性可求出C 点坐标.这样,通过构造图形而使问题获解.

【重磅】初中数学竞赛辅导讲座19讲(全套)

第一讲有理数 一、有理数的概念及分类。 二、有理数的计算: 1、 善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少 个? 例2、 将99 98 ,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个 数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是的自然数) 注:P 的表示方法不是唯一的。 2、 符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“—”并依次运算,所得可能的最小非 负数是多少?

提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算-1-2-3-…-20KK -20KK -20KK 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算1+2-3-4+5+6-7-8+9+…-20KK+20KK+20KK 提示:仿例5,造零。结论:20KK 。 例8、 计算 9 9 9 9991999999个个个n n n +? 提示1:凑整法,并运用技巧:199…9=10n +99…9,99…9=10n -1。 例9、 计算 -+++?----)20021 3121()2001131211( )2001 13121()2002131211(+++?---- 提示:字母代数,整体化:令2001 1 3121,2001131211+ ++=----= B A ,则 例10、 计算 (1)100991 321211?++?+? ;(2)100981421311?+ +?+? 提示:裂项相消。 常用裂项关系式: (1)n m mn n m 1 1+=+; (2)111)1(1+-=+n n n n ; (3))11(1)(1m n n m m n n +-=+;(4) ]) 2)(1(1 )1(1[21)2)(1(1++-+=++n n n n n n n 。 例11计算n +++++ ++++++ 3211 32112111(n 为自然数) 例12、计算1+2+22+23+…+220KK 提示:1、裂项相消:2n =2n+1-2n ;2、错项相减:令S=1+2+22+23+…+220KK ,则S=2S -S=220KK -1。 例13、比较20002 2000 164834221+++++= S 与2的大小。 提示:错项相减:计算S 2 1 。 第二讲绝对值 一、知识要点

高等数学试题库

高等数学试题库 第二章 导数和微分 一.判断题 2-1-1 设物体的运动方程为S=S(t),则该物体在时刻t 0的瞬时速度 v=lim lim ()()??????t t s t s t t s t t →→=+-0000与 ?t 有关. ( ) 2-1-2 连续函数在连续点都有切线. ( ) 2-1-3 函数y=|x|在x=0处的导数为0. ( ) 2-1-4 可导的偶函数的导数为非奇非偶函数. ( ) 2-1-5 函数f(x)在点x 0处的导数f '(x 0)=∞ ,说明函数f(x)的曲线在x 0点处的切 线与x 轴垂直. ( ) 2-1-6 周期函数的导数仍是周期函数. ( ) 2-1-7 函数f(x)在点x 0处可导,则该函数在x 0点的微分一定存在. ( ) 2-1-8 若对任意x ∈(a,b),都有f '(x)=0,则在(a,b)内f(x)恒为常数. ( ) 2-1-9 设f(x)=lnx.因为f(e)=1,所以f '(e)=0. ( ) 2-1-10(ln )ln (ln )'ln x x x x x x x x x 2224 3 21 '=-=- ( ) 2-1-11 已知y= 3x 3 +3x 2 +x+1,求x=2时的二阶导数: y '=9x 2 +6x+1 , y '|x=2=49 所以 y"=(y ')'=(49)'=0. ( ) 二.填空题 2-2-1 若函数y=lnx 的x 从1变到100,则自变量x 的增量 ?x=_______,函数增量 ?y=________. 2-2-2 设物体运动方程为s(t)=at 2 +bt+c,(a,b,c 为常数且a 不为0),当t=-b/2a 时, 物体的速度为____________,加速度为________________. 2-2-3 反函数的导数,等于原来函数___________. 2-2-4 若曲线方程为y=f(x),并且该曲线在p(x 0,y 0)有切线,则该曲线在 p(x 0,y 0) 点的切线方程为____________. 2-2-5 若 lim ()() x a f x f a x a →-- 存在,则lim ()x a f x →=______________. 2-2-6 若y=f(x)在点x 0处的导数f '(x)=0,则曲线y=f(x)在[x 0,f(x 0)]处有 __________的切线.若f '(x)= ∞ ,则曲线y=f(x)在[x 0,f(x 0)]处有 _____________的切线. 2-2-7 曲线y=f(x)由方程y=x+lny 所确定,则在任意点(x,y)的切线斜率为 ___________在点(e-1,e)处的切线方程为_____________. 2-2-8 函数

全国初中数学竞赛辅导(初三)讲座(3)

全国初中数学竞赛辅导(初三)讲座(3) 例1:解方程084223=+--x x x 。 例2:解方程()()()()197412=+++-x x x x 。 例3:解方程()()()6143762=+++x x x 。 例4:解方程01256895612234=+-+-x x x x 。 例5:解方程52222=??? ??++x x x 。 例6:解方程()()821344=-++y x 。 例7:解方程()()02652112102234=++++---a a x a x a x x ,其中a 是常数,且6-≥a 。 解答:(1)221==x x ,23-=x (2)28552,1±-=x 2554,3±-=x (3)32 1-=x 35 2-=x (4)23 ,32 ,21 ,24321====x x x x (5)2,121=-=x x (6)4,021-==x x (7)622,1+± =a x ,934,3+±=a x 。 练习: 1、填空: (1)方程()()()()24321=++++x x x x 的根为__________。 (2)方程0233=+-x x 的根为__________。 (3)方程025********=+--+x x x x 的根为__________。 (4)方程()()()2 222222367243+-=+-+-+x x x x x x 的根为__________。 (5)方程()()()29 134782=+++x x x 的根为__________。 2、解方程()()()()431121314x x x x x =++++。 3、解方程403322 =??? ??-+x x x 。

全国大学生高等数学竞赛试题汇总及其规范标准答案

前三届高数竞赛预赛试题(非数学类) (参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看 一些辅导书及相关题目,主要是一些各大高校的试题。) 2009-2010年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分) 1.计算=--++??y x y x x y y x D d d 1) 1ln()(16/15,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =??? ? ??-=, v u u v u u u y x y x x y y x D D d d 1ln ln d d 1) 1ln()(????--= --++ ????----=---=10 2 1 0d 1)ln (1ln d )d ln 1d 1ln (u u u u u u u u u u v v u u v u u u u u ? -=1 2 d 1u u u (*) 令u t -=1,则2 1t u -= dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-, ?+--=0 1 42d )21(2(*)t t t

? +-=10 4 2 d )21(2t t t 1516513 2 21 053= ??????+-=t t t 2.设)(x f 是连续函数,且满足? -- =20 22d )(3)(x x f x x f , 则=)(x f ____________. 解: 令? = 20 d )(x x f A ,则23)(2--=A x x f , A A x A x A 24)2(28d )23(20 2-=+-=--= ? , 解得34= A 。因此3 10 3)(2-=x x f 。 3.曲面22 22 -+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222 -+=y x z 在) ,(00y x 处 的 法 向 量 为 ) 1),,(),,((0000-y x z y x z y x ,故 )1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====, 即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在 )),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面 22 22-+=y x z 平行平面 022=-+z y x 的切平面方程是0122=--+z y x 。 4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则 =2 2d d x y ________________. 解: 方程29ln )(y y f e xe =的两边对x 求导,得 29ln )()()(y e e y y f x e y y f y f '=''+ 因)(29ln y f y xe e =,故 y y y f x '=''+)(1 ,即))(1(1y f x y '-= ',因此 2 222)](1[)())(1(1d d y f x y y f y f x y x y '-' ''+'--=''= 3 22 232)] (1[)](1[)())(1(1)](1[)(y f x y f y f y f x y f x y f '-'--''='--'-''= 二、(5分)求极限x e nx x x x n e e e )( lim 20+++→Λ,其中n 是给定的正整数. 解 :因

-初中数学竞赛辅导讲座19讲(全套)

初中数学竞赛辅导讲座19讲(全套) 第一讲 有 理 数 一、有理数的概念及分类。 二、有理数的计算: 1、善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少个? 例2、 将99 98,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是 的自然数) 注:P 的表示方法不是唯一的。 2、符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“ —”并依次运算,所得可能的最小非 负数是多少? 提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算 -1-2-3-…-2000-2001-2002 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算 1+2-3-4+5+6-7-8+9+…-2000+2001+2002

高等数学竞赛试题(完整资料).doc

【最新整理,下载后即可编辑】 第二十届高等数学竞赛试卷 一、填空题(每小题5分,本题共50分): 1. 若0→x 时,1)1(4 1 2 --ax 与x x sin 是等价无穷小,则= a . 2. = +→) 1ln(1 2) (cos lim x x x . 3. 设函数2 301sin d ,0,(),0,x t t x f x x a x ?≠?=??=?? 在0x =处连续,则a = . 4. =??+??=y z y x z x x y xy z 则设,sin . 5. 的解为: 满足微分方程9 1 )1(ln 2-==+'y x x y y x . _______ )()( ,,)()(,.=-=???≤≤==>??D dxdy x y g x f I D x a x g x f a 则表示全平面, 而其他若设01 006 7.. d tan )cos (222 22005= +? -x x x x π π 8. . sin 2sin sin 1lim = ??? ??+++∞→n n n n n n πππ 9. . ,1222= ≤++Ω???Ω dv e z y x z 计算 所界定由设空间区域 10. 设在上半平面{}(,)|0D x y y =>内,函数 (,)f x y 具有连续偏导 数,且对任意的0t >都有2(,)(,)f tx ty t f x y -=. 对D 内的任意分段光滑的有向简单闭曲线L ,则 .. ),(),(= -?dy y x f x x d y x f y L 二、计算题(每小题6分,本题共42分): . ,)()(cos .的解,并求满足化简微分方程:用变量代换2101010 2=' ==+'-''-<<===x x y y y y x y x t t x π 解题过程是:

初中数学竞赛辅导讲义及习题解答 第8讲 由常量数学到变量数学

第八讲由常量数学到变量数学 数学漫长的发展历史大致历经四个时期:以自然数、分数体系形成的萌芽期;以代数符号体系形成的常量数学时期;以函数概念产生的变量数学时期;以集合论为标志的现代数学时期. 函数是数学中最重要的概念之一,它是变量数学的标志,“函数”是从量的侧面去描述客观世界的运动变化、相互联系,从量的侧面反映了客观世界的动态和它们的相互制约性.函数的基本知识有:与平面直角坐标系相关的概念、函数概念、函数的表示法、函数图象概念及画法. 在坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式.点的坐标是解决函数问题的基础,函数解析式是解决函数问题的关键,所以,求点的坐标、探求函数解析式是研究函数的两大重要课题. 【例题求解】 【例1】在平面直角坐标系内,已知点A(2,2),B(2,-3),点P在y轴上,且△APB为直角三角形,则点P的个数为. 思路点拨先在直角坐标平面内描出A、B两点,连结AB,因题设中未指明△APB的哪个角是直角,故应分别就∠A、∠B、∠C为直角来讨论,设点P(0,x),运用几何知识建立x 的方程. 注:点的坐标是数与形结合的桥梁,求点的坐标的基本方法有: (1)利用几何计算求; (2)通过解析式求; (3)解由解析式联立的方程组求. 【例2】如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后, 继续注水,直至注满水槽.水槽中水面上升高度h与注水时间t之间的 函数关系,大致是下列图象中的() 思路点拨向烧杯注水需要时间,并且水槽中水面上升高0 h. 注:实际生活中量与量之间的关系可以形象地通过图象直观地表现出来,如心电图、,股市行情走势图等,图象中包含着丰富的图象信息,要善于从图象的形状、位置、发展变化趋势等有关信息中获得启示.

初中数学竞赛辅导讲义全

专业资料 初中数学竞赛辅导讲义(初三) 第一讲 分式的运算 [知识点击] 1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。 2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。 3、 分式运算:实质就是分式的通分与约分。 [例题选讲] 例1.化简 2312++x x + 6512++x x + 12 712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + ) 4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 4 1+x =) 4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

专业资料 解:易知:z y x + = y z x + = x z y + =k 则?? ???=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1 例3.设 1 2+-mx x x =1,求 12242+-x m x x 的值。 解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x 1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=1 21-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2 +1整除,求a的值。 解:

前三届全国大学生高等数学竞赛真题及答案非数学类

中国大学生数学竞赛竞赛大纲 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 一、竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 二、竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。 中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下: 一、函数、极限、连续 1.函数的概念及表示法、简单应用问题的函数关系的建立. 2.函数的性质:有界性、单调性、周期性和奇偶性. 3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数. 4.数列极限与函数极限的定义及其性质、函数的左极限与右极限. 5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较. 6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限. 7.函数的连续性(含左连续与右连续)、函数间断点的类型. 8.连续函数的性质和初等函数的连续性. 9.闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理). 二、一元函数微分学 1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线. 2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性. 3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法. 4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的n阶导数. 5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理. 6. 洛必达(L’Hospital)法则与求未定式极限. 7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘. 8. 函数最大值和最小值及其简单应用. 9. 弧微分、曲率、曲率半径. 三、一元函数积分学 1.原函数和不定积分的概念. 2.不定积分的基本性质、基本积分公式. 3.定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、

初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

(共30套)初中数学竞赛辅导讲义及习题解答大全适合中学教师作为辅导教材使用

第一讲 走进追问求根公式 形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法. 而公式法是解一元二次方程的最普遍、最具有一般性的方法. 求根公式a ac b b x 2422 ,1-±-= 内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美. 降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决. 解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法. 【例题求解】 【例1】满足1)1(22=--+n n n 的整数n 有 个. 思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程. 【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( ) A 、一4 B 、8 C 、6 D 、0 思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=. 【例3】 解关于x 的方程02)1(2=+--a ax x a . 思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论. 【例4】 设方程04122=---x x ,求满足该方程的所有根之和. 思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解. 【例5】 已知实数a 、b 、c 、d 互不相等,且x a d d c c b b a =+=+=+=+ 1 111, 试求x 的值. 思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值. 注:一元二次方程常见的变形形式有: (1)把方程02=++c bx ax (0≠a )直接作零值多项式代换; (2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次; (3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x . 解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222 x x x ==.

学高中数学竞赛辅导计划

学高中数学竞赛辅导计 划 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

2016年高中数学竞赛辅导计划 为搞好2016年全国数学联赛备考工作,并以此为契机,培养我校学生数学学习的积极性,进一步提高我校的办学品位,特举办本届高中数学联赛辅导班。 一、指导思想: 以科学发展观、新课程理论为指导;以提高学生学习数学、应用数学的兴趣,提高学生的数学素养为宗旨;坚持以生为本、有利于学生的终生发展的原则,立足实际、因材施教,开展数学竞赛辅导班工作。 二、目标要求 1、适当拓宽学生数学知识视野,注重渗透一些常用的数学思想方法、加深对数学本质的认识。 2、注重培养学生良好的思维品质,提高学生的探究知识及运用数学知识和数学思想方法分析、解决问题的能力。 3、注意培养学生的应用意识、创新意识、协作意识,培养学生良好的科学态度。 4、使学生在探究知识,解决问题的过程中,感受数学文化的博大精深和数学方法的巨大创造力,感受数学的魅力,增强对数学的向往感;从而激发学生学习数学的热情。培养学生不畏困难、敢于攀登科学高峰的勇气。 5、力争在2016年高中数学联赛中至少有两人次取得省级三等以上的奖项,在本市同层次学校中名列前茅,为学校争光。 三、管理措施: 1、依据全国数学联赛考试大纲,结合近几年数学联赛试题特点,根据教学进度和学生认知结构特点,精心选择、合理安排教学内容,循序渐进,逐步提高。 2、精心准备,讲究实效。认真编写讲义(或教案),上课前一周将讲义制好并分发给学生。认真上好每一节辅导课,使学生真正学有所得。 3、以集体讲解与学生自主学习和小组合作学习相结合的学习形式组织学习,充分调动学生学习的积极性,保障学生的主体地位。 4、精编课后巩固练习与强化,及时检查、及时批改、及时反馈,确保质量。 5、制定辅导班班规,严格考勤制度。 6、争取学校有关领导、班主任及数学教师的支持,确保后勤保障。 五、学生选拔:先由学生本人自愿报名,经家长同意后,由有关班主任、任课教师协商并推荐人选,通过选拔考试择优录取50名。 六、辅导教师: 七、活动时间: 八、活动地点: 注: 1、若有特殊情况须作临时调整,则另行通知。 2、本计划有不周之处或未尽事宜,将在执行过程中进行不断完善。 年月日2016年高中数学联赛辅导课安排表

历届全国大学生数学竞赛真题及答案非数学类

高数竞赛预赛试题(非数学类) (参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书 及相关题目,主要是一些各大高校的试题。) 2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分) 1.计算=--++??y x y x x y y x D d d 1) 1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 11 10 det d d =??? ? ? ?-=, v u u v u u u y x y x x y y x D D d d 1ln ln d d 1) 1ln()(????--= --++ ????----=---=10 2 1 00 0d 1)ln (1ln d )d ln 1d 1ln ( u u u u u u u u u u v v u u v u u u u u ? -=1 2 d 1u u u (*) 令u t -=1,则21t u -= dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-, ?+--=0 1 42d )21(2(*)t t t ? +-=10 42d )21(2t t t 1516513 2 21 053= ??????+-=t t t 2.设)(x f 是连续函数,且满足? -- =20 22d )(3)(x x f x x f , 则=)(x f ____________. 解: 令? = 20 d )(x x f A ,则23)(2--=A x x f , A A x A x A 24)2(28d )23(20 2-=+-=--= ? , 解得34= A 。因此3 10 3)(2-=x x f 。 3.曲面22 22 -+=y x z 平行平面022=-+z y x 的切平面方程是__________.

初中数学竞赛辅导-竞赛训练题

学科:奥数 教学内容:竞赛训练题 一、选择题 1.如果一个直角三角形的两条直角边为x 和y ,并且x ≤y ,z 是斜边,则下面的关系式中一定成立的是( )。 (A )x >2(z-y ) (B )x=2(z-y ) (C )x <2(z-y ) (D )不能确定 2.如图1所示为一个长方体砍去两个角后的立体图形,如果照这样砍去长方体的八个角,则新的立体的棱有( )。 (A )24条 (B )30条 (C )36条 (D )42条 3.用数码2、4、5、7可以组成四位数,在每个四位数中,每个数码只出现一次,一共有24个四位数,将这些四位数从小到大排列,则排在第17位的四位数是( )。 (A )4527 (B )5724 (C )5742 (D )7245 4.在2009=+y x 的正整数解(x ,y )中,x+y 的最大值是( ) 。 (A )1189 (B )1517 (C )1657 (D )1749

5.正整数n 小于100,并且满足n n n n =++]6 []3[]2[,其中[x]表示不超过x 的最大整数,这样的正整数 n 有( )。 (A )2个 (B )3个 (C )12个 (D )16个 二、填空题 6.如果*表示一种运算,它是由下面的式子来定义的,b a b a b +=*,则(1*2)*3=________。 7.为了给一本书的各页标上页码,排版人员一共打击了3289个数码,则这本书的页数是_________页。 8.y=|x+1|+|x-2|+|x+3|,则y 的最小值是_________。 9.已知2611+=y ,x 表示y 的小数部分,则y x 22 +的值为_________。 10.设2 2 2 a y x =+,且12

高等数学竞赛辅导综合题

高等数学综合练习题 1、设0>a ,}{n x 满足: ,00>x ,2,1,0),(211 =+= +n x a x x n n n 证明:}{n x 收敛,并求。n n x ∞ →lim 分析:用数列通项表示的这种类型题目,往往要用单调有界必有极限这个定理来解决,因此先要用不等式技术证明}{n x 单调且有界。 证明: (1) 证明:易见,),,2,1,0(,0 =>n x n 则 a x x n x a n n =≥+1, 从而有: 02)(212 1≤-=-+=-+n n n n n n n x x a x x a x x x , 故}{n x 单调减少,且有下界。所以}{n x 收敛。 (2)设l x n n =∞ →lim , 在)(211n n n x a x x += +两边同时取极限得 1lim +∞ →=n n x l ),(21)(lim 21l a l x a x n n n +=+=∞ → 解之得a l =,即a x n n = ∞ →lim 。 2、设)(x f 在0=x 的邻域具有二阶导数,且3 1 0)(1 lim e x x f x x x =????? ?++→,试求)0(f ,)0(f '及)0(f ''. 分析:这种类型的题目,先要取对数将指数去掉化成分式。再根据分式极限为常数而分母极限为零,得到分子极限为零。另外求一点的导数往往要用定义。 解 由31 0])(1[lim e x x f x x x =+ +→得

3] ) (1ln[lim =++→x x x f x x , 因为分母极限为零,从而分子极限为零,即 0]) (1ln[lim 0 =+ +→x x f x x , 可以得到0) (lim =→x x f x , 同样,我们有 )0(0)(lim 0 f x f x ==→, 由导数的定义得 00 ) 0()(lim )0('0 =--=→x f x f f x 。 因为)(x f 在0=x 的邻域具有二阶导数,由泰勒公式得 )0)((0)0("2 1 )(22→+= x x x f x f ) 两边取极限得 2]) (0)0("21[lim 220=+→x x f x , 故4)0("=f 。 3、设0>a ,且)(x f 在),[+∞a 满足: ),[,+∞∈?a y x ,有|||)()(|y x K y f x f -≤-(0≥K 为常数)。 证明: x x f ) (在),[+∞a 有界。 证明: 由条件知,),[+∞∈?a x ,有 |||)()(|a x K a f x f -≤-, 则 |)(||||)(||)()(||)(|a f a x K a f a f x f x f +-≤+-≤, 从而

相关主题
文本预览
相关文档 最新文档