当前位置:文档之家› 高等数学竞赛试题(完整资料).doc

高等数学竞赛试题(完整资料).doc

高等数学竞赛试题(完整资料).doc
高等数学竞赛试题(完整资料).doc

【最新整理,下载后即可编辑】

第二十届高等数学竞赛试卷

一、填空题(每小题5分,本题共50分): 1. 若0→x 时,1)1(4

1

2

--ax

与x x sin 是等价无穷小,则=

a .

2.

=

+→)

1ln(1

2)

(cos lim x x x .

3. 设函数2

301sin d ,0,(),0,x t t x f x x

a x ?≠?=??=?? 在0x =处连续,则a =

.

4. =??+??=y

z y x z x x y xy z 则设,sin

.

5.

的解为:

满足微分方程9

1

)1(ln 2-==+'y x x y y x .

_______

)()( ,,)()(,.=-=???≤≤==>??D

dxdy x y g x f I D x a x g x f a 则表示全平面,

而其他若设01

006

7..

d tan )cos (222

22005=

+?

-x x x x π

π

8. .

sin 2sin sin 1lim

=

???

??+++∞→n n n n n n πππ

9.

.

,1222=

≤++Ω???Ω

dv e z y x z

计算

所界定由设空间区域

10. 设在上半平面{}(,)|0D x y y =>内,函数

(,)f x y 具有连续偏导

数,且对任意的0t >都有2(,)(,)f tx ty t f x y -=. 对D 内的任意分段光滑的有向简单闭曲线L ,则

..

),(),(=

-?dy y x f x x d y x f y L

二、计算题(每小题6分,本题共42分):

.

,)()(cos .的解,并求满足化简微分方程:用变量代换2101010

2='

==+'-''-<<===x x y y

y y x y x t t x π

解题过程是:

2. 设∑是锥面1)z z =

≤≤的下侧,计算曲面积分

d d 2d d 3(1)d d x y z y z x z x y ∑

++-??..

解题过程是:

.

,),(.的值和数图形有拐点,试确定常处函数的,且在点处有极小值在设函数c b a x cx bx ax y 20012323=+++=

解题过程是:

.

)(d d )()()(),()(.x f t y x y x f y x t f t x f t y x 求函数满足下式:

上连续,且对任意的在设函数422222

222

4+++=∞-∞??

≤+

解题过程是:

..之间的最短距离.与平面求旋转抛物面22522=-++=z y x y x z

解题过程是:

要多少时间?厘米的雪堆全部融化需问高为)系数侧面积成正比,(比例已知体积减少的速率与,

小时设长度为厘米,时间为其侧面满足方程

的雪堆在融化过程中,为时间设有一高为130,9.0)()

()

(2)())((.622t h y x t h z t t h +-=

解题过程是:

.

86,)1,1,1(632.72

2222处的梯度的方向导数和在点处沿方向在点计算函数处指向外侧的法向量在点是曲面设P n P z

y x u P z y x n

+=

=++

解题过程是:

三、证明题(本题8分):

.)()(022)(0)(22)()(4242的表达式求函数;,有简单闭曲线内的任意分段光滑

证明:对右半平面的值恒为同一常数,曲线积分上,

单闭曲线原点的任意分段光滑简有连续的导数,在围绕设函数y II y

x xydy

dx y C x I y

x xydy

dx y L y C L ????=++>++??

第二十届高等数学竞赛试卷参考答案

一、填空题(每小题5分,本题共50分):

1. 若0→x 时,

1)1(4

12

--ax 与x x sin 是等价无穷小,则=

a .

.解

当0→x 时,2

4

1

2

4

1

~1)1(ax ax ---,2~sin x x x . 于是,根据题设有

14141

lim sin )1(lim 22

04

1

2

0=-=-=-→→a x

ax x x ax x x ,故a=-4.

2.

=

+→)

1ln(1

2)

(cos lim x x x .

)

1ln(1

2

)

(cos lim x x x +→=x

x x e

cos ln )

1ln(1

lim

20+→,

212cos sin lim cos ln lim )1ln(cos ln lim 02020-=-==+→→→x x x

x x x x x x x ,故 原式=

.

1

2

1

e e

=

-

3. 设函数

2

301sin d ,0(),0x t t x f x x

a x ?≠?=??=?? 在0x =处连续,则a =.

解 由题设知,函数

()

f x 在 0x =处连续,则

lim ()(0)x f x f a

→==,

又因为 220

3

20

0sin d sin 1

lim ()lim

lim 33x x x x t t x f x x x →→→===?.

所以

1

3a =

.

4.

=

'+'??

?

??=y x z y z x u f x y xyf z 则可导函数设,)(,.

.20sin 202,1,

:22z x y xy x y xyf z y z x x y f y x y xf x x y f xy x y xf y z x y f x y x y yf x y x y f xy x y yf x z y x =+=+??

?

??='+'∴??

? ??'+??

?

??=??? ??'+??? ??=????

?

??'-??? ??=

??

? ??

-??? ??'+??? ??=??解

5.

的解为:

满足微分方程9

1

)1(ln 2-==+'y x x y y x .

..

9

1

ln 3109

1

)1(191ln 31]ln [1

]ln [

ln 2

2

222

2

x x x y C y x C x x x C xdx x x C dx e

x e y x y x

y dx

x dx x -==-=+-=

+?=

+???=

=+'??-,故所求通解为:得,

由,于是通解为:解:原方程等价为:

.

_______)()( ,,)()(,.=-=???≤≤==>??D

dxdy x y g x f I D x a x g x f a 则表示全平面,

而其他若设01

006

解:本题积分区域为全平面,但只有当 10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可 .

??

?+≤≤=-????≤-≤=-,

,0;

1)(,,0;10)(其他若其他若x y x a x y g x y a x y g

???

??+≤≤≤≤=-其他,0,

1,10)()(2x y x x a x y g x f

.

])1[(0)()(21

21

012

2

2

1

a dx x x a dy

dx a dxdy dxdy a dxdy

x y g x f I x x

D D D

=-+==+

=

-=???

??????

+

7.

.

d tan )cos (222

22005=

+?

-x x x x π

π

.

22212d sin 20d tan cos d d tan d tan )cos (2022

222

222

2005222

22005πππ

π

ππ

ππ

π=??=+=+==+????-

-

-x x x

x x x x x x x x x x 解:

8.

.

sin 2sin sin 1lim =??? ??++∞→n n n n n n πππ

?∑∑=?=?=?

?

?

??-+++=→∞=→∞→∞1

01

1d sin )(lim 1

sin lim )1(sin 2sin sin 1lim

x x x f n n i n n n n n i n

i i n n

i n n πξππππ 解:

n

i n x n n n i n n n x x f i i =

=?<<<<<<=ξπ,1 ,210]10[, sin )(取等份,分点为

分为,把区间看作 ().

2

0cos cos 101cos d sin 1`0ππππππ=+-=-==∴?x x x 原式

9.

.

,1222=

≤++Ω???Ω

dv e z y x z

计算

所界定由设空间区域

.

2)1(22211

210

222ππ=-===-≤+??????????ΩΩ

dz e z dxdy dz e dv e dv e

z y x D z z D z z z

z z

法.

,故采用"先二后一"为圆域的函数,截面被积函数仅为解:

10. 设在上半平面{}(,)|0D x y y =>内,函数(,)f x y 具有连续偏导

数,且对任意的0t >都有2(,)(,)f tx ty t f x y -=. 对D 内的任意分段光滑的有向简单闭曲线L ,则

..

),(),(=

-?dy y x f x x d y x f y L

解 2(,)(,)f tx ty t f x y -=两边对t 求导得

3

(,)(,)2(,)x y xf tx ty yf tx ty t f x y -''+=-.

1

t =,则

(,)(,)2(,)

x y xf x y yf x y f x y ''+=-,. 即

11

(,)(,)(,)

22

x y f x y xf x y yf x y ''=-- ①

设(,)(,),(,)(,)P x y yf x y Q x y xf x y ==-,则

(,)(,),(,)(,)x y Q P

f x y xf x y f x y yf x y x y ??''=--=+??.

则由①可得

11(,)(,)22y x Q P

yf x y xf x y x y

????''==- ?????.

故由曲线积分与路径无关的定理可知,对D 内的任意分段光滑的有向简单闭曲线L ,都有

.0),(),(=-?dy y x xf x d y x yf L

二、计算题(每小题6分,本题共42分):

.

,)()(cos .的解,并求满足化简微分方程:用变量代换2101010

2='

==+'-''-<<===x x y y

y y x y x t t x π

,解:dt dy

t dx dt dt dy y sin 1-=?=

'

代入原方程得

0),sin 1(]sin 1sin cos [2

2222=+-?-=?'=''y dt

y d t dt y d t dt dy t t dx dt dt y d y 。

代入,有把初始条件解此微分方程,得12211210

2

2121==='

=-+=+===C C y y

x C x C t C t C y x x ,,sin cos

.212x x y -+=为:故满足初始条件的特解

2. 设∑

是锥面1)z z =

≤≤的下侧,计算曲面积分

d d 2d d 3(1)d d x y z y z x z x y ∑

++-??..

解 设1∑:221(1)z x y =+≤,取上侧,则 d d 2d d 3(1)d d x y z y z x z x y ∑

++-??

1

1

d d 2d d 3(1)d d d d 2d d 3(1)d d x y z y z x z x y x y z y z x z x y

∑+∑∑=

++--++-????. 而 1

d d 2d d 3(1)d d x y z y z x z x y

∑+∑++-??

21

1

6d 6d d d 2r

V

v r r z π

θπ

==??????,

1

d d 2d d 3(1)d d 0

x y z y z x z x y ∑++-=??.

所以 d d 2d d 3(1)d d 2x y z y z x z x y π∑

++-=??.

.

,),(.的值和数图形有拐点,试确定常处函数的,且在点处有极小值在设函数c b a x cx bx ax y 20012323=+++=

.

3,0,102)1(,02)0(,23)1(,

26)(,23)(),()(,2)(223-====+++===''++='+=''++='+∞-∞+++=c b a c b a f b f c b a f b ax x f c bx ax x f x f cx bx ax x f 于是得,根据题意,二阶可导,

在解:

.

)(d d )()(2

)(),()(.44

2222

2

22x f t y x y x f y x

t f t x f t y x 求函数满足下式:

上连续,且对任意的在设函数+++=∞-∞??≤+

,

sin cos ?

??==θθr y r x 解:令

[])

1(1)()1(1)(0,0)0(.1)(ln 141)()(41)()(,

1)(44)(4)(,

)(4)(2)(4

443333340

34

220

-=-=∴=+=+?=+'?=+'+=+='+=+=?????

x t t

t

e x

f e t f C f C t t f dt t dt t f t f t t f t f t f t t t t f t f t t dr r r f t

rdr r f r d t f πππ

π

πππ

πππππθ,即,=知由,即求导:两边对

..之间的最短距离.与平面求旋转抛物面22522=-++=z y x y x z

.

226

1,

022,),,(22--+=

=--++=z y x d d z y x P y x z z y x P 的距离为到平面则上任一点为抛物面设解:

),

()(),,(222226

1

y x z z y x z y x F --+--+=

λ令 ??

??????

???

+==+---+='=---+='=---+=')4(,

)3(,0)2)(22(31)2(,02)22(31)1(,02)22(3122y x z z z y x F y z y x F x z y x F z

y

x λλ

),81

,41,41(.81,41,41,即得唯一驻点解此方程组得===

z y x

..

6

47

241414161)

8

1

,41,41(min =--+=d 处取得最小值.点,故必在一定存在,且有唯一驻根据题意距离的最小值

要多少时间?

厘米的雪堆全部融化需问高为)例系数与侧面积成正比,(比,已知体积减少的速率时间为小时设长度为厘米,

其侧面满足方程的雪堆在融化过程中,为时间设有一高为130,9.0)()()

(2)())((.622t h y x t h z t t h +-=

).

(])()([)

(]

)()([)

(t h dz z t h t h dxdy

dz

V S V t h z t h t h y x t h 30

22

1

42

222π

π

=

-=

=

?

???-≤+为雪堆的侧面积,则

为雪堆的体积,解:设t h

t h t V d d )(d d 243π=?

dxdy

t h y x dxdy

z z S t h y x t h y x y x

??

??

+≤

+++

=

+

+

=

22

222

222222221611)()

()

()

(

).(d ])

([d )()

(t h r r r t h t h t h 2

2021

2220

1213161

πθπ=

?+=??

)

(.d d )(d d )(d d ,.t h t h t h t h t h t V S dt dV 2

2212

1390434390πππ-=?=-=,由题义, ,

)(,)(,)(13010

130010131013+-=?=+-=?-=?t t h h C t t h dt dh , 小时。得令1000=→t h ,

.

,),,(.处的梯度的方向导数和在点处沿方向在点函数计算

处指向外侧的法向量在点是曲面设P n P z

y x u P z y x n

22222861116327+==++

.14

8146.7

1114

11414

3148142

146,1486,

14

88681,14

6862121,

141cos ,143cos ,1421

322cos },1,3,2{|},3,2{2}2,6,4{},,,{:2

2

2222

222k j i p gradu

l

u z y x z u y

x y

z

y

u y x x z x u

z y x z y x F F F n P

P

P

P

P

P

P z y x

++=

=?

-?+

?

=??∴

-=+-

=??=+=

??=

+=

??===

++===='''=γβα解

三、证明题(本题8分):

.)()(022)(0)(22)()(4242的表达式求函数;,有简单闭曲线内的任意分段光滑

证明:对右半平面的值恒为同一常数,曲线积分上,单闭曲线原点的任意分段光滑简有连续的导数,在围绕设函数y II y

x xydy

dx y C x I y

x xydy

dx y L y C L ????=++>++??

解 (I )

1l

o X

l 3 如图,将C 分解为:21l l C +=,另作一条曲线3l 围绕原点且与C 相接,则

=

++?C

y x xydy

dx y 4

222)(?-

++?

+3

14

222)(l l y x xydy

dx y ?0

22)(3

24

2=++?

+l l y x xydy

dx y ?.

(II ) 设24

24

()

2,22y xy

P Q x y x y ?=

=++,,P Q 在单连通区域0x >内具有一

阶连续偏导数,由(Ⅰ)知,

曲线积分24

()22L

y dx xydy

x y ?++?在该区域内与路径无关,故当0x >时,总

有Q P

x y ??=

??.

2425

2422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ?+-?-+==?++

243243

242242()(2)4()2()()4().(2)(2)P y x y y y x y y y y y y x y x y ?????'''?+-+-==?++

比较①、②两式的右端,得

435

()2,

()4()2. y y y y y y y ???'=-??'-=? 

由③得2()y y c ?=-+,将()y ?代入④得

535242,y cy y -=

所以0c =,从而2

().y y ?=-

③ ④

高等数学下试题及参考答案

高等数学下试题及参考 答案 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

华南农业大学期末考试试卷(A 卷 ) 2016~2017学年第2 学期 考试科目:高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 一、填空题(本大题共5小题,每小题3分,共15分) 1.二元函数2ln(21)z y x =-+的定义域为 。 2. 设向量(2,1,2)a =,(4,1,10)b =-,c b a λ=-,且a c ⊥,则λ= 。 3.经过(4,0,2)-和(5,1,7)且平行于x 轴的平面方程为 。 4.设yz u x =,则du = 。 5.级数11 (1)n p n n ∞ =-∑,当p 满足 条件时级数条件收敛。 二、单项选择题(本大题共5小题,每小题3分,共15分) 1.微分方程2()'xy x y y +=的通解是 ( ) A .2x y Ce = B .22x y Ce = C .22y y e Cx = D .2y e Cxy =

2 .求极限(,)(0,0)lim x y →= ( ) A .14 B .12- C .14- D .12 3.直线:3 27 x y z L = =-和平面:32780x y z π-+-=的位置关系是 ( ) A .直线L 平行于平面π B .直线L 在平面π上 C .直线L 垂直于平面π D .直线L 与平面π斜交 4.D 是闭区域2222{(,)|}x y a x y b ≤+≤ ,则D σ= ( ) A .33()2 b a π- B .332()3 b a π- C .334()3 b a π - D . 3 33()2 b a π- 5.下列级数收敛的是 ( ) A .11(1)(4)n n n ∞ =++∑ B .2111n n n ∞=++∑ C .1 1 21n n ∞ =-∑ D .n ∞ = 三、计算题(本大题共7小题,每小题7分,共49分) 1. 求微分方程'x y y e +=满足初始条件0x =,2y =的特 解。 2. 计算二重积分22 D x y dxdy x y ++?? ,其中22 {(,):1,1}D x y x y x y =+≤+≥。

(新)高数竞赛试题集

高等数学竞赛 一、 填空题 ⒈ 若 5)(cos sin lim 0=--→b x a e x x x ,则a = ,b = . ⒉ 设2(1)()lim 1 n n x f x nx →∞-=+, 则()f x 的间断点为x = . ⒊ 曲线y=lnx 上与直线1=+y x 垂直的切线方程为 . ⒋ 已知x x xe e f -=')(,且f (1) = 0, 则f (x ) = . ⒌ 设函数 ()y x 由参数方程 33 31 31 x t t y t t ?=++??=-+?? 确定, 则曲线()y y x =向上凸的x 取值 范围为 . ⒍ 设 1 ln arctan 22+-=x x x e e e y ,则==1 x dx dy . ⒎若 0→x 时,1)1(4 1 2 --ax 与x x sin 是等价无穷小,则a= . ⒏ 设?? ???≥-<≤-=21,12121,)(2 x x xe x f x ,则=-?221)1(dx x f . ⒐ 由定积分的定义知,和式极限=+∑=∞→n k n k n n 12 2 lim . ⒑ 1+∞=? . 二、 单项选择题 11.把+ →0 x 时的无穷小量dt t dt t dt t x x x ???===0 3 2 sin ,tan ,cos 2 γβα,使排在后面的 是前一个的高阶无穷小,则正确的排列次序是 【 】 (A) γ βα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. 12.设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得 【 】 (A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少. (C )对任意的),0(δ∈x 有f(x)>f(0) . (D) 对任意的)0,(δ-∈x 有f(x)>f(0) . 13 . 设()(1)f x x x =-, 则 【 】 (A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. (D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点. 14 . lim (1)n n →∞+等于 【 】 (A ) 2 21 ln xdx ?. (B )21 2ln xdx ?. (C )2 1 2ln(1)x dx +?. (D )2 21 ln (1)x dx +? 15 . 函数 2 )2)(1() 2sin(||)(---= x x x x x x f 在下列哪个区间内有界. 【 】 (A) (-1 , 0). (B) (0 , 1). (C) (1 , 2). (D) (2 , 3).

高等数学下册试题及答案解析word版本

高等数学(下册)试卷(一) 一、填空题(每小题3分,共计24分) 1、 z =)0()(log 2 2>+a y x a 的定义域为D= 。 2、二重积分 ?? ≤++1 ||||22)ln(y x dxdy y x 的符号为 。 3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示 为 ,其值为 。 4、设曲线L 的参数方程表示为),() () (βαψ?≤≤?? ?==x t y t x 则弧长元素=ds 。 5、设曲面∑为92 2 =+y x 介于0=z 及3=z 间的部分的外侧,则 =++?? ∑ ds y x )122 ( 。 6、微分方程x y x y dx dy tan +=的通解为 。 7、方程04) 4(=-y y 的通解为 。 8、级数 ∑∞ =+1) 1(1 n n n 的和为 。 二、选择题(每小题2分,共计16分) 1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续; (B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在; (C ) y y x f x y x f z y x ?'-?'-?),(),(0000当0)()(2 2→?+?y x 时,是无穷小; (D )0) ()(),(),(lim 2 2 00000 =?+??'-?'-?→?→?y x y y x f x y x f z y x y x 。 2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222y u y x u x ??+??等于( ) (A )y x +; (B )x ; (C)y ; (D)0 。 3、设Ω:,0,12 2 2 ≥≤++z z y x 则三重积分???Ω = zdV I 等于( ) (A )4 ? ??20 20 1 3cos sin π π ???θdr r d d ;

最新大学生高等数学竞赛试题汇总及答案

前三届高数竞赛预赛试题(非数学类) (参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看 一些辅导书及相关题目,主要是一些各大高校的试题。) 2009-2010年第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分) 1.计算=--++??y x y x x y y x D d d 1) 1ln()(16/15,其中区域D 由直线1=+y x 与 两坐标轴所围成三角形区域. 解:令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =??? ? ??-=, ? -=10 2 d 1u u u (*) 令u t -=1,则21t u -= dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-, 2.设)(x f 是连续函数,且满足?--=2 022d )(3)(x x f x x f ,则 =)(x f ____________. 解:令?=2 0d )(x x f A ,则23)(2--=A x x f , A A x A x A 24)2(28d )23(20 2-=+-=--= ? , 解得3 4=A 。因此3 10 3)(2- =x x f 。 3.曲面22 22 -+=y x z 平行平面022=-+z y x 的切平面方程是 __________. 解:因平面022=-+z y x 的法向量为)1,2,2(-,而曲面 2 2 22-+=y x z 在 ) ,(00y x 处的法向量为 )1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平 行,因此,由 x z x =, y z y 2=知

同济版高等数学下册练习题附答案

第 八 章 测 验 题 一、选择题: 1、若a →,b →为共线的单位向量,则它们的数量积 a b →→ ?= ( ). (A) 1; (B)-1; (C) 0; (D)cos(,)a b →→ . 向量a b →→?与二向量a → 及b → 的位置关系是( ). 共面; (B)共线; (C) 垂直; (D)斜交 . 3、设向量Q → 与三轴正向夹角依次为,,αβγ,当 cos 0β=时,有( ) 5、2 () αβ→ → ±=( ) (A)2 2 αβ→→±; (B)2 2 2ααββ →→→ →±+; (C)2 2 αα ββ →→→ →±+; (D)2 2 2αα ββ →→→ →±+. 6、设平面方程为0Bx Cz D ++=,且,,0B C D ≠, 则 平面( ). (A) 平行于轴; x ;(B) y 平行于轴; (C) y 经过轴;(D) 经过轴y . 7、设直线方程为111122 00A x B y C z D B y D +++=??+=?且 111122,,,,,0A B C D B D ≠,则直线( ). (A) 过原点; (B)x 平行于轴; (C)y 平行于 轴; (D)x 平行于轴. 8、曲面2 50z xy yz x +--=与直线 5 13 x y -=- 10 7 z -= 的交点是( ). (A)(1,2,3),(2,1,4)--;(B)(1,2,3); (C)(2,3,4); (D)(2,1,4).-- 9、已知球面经过(0,3,1)-且与xoy 面交成圆周 22160 x y z ?+=?=?,则此球面的方程是( ). (A)222 6160x y z z ++++=; (B)2 2 2 160x y z z ++-=; (C)2 2 2 6160x y z z ++-+=; (D)2 2 2 6160x y z z +++-=. 10、下列方程中所示曲面是双叶旋转双曲面的是( ). (A)2221x y z ++=; (B)22 4x y z +=; (C)22 2 14y x z -+=; (D)2221916 x y z +-=-. 二、已知向量,a b r r 的夹角等于3 π ,且2,5a b →→==,求 (2)(3)a b a b →→→→ -?+ . 三、求向量{4,3,4}a → =-在向量{2,2,1}b → =上的投影 . 四、设平行四边形二边为向量 {1,3,1};{2,1,3}a b → → =-=-{}2,1,3b =-,求其面积 . 五、已知,,a b →→ 为两非零不共线向量,求证: ()()a b a b →→→→-?+2()a b →→ =?. 六、一动点与点(1,0,0)M 的距离是它到平面4x =的距 的一半,试求该动点轨迹曲面与 yoz 面的交线方程 .

浙江省高数竞赛积分习题集

例1(1)ln ln ln (1ln )(1ln )(ln )x x x x x x x x x x dx e x dx e d x x e C x C +=+==+=+??? (2) dx x x x dx x x x ?? +++=+++22221)1ln(1) 1ln( )1ln()1ln(22? ++++= x x d x x () C x x +++=2 32 ) 1ln(3 2 (3) 2 ln tan ln tan 11ln tan ln tan (ln tan )sin 22sin cos 24 x x dx dx xd x x C x x x ===+??? (4)???+=+=+=+C x x x d dx x x x dx x x )arctan(cos ) (cos 1cos )(cos 1cos sin 2cos 12sin 2 2 22224 (5) C e x d e dx e x x x x x +=+=++++?? 2 2 2 12 112 11 例2、(1)(06年真题) dx x x x x ?-++) 1(188 4 解:(法一)48 8 1(1) x x dx x x ++=-?dx x x x dx x x x ??-+-+)1()1(188 84 7447 4848 11(1)1(1)1x x x x dx dx dx dx x x x x x x -+=+=+----? ??? 37 48 111x x dx dx dx x x x =++--?? ? 4811 ln ln 1ln 148 x x x C =- ---+ (法二) dx x x x x x dx x x x x ??-++-=-++) 1(21)1(188 4888437881211x x dx dx dx x x x =++--?? ? 而 dx x x dx x x dx x x x dx x x ????++-=+-=-4 3 4344383121121) 1)(1(1 444 444 1(1)1(1)11ln ||818181d x d x x C x x x -++=-+=+-+-??

最新高等数学下考试题库(附答案)

《高等数学》试卷1(下) 一.选择题(3分?10) 1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ). A.3 B.4 C.5 D.6 2.向量j i b k j i a +=++-=2,2,则有( ). A.a ∥b B.a ⊥b C.3,π=b a D.4 ,π=b a 3.函数11 22222-++--=y x y x y 的定义域是( ). A.(){ }21,22≤+≤y x y x B.(){}21,22<+p D.1≥p 8.幂级数∑∞ =1n n n x 的收敛域为( ). A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1- 9.幂级数n n x ∑∞=?? ? ??02在收敛域内的和函数是( ).

A.x -11 B.x -22 C.x -12 D.x -21 10.微分方程0ln =-'y y y x 的通解为( ). A.x ce y = B.x e y = C.x cxe y = D.cx e y = 二.填空题(4分?5) 1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________. 2.函数()xy z sin =的全微分是______________________________. 3.设133 23+--=xy xy y x z ,则=???y x z 2_____________________________. 4. x +21的麦克劳林级数是___________________________. 三.计算题(5分?6) 1.设v e z u sin =,而y x v xy u +==,,求.,y z x z ???? 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,y z x z ???? 3.计算σd y x D ??+22sin ,其中22224:ππ≤+≤y x D . 4.求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径). 四.应用题(10分?2) 1.要用铁板做一个体积为23 m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省? . 试卷1参考答案 一.选择题 CBCAD ACCBD 二.填空题 1.0622=+--z y x . 2.()()xdy ydx xy +cos . 3.1962 2--y y x . 4. ()n n n n x ∑∞=+-01 21.

全国大学生数学竞赛试题及答案

河北省大学生数学竞赛试题及答案 一、(本题满分10 分) 求极限))1(21(1 lim 222222--++-+-∞→n n n n n n Λ。 【解】 ))1(21(12 22222--++-+-= n n n n n S n Λ 因 21x -在]1,0[上连续,故dx x ?1 02-1存在,且 dx x ? 1 2 -1=∑-=∞→-1 21 .)(1lim n i n n n i , 所以,= ∞ →n n S lim n dx x n 1lim -11 2∞→-? 4 -1102π ==?dx x 。 二、(本题满分10 分) 请问c b a ,,为何值时下式成立.1sin 1 lim 22 0c t dt t ax x x b x =+-?→ 【解】注意到左边得极限中,无论a 为何值总有分母趋于零,因此要想极限存在,分子必 须为无穷小量,于是可知必有0=b ,当0=b 时使用洛必达法则得到 22 022 01)(cos lim 1sin 1lim x a x x t dt t ax x x x x +-=+-→→?, 由上式可知:当0→x 时,若1≠a ,则此极限存在,且其值为0;若1=a ,则 21)1(cos lim 1sin 1lim 22 220-=+-=+-→→?x x x t dt t ax x x x b x , 综上所述,得到如下结论:;0,0,1==≠c b a 或2,0,1-===c b a 。 三、(本题满分10 分) 计算定积分? += 2 2010tan 1π x dx I 。

【解】 作变换t x -= 2 π ,则 =I 22 20π π = ?dt , 所以,4 π= I 。 四、(本题满分10 分) 求数列}{1n n - 中的最小项。 【解】 因为所给数列是函数x x y 1- =当x 分别取ΛΛ,,,3,2,1n 时的数列。 又)1(ln 21-=--x x y x 且令e x y =?='0, 容易看出:当e x <<0时,0<'y ;当e x >时,0>'y 。 所以,x x y 1-=有唯一极小值e e e y 1)(-=。 而3 3 1 2 132> ? <

全国大学生高等数学竞赛试题汇总及其规范标准答案

前三届高数竞赛预赛试题(非数学类) (参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看 一些辅导书及相关题目,主要是一些各大高校的试题。) 2009-2010年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分) 1.计算=--++??y x y x x y y x D d d 1) 1ln()(16/15,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =??? ? ??-=, v u u v u u u y x y x x y y x D D d d 1ln ln d d 1) 1ln()(????--= --++ ????----=---=10 2 1 0d 1)ln (1ln d )d ln 1d 1ln (u u u u u u u u u u v v u u v u u u u u ? -=1 2 d 1u u u (*) 令u t -=1,则2 1t u -= dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-, ?+--=0 1 42d )21(2(*)t t t

? +-=10 4 2 d )21(2t t t 1516513 2 21 053= ??????+-=t t t 2.设)(x f 是连续函数,且满足? -- =20 22d )(3)(x x f x x f , 则=)(x f ____________. 解: 令? = 20 d )(x x f A ,则23)(2--=A x x f , A A x A x A 24)2(28d )23(20 2-=+-=--= ? , 解得34= A 。因此3 10 3)(2-=x x f 。 3.曲面22 22 -+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222 -+=y x z 在) ,(00y x 处 的 法 向 量 为 ) 1),,(),,((0000-y x z y x z y x ,故 )1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====, 即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在 )),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面 22 22-+=y x z 平行平面 022=-+z y x 的切平面方程是0122=--+z y x 。 4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则 =2 2d d x y ________________. 解: 方程29ln )(y y f e xe =的两边对x 求导,得 29ln )()()(y e e y y f x e y y f y f '=''+ 因)(29ln y f y xe e =,故 y y y f x '=''+)(1 ,即))(1(1y f x y '-= ',因此 2 222)](1[)())(1(1d d y f x y y f y f x y x y '-' ''+'--=''= 3 22 232)] (1[)](1[)())(1(1)](1[)(y f x y f y f y f x y f x y f '-'--''='--'-''= 二、(5分)求极限x e nx x x x n e e e )( lim 20+++→Λ,其中n 是给定的正整数. 解 :因

大一高数知识竞赛试题

电气与电子工程学院高等数学试卷 姓名: 班级: 得分: 一.填空题(2′×10) 1 .已知f(x)=()[]?? ? ??=≠+0,0,12sin x a x x x a ,在()+∞∞-,上连续,则a = . 2.X= 是函数f (x )=???≤>0 ,0 ,2x x x mx 的间断点,是第 类间断点. 3.有一数列{}Xn ,且Xn= n n 3 12-则此数列收敛还是发散. 4.求曲线y=e x 在点(0,1)处的切线方程为. 5.设函数f(x)=???>+≤1 ,1 ,x 2x b ax x 为了使函数f(x)在x=1处连续且可导,则 a = ,b=. 6.设y=f(x)是由e 02xy =-+x y 所确定的函数,则dy= . 7.设f ′(2)=1,则 ()=--→s s f s f s 2) (2lim 0 . 8.求函数2cos y x x =+在[0, 2 π ]上的大值 . 9.椭圆44x 2 2 =+y 在(0,2)处的曲率半径. 10.设常数k>0,函数f(x)=lnx-k e +x 在其定义域内零点个数为 个. 二.选择题(每题仅有一个正确选项,2′×10). 1.数列{x n}收敛是数列{x n}有界的( ) A.必要条件 B.充分条件 C.充分必要条件 D.既非充分必要条件 2.设f(x)=,0,cos 0 ,? ? ?>≤-x x x e x 则f (-x )=( )

A ???>-≤-0,cos 0,x x x e x B ???>≤0,cos 0,x x x e x C ???<-≥-0,cos 0,x x x e x D. ???<≥0,cos 0,x x x e x 3.设f(x)是可导函数,且 ,则曲线y=f(x)在点(1,f(1))处的切线斜率为( ). A. -1 B. -2 C. 0 D. 1 4.设f(x)=x(x-1)(x-2)…(x-100),则f ′(0)=( ). A. 0 B. 99! C. 100! D. (-1)100! 5.若f(-x)=f(x),(-∞0,且f ″(x)<0,则在(0,+∞)内有( ) A. f ′(x)<0, f ″(x)<0 B. f ′(x)>0, f ″(x)<0 C. f ′(x)<0, f ″(x)>0 D. f ′(x)>0, f ″(x )>0 6.设y(x)由方程e y x ++sin(xy)=0所确定,则dy=( ) A.dx xy x e xy y e y x y x ) cos()cos ++- ++( B dx xy y e xy x e y x y x )cos()cos ++- ++( C. dx xy x e xy y e y x y x ) cos()cos ++++( D.dx xy y e xy x e y x y x ) cos()cos ++++( 7.设f(x)=,1 ,21 ,1 12? ????=≠--x x x x 则f(x)在x=1处( ) A.不连续 B.连续但不可导 C.可导但导数不连续 D.可导且导数连续 8.若f (x )在开区间(a,b )内可导,且x1,x2是(a,b )内任意两点,则至少存在一点ξ使下式成立( ) A.f(x2)-f(x1)=(x1-x2)f ′(ξ),ξ),b a (∈ B.f (x1)-f(x2)=(x1-x2)f ′(ξ),ξ在x1,x2之间 C.f(x1)-f(x2)=(x2-x1)f ′(ξ),x1<ξ

高等数学下册试题及答案解析

高等数学(下册)试卷(一) 一、填空题(每小题3分,共计24分) 1、 z =)0()(log 22>+a y x a 的定义域为D= 。 2、二重积分 ?? ≤++1||||22)ln(y x dxdy y x 的符号为 。 3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示 为 ,其值为 。 4、设曲线L 的参数方程表示为),()()(βαψ?≤≤?? ?==x t y t x 则弧长元素=ds 。 5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则 =++??∑ds y x )122( 。 6、微分方程x y x y dx dy tan +=的通解为 。 7、方程04) 4(=-y y 的通解为 。 8、级数∑∞ =+1)1(1n n n 的与为 。 二、选择题(每小题2分,共计16分) 1、二元函数),(y x f z =在),(00y x 处可微的充分条件就是( ) (A)),(y x f 在),(00y x 处连续; (B)),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在; (C) y y x f x y x f z y x ?'-?'-?),(),(0000当0)()(22→?+?y x 时,就是无穷小; (D)0)()(),(),(lim 2200000 0=?+??'-?'-?→?→?y x y y x f x y x f z y x y x 。 2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222y u y x u x ??+??等于( ) (A)y x +; (B)x ; (C)y ; (D)0 。 3、设Ω:,0,1222≥≤++z z y x 则三重积分???Ω= zdV I 等于( ) (A)4 ???20201 03cos sin ππ ???θdr r d d ;

大学高等数学下考试题库(及答案)

一.选择题(3分?10) 1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ). A.3 B.4 C.5 D.6 2.向量j i b k j i a ρρρ ρρ??+=++-=2,2,则有( ). A.a ρ∥b ρ B.a ρ⊥b ρ C.3,π=b a ρρ D.4 ,π=b a ρρ 3.函数1 122 2 22-++ --= y x y x y 的定义域是( ). A.(){ }21,22≤+≤y x y x B.( ){} 21,22<+p D.1≥p 8.幂级数∑∞ =1 n n n x 的收敛域为( ). A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1- 9.幂级数n n x ∑∞ =?? ? ??02在收敛域内的和函数是( ). A. x -11 B.x -22 C.x -12 D.x -21

10.微分方程0ln =-'y y y x 的通解为( ). A.x ce y = B.x e y = C.x cxe y = D.cx e y = 二.填空题(4分?5) 1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________. 2.函数()xy z sin =的全微分是______________________________. 3.设133 2 3 +--=xy xy y x z ,则 =???y x z 2_____________________________. 4. x +21 的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分?6) 1.设v e z u sin =,而y x v xy u +==,,求 .,y z x z ???? 2.已知隐函数()y x z z ,=由方程052422 2 2 =-+-+-z x z y x 确定,求 .,y z x z ???? 3.计算 σd y x D ?? +2 2sin ,其中22224:ππ≤+≤y x D . 4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径). 5.求微分方程x e y y 23=-'在00 ==x y 条件下的特解. 四.应用题(10分?2)

大连市高等数学竞赛试题B答案完整版

大连市高等数学竞赛试 题B答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

大连市第二十三届高等数学竞赛试卷 答案(B)

一、填空题(本大题共5小题,每小题2分, 计10分) 1. n ? ?∞→= e^2 . 2. 30tan sin lim x x x x →- = 1/2 . 3. 0 lim x x x + →= 1 . 4. 2 cos lim x x t dt x →?= 1 . 5. 若221lim 2,2 x x ax b x x →--=+-则(,)(4,5).a b =- 二、(本题10分)设?????=≠=),0(1),0(1sin )(3 x x x x x f 求)(x f '. 解 当0≠x 时,x x x f 1 sin )(3=为一初等函数,这时 ; 1 cos 1sin 311cos 1sin 3)(2232x x x x x x x x x x f -=? ?? ??-??? ?? +='(6分) 当0=x 时,由于 ),0(01 sin lim )(lim 300f x x x f x x ≠==→→(8分) 所以)(x f 在0=x 处不连续,由此可知)(x f 在0=x 处不可导。(10分)

解:0,1,1x x x ===-为间断点。(3分) 当0x =时, 由于00lim ()lim 1,1|| x x x f x x x ++→→==+ 而00lim ()lim 1,x x f x --→→==- 所以0x =是跳跃间断点。(5分) 当1x =时, 由于11lim ()lim 1,1|| x x x f x x x →→==+ 所以1x =是可去间断点。(7分) 当1x =-时, 而1 lim (),x f x →-=∞ 所以1x =-是无穷间断点。(8分) 考生注意: 考试时间 150 分钟 试卷总分 100 分 共 四 页 第 1页

高等数学下册试题及答案解析

高等数学下册试题及答案解析 一、填空题(每小题3分,共计24分) 1、 z = ) 0()(log 22>+a y x a 的定义域为D= . 2、二重积分?? ≤++1 ||||22)ln(y x dxdy y x 的符号为 . 3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值 为 . 4、设曲线L 的参数方程表示为), ()()(βαψ?≤≤? ? ?==x t y t x 则弧长元素=ds . 5、设曲面∑为92 2 =+y x 介于0=z 及3=z 间的部分的外侧,则 = ++?? ∑ ds y x )122 ( . 6、微分方程x y x y dx dy tan +=的通解为 . 7、方程04) 4(=-y y 的通解为 . 8、级数∑ ∞ =+1)1(1n n n 的和为 . 二、选择题(每小题2分,共计16分) 1、二元函数),(y x f z =在) ,(00y x 处可微的充分条件是( ) (A )),(y x f 在) ,(00y x 处连续; (B ) ) ,(y x f x ', ) ,(y x f y '在 ) ,(00y x 的某邻域内存在; (C ) y y x f x y x f z y x ?'-?'-?),(),(0000当 0)()(2 2→?+?y x 时,是无穷小; (D )0)()(),(),(lim 2 200000 0=?+??'-?'-?→?→?y x y y x f x y x f z y x y x . 2、设 ), ()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222y u y x u x ??+??等于( ) (A )y x +; (B )x ; (C)y ; (D)0 . 3、设Ω:,0,12 2 2 ≥≤++z z y x 则三重积分 ???Ω =zdV I 等于( ) (A )4 ???20 20 1 3cos sin π π ???θdr r d d ; (B ) ? ??20 1 2sin π π??θdr r d d ;

高等数学竞赛试题(完整资料).doc

【最新整理,下载后即可编辑】 第二十届高等数学竞赛试卷 一、填空题(每小题5分,本题共50分): 1. 若0→x 时,1)1(4 1 2 --ax 与x x sin 是等价无穷小,则= a . 2. = +→) 1ln(1 2) (cos lim x x x . 3. 设函数2 301sin d ,0,(),0,x t t x f x x a x ?≠?=??=?? 在0x =处连续,则a = . 4. =??+??=y z y x z x x y xy z 则设,sin . 5. 的解为: 满足微分方程9 1 )1(ln 2-==+'y x x y y x . _______ )()( ,,)()(,.=-=???≤≤==>??D dxdy x y g x f I D x a x g x f a 则表示全平面, 而其他若设01 006 7.. d tan )cos (222 22005= +? -x x x x π π 8. . sin 2sin sin 1lim = ??? ??+++∞→n n n n n n πππ 9. . ,1222= ≤++Ω???Ω dv e z y x z 计算 所界定由设空间区域 10. 设在上半平面{}(,)|0D x y y =>内,函数 (,)f x y 具有连续偏导 数,且对任意的0t >都有2(,)(,)f tx ty t f x y -=. 对D 内的任意分段光滑的有向简单闭曲线L ,则 .. ),(),(= -?dy y x f x x d y x f y L 二、计算题(每小题6分,本题共42分): . ,)()(cos .的解,并求满足化简微分方程:用变量代换2101010 2=' ==+'-''-<<===x x y y y y x y x t t x π 解题过程是:

高等数学下册试题库

高等数学下册试题库 一、填空题 1. 平面01=+++kz y x 与直线112z y x =-=平行的直线方程是___________ 2. 过点 )0,1,4(-M 且与向量)1,2,1(=a 平行的直线方程是________________ 3. 设 k i b k j i a λ+=-+=2,4,且b a ⊥,则=λ__________ 4. 设 1)(,2||,3||-===a b b a ,则=∧ ),(b a ____________ 5. 设平面 0=+++D z By Ax 通过原点,且与平面0 526=+-z x 平行,则 __________________,_______,===D B A 6. 设直线 )1(2 2 1-=+=-z y m x λ与平面 25363=+++-z y x 垂直,则 ___________________,==λm 7. 直线???==0 1y x ,绕z 轴旋转一周所形成的旋转曲面的方程是_______________ 8. 过点 )1,0,2(-M 且平行于向量)1,1,2(-=a 及)4,0,3(b 的平面方程是__________ 9. 曲面 222y x z +=与平面5=z 的交线在xoy 面上的投影方程为__________ 10. 幂级数 1 2 n n n n x ∞ =∑的收敛半径是____________ 11. 过直线 1 3 222 x z y --=+=-且平行于直线 1 1 3 023 x y z +-+==的平面方程是 _________________ 12. 设 ),2ln(),(x y x y x f + =则__________)0,1('=y f 13. 设 ),arctan(xy z =则 ____________,__________=??=??y z x z 14. 设 ,),(22y x y x xy f +=+则=),('y x f x ____________________ 15. 设 ,y x z = 则=dz _____________

历届全国大学生数学竞赛真题及答案非数学类

高数竞赛预赛试题(非数学类) (参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书 及相关题目,主要是一些各大高校的试题。) 2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分) 1.计算=--++??y x y x x y y x D d d 1) 1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 11 10 det d d =??? ? ? ?-=, v u u v u u u y x y x x y y x D D d d 1ln ln d d 1) 1ln()(????--= --++ ????----=---=10 2 1 00 0d 1)ln (1ln d )d ln 1d 1ln ( u u u u u u u u u u v v u u v u u u u u ? -=1 2 d 1u u u (*) 令u t -=1,则21t u -= dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-, ?+--=0 1 42d )21(2(*)t t t ? +-=10 42d )21(2t t t 1516513 2 21 053= ??????+-=t t t 2.设)(x f 是连续函数,且满足? -- =20 22d )(3)(x x f x x f , 则=)(x f ____________. 解: 令? = 20 d )(x x f A ,则23)(2--=A x x f , A A x A x A 24)2(28d )23(20 2-=+-=--= ? , 解得34= A 。因此3 10 3)(2-=x x f 。 3.曲面22 22 -+=y x z 平行平面022=-+z y x 的切平面方程是__________.

相关主题
文本预览
相关文档 最新文档