当前位置:文档之家› 延时曝气活性污泥法

延时曝气活性污泥法

延时曝气活性污泥法
延时曝气活性污泥法

延时曝气活性污泥法

第五章活性污泥法

第一节基本原理与分类

第二节活性污泥法参数

第三节曝气

第四节曝气池的构造与设计

第五节运行与管理

第一节基本原理与分类

一、基本原理

二、活性污泥法的基本流程

三、活性污泥指标

四、活性污泥法的分类

一、基本原理

活性污泥法是利用悬浮生长的微生物絮体处理有机废水一类好氧生物的处理方法。这种生物絮体叫做活性污泥,它由好气性微生物及其代谢的和吸附的有机物、无机物组成,具有降解废水中有机污染物的能力,显示生物化学活性。

图13-1活性污泥形状图

活性污泥法净化废水的三个主要过程

1、吸附废水与活性污泥微生物充分接触,形成悬浊混合液, 废水中污染物被比表面积巨大且表面上含有多糖类粘性物质的微生物

吸附和粘连。

是胶态的大分子有机物被吸附后,首先被水解酶作用,分解为小分子物质,然后这些小分子与溶解性有机物一道在透膜酶的作用下或在浓差推动下选择性渗入细胞体内。

2、微生物的代谢微生物吸收进入细胞体内的污染物通过微生物的代谢反应而被降解,一部分经过一系列中间状态氧化为最终产物C02和1120等。另一部分则转化为新的有机体,使细胞增殖。一般地说,自然界中的有机物都可以被某些微生物所分解,多数合成有机物也可以被经过驯化的微生物分解。不同的微生物对不同的有机物其代谢途径各不相同,对同一种有机物也可能有几条代谢途径。

3、凝聚与沉淀产生凝聚的主要原因:细菌体内积累的聚3- 務基丁酸释放到液相,促使细菌间相互凝聚,结成线粒;微生物摄食过程释放的粘性物质促进凝聚;在不同的条件下,细菌内部的能量不同,当外界营养不足时,细菌内部能量降低,表面电荷减少,细菌颗粒间的结合力大于排斥力,形成线粒;而当营养物充足时,细菌内部能量大,表面电荷增大,形成的线粒重新分散。

沉淀是混合液中固相活性污泥颗粒同废水分离的过程。固液分离的好坏,直接影响出水水质。

二、活性污泥法的基本流程

1、产生:从间歇式发展到连续式

2、基本工艺流程:

废水经过适当预处理后,进入曝气池与池内活性污泥混合成混合液,并在池内充分曝气,废水中有机物在曝气池内被活性污泥吸附、吸收和氧化分解后,混合液进入二次沉淀池,进行固液分离,净化的废水排出。

图13-2活性污泥法基本流程图

3、活性污泥法特征1)曝气池是一个生物化学反应器2)曝气池内混合是一个三相混合系统:液相-固相-气相3)

传质过程:气相中()2-液相中DO-进入微生物体内液相中的有机物-被微生物所吸收降解一降解产物返回空气相和液相4)物质转化过程:有机物降解一活性污泥增长5)污泥回流的目的是使曝气池内保持足够数量的活性污泥。污泥回流后,净增值的细胞物质将作为剩余污泥排入污泥处理系统。

三、活性污泥指标

污泥沉降比指一定量的曝气池混合液液静置30min后,沉淀污泥与原混合液的体积比,即

污泥沉降比(SV )

=混合液经30 min静置沉淀后的污泥体积混合液体积

通常,曝气池混合液的沉降比正常范围为15%-30%。

污泥浓度指1升混合液内所含的悬浮固体或挥发性悬浮固体的重量,单位为g/L或mg/Lo污泥浓度的大小可间接地反映混合液中所含微生物的浓度。一般在活性污泥曝气池内常保持MISS 浓度在2?6g/L之间,多为3?4g/L o

污泥容积指数

指曝气池混合液经30min沉淀

后,1克干污泥所占有沉淀污泥容积的毫升数,单位为

mL/g,但一般不标注。SVI的计算式为:

SVI = SV 的百分数'10 MLSS (g / L )

当SVK100时,沉淀性良好;当SVI=100?200时,沉淀性一般;当SVI>200时,沉淀性较差,污泥易膨胀。

生物相指示活性污泥中出现的生物是普通的微生物。钟虫的出现频率高、数量大,而且在生物演替中有着较为严密的规律性,因此,一般都以钟虫属作为活性污泥法的特征指示生物。

四、活性污泥法的分类

按废水和回流污泥的进入方式及其在曝气池中的混合方式,活性污泥法可分为推流式和完全混合式两大类。

推流式是废水从一端进入,另一端流出。随着水流的过程,废物降解,微生物增长,F/M沿程变化,系统处于生长曲线某一段上工作。

完全混合式是废水进入曝气池后,在搅拌下与池内活性污泥混合液混合,从而使污泥与废水得到充分混合,池内各点水质均匀、F/M —定。系统处于生长曲线某一点上工作。

第二节活性污泥法参数

一、污泥负荷

在活性污泥法中,一般将有机底物与活性污泥的重量比值,也即单位重量活性污泥或单位体积曝气池在单位时间内所承受的有机物量,称为污泥负荷,常用L表示。

QS 0 L二Vx

式中Q、SO和V分别代表废水流量、BOD浓度和曝气池容积。

1、污泥负荷与处理效率的关系由右图可见,BOD负荷增大,BOD去除率下降。一般来说,负荷在/kgMLSS - d以下时,可得到90%以上的BOD去除率。对不同的底物,L-n关系有很大差别。所含底物是糖类、有机酸、蛋

内质等一般性有机物的废水,容易降解,即使污泥负荷升高,BOD去除率下降的趋势也较缓慢。相反地,醛类、酚类的分解需要特种微生物,当污泥负荷超过某一值后,BOD去除率显著下降。

2、污泥负荷对活性污泥特性的影响如图所示SVI-L曲线是具有多峰的波形曲线,有三个低SVI的负荷区和两个高SVI的负荷区。如果在运行时负荷波动进入高SVI负荷区,污泥沉淀性差,将会出现污泥膨胀。一般在高负荷时应选择在?/ kgMSS ? d范围内,中负荷时为?/,低负荷时为?/ kgMLSS ? d o

3、水温对污泥负荷的影响温度对微生物的新陈代谢作用有很大影响。在一定的水温范围内,提高水温,可以提高BOD的去除速度和能力,此外,还可以降低废水的粘性,从而有利于活性污泥絮体的形成和沉淀。水温变化时,污泥负荷的选定也有一定的变

化。

应注意温度变化带来的不利影响。一方面,水温过高,微生物受到抑制;另一方面,水温的变化速率对污泥分离效果也有很大影响。

dx dx Dx = aVxLtYY bVx式中Ax污泥合成系数;b—废水的饱和溶解氧的浓度。

试验温度和实际废水温度不同时,KLa应进行温度修正K La (T ) =K La (20 )

? q T20 brc sm (T )

c L )

T 0 )

c sm (20 )

曝气池在稳态下操作供氧速度将等于系统的耗氧速度",即rr = de = aK La (20 )

(brc sm (T )

20 dt

测定耗氧速度rr时,先将混合液曝气,直到接近饱和溶解氧值,停止曝气,测定一定时间内溶液溶解氧降低量。

B值的测定方法比较简单,用脱氧清水及经消

毒或用

HgCl

2、CuS04抑制的混合液曝气至氧饱和,测定混合液饱和溶解氧和清水饱和溶解氧。计算其比值即得。

如果已知曝气池混合液的耗氧量Rt,用某一曝气器供氧。要求该曝气器向清水的供氧量为R0,有

R0 =

a (br sm (T )

20

EA = RO z 100% W

Rr c sm (20 )

如果实际供气量为W,则废水的氧吸收率为

当采用空气曝气时,上式中W =GX21%X =

对于鼓风曝气,鼓入气量可以实测,从而可以预先测定标准状态下的EA,利用式由要求的R0可求出供气量G。如果采用机械曝气,则可由所需的R0值计算叶轮直径和转速。

理论上,每去除lkgBOD需消耗lkgO2,即相当于标准状态下的空气,因鼓风曝气的利用率为5%?10%,故去除lkgBOD需供给空气量为35?70m3o实际上,由于曝气池的负荷和运行方式不同,供气量需放大?倍。

二、曝气设备

曝气方法可分成以下三种:1)鼓风曝气:空气加压设备一管

道系统?扩散装置2)机械曝气:借叶轮、转刷等对液面进行搅动3)鼓风-机械曝气:由上述两者组合

活性污泥法的基本原理

活性污泥法的基本原理 一、活性污泥法的基本工艺流程 1、活性污泥法的基本组成 ①曝气池:反应主体 ②二沉池:1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度。 ③回流系统:1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。 ④剩余污泥排放系统:1)是去除有机物的途径之一;2)维持系统的稳定运行。 ⑤供氧系统:提供足够的溶解氧 2、活性污泥系统有效运行的基本条件是: ①废水中含有足够的可容性易降解有机物; ②混合液含有足够的溶解氧; ③活性污泥在池内呈悬浮状态; ④活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥; ⑤无有毒有害的物质流入。 二、活性污泥的性质与性能指标 1、活性污泥的基本性质 ①物理性能:“菌胶团”、“生物絮凝体”: 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1,(1.002~1.006); 粒径:0.02~0.2mm; 比表面积:20~100cm2/ml。 ②生化性能: 1) 活性污泥的含水率:99.2~99.8%; 固体物质的组成:活细胞(M a)、微生物内源代谢的残留物(M e)、吸附的原废水中难于生物降解的有机物(M i)、无机物质(M ii)。 2、活性污泥中的微生物:

① 细菌: 是活性污泥净化功能最活跃的成分, 主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等; 基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌; 2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟; 4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。 ② 其它微生物------原生动物、后生动物----在活性污泥中大约为103个/ml 3、活性污泥的性能指标: ① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ): MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3 ② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed VolatileLiquor Suspended Solids ): MLVSS = M a + M e + M i ; 在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85 ③ 污泥沉降比(SV )(Sludge Volume ): 是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。 ④ 污泥体积指数(SVI )(Sludge Volume Index ): 曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。 ) /()/((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?== 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过高,说明其沉降性能不好,将要或已经发生膨胀现象; 城市污水的SVI 一般为50~150 ml/g ; 三、活性污泥的增殖规律及其应用 活性污泥中微生物的增殖是活性污泥在曝气池内发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。 1、活性污泥的增殖曲线

活性污泥法基本原理

活性污泥法的基本原理 一.基本概念和工艺流程 (一)基本概念 1.活性污泥法:以活性污泥为主体的污水生物处理。 2.活性污泥:颜色呈黄褐色,有大量微生物组成,易于与水分离,能使污水得到净化,澄清的絮凝体 (二)工艺原理 1.曝气池:作用:降解有机物(BOD5) 2.二沉池:作用:泥水分离。 3.曝气装置:作用于①充氧化②搅拌混合 4.回流装置:作用:接种污泥 5.剩余污泥排放装置:作用:排除增长的污泥量,使曝气池内的微生物量平衡。 混合液:污水回流污泥和空气相互混合而形成的液体。 二.活性污泥形态和活性污泥微生物 (一)形态: 1、外观形态:颜色黄褐色,絮绒状 2.特点:①颗粒大小:0.02-0.2mm ②具有很大的表面积。③含水率>99%,C<1%固体物质。④比重1.002-1.006,比水略大,可以泥水分离。 3.组成:

有机物:{具有代谢功能,活性的微生物群体Ma {微生物内源代谢,自身氧化残留物Me {源污水挟入的难生物降解惰性有机物Mi 无机物:全部有原污水挟入Mii (二)活性污泥微生物及其在活性污泥反应中作用 1.细菌:占大多数,生殖速率高,世代时间性20-30分钟; 2.真菌:丝状菌→污泥膨胀。 3.原生动物 鞭毛虫,肉足虫和纤毛虫。 作用:捕食游离细菌,使水进一步净化。 活性污泥培养初期:水质较差,游离细菌较多,鞭毛虫和肉足虫出现,其中肉足虫占优势,接着游泳型纤毛虫到活到活性污泥成熟,出现带柄固着纤毛虫。 ☆原生动物作为活性污泥处理系统的指示性生物。 4.后生动物:(主要指轮虫) 在活性污泥处理系统中很少出现。 作用:吞食原生动物,使水进一步净化。 存在完全氧化型的延时曝气补充中,后生动物是不质非常稳定的标志。 (三)活性污泥微生物的增殖和活性污泥增长 四个阶段: 1.适应期(延迟期,调整期)

关于活性污泥法的详解

关于活性污泥法的详解 活性污泥法是由多种好氧微生物与兼性厌氧微生物(在某些情况下还可能有少量厌氧微生物)与废水中的有机、无机固体物混凝交织在一起形成的絮状物。使活性污泥起到净化作用的主体是细菌,多数是革兰阴性菌,此外还有大量的原生动物和后生动物,以及微生物代谢残留物和一些从污水中夹带的惰性有机物、无机物等。 活性污泥的含水率在99%左右,密度为1.002~1.006g/m3。其结构疏松,表面积很大,对有机污染物有着强烈的吸附和氧化(分解)能力。此外,活性污泥还具有良好的自身凝聚和沉降性能。 1.活性污泥法的原理及环境影响因素 活性污泥法的工艺原理是在人工充氧的曝气池中,利用活性污泥去除废水中的有机物,然后再二沉池中使污泥和水分离。大部分污泥再回流到曝气池中,多余部分则排出。 普通活性污泥法的处理系统中由以下几部分组成:①曝气池、②曝气系统、③二沉池、④污泥回流系统、⑤剩余污泥排放系统。 活性污泥法净化废水能力强、效率高、占地面积小、臭味轻微,但产生剩余污泥量大,另外需要一定的电能来向废水中不断供氧。 2.影响活性污泥性能的环境因素主要有: (1).溶解氧(好氧处理中,一般在1.5~2mg/L为宜)。 (2).水温(好氧处理中,宜在15~25℃的范围内)。 (3).pH值(一般以6.5~9为宜)。

(4).营养料(一般要求BOD?:N:P=100:5:1为宜)。 (5).有毒物质(重金属、一些非金属化合物、油类物质等)数量亦应加予控制。 3.活性污泥法的性能评价指标 活性污泥法的性能评价指标主要有以下几项。 (1).生物相观察:即利用光学显微镜或电子显微镜观察活性污泥中的细菌、真菌、原生动物及后生动物等微生物的种类、数量、优势度及代谢活动等状况,在一定程度上反映整个系统的运行状况。 (2).混合液悬浮固体浓度(MLSS):指曝气池中单位体积混合液中活性污泥悬浮固体的质量,也称为污泥浓度。MLSS代表混合液悬浮固体中有机物的含量。 (3).污泥沉降比(SV):指曝气池混合液静止30min后沉淀污泥的体积分数,通常采用1L的量筒测定污泥沉降比。 (4).污泥体积指数(SVI):指曝气池混合液沉淀30min后,每单位质量干泥形成的湿污泥的体积,常用单位为mL/g。 污泥体积指数(SVI)能较好的反应出活性污泥的松散程度、凝聚和沉降性能。一般城市污水正常运行条件下的SVI值在100~150mL/g 之间。SVI值过低,说明泥粒细小,无机质含量高,缺乏活性;SVI 值过高,说明污泥沉降性能不好,并且已经有产生膨胀现象的可能。如果SVI>200mL/g,污泥难于分离,容易产生污泥膨胀。 4.活性污泥法的运行方式

活性污泥法

活性污泥法 活性污泥法是一种生物废水处理方法.处理过程中将废水与活性污泥的混合液搅拌并加以曝气.接下来经过沉淀把活性污泥从处理过的废水中分离开,根据需要活性污泥可以排掉或者回用.处理过的废水从沉淀池出水堰流出去.活性污泥就是废水经过一段时间自然曝气和搅拌之后沉淀下来的污泥.这种活性污泥含有许多细菌和其他微生物.当污泥与饱含氧的原废水混合时,利用污泥中的细菌可以氧化有机固体,提高混凝和絮凝效果,把胶体固体和悬浮固体转变为可降解的固体.在活性污泥处理过程中,利用悬浮好氧微生物培养物处理流入的废水.当反应期结束时,从处理的废水中把微生物培养物分离出来.大部分微生物培养物返回到流入的废水中,并与之混合.在有活性污泥作用的条件下,微生物培养物成团状或絮状体生长,这些团状或絮状体含有大量的由聚集在它们荚膜上的分泌聚合物结合在一起的细菌。一般絮状体可以电子扫描显微照片显示。细菌细胞在絮状体内部分散开,实际上仅占絮状体体积的10%-25%左右,正如在电子显微照片中见到的一样。反应器内的剪应力控制最大絮状体的尺寸;用于把细菌培养物与处理过的污水分开的重力沉淀法控制最小絮状体的尺寸。除了细菌(真菌,原生动物等)以外的生物生活在絮状体内部或表面上,但是一般不大量出现。在活性污泥中也发现一些游离生物,如线虫和轮虫。原生动物和轮虫以游离细菌为食,因而有助于生产低浊度的出水。 由于很难测定实际的细菌种类,,所以将曝气池中的悬浮固体或挥发性悬浮固体的浓度作为细菌含量的估量。废水和悬浮培养物的混合体称为混合液,悬浮固体浓度分别称为混合液悬浮固体(MLSS)和混合液挥发性悬浮固体(MLVSS). 【工艺构型】使用中的三种基本活性污泥工艺构型为标准式(PF),连续流搅拌池(CFST)和间歇池。标准推流式是最常见的。反应器内的混合通常是游曝气系统提供的。最初活性污泥工艺构型是一个单元的间歇反应器。由于工作周期闲置阶段的水力问题导致了连续流系统的开发,该系统利用分离池将培养物或液体分离出去。知道20世纪50年代,实际上所有的活性污泥法是带有一个单独沉淀池的标准推流。沉降下来的细胞可再循环或必要时排掉。在过去的30年中,尽管大多数新处理工艺仍是标准推流,但连续流搅拌池活性污泥系统已经十分普遍。间歇法作为改进了的沉淀法已经重新出现。

活性污泥法的基本工艺流程

第一节活性污泥法的基本原理 一、活性污泥法的基本工艺流程 1、活性污泥法的基本组成 ①曝气池:反应主体 ②二沉池: 1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度。 ③回流系统: 1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。 ④剩余污泥排放系统: 1)是去除有机物的途径之一;2)维持系统的稳定运行。 ⑤供氧系统:提供足够的溶解氧 2、活性污泥系统有效运行的基本条件是: ①废水中含有足够的可容性易降解有机物; ②混合液含有足够的溶解氧; ③活性污泥在池内呈悬浮状态; ④活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥; ⑤无有毒有害的物质流入。 二、活性污泥的性质与性能指标 1、活性污泥的基本性质 ①物理性能:“菌胶团”、“生物絮凝体”: 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1,(1.002~1.006); 粒径:0.02~0.2 mm; 比表面积:20~100cm2/ml。 ②生化性能: 1) 活性污泥的含水率:99.2~99.8%; 固体物质的组成:活细胞(M a)、微生物内源代谢的残留物(M e)、吸附的原废水中难于生物降解的有机物(M i)、无机物质(M ii)。 2、活性污泥中的微生物:

① 细菌: 是活性污泥净化功能最活跃的成分, 主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等; 基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌; 2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟; 4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。 ② 其它微生物------原生动物、后生动物----在活性污泥中大约为103个/ml 3、活性污泥的性能指标: ① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ): MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3 ② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed Volatile Liquor Suspended Solids ): MLVSS = M a + M e + M i ; 在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85 ③ 污泥沉降比(SV )(Sludge Volume ): 是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。 ④ 污泥体积指数(SVI )(Sludge Volume Index ): 曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。 ) /()/((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?== 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过高,说明其沉降性能不好,将要或已经发生膨胀现象; 城市污水的SVI 一般为50~150 ml/g ; 三、活性污泥的增殖规律及其应用 活性污泥中微生物的增殖是活性污泥在曝气池内发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。 1、活性污泥的增殖曲线

活性污泥法处理工艺12种方法分析

活性污泥法处理工艺12种方法分析 活性污泥法、生物膜法、厌氧处理法、生物脱氮、除磷等工艺技术,是废水生物处理借助环境工程和化学工程的手段和方法,以微生物作用为主体开发出了种种用于控制和治理水污染治理的新方法。 所谓“好氧”:是指这类生物必须在有分子态氧气(O2)的存在下,才能进行正常的生理生化反应。所谓“厌氧”:是能在无分子态氧存在的条件下,能进行正常的生理生化反应的生物。 1.活性污泥法的特点 曝气池中污泥浓度一般控制在2—3g/L,废水浓度高时采用较高数值; 废水在曝气池中的停留时间(HRT)常采用4—8h,视废水中有机物浓度而定; 回流污泥量约为进水流量的25%—50%左右; BOD和悬浮物去除率都很高,达到90%—95%左右。 2.作用原理 普通活性污泥法是依据废水的自净作用原理发展而来的。 3.不足之处 对水质变化的适应能力不强; 所供的氧不能充分利用,因为在曝气池前端废水水质浓度高、污泥负荷高、需氧量大,而后端则相反,但空气往往沿池长均匀分布,这就造成前端供氧量不足、后端供氧量过剩的情况。 因此,在处理同样水量时,同其他类型的活性污泥法相比,曝气池相对庞大、占地多、能耗费用高。 阶段曝气活性污泥法 阶段曝气法也称为多点进水活性污泥法,它是普通活性污泥法的一个简单的改进,可克服普通活性污泥法供氧同需氧不平衡的矛盾。 曝气池容积同普通活性污泥法比较可以缩小30%左右,但其出水差于普通活性污泥法。 渐减曝气法

克服普通活性污泥法曝气池中供氧、需氧不平衡另一个改进方法是将曝气池的供氧沿活性污泥推进方向逐渐减少,这即为渐减曝气法。 该工艺曝气池中有机物浓度随着向前推进不断降低、污泥需氧量也不断下降、曝气量相应减少。 吸附再生活性污泥法 吸附再生活性污泥法系根据废水净化的机理,污泥对有机污染物的初期高速吸附作用,将普通活性污泥法作相应改进发展而来。 特点: 回流污泥量比普通活性污泥法多,回流比一般在50%—100%左右 吸附池和再生池的总容积比普通活性污泥法曝气池小得多,空气用量并不增加,因此减少了占地和降低了造价。 具有较强的调节平衡能力,以适应进水负荷的变化 缺点是去除率较普通活性污泥法低,尤其是对溶解性有机物较多的工业废水,处理效果不理想。 完全混合活性污泥法 完全混合活性污泥法的流程和普通活性污泥法相同,但废水和回流污泥进入曝气池时,立即与池内原先存在的混合液充分混合。 (a)采用扩散空气曝气器的完全混合活性污泥法工艺流程; (b)采用机械曝气的完全混合活性污泥工艺流程; (c)合建式圆形曝气沉淀池。 1.优点: 微生物的代谢速率甚高; 废水水力停留时间往往较短,系统的负荷较高; 构筑物的占地较省。 2.缺点: 导致出水水质较差; 较易发生丝状菌过量生长的污泥膨胀等运行间题。 序批式活性污泥法

活性污泥法的各种指标及相互关系

活性污泥法的各种指标及相互关系:MLVSS /MLSS一般0.75左右,SVI =混合液30min 静沉后污泥溶积/污泥干重=SV%×10/MLSS(100ML 量筒) 影响活性污泥处理效果的因素:①溶解氧2mg/l左右为宜②营养物BOD:N:P=100:5:1③PH值6.5-9.0④水温:20-30度⑤有毒物质:重金属、H2S等无机物质和氰、酚等有机物质。会破坏细菌细胞某些必要的生理结构,或抑制细菌的代谢过程。 衡量曝气效果的指标及适用围:动力效率(Ep)、氧转移效率(EA)对鼓风曝气而言即氧利用率、充氧能力(对机械曝气而言) 活性污泥法常见的问题及处理方法:①污泥膨胀:防止办法:加强操作管理,经常检测污水水质、溶解氧、污泥沉降比、污泥指数等。解决办法:缺氧、水温高可加大曝气量或降低进水量以减轻负荷或适当降低MLSS,使需氧量减少。如污泥负荷率过高,可适当提高MLSS值,以调整负荷。如PH值过低,可投加石灰调整PH。若污泥大量流失,则可投氯化铁,帮助凝聚。②污泥解体:污水中存在有毒物质,鉴别是运行方面的问题则对污水量、回流污泥量、空气量和排泥状态以及SV%、MLSS、DO、Ns等进行检查,加以调整;如是混入有毒物质,需查明来源,采取相应对策。③污泥脱氮:呈块状上浮,由于硝化进程较高,在沉淀池产生反硝化,氮脱出附于污泥上,从而使污泥比重降低,整块上浮。解决办法:增加污泥回流量或及时排除剩余污泥,在脱氮之前将污泥排除;或降低混合液污泥浓度,缩短污泥岭和降低溶解氧等,使之不进行到硝化阶段。④污泥腐化:污泥长期滞留而进行厌氧发酵生成气体,从而大块污泥上浮的现象。防止措施:a、安设不使污泥外溢的浮渣清除设备;b、消除沉淀池的死角区;c、加大池底坡度或改进池底刮泥设备,不使污泥滞留于池底。⑤泡沫:原因污水中存在大量合成洗涤剂或其他起泡物质。措施:分段注水以提高混合液浓度;进行喷水或投加除泡剂等。 生物滤池:是以土壤自净原理为依据,有过滤田和灌溉田逐步发展来的。废水长期以滴

活性污泥法曝气量有关计算(仅供参考)

氧的传递与转移 一、双膜理论与氧总转移系数 (1)气、液两相接触的界面两侧存在着处于层流状态的气膜和液膜,在其外侧则分别为处于紊流状态的气相主体和液相主体。气体分子以分子扩散方式从气相主体通过气膜和液膜而进入液相主体。(2)气、液两相主体的物质浓度基本上是均匀的,不存在浓度差,也不存在传质阻力,气体向液相主体的传递,阻力仅存在于气、液两层膜中。(3)在气膜中存在氧的分压梯度,在液膜中存在氧的浓度梯度,它们是氧转移的推动力。(4)氧难溶于水,氧转移决定性的阻力集中在液膜上,因此,氧分子通过液膜是氧转移过程的控制步骤。 V A X D K f L a L =()C C K dt dC s La -= KLa 小,则氧转移过程中阻力大;KLa 大,则氧转移过程中阻力小。1/KLa 的单位为h ,表示曝气池中溶解氧浓度从C 提高到Cs 所需要的时间。KLa ——氧总转移系数是评价空气扩散装置的重要参数。 二、提高氧转移效率的方法: (1)提高KLa 值。要加强液相主体的紊流程度,降低液膜厚度,加速气、液面的更新,增大气、液接触面积等(气泡细小)。 什么是液膜呢?你一定知道肥皂泡沫吧,它就是最常见的液膜,它的分子一端亲水,一端亲油,在水中遇到油,亲油的一端向油,亲水的一端向外,就成为包围着油的泡沫。这种液膜不稳定,一吹就破。 (2)提高Cs 值。可提高气相中的氧分压,如采用纯氧曝气或高压下曝气如深井曝气等。 三、影响氧转移的因素 (1)污水性质 污水中存在着溶解性有机物,特别是表面活性物质,如短链脂肪酸和乙醇,是一种两亲分子,极性端亲水羧基COOH -或羟基-OH -插入液相,而非极性端疏水的碳基链则伸入气相中。由于两亲分子聚集在气液界面上,阻碍氧分子的扩散转移,增加了氧转移过程的阻力→KLa ↓,引入一个小于1的因子α来修正表面活性物质对KLa 的影响 α=KLa ’(污水)/KLa(清水) KLa ’(污水)=α*KLa(清水) (2)污水中含有盐类,因此,氧在水中的饱和度也受水质的影响。引入小于1的系数β因子来修正。 β=Cs ’(污水)/Cs(清水) Cs ’(污水)=β*Cs(清水) (3)水温 水温降低有利于氧的转移。30-35℃的盛夏情况不利。 KLa (T)=KLa (20)*1.024(T-20) (3)氧分压 Cs 值受氧分压或气压的影响。气压降低 ,Cs 降低,反之则提高。在当地气压不是一个标准大气压时,C 值应乘以如下修正系数: ρ=所在地区实际压力(Pa)/101325(Pa) 主要影响因素:气相中氧分压梯度、液相中氧浓度梯度、气液之间的接触面积(气泡大小)和接触时间、水温、污水性质、水流的紊流程度。

各种活性污泥法工艺大全

各种活性污泥法工艺大全 迄今为止,在活性污泥法工程领域,应用着多种各具特色的运行方式。主要有以下几种:1)传统推流式活性污泥法; 2)完全混合活性污泥法;3)阶段曝气活性污泥法;4)吸附—再生活性污泥法;5)延时曝气活性污泥法;6)高负荷活性污泥法;7)纯氧曝气活性污泥法;8)浅层低压曝气活性污泥法; 9)深水曝气活性污泥法;10) 深井曝气活性污泥法。下面分别介绍活性污泥法的各种工艺,其设计参数见最后附表:各种活性污泥法工艺参数表1.传统推流式活性污泥法:推流式活性污泥法1)工艺流程:2)供需氧曲线:3)主要优点:A.处理效果好:BOD5的去除率可达90-95%;B.对废水的处理程度比较灵活,可根据要求进行调节。4)主要问题:A.为了避免池首端形成厌氧状态,不宜采用过高的有机负荷,因而池容较大,占地面积较大;B.在池末端可能出现供氧速率高于需氧速率的现象,会浪费了动力费用;C.对冲击负荷的适应性较弱。5)一般所采用的设计参数(处理城市污水):2.完全混合活性污泥法合建式完全混合活性污泥法1)主要特点:A.可以方便地通过对F/M的调节,使反应器内的有机物降解反应控制在最佳状态;B.进水一进入曝气池,就立即被大量混合液所稀释,所以对冲击负荷有一定的抵抗能力;C.适合于处理较高浓度的有机工业废水。2)主要结构形式:A.合建式

(曝气沉淀池):B.分建式3、阶段曝气活性污泥法——又称分段进水活性污泥法或多点进水活性污泥法阶段曝气活性 污泥法1)工艺流程:2)主要特点:A.废水沿池长分段注入曝气池,有机物负荷分布较均衡,改善了供养速率与需氧速率间的矛盾,有利于降低能耗;B.废水分段注入,提高了曝气池对冲击负荷的适应能力;4、吸附再生活性污泥法——又称生物吸附法或接触稳定法。吸附再生活性污泥法主要特点是将活性污泥法对有机污染物降解的两个过程——吸附、代谢稳定,分别在各自的反应器内进行。1)工艺流程:2)主要优点:A.废水与活性污泥在吸附池的接触时间较短,吸附池容积较小,再生池接纳的仅是浓度较高的回流污泥,因此,再生池的容积也较小。吸附池与再生池容积之和低于传统法曝气池的容积,基建费用较低;B.具有一定的承受冲击负荷的能力,当吸附池的活性污泥遭到破坏时,可由再生池的污泥予以补充。3)主要缺点:处理效果低于传统法,特别是对于溶解性有机物含量较高的废水,处理效果更差。5、延时曝气活性污泥法——完全氧化活性污泥法延时曝气活性污 泥法1)主要特点:A.有机负荷率非常低,污泥持续处于内源代谢状态,剩余污泥少且稳定,勿需再进行处理;B.处理出水出水水质稳定性较好,对废水冲击负荷有较强的适应性; C.在某些情况下,可以不设初次沉淀池。2)主要缺点:A.池容大、曝气时间长,建设费用和运行费用都较高,而且占地

活性污泥法的主要运行方式

活性污泥法的主要运行方式 一、各种活性污泥法工艺 迄今为止,在活性污泥法工程领域,应用着多种各具特色的运行方式。主要有以下几种:①传统推流式活性污泥法;②完全混合活性污泥法;③阶段曝气活性污泥法;④吸附—再生活性污泥法;⑤延时曝气活性污泥法;⑥高负荷活性污泥法;⑦纯氧曝气活性污泥法;⑧浅层低压曝气活性污泥法;⑨深水曝气活性污泥法;⑩深井曝气活性污泥法。 1、传统推流式活性污泥法: ①工艺流程: ②供需氧曲线: ③主要优点:1) 处理效果好:BOD5的去除率可达90-95%;2) 对废水的处理程度比较灵活,可根据要求进行调节。 ④主要问题:1) 为了避免池首端形成厌氧状态,不宜采用过高的有机负荷,因而池容较大,占地面积较大;2) 在池末端可能出现供氧速率高于需氧速率的现象,会浪费了动力费用;3) 对冲击负荷的适应性较弱。 ⑤一般所采用的设计参数(处理城市污水): 2、完全混合活性污泥法 ①主要特点:a.可以方便地通过对F/M的调节,使反应器内的有机物降解反应控制在最佳状态;b.进水一进入曝气池,就立即被大量混合液所稀释,所以对冲击负荷有一定的抵抗能力;c.适合于处理较高浓度的有机工业废水。 ②主要结构形式:a.合建式(曝气沉淀池):b.分建式 3、阶段曝气活性污泥法——又称分段进水活性污泥法或多点进水活性污泥法 ①工艺流程: ②主要特点:a.废水沿池长分段注入曝气池,有机物负荷分布较均衡,改善了供养速率与需氧速率间的矛盾,有利于降低能耗;b.废水分段注入,提高了曝气池对冲击负荷的适应能力; ③主要设计参数: 4、吸附再生活性污泥法——又称生物吸附法或接触稳定法。 主要特点是将活性污泥法对有机污染物降解的两个过程——吸附、代谢稳定,分别在各自的反应器内进行。 ①工艺流程: ②主要优点: a.废水与活性污泥在吸附池的接触时间较短,吸附池容积较小,再生池接纳的仅是浓度较高的回流污泥,因此,再生池的容积也较小。吸附池与再生池容积之和低于传统法曝气池的容积,基建费用较低; b.具有一定的承受冲击负荷的能力,当吸附池的活性污泥遭到破坏时,可由再生池的污泥予以补充。 ③主要缺点:处理效果低于传统法,特别是对于溶解性有机物含量较高的废水,处理效果更差。

活性污泥法曝气池DO异常的原因及对策

活性污泥法曝气池DO异常的原因及对策(河南南阳市污水净化中心,473000)论文关键词:内容摘要】:本文通过对曝气池溶解氧异常现象的描述及原因的分析,阐述了溶解氧在传统活性污泥法工艺控制中的重要地位,以及在日常运行管理中如何应对DO异常,提出了应对措施和解决办法,以供同行商榷 0、前言 活性污泥法是以活性污泥为主体的好氧生物处理方法,即以存在于水中的有机物为食物,在有氧的条件下,对各种微生物进行连续培养、驯化,通过凝聚、吸附、氧化分解、沉淀等过程去除污水中的有机污染物。活性污泥法是对城市污水及有机工业废水最有效的生物处理方法,而DO(Desolved Oxygen)即活性污泥混合液的溶解氧浓度,是充分发挥各种微生物生命活动的重要保障,因此也是城市污水处理中活性污泥法及其变形工艺的操作控制要点。在日常运行管理中,DO 值不能太高,也不能太低。目前业内公认的DO值宜控制在2mg/L左右,但实际运行中应根据各厂自己的具体情况而定。南阳市污水处理厂多年来一直保持低DO(1mg/L)运行,节省了大量能源,而出水水质完全达标。但以生物硝化脱氮为目的的处理厂,其DO值通常比常规处理所需的值高,因为硝化细菌为转性好氧菌,无氧即停止活动,而且其摄氧速率较分解有机物的细菌低得多,因此硝化系统需维持高浓度DO。 1、DO异常的表现 DO异常表现为DO过高和过低两种现象。其中DO过低的现象可分为

某时段DO急剧下降和同样鼓风条件下DO逐年降低两种情况。 2、DO异常的原因 2.1、DO急剧下降 DO急剧下降主要原因有以下几点: A、进水水质突变 a、高浓度有机废水(溶解性BOD)流入。高浓度有机废水主要指食品加工废水、酿造业废水、造纸废水等,BOD易被活性污泥分解去除,导致耗氧量增加,DO降低。 b、高耗氧量污水的排入。污水管网或沉淀池中堆积的污泥流入,浓缩池或消化池上清液的大量流入,工业废水如耗氧量高的油脂废水、皮革加工厂工业废水、印刷、纤维、化学合成废水的流入都可导致DO急剧下降。 c、影响氧转移废水的流入。污水中的表面活性剂(如短链脂肪酸和乙醇等)、高粘性物质、油脂等将聚集在气、液界面上,阻碍氧分子的扩散转移。由于它们增加了氧转移过程的阻力,因此造成氧的转移系数下降,转移效率降低,从而使DO下降。 d、高浓度FeO废水的流入。高浓度FeO废水主要来自地下水或矿山、炼铁厂、电缆厂等工矿企业,这些废水中含有大量氧化亚铁,易被氧化成Fe3+ ,消耗大量氧,导致DO降低。 B、曝气池发生硝化反应 硝化细菌 硝化反应的公式为:NH4+ +2O2 ———→NO3- +2H+ +H2O

第七章 活性污泥法

废水的生物处理-----活性污泥法 1.1 活性污泥及其组成 1.外观形态:多为黄褐色絮体,含水率超过99%. 2.活性污泥组成 M =Ma + Me + Mi + Mii 式中 Ma ——微生物(细菌,真菌,原生动物,后生动物); Me ——代谢产物; Mi ——活性污泥吸附的难降解惰性有机物; Mii ——活性污泥吸附的无机物。 1.2 评价活性污泥指标 1. 活性污泥数量的评价指标 (1)混合液悬浮固体浓度MLSS (mg/L) MLSS=Ma+Me+Mi+Mii (2)混合液挥发性悬浮固体浓度MLVSS (mg/L) MLVSS=Ma+Me+Mi 2.沉降性与浓缩性评价指标 (1)污泥沉降比:SV(%)又称30min 沉降比,混合液在量筒内静置30min 后所形成沉淀污泥与混合液的体积百分比。城市污水:SV 取15%--30% (2)污泥容积指数:SVI (ml/g )静置30min 后,1g 干污泥所占的容积. 这些污泥的干重静沉后的污泥容积 混合液经min 30= SVI )/()/()/(10%干污泥g ml l g Mlss l ml SV ?= SVI=70~100, 凝聚沉淀性能很好; SVI 值过低,活性污泥颗粒细小,无机物含量高,缺乏活性; SVI 值过高,沉淀性能不好,可能产生污泥膨胀。 (3)污泥密度指数:SDI 曝气池混合液在静置30分钟后,含于100mL 沉降污泥中的活性污泥悬浮固体的克数。 SDI 与SVI 的关系为: 1.3 活性污泥净化反应过程 活性污泥净化废水的作用是由吸附和氧化两个阶段完成的 2.1 活性污泥法三要素 1.微生物(活性污泥)-----是引起吸附和氧化分解作用的; 2.废水中的有机物-----处理对象,也是微生物的食料; 3.溶解氧-----没有充足的溶解氧,好氧微生物既不能生存也不能发挥氧化分解作用。 1.微生物(活性污泥)-----是引起吸附和氧化分解作用的; 2.废水中的有机物-----处理对象,也是微生物的食料; 3.溶解氧-----没有充足的溶解氧,好氧微生物既不能生存也不能发挥氧化分解作用。 2.2.1 有机物降解动力学-------米—门公式 1.酶的“中间产物”学说 酶首先与底物结合生成酶与底物复合物(中间产物), 此复合物再分解为产物和游离的酶。 4. Km 与V max 的意义及测定 (1)Km 意义 当反应速度为最大速度一半时,米氏方程可以变换如下: 1/2Vmax=Vmax[S]/(Km+[S]) 即:Km=[S] 可知,Km 值等于酶反应速度为最大速度一半时的底物浓度,故又称半速度常数。 (1)Km 值是酶的特征常数之一,只与酶性质有关,而与酶浓度无关。不同的酶, Km 值不同。 (2)如果一个酶有几种底物,则对每一种底物,各有一个特定的Km 值。 (3)同一种酶的几种底物中, Km 值最小的底物一般称为该酶的最适底物或天然底物。 (2)Vmax 意义 最大酶反应速率Vmax=k +2 C E0。 它表示了当全部的酶都成复合物状态时的反应速率。 (3) Km 与Vmax 的测定 5.米氏方程局限性 只适用于较为简单的酶作用过程。 对于比较复杂的酶促反应过程,如多酶体系、多底物、多产物、多中间物等,还不能全面地籍此概括和说明,必须借助于复杂的计算过程。 4.莫诺德方程式的使用条件 2.2.3 微生物生长与底物降解的基本关系式 Lawrence —McCarty 公式 在一切生化反应中,微生物增长是底物降解的结果,彼此之间存在着一个定量关系。 在实际工程中,产率系数(或称微生物增长系数)Y 常以实际测得的观测产率系数(或称微生物净增长系数)Yobs 代替。 2.2.4 有机物降解与需氧量 微生物的代谢需要氧: (1)需要将一部分有机物氧化分解; (2)也需要对自身细胞的一部分物质进行自身氧化。 1.营养物质:碳源、氮源、无机盐类(主要有P 、 K 、Ca 、F e 、S) 、某些生长素,对于生活污水,C:N:P 的比值为100:5:1,但经沉淀池处理后,其C:N:P=100:20:25 2.4 活性污泥净化反应影响因素 1.营养物质:碳源、氮源、无机盐类(主要有P 、 K 、Ca 、F e 、S) 、某些生长素 对于生活污水,C:N:P 的比值为100:5:1,但经沉淀池处理后,其C:N:P=100:20:25 2.BOD 污泥负荷N S 沉淀性能变差 有机物降解数率 污泥增长数率曝气池↑?↓??↑ ↑↑? Se V N S

SBR活性污泥法工艺

SBR活性污泥法工艺 谁知道或正在SBR工艺中工作,我想参观参观、学习学习,我厂也准备造个小SBR池。 如果你在北京,延庆污水处理厂是做SBR的,我去看过。你可以搜搜联系一下。下面是SBR的一些简单介绍,希望能有帮助。摘要:序批式活性污泥法(SBR-Sequencing Batch Reactor)是早在1914年就由英国学者Ardern和Locket发明了的水处理工艺。70年代初,美国Natre Dame 大学的R.Irvine 教授采用实验室规模对SBR工艺进行了系统深入的研究,并于1980年在美国环保局(EPA)的资助下,在印第安那州的Culwer城改建并投产了世界上第一个SBR法污水处理厂。SBR工艺的过程是按时序来运行的,一个操作过程分五个阶段:进水、反应、沉淀、滗水、闲置。关键词:SBR工艺序批式活性污泥法(SBR—Sequencing Batch Reactor)是早在1914年就由英国学者Ardern 和Locket发明了的水处理工艺。70年代初,美国Natre Dame 大学的R.Irvine 教授采用实验室规模对SBR工艺进行了系统深入的研究,并于1980年在美国环保局(EPA)的资助下,在印第安那州的Culwer城改建并投产了世界上第一个SBR法污水处理厂。SBR工艺的过程是按时序来运行的,一个操作过程分五个阶段:进水、反应、沉淀、滗水、闲置。由于SBR在运行过程中,各阶段的运行时间、反应器内混合液体积的变化以及运行状态等都可以根据具体污水的性质、出水水质、出水质量与运行功能要求等灵活变化。对于SBR反应器来说,只是时序控制,无空间控制障碍,所以可以灵活控制。因此,SBR工艺发展速

延时曝气活性污泥法

延时曝气活性污泥法 第五章活性污泥法 第一节基本原理与分类 第二节活性污泥法参数 第三节曝气 第四节曝气池的构造与设计 第五节运行与管理 第一节基本原理与分类 一、基本原理 二、活性污泥法的基本流程 三、活性污泥指标 四、活性污泥法的分类 一、基本原理 活性污泥法是利用悬浮生长的微生物絮体处理有机废水一类好氧生物的处理方法。这种生物絮体叫做活性污泥,它由好气性微生物及其代谢的和吸附的有机物、无机物组成,具有降解废水中有机污染物的能力,显示生物化学活性。 图13-1 活性污泥形状图 活性污泥法净化废水的三个主要过程

1、吸附废水与活性污泥微生物充分接触,形成悬浊混合液, 废水中污染物被比表面积巨大且表面上含有多糖类粘性物质的 微生物吸附和粘连。 是胶态的大分子有机物被吸附后,首先被水解酶作用,分解 为小分子物质,然后这些小分子与溶解性有机物一道在透膜酶 的作用下或在浓差推动下选择性渗入细胞体内。 2、微生物的代谢微生物吸收进入细胞体内的污染物通过微 生物的代谢反应而被降解,一部分经过一系列中间状态氧化为最 终产物CO2和H2O等。另一部分则转化为新的有机体,使细胞 增殖。一般地说,自然界中的有机物都可以被某些微生物所分 解,多数合成有机物也可以被经过驯化的微生物分解。不同的微 生物对不同的有机物其代谢途径各不相同,对同一种有机物也可 能有几条代谢途径。 3、凝聚与沉淀产生凝聚的主要原因:细菌体内积累的聚β-羟基丁酸释放到液相,促使细菌间相互凝聚,结成线粒;微生物 摄食过程释放的粘性物质促进凝聚;在不同的条件下,细菌内 部的能量不同,当外界营养不足时,细菌内部能量降低,表面电 荷减少,细菌颗粒间的结合力大于排斥力,形成线粒;而当营养 物充足时,细菌内部能量大,表面电荷增大,形成的线粒重新分散。 沉淀是混合液中固相活性污泥颗粒同废水分离的过程。固液 分离的好坏,直接影响出水水质。

活性污泥法在曝气池中的应用

活性污泥法在曝气池中的应用 参考资料:https://www.doczj.com/doc/ce13870423.html,/news/details7742.htm 泥法是最常见的污水生物处理方法,污水在经过初步沉淀去除各种大块颗粒之后送到好氧反应池,在池中通过进口曝气管供给氧气。在活性污泥法中,经处理后排出的水中的大部分活性污泥被沉淀下来返回反应池,这样可以维持很高的微生物密度和活性。当污水停留在好氧反应池期间,一部分有机物被处理成无机物,即矿化;另一部分转化为微生物细胞物质。在活性污泥法中,严重影响处理效果的是污泥的沉降性能。 性污泥沉降性能差,由于丝状细菌和真菌的过分繁殖将导致活性污泥膨胀。虽然活性污泥的膨胀机理尚不完全清楚,但通常在碳氮比(C:N)和碳磷比(C:P)的比值较高,水中溶解的氧气浓度较低的条件下容易产生。为维持良好的处理效果,应当避免发生污泥膨胀,因此在活性污泥法中要严格控制进入系统废水的C:N和C:P的比值,并维持较高的溶解氧水平,这样才能维持良好运行状态。产生的活性污泥除一部分回流利用外,其它多余的则需要另外处理。处理的方法是厌氧消化、填埋或干燥。干燥后的处理物可以用作农业肥料。 活性污泥法的基本组成 ①曝气池:反应主体 ②二沉池: 1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度。 ③回流系统:1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。 ④剩余污泥排放系统: 1)是去除有机物的途径之一;2)维持系统的稳定运行。 ⑤供氧系统:提供足够的溶解氧 有效运行条件 ①废水中含有足够的可容性易降解有机物; ②混合液含有足够的溶解氧; ③活性污泥在池内呈悬浮状态; ④活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥; ⑤无有毒有害的物质流入。 活性污泥性能指标 1、活性污泥的基本性质 ①物理性能:“菌胶团”、“生物絮凝体”: 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1,(1.002~1.006); 粒径:0.02~0.2 mm; 比表面积:20~100cm2/ml。 ②生化性能: 1) 活性污泥的含水率:99.2~99.8%; 固体物质的组成:活细胞(Ma)、微生物内源代谢的残留物(Me)、吸附的原废水中难于生物降解的有机物(Mi)、无机物质(Mii)。 2、活性污泥中的微生物:

延时曝气活性污泥法

延时曝气活性污泥法系统 (完全氧化活性污泥法) 1.工艺流程: 同传统活性污泥法 2.工艺特征: ①污泥负荷率BoD5很低Ns=0.05-0.1Kg BoD5/Kgmlssd ②曝气时间很长24-48h ③剩余污泥量少,勿需进行厌氧消化处理 ④完全混合式曝气池 氧化沟工艺是样式曝气的一种特殊工艺—循环混合式曝气池 3.工艺参数T=24-48h R=60%—200%Ns=0.05-0.1 Qc=20—30d X=3000—6000mg/L 4 缺点 优点(对水质,水量冲击负荷适应能力强)不设初淀池 缺点①池容大②爆气时间长③基建和运行费用高 ICEAS(Intermittent Cyclic Extended AeratlonSystem)工艺的全称为间歇循环延时曝气活性污泥工艺。它于20世纪80年代初在澳大利亚兴起,是变形的SBR工艺。 ICEAS与传统的SBR相比,最大的特点是:在反应器的进水端增加了一个预反应区,运行方式为连续进水(沉淀期和排水期仍保持进水),间歇排水,没有明显的反应阶段和闲置阶段。这种系统在处理市政污水和工业废水方面比传统的SBR系统费用更省、管理更方便。但是由于进水贯穿于整个运行周期的每个阶段,沉淀期进水在主反应区底部造成水力紊动而影响泥水分离时间,因而,进水量受到了一定限制。通常水力停留时间较长。 间歇排水延时曝气工艺(IDEA)基本保持了CAST艺的优点,运行方式采用连续进水、间歇曝气、周期排水的形式。与CAST相比,预反应区(生物选择器)改为与SBR主体构筑物分立的预混合池,部分剩余污泥回流入预混合池,且采用反应器中部进水。预混合池的设立可以使污水在高絮体负荷下有较长的停留时间,保证高絮凝性细菌的选择。 延时曝气活性污泥法:①由于负荷低,延时曝气池容积大,占地面积较大②对水质水量变动性强③产污泥量少④处理效果好 延时曝气活性污泥法对BOD的去除率高于传统活性污泥法。 延时曝气活性污泥法中活性污泥一直处于内源呼吸期

第七讲 第三章 活性污泥法2

第七讲 活性污泥法2 活性污泥法的基本工艺参数 1、容积负荷(Volumetric Organic Loading Rate ): V C Q L i vCOD ?= )(3 d m kgCOD ?; V B Q L i vBOD ?= 5)(3 5d m kgBOD ? 2、污泥负荷(Sludge Organic Loading Rate ): V MLSS C Q L i sCOD ??= d kgMLSS kgCOD ?; V MLSS B Q L i sBOD ??= 5 d kgMLSS kgBOD ?5 3、水力停留时间(Hydraulic Retention Time ): Q V HRT = (h ) 4、污泥龄或污泥停留时间(Sludge Retention Time ): r w X Q X V SRT ??= (h 或 d ) 5、回流比:r Q Q R = 活性污泥法的主要运行方式 一、各种活性污泥法工艺 迄今为止,在活性污泥法工程领域,应用着多种各具特色的运行方式。主要有以下几种:① 传统推流式活性污泥法;② 完全混合活性污泥法;③ 阶段曝气活性污泥法;④ 吸附—再生活性污泥法;⑤ 延时曝气活性污泥法;⑥ 高负荷活性污泥法;⑦ 纯氧曝气活性污泥法;⑧ 浅层低压曝气活性污泥法;⑨ 深水曝气活性污泥法;⑩ 深井曝气活性污泥法。 1、传统推流式活性污泥法: ① 工艺流程: ② 供需氧曲线: ③ 主要优点:1) 处理效果好:BOD 5的去除率可达90-95%;2) 对废水的处理程度比较灵活,可根据要求进行调节。 ④ 主要问题:1) 为了避免池首端形成厌氧状态,不宜采用过高的有机负荷,因而池容较大,占地面积较大;2) 在池末端可能出现供氧速率高于需氧速率的现象,会浪费了动力

相关主题
文本预览
相关文档 最新文档