当前位置:文档之家› 活性污泥法

活性污泥法

活性污泥法
活性污泥法

活性污泥法

活性污泥法是一种生物废水处理方法.处理过程中将废水与活性污泥的混合液搅拌并加以曝气.接下来经过沉淀把活性污泥从处理过的废水中分离开,根据需要活性污泥可以排掉或者回用.处理过的废水从沉淀池出水堰流出去.活性污泥就是废水经过一段时间自然曝气和搅拌之后沉淀下来的污泥.这种活性污泥含有许多细菌和其他微生物.当污泥与饱含氧的原废水混合时,利用污泥中的细菌可以氧化有机固体,提高混凝和絮凝效果,把胶体固体和悬浮固体转变为可降解的固体.在活性污泥处理过程中,利用悬浮好氧微生物培养物处理流入的废水.当反应期结束时,从处理的废水中把微生物培养物分离出来.大部分微生物培养物返回到流入的废水中,并与之混合.在有活性污泥作用的条件下,微生物培养物成团状或絮状体生长,这些团状或絮状体含有大量的由聚集在它们荚膜上的分泌聚合物结合在一起的细菌。一般絮状体可以电子扫描显微照片显示。细菌细胞在絮状体内部分散开,实际上仅占絮状体体积的10%-25%左右,正如在电子显微照片中见到的一样。反应器内的剪应力控制最大絮状体的尺寸;用于把细菌培养物与处理过的污水分开的重力沉淀法控制最小絮状体的尺寸。除了细菌(真菌,原生动物等)以外的生物生活在絮状体内部或表面上,但是一般不大量出现。在活性污泥中也发现一些游离生物,如线虫和轮虫。原生动物和轮虫以游离细菌为食,因而有助于生产低浊度的出水。

由于很难测定实际的细菌种类,,所以将曝气池中的悬浮固体或挥发性悬浮固体的浓度作为细菌含量的估量。废水和悬浮培养物的混合体称为混合液,悬浮固体浓度分别称为混合液悬浮固体(MLSS)和混合液挥发性悬浮固体(MLVSS).

【工艺构型】使用中的三种基本活性污泥工艺构型为标准式(PF),连续流搅拌池(CFST)和间歇池。标准推流式是最常见的。反应器内的混合通常是游曝气系统提供的。最初活性污泥工艺构型是一个单元的间歇反应器。由于工作周期闲置阶段的水力问题导致了连续流系统的开发,该系统利用分离池将培养物或液体分离出去。知道20世纪50年代,实际上所有的活性污泥法是带有一个单独沉淀池的标准推流。沉降下来的细胞可再循环或必要时排掉。在过去的30年中,尽管大多数新处理工艺仍是标准推流,但连续流搅拌池活性污泥系统已经十分普遍。间歇法作为改进了的沉淀法已经重新出现。

【曝气方法】利用各种方法氧被传递到活性污泥反应器即曝气池的液体中,最常见的方法是通过曝气池底部的扩散器输入压缩空气。位于水面或潜如水中的机械涡轮也被广泛使用。潜水涡轮经常与压缩空气系统接合使用,以便在压缩空气气泡与液体之间形成紧密接触。表面涡轮起到泵的作用,它把液体向上吸,然后径向抛出,形成与空气接触的小水珠。用机械的方法破坏水体表面可达到机械曝气的目的。靠形成大面积汽水界面,提高大气中氧的转移量。普遍使用竖轴和横轴曝气器。在竖轴曝气中,通过水珠与大气接触。表面紊流和气体夹带使水曝气。在横轴曝气中,用转子或栅笼形成表面紊流和气体夹带效果而使水曝气。转子式曝气器除了有曝气作用,还会形成横向轴吸。涡轮充气器是包括使用涡轮式搅拌器和气源的一种混合系统。从转子的叶片下面排放出的空气分解成细气泡,并且靠叶片的抽吸作用在曝气池中扩散。

【工艺过程模型】活性污泥法中总的生物反应:

有机物+O

2+营养素→新细胞+CO

2+H

2O

在工艺设计中,有机物和氧的消耗速率与新细胞的合成速率非常重要。大多数情况下,假设曝气系统产生的混合能消除液相传质极限。

在常用的速率表达式中,从吸收直到代谢所有步骤都被归纳在一起。

【耗氧速率】在化学计算上耗氧速率与有机物去除速率和生长速率有关。如果有机物浓度以最终生化需氧量(BOD

U)给出,实见方程16.1所示的转换需要氧气等于初始BOD

U与所形成的细胞的氧当量之差。挥发性悬浮固体浓度与其氧当量之间的近似转换系数为每克挥发性固体需氧1.42克。1.42这个值是从考虑把细胞组织氧化成二氧化碳、氨和水所需氧气量的角度得到的。耗氧速率可表示为有机物去除率与生长率之和,但重要的是记住r

0*(以BOD

U表示的有机物去除速率)这项的符号是负的。

【污泥龄】活性污泥法中,混合液悬浮固体的循环使得废水和微生物培养物的平均停留时间分开.常常被称为固体停留时间(SRT)或细胞平均停留时间(MCRT)的污泥龄可定义为系统内微生物培养物停留的平均时间,它主要受排泥速率控制.一般按泥龄9-10天确定排泥速率.根据整个系统的质量平衡可计算泥龄.在进行质量平衡过程中,当没有实际现场资料时,可认为沉淀池内悬固体平均浓度等于曝气池中混合液悬浮固体.

【活性污泥法的设计】活性污泥或任何生物废水处理法的目的是花费最少的时间和资金,将有机物质尽可能彻底的从原废水中除去.原废水的性质及其流动特征确定了,便必须根据他们进行处理法的设计.仅在少数情况下,工业废水可排放到调节池以平衡有机物浓度和流量.

常规活性污泥的基本问题之一是微生物的优势种群易于变化.原废水中的有机物促进曝气池中某些菌种的生长.当除去有机物质,微生物进入内源期间时,原有的用于稳定有机物的微生物群衰减以致死亡.第二批细菌利用原来的微生物死亡的产物并在曝气池的终端占据优势.党污泥回到曝气池的首端时,原来的细菌群又必须从新生长起来.只有长的曝气时间,原来的细菌数量才能减少到某一水平,股需要较长的恢复期,来处理流量或浓度突然增加的废水.在以活性污泥处理不同的工业废水中,这书很重要的,并且也是活性污泥对冲击负荷反应缓慢的原因之一.

保持菌种均匀的唯一方法是保持有机物浓度的均匀.对于处理多变的废水来说,这是不可能的,但这种变化可保持在最小的限度.食料比(F:

M)是细菌生长的关键.业已证明,高的食料比使细菌迅速生长,而低的食料比试细菌生长不明显.在常规活性污泥法中,食物(F)和微生物(M)都在不断的变化,随着每一次循环,食料比从最大值变到最小值.如果在完全混合的情况下,原废水由曝气池所有废水稀释,该曝气就成了一个巨大的调节池,减小食料(F)的波动范围.由于曝气池处于完全混合,食料(F)变得最低,波动也最小,池中任何一点的微生物活动与任何其他点相同.微生物在整个正常生长期内的变化趋近一点,而不象在常规

活性污泥法中那样是一条宽阔的生长带.因而,从微生物的观点看,完全混合系统的优点最多,缺点最少.

在任何废水处理问题中,有机物负荷都是固定的,因此只有通过调节微生物数量才能改变食料比.通过调整食料比,在细菌生长曲线的任何一点上进行处理都是可能的.现在已清楚,就废水处理而论,在生长曲线上的某些段,并不能满意的工作.对于完全混合系统来说,其处理范围将处于生长下降阶段的某一点上.

最近的改革之一是让完全混合系统在生长下降阶段的较低段进行工作,此处污泥增加最小。剩余的污泥随出水排放,不致引起公害。

出水中的活性与非活性固体之比必须与混合液中的相同。弱国不能定期地除去悬浮固体,那么完全氧化是否会大量用于处理生活污水,是值得怀疑的。

另一方面,含有可溶物质的工业废水形成惰性固体缓慢,其生物处理接近完全氧化。出水中剩余的固体与所处理的有机物成正比。约有10%-30%的有机物质作为惰性固体存在于出水中。

在多数情况下,活性污泥必须有固体分离和排除装置。对于活性污泥法来说,仍需解决的主要问题之一是如何从液体中有效地除去和浓缩污泥。现行的方法是依靠重力分离,但浓缩的能力有限。

如果污泥主要是活性的,就需要进一步稳定,才能最后进行处置。

在正常情况下,厌氧硝化用于污泥稳定,但近来在小系统中好氧硝化也已达到相同的目的。决定采用何种方法,有经济因素决定。因为两种方法都会产生可以经过过滤除去其水分的稳定物质。如果污泥主要是非活性的,就不需要进一步稳定,污泥可以直接脱水。

活性污泥法污水处理

水污染控制工程课程设计城镇污水处理厂设计 指导教师刘军坛 学号 130909221 姓名秦琪宁

目录 摘要 (3) 第一章引言 (4) 1.1设计依据的数据参数 (4) 1.2设计原则 (5) 1.3设计依据 (5) 第二章污水处理工艺流程的比较及选择 (6) 2.1 选择活性污泥法的原因 (6) 第三章工艺流程的设计计算 (7) 3.1设计流量的计算 (7) 3.2格栅 (9) 3.3提升泵房 (9) 3.4沉砂池 (10) 3.5初次沉淀池和二次沉淀池 (11) 3.6曝气池 (15) 第四章平面布置和高程计算 (25) 4.1污水处理厂的平面布置 (25) 4.2污水处理厂的高程布置 (26) 第五章成本估算 (27) 5.1建设投资 (27) 5.2直接投资费用 (28) 5.3运行成本核算 (29) 结论 (29) 参考文献: (30) 致谢 (30)

摘要 本设计采用传统活性污泥法处理城市生活污水,设计规模是200000m3/d。该生活污水氨氮磷含量均符合出水水质,不需脱氮除磷,只考虑除掉污水中的SS、BOD、COD。传统活性污泥法是经验最多,历史最悠久的一种生活污水处理方法。污泥处理工艺为污泥浓缩脱水工艺。污水处理流程为:污水从泵房到沉砂池,经过初沉池,曝气池,二沉池,接触消毒池最后出水;污泥的流程为:从二沉池排出的剩余污泥首先进入浓缩池,进行污泥浓缩,然后进入贮泥池,经过浓缩的污泥再送至带式压滤机,进一步脱水后,运至垃圾填埋场。本设计的优势是:设计流程简单明了,无脱氮除磷的设计,节省了成本,该方法是早期开始使用的一种比较成熟的运行方式,处理效果好,运行稳定,BOD 去除率可达90%以上,适用于对处理效果和稳定程度要求较高的污水,城市污水多采用这种运行方式。 关键词:城市污水传统活性污泥法污泥浓缩

浅谈目前城市污水的现状及处理措施

浅谈目前城市污水的现状及处理措施 【摘要】城市污水处理工作是社会发展的一重要组成部分,选择恰当的城市污水处理工艺意义非凡。因为污水处理工艺的好坏虽不是社会发展的中心却牵动着中心的发展,虽不是保护环境的重点,却可波及到环境保护的成果。好的污水处理工艺具有投资成本低、工作效率高、操作方便简单、处理效果达标且可回用等优势。本文主要探讨当前城市污水处理的一些方法。 【关键词】城市;污水处理;方法 在我国经济快速发展的今天,环保问题,特别是城市污水处理已成为各国研究的热点。在这种经济体制下,我国城市污水处理的管理机构和管理方式等方面一直沿袭旧的经营管理模式,对污水处理设施方面的建造、设备运行和价费行使统一管理、分级领导的体制,给城市污水处理相关行业导致了很多弊端。城市污水的治理对改善城市水环境,保障城市经济发展起着关键的作用。 一、城市污水的特点 城市污水指人类生活所产生的污水,以洗涤污水和排泄物等为主。城市污水的排量和居民生活水平有关,其排量较大,平均每人每日产生污水150-400L。城市污水有区别于工业污水,但也成为了当今社会的一个主要污染源。目前,除磷技术是城市污水处理的瓶颈问题。因为污水中含有的高量氮、硫、磷等物质在厌氧细菌作用下,极易生恶臭物质污染环境。此外,污水中还含有大量的病原菌、病毒和寄生虫卵等微生物,以及糖类、脂肪、蛋白质等有机物,和一系列金属物和盐类物质。 二、城市污水处理的重要性和迫切性 我国淡水资源十分紧缺,人均拥有量为2300立方米,仅相当于世界人均拥

有水平的1/4。更不为乐观的是我国的城镇污水:自1997年起,居民污水排放量首次超越了工业污水排放量(城市污水排放量占总排放量的45%),开始位居污水治理工作的首位。从而我国全面加强了城市污水的治理工作;1999年,城市污水污染负荷超过了工业废水污染负荷,我国水污染控制重点也从工业污染转变成了城市污水污染。到2003年,全国废水排放总量为460亿吨,其中城市生活污水排放量占污水排放总量的53.8%,为247.6亿吨;废水化学需氧量(COD)排放总量1333万吨,其中生活污水占总量的61.6%,为821.7万吨。如此醒目的数字说明了我国水污染的严峻形式,以及城市污水的严重所在。 据有关资料统计,我国的生活污水大多未经处理就直接排人江河湖海,比例高达80%。400亿立方米的年排污量,污染了全国1/3以上的水域。专家指出,水污染无疑加重了水资源的紧缺程度,更为严重的是直接威胁到人类的生存环境及饮用水安全和工农业发展的进度。目前,城市污水已慢慢侵蚀人类的生存环境,成为仅次于洪水、干旱等自然灾害的污染。而我国城市水污染之所以如此严峻,其主要原因是污水处理率低,导致污水未经处理直接排放到河流,由此,加强污水处理力度迫在眉睫。 三、污水处理常用方法探讨 1.活性污泥法活性污泥法具有处理能力高,出水水质好的优点,也是目前全球采用最为广泛的处理城市生活污水的途径。该方法是在人工充氧条件下,对污水和各种微生物群体进行连续混合培养,形成活性污泥。利用活性污泥的生物凝聚、吸附和氧化作用,来分解并去除污水中的有机污染物。活性污泥法的主要组成部分有曝气池、沉淀池、污泥回流和剩余污泥排放系统组成。具体流程为:①曝气池作为一个生物反应器,容纳废水和回流的活性污泥形成的混合液;再通过曝气设备充入空气,使氧溶人混合液,产生好氧代谢反应;同时保证混合液得到足够的搅拌处

活性污泥法的现状及发展趋势

活性污泥法的现状及发展趋势 学院:生命科学与化学工程学院 学号:1111603112 __________ 班级:环境1111 ________ 姓名:_______ 宣锴____________

活性污泥法工艺的现状和发展趋势 1引言 活性污泥法是利用好氧微生物(包括兼性微生物)处理城市污水和工业废水的有效方法,其能够从废水中去除溶解和胶体类可生物降解的有机物质,以及能被活性污泥吸附的悬浮物质和其他一些无机盐类也能够去除,例如氮磷等化合物,在处理工业废水过程中,好氧活性污泥法主要用于处理厌氧出水,是一种非常广泛的生物处理方法其主要的机理是通过好氧微生物的生物化学代谢反应,分解工业废水中的有机物质,过程中涉及到活性污泥的吸附、凝聚和沉淀,能够有效的去除废水中的胶体和溶解性物质,从而净化废水。 该方法于 1913年在英国曼彻斯特市试验成功。 80多年来,随着生产上的应用和不断改进及对生化反应和净化机理进行广泛深入的研究,活性污泥法取得了很大发展,出现了多种运行方式,并正在改变那种用经验数据进行工艺设计和运行管理的现象。本文对各种活性污泥的组成、运行方式及其特点作简要的综述,同时谈谈活性污泥法的发展趋势。 2活性污泥构成简介 活性污泥是由活性微生物、微生物残留物、附着的不能降解的有机物和无机物所组成的褐色絮凝体,由大量细菌、真菌、原生动物和后生动物组成,以细菌为主,由不同大小的微生物群落组成,具有良好的沉降性和传质性能的菌胶团以结构丝状菌为骨架、胶团菌附着其上,并且具有不断生长的特性,增长过程和老化过程中脱落的碎片及其他游离细菌被附着或游离生长的原生动物和后生动物捕食。少量以无机颗粒为核心形成的致密颗粒也可能存在于系统之中,并具有良好的沉降性能。也就是说,具有良好结构的活性污泥是以丝状菌为骨架,胶团菌附着于其上而形成的,结构丝状菌喜低氧状态,在胶团菌的附着下,不断生长伸长,形成条状和网状污泥;没有丝状菌为骨架的絮体颗粒很小,附着于累枝虫等原生动物尸体上的絮体易产生反硝化作用,它们都易随二沉池出水流出。胶团菌与结构丝状菌之间相互依存,丝状微生物形成了絮体骨架,为絮体形成较大颗粒同时保持一定的松散度提供了必要条件。而胶团菌的附着使絮体具有一定的沉降性而不易被出水带走,并且由于胶团菌的包裹使得结构丝状菌获得更加稳定、良

活性污泥系统的工艺计算与设计

活性污泥系统的工艺计算与设计 一、设计应掌握的基础资料与工艺流程的选定 活性污泥系统由曝气池、二次沉淀池及污泥回流设备等组成。其工艺计算与设计主要包括5方面内容,即 ①工艺流程的选择; ②曝气池的计算与设计; ②曝气系统的计算与设计; ④二次沉淀池的计算与设计; ⑤陌泥回流系统的计算与设计。 进行活性污泥处理系统的工艺计算和设计时,首先应比较充分地掌握与废水、污泥有关的原始资料并确定设计的基础数据。主要是下列各项: ①废水的水量、水质及变化规律; ②对处理后出水的水质要求; ③对处理中所产生污泥的处理要求; ④污泥负荷率与BOD5去除率: ⑤混合液浓度与污泥回流比。 对生活污水和城市废水以及性质与其相类似的工业废水,人们已经总结出一套较为成熟和完整的设计数据可直接应用。而对于一些性质与生活污水相差较大的工业废水或城市废水,则需要通过试验来确定有关的设计数据, 选定废水和污泥处理工艺流程的主要依据就是的前述的①、②、③各项内容和据此所确定的废水和污泥的处理程度。 在选定时,还要综合考虑当地的地理位置、地区条件、气候条件以及施工水平等因素,综合分析本工艺在技术上的可行性和先进性及经济上的可能性和合理性等。特别是对工程量大、建设费用高的工程,需要进行多种工艺流程比较之后才能确定,以期使工程系统达到优化。 二、曝气池的计算与设计 曝气他的计算与设计主要包括:①曝气池(区)容积的计算;②需氧量和供气量的计算; ③池体设计等几项。 1.曝气池(区)容积的计算 (1)计算方法与计算公式 计算曝气区容积,常用的是有机负荷计算法。也称BOD5负荷计算法。负荷有两种表示方法,即污泥负荷和容积负荷。曝气池(区)容积计算公式列于表3—17—19中。

活性污泥法的基本工艺流程

第一节活性污泥法的基本原理 一、活性污泥法的基本工艺流程 1、活性污泥法的基本组成 ①曝气池:反应主体 ②二沉池: 1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度。 ③回流系统: 1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。 ④剩余污泥排放系统: 1)是去除有机物的途径之一;2)维持系统的稳定运行。 ⑤供氧系统:提供足够的溶解氧 2、活性污泥系统有效运行的基本条件是: ①废水中含有足够的可容性易降解有机物; ②混合液含有足够的溶解氧; ③活性污泥在池内呈悬浮状态; ④活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥; ⑤无有毒有害的物质流入。 二、活性污泥的性质与性能指标 1、活性污泥的基本性质 ①物理性能:“菌胶团”、“生物絮凝体”: 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1,(1.002~1.006); 粒径:0.02~0.2 mm; 比表面积:20~100cm2/ml。 ②生化性能: 1) 活性污泥的含水率:99.2~99.8%; 固体物质的组成:活细胞(M a)、微生物内源代谢的残留物(M e)、吸附的原废水中难于生物降解的有机物(M i)、无机物质(M ii)。 2、活性污泥中的微生物:

① 细菌: 是活性污泥净化功能最活跃的成分, 主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等; 基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌; 2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟; 4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。 ② 其它微生物------原生动物、后生动物----在活性污泥中大约为103个/ml 3、活性污泥的性能指标: ① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ): MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3 ② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed Volatile Liquor Suspended Solids ): MLVSS = M a + M e + M i ; 在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85 ③ 污泥沉降比(SV )(Sludge Volume ): 是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。 ④ 污泥体积指数(SVI )(Sludge Volume Index ): 曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。 ) /()/((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?== 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过高,说明其沉降性能不好,将要或已经发生膨胀现象; 城市污水的SVI 一般为50~150 ml/g ; 三、活性污泥的增殖规律及其应用 活性污泥中微生物的增殖是活性污泥在曝气池内发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。 1、活性污泥的增殖曲线

活性污泥法污泥产量计算

活性污泥工艺的设计计算方法活性污泥工艺是城市污水处理的主要工艺,它的设计计算有三种方法:污泥负荷法、泥龄法和数学模型法。三种方法在操作上难易程度不同,计算结果的精确度不同,直接关系到设计水平、基建投资和处理可靠性。正因为如此,国内外专家都在进行大量细致的研究,力求找出一种精确度更高而又便于操作的计算方法。 1污泥负荷法 这是目前国内外最流行的设计方法,几十年来,运用该法设计了成千上万座污水处理厂,充分说明它的正确性和适用性。但另一方面,这种方法也存在一些问题,甚至是比较严重的缺陷,影响了设计的精确性和可操作性。 污泥负荷法的计算式为[1] V=24LjQ/1000FwNw=24LjQ/1000Fr(1) 污泥负荷法是一种经验计算法,它的最基本参数Fw(曝气池污泥负荷)和Fr(曝气池容积负荷)是根据曝气的类别按照以往的经验设定,由于水质千差万别和处理要求不同,这两个基本参数的设定只能给出一个较大的范围,例如我国的规范对普通曝气推荐的数值为Fw=0.2~0.4 kgBOD/(kgMLSS·d) Fr=0.4~0.9 kgBOD/(m3池容·d) 可以看出,最大值比最小值大一倍以上,幅度很宽,如果其他条件不变,选用最小值算出的曝气池容积比选用最大值时的容积大一倍或一倍以上,基建投资也就相差很多,在这个范围内取值完全凭经验,对于经验较少的设计人来说很难操作,这是污泥负荷法的一个主要缺陷。

污泥负荷法的另一个问题是单位容易混淆,譬如我国设计规范中Fw的单位是kgBOD/ (kgMLSS·d),但设计手册中则是kgBOD/(kgMLVSS·d),这两种单位相差很大。MLSS是包括无机悬浮物在内的污泥浓度,MLVSS则只是有机悬浮固体的浓度,对于生活污水,一般MLVSS=0.7MLSS,如果单位用错,算出的曝气池容积将差30%。这种混淆并非不可能,例如我国设计手册中推荐的普通曝气的Fw为0.2~0.4kgBOD/(kgMLVSS·d)[2],其数值和设计规范完全一样,但单位却不同了。设计中经常遇到不知究竟用哪个单位好的问题,特别是设计经验不足时更是无所适从,加上近年来污水脱氮提上了日程,当污水要求硝化、反硝化时,Fw、Fr取多少合适呢? 污泥负荷法最根本的问题是没有考虑到污水水质的差异。对于生活污水来说,SS和B OD浓度大致有数,MLSS与MLVSS的比值也大致差不多,但结合各地的实际情况来看,城市污水一般包含50%甚至更多的工业废水,因而污水水质差别很大,有的SS、BOD值高达300~400 mg/L,有的则低到不足100 mg/L,有的污水SS/BOD值高达2以上,有的SS值比BOD值还低。污泥负荷是以MLSS为基础的,其中有多大比例的有机物反映不出来,对于相同规模、相同工艺、相同进水BOD浓度的两个厂,按污泥负荷法计算曝气池容积是相同的,但当SS/BOD值差异很大时,MLVSS也相差很大,实际的生物环境就大不相同,处理效果也就明显不同了。 综上所述,污泥负荷法有待改进。因此,国际水质污染与控制协会(IAWQ)组织各国专家,于1986年首次推出活性污泥一号模型(简称ASM1)[3],1995年又推出了活性污泥二号模型(简称ASM2)[4、5]。 2数学模型法 数学模型法在理论上是比较完美的,但在具体应用上则存在不少问题,这主要是由于污水和污水处理的复杂性和多样性,即使是简化了的数学模式,应用起来也相当困难,从而阻碍了它的推广和应用。到目前为止,数学模型法在国外尚未成为普遍采用的设计方法,而在我国还没有实际应用于工程,仍停留在研究阶段。

水质工程学复习题

污水处理复习题 1.解释生化需氧量BOD 2.解释化学需氧量COD 3.解释污泥龄 4.绘图说明有机物耗氧曲线 5.绘图说明河流的复氧曲线 6.解释自由沉降 7.解释成层沉降 8.解释沉淀池表面负荷的意义 9.写出沉淀池表面负荷q0的计算公式 10.曝气沉砂池的优点 11.说明初次沉淀池有几种型式 12.说明沉淀有几种沉淀类型 13.说明沉砂池的作用 14.辐流沉淀池的进水和出水特点 15.解释向心辐流沉淀池的特点 16.绘图解释辐流沉淀池的工作原理 17.解释竖流沉淀池的特点 18.解释浅层沉降原理 19.说明二次沉淀池里存在几种沉淀类型、为什么 20.活性污泥的组成 21.绘图说明活性污泥增长曲线 22.说明生物絮体形成机理 23.解释混合液浓度MLSS 24.解释混合液挥发性悬浮固体浓度 MLVSS 25.解释污泥龄 26.解释污泥沉降比 SV,污泥指数 SVI 27. 解释BOD污泥负荷率,容积负荷率及计算公式 28.解释活性污泥反应的影响因素 29.解释剩余污泥量计算公式 30.解释微生物的总需氧量计算公式 31.解释传统活性污泥法的运行方式及优缺点 32.解释阶段曝气活性污泥法的运行方式及优缺点

33.解释吸附——再生活性污泥法的运行方式及优缺点 34.解释完全混合池的运行方式及优缺点 35.绘图说明传统活性污泥法、阶段曝气活性污泥法、吸附——再生活性污泥法、 完全混合池的各自BOD降解曲线 36.绘图说明间歇式活性污泥法的运行特点 37.解释活性污泥曝气池的曝气作用 38.根据氧转移公式解释如何提高氧转移速率 39.氧转移速率的影响因素 40.活性污泥的培养驯化方式 41.解释活性污泥系统运行中的污泥异常情况 42.解释污泥膨胀 43.解释生物膜的构造与净化机理 44.解释生物膜中的物质迁移 45.解释生物膜微生物相方面的特征 46.说明高浓度氮的如何吹脱去除 47.解释生物脱氮原理 48.解释A/O法生物脱氮工艺 49.解释生物除磷机理 50.绘图说明A2/O法同步脱氮除磷工艺 51.解释生污泥 52.解释消化污泥 53.解释可消化程度 54.解释污泥含水率 55.说明污泥流动的水力特征 56.污泥浓缩的目的 57.重力浓缩池垂直搅拌栅的作用 58.厌氧消化的影响因素 59.厌氧消化的投配率 60.厌氧消化为什么需要搅拌 61.说明污泥的厌氧消化机理 62.解释两段厌氧消化的机理 63.说明厌氧消化的C/N比 64.说明厌氧消化产甲烷菌的特点 65.消化污泥的培养与驯化方式

关于活性污泥法的详解

关于活性污泥法的详解 活性污泥法是由多种好氧微生物与兼性厌氧微生物(在某些情况下还可能有少量厌氧微生物)与废水中的有机、无机固体物混凝交织在一起形成的絮状物。使活性污泥起到净化作用的主体是细菌,多数是革兰阴性菌,此外还有大量的原生动物和后生动物,以及微生物代谢残留物和一些从污水中夹带的惰性有机物、无机物等。 活性污泥的含水率在99%左右,密度为1.002~1.006g/m3。其结构疏松,表面积很大,对有机污染物有着强烈的吸附和氧化(分解)能力。此外,活性污泥还具有良好的自身凝聚和沉降性能。 1.活性污泥法的原理及环境影响因素 活性污泥法的工艺原理是在人工充氧的曝气池中,利用活性污泥去除废水中的有机物,然后再二沉池中使污泥和水分离。大部分污泥再回流到曝气池中,多余部分则排出。 普通活性污泥法的处理系统中由以下几部分组成:①曝气池、②曝气系统、③二沉池、④污泥回流系统、⑤剩余污泥排放系统。 活性污泥法净化废水能力强、效率高、占地面积小、臭味轻微,但产生剩余污泥量大,另外需要一定的电能来向废水中不断供氧。 2.影响活性污泥性能的环境因素主要有: (1).溶解氧(好氧处理中,一般在1.5~2mg/L为宜)。 (2).水温(好氧处理中,宜在15~25℃的范围内)。 (3).pH值(一般以6.5~9为宜)。

(4).营养料(一般要求BOD?:N:P=100:5:1为宜)。 (5).有毒物质(重金属、一些非金属化合物、油类物质等)数量亦应加予控制。 3.活性污泥法的性能评价指标 活性污泥法的性能评价指标主要有以下几项。 (1).生物相观察:即利用光学显微镜或电子显微镜观察活性污泥中的细菌、真菌、原生动物及后生动物等微生物的种类、数量、优势度及代谢活动等状况,在一定程度上反映整个系统的运行状况。 (2).混合液悬浮固体浓度(MLSS):指曝气池中单位体积混合液中活性污泥悬浮固体的质量,也称为污泥浓度。MLSS代表混合液悬浮固体中有机物的含量。 (3).污泥沉降比(SV):指曝气池混合液静止30min后沉淀污泥的体积分数,通常采用1L的量筒测定污泥沉降比。 (4).污泥体积指数(SVI):指曝气池混合液沉淀30min后,每单位质量干泥形成的湿污泥的体积,常用单位为mL/g。 污泥体积指数(SVI)能较好的反应出活性污泥的松散程度、凝聚和沉降性能。一般城市污水正常运行条件下的SVI值在100~150mL/g 之间。SVI值过低,说明泥粒细小,无机质含量高,缺乏活性;SVI 值过高,说明污泥沉降性能不好,并且已经有产生膨胀现象的可能。如果SVI>200mL/g,污泥难于分离,容易产生污泥膨胀。 4.活性污泥法的运行方式

活性污泥法运算指标

2、活性污泥法运算指标 活性污泥法处理污水的关键是要有充足的供氧(曝气)及性能良好的活性污泥,活性污泥的性能应具有良好的聚凝结构和分解有机物能力,以及在()时与水迅速分离,活性污泥性能可用下面几项指标来表示: (1)污泥沉降比(SV ) 污泥沉降比是指一定量的曝气池混合液,静置沉淀30min 后,沉淀物与原混合物与原混合液的体积比(以百分数表示)即 污泥沉淀比(%)=混合液体积 静置沉淀后污泥体积混合液经min 30 由于,污泥经沉淀30min 后,沉淀污泥可接近最大密度,因此以30min 为依据,沉淀比的大小与污泥凝聚与沉降性有关。若凝聚性差时,上清液混浊,污泥难以下沉。在通常情况下曝气池混合液宜保持沉淀比在20%--50%范围内。(一般表曝SV 高,射流曝气SV 低些)。 (2)污泥浓度(MLSS ) 污泥浓度是为IL 曝气池混合液所含悬浮固体(MLSS )的重量,单位为g/L 或mg/L 。MLSS 值得大小,间接地反映出曝气池混合液中所含微生物的重量。保证适宜MLSS 的对处理效率有十分重要的影响。通常MLSS 控制在2-4g/L 为宜。 (3)污泥容积指数(SVI ) 是指曝气池混合液经30min 静置沉淀后,1g 干污泥所占沉淀污泥容积毫升数,其单位为mg/L ,其计算公式 g 1000污泥浓度(污泥沉降比()?=SVI SVI 值能反映活性污泥凝聚性和沉降性。若 SVI 值过高,证明污泥颗粒松散,不是沉淀,将发生污泥膨胀或已经发生了污泥膨胀。如 SVI 值过低,证明污泥颗粒紧密、细小和吸附性也差。在正常情况下, SVI 值一般在50-100之间为宜。 SVI<100 沉淀性能好 SVI=100 沉淀性能一般 SVI>100 沉淀性能差 由于工业污水中成分各异,SVI 正常值也略有不同,若污水溶解性有机物含量大时,正常的SVI 值可能偏高。若污水中无机物含量大时,正常的SVI 值可能偏低。 3、活性污泥中的微生物及其变化规律 活性污泥是由细菌、真菌、原生动物和后生动物等不同种属的微生物组成的。在净化废水时,它们与废水中的有机营养物形成了极为复杂的食物链。最初担当净化任务的是异养型细菌和腐蚀性真菌。如在高糖、低pH 值、低磷以及某些特殊的有机物多时,会促使真菌的生长繁殖。大部分细菌形成菌胶团。原生动物吞食活的细菌,是细菌的一次捕食者。活性污泥中最常见的原生动物有鞭毛虫类、肉足虫类、纤毛虫类和吸管虫类。但这些原生动物并非同时出现,而是随条件及水质的变化而变化。一般在曝气的初期,肉足虫和鞭毛虫占优势;接着是自由游动性的纤毛虫(如豆形虫草履虫)占优势;随着活性污泥的逐渐成熟,固着型的纤毛虫(如纤维虫、盖纤虫、等枝虫、钟虫等)又相继占优势,特别是钟虫出现且数量较多时,则说明污泥成熟,所以原生动物的演替变化,可以用来评估活性污泥的质量及废水处理的情况。后生动物是细菌的二次捕食者。活性污泥中的后生动物像轮虫、线虫等,只能在氧气很充足的条件下才出现,所以后生动物的出现是水质处理相当好的标志。

活性污泥法

(1)、生物固体停留时间(solid retention time,SRT ) 活性污泥在曝气池、二沉池和污泥回流系统内的停留时间称为生物固体停留时间。可用下式表示: SRT=) //(/d kg kg 污泥量每天从系统排出的活性系统内活性污泥量 (2)有机物负荷 有机物(BOD 5)负荷分为污泥负荷(Ls)和容积负荷(Lv),用公式表示如下: Ls= XV Q O S Lv=V QS 0×103 式中:Ls ——BOD-SS 负荷,kgBOD/(kgMLSS.d); Lv ——BOD 容积负荷,kgBOD/(m 3.d); S 0——反应器进水BOD 浓度,mg/L ; X ——污泥浓度,mg/L 。 (3)水力停留时间 水力停留时间(HRT )表示污水在反应池内的反应时间,用下式表示: t=Q V 式中:t ——曝气池水力停留时间,h ; V ——曝气池有效容积,m 3; Q ——进水流量,m 3/h BOD-SS 负荷和生物固体停留时间都是活性污泥法设计和污水处理厂运行管理的重要参数。 (4)污泥浓度 污泥浓度是指曝气池中1L 混合液内所含的悬浮固体(常表示为MLSS ,mixed liquor suspended solids )或挥发性悬浮固体(MLVSS )的浓度,单位是g/L 或mg/L 。污泥浓度的大小可间接地反映曝气池中所含微生物的浓度。对于普通活性污泥法而言,曝气池中污泥浓度一般在1.5~3g/L 之间。 (5)污泥沉降比和污泥容积指数 污泥沉降比(settling velocity,SV)指曝气池混合液在量筒中静置30min 后,所得的沉淀污泥体积与混合液总体积的比(用百分数表示),即: 污泥沉降比=混合液经30min 静置沉淀后的污泥体积/混合液体积 污泥容积指数(sludge volume index ,SVI)指曝气池的污泥浓度与污泥沉降比的比值。即1g 干污泥所相当的沉淀污泥体积数,单位为mL/g ,但一般不标注。SVI 计算式为: SVI=SV 的百分数×10/MLSS SVI 通常反应了活性污泥的沉降性好坏。如果SVI 较高,表示SV 值较大,则表明沉降性较差;如果SVI 较小,污泥颗粒密实,则表明沉降性较好。但是,如果SVI 过低,则可能反映出污泥中泥的成分过多,微生物量太少。通常,当SVI>100时,污泥的沉降性能良好;当SVI=100~200时,沉降性一般;而当SVI>200时,沉降性较差,污泥可能处在膨胀状态。 二、活性污泥法工艺的运行与管理 活性污泥法工艺 的运行与管理工作主要包括活性污泥的培养与驯化、系统运行状态的监察与相关检测、异常现象的预防及处理等。

活性污泥法污水处理

水污染控制工程课程设计 城镇污水处理厂设计 指导教师刘军坛 姓名秦琪宁 目录 摘要 (3) 第一章引言...................................... 1.1设计依据的数据参数........................................................................................ 1.2设计原则............................................................................................................ 1.3设计依据............................................................................................................ 第二章污水处理工艺流程的比较及选择错误!未定义书 签。 2.1 选择活性污泥法的原因................................................................................... 第三章工艺流程的设计计算.. (7) 3.1设计流量的计算 (7) 3.2格栅 (9) 3.3提升泵房............................................................................................................ 3.4沉砂池 (10) 3.5初次沉淀池和二次沉淀池 (11) 3.6曝气池 (15) 第四章平面布置和高程计算 (25) 4.1污水处理厂的平面布置 (25) 4.2污水处理厂的高程布置 (26) 第五章成本估算 (27) 5.1建设投资 (27) 5.2直接投资费用 (28) 5.3运行成本核算 (29) 结论 (29) 参考文献: (30) 致谢 (30)

活性污泥法曝气量有关计算(仅供参考)

氧的传递与转移 一、双膜理论与氧总转移系数 (1)气、液两相接触的界面两侧存在着处于层流状态的气膜和液膜,在其外侧则分别为处于紊流状态的气相主体和液相主体。气体分子以分子扩散方式从气相主体通过气膜和液膜而进入液相主体。(2)气、液两相主体的物质浓度基本上是均匀的,不存在浓度差,也不存在传质阻力,气体向液相主体的传递,阻力仅存在于气、液两层膜中。(3)在气膜中存在氧的分压梯度,在液膜中存在氧的浓度梯度,它们是氧转移的推动力。(4)氧难溶于水,氧转移决定性的阻力集中在液膜上,因此,氧分子通过液膜是氧转移过程的控制步骤。 V A X D K f L a L =()C C K dt dC s La -= KLa 小,则氧转移过程中阻力大;KLa 大,则氧转移过程中阻力小。1/KLa 的单位为h ,表示曝气池中溶解氧浓度从C 提高到Cs 所需要的时间。KLa ——氧总转移系数是评价空气扩散装置的重要参数。 二、提高氧转移效率的方法: (1)提高KLa 值。要加强液相主体的紊流程度,降低液膜厚度,加速气、液面的更新,增大气、液接触面积等(气泡细小)。 什么是液膜呢?你一定知道肥皂泡沫吧,它就是最常见的液膜,它的分子一端亲水,一端亲油,在水中遇到油,亲油的一端向油,亲水的一端向外,就成为包围着油的泡沫。这种液膜不稳定,一吹就破。 (2)提高Cs 值。可提高气相中的氧分压,如采用纯氧曝气或高压下曝气如深井曝气等。 三、影响氧转移的因素 (1)污水性质 污水中存在着溶解性有机物,特别是表面活性物质,如短链脂肪酸和乙醇,是一种两亲分子,极性端亲水羧基COOH -或羟基-OH -插入液相,而非极性端疏水的碳基链则伸入气相中。由于两亲分子聚集在气液界面上,阻碍氧分子的扩散转移,增加了氧转移过程的阻力→KLa ↓,引入一个小于1的因子α来修正表面活性物质对KLa 的影响 α=KLa ’(污水)/KLa(清水) KLa ’(污水)=α*KLa(清水) (2)污水中含有盐类,因此,氧在水中的饱和度也受水质的影响。引入小于1的系数β因子来修正。 β=Cs ’(污水)/Cs(清水) Cs ’(污水)=β*Cs(清水) (3)水温 水温降低有利于氧的转移。30-35℃的盛夏情况不利。 KLa (T)=KLa (20)*1.024(T-20) (3)氧分压 Cs 值受氧分压或气压的影响。气压降低 ,Cs 降低,反之则提高。在当地气压不是一个标准大气压时,C 值应乘以如下修正系数: ρ=所在地区实际压力(Pa)/101325(Pa) 主要影响因素:气相中氧分压梯度、液相中氧浓度梯度、气液之间的接触面积(气泡大小)和接触时间、水温、污水性质、水流的紊流程度。

简述我国污水处理技术现状及问题

简述我国污水处理技术现状及问题 张照元,任盛, (丹东市水技术机电研究所有限责任公司,丹东118001) 摘要:简要的概述了中国小城镇地区、中国农村地区、医院、油田和高速公路服务区面临的水环境问题,研究了它们的污水处理工艺,分析了我国目前在水处理方面存在的各种问题。 关键词:水环境污染;污水处理工艺;存在的问题 Abstact: The paper summarized the water environment which small urban areas and rural areas in China, hospitals, oilfields, and Motorway Service all were facing, then studied the wastewate treatment process in all these regions, and analyzed the various problems in current water treatment of our country. Key words: Water pollution; wastewater treatment process; Existing problems 1.引言 水是人类生命之源,生存之本。随着工农业生产的发展,水环境问题变得越来越严重,水质问题已经严重影响了我们人类的正常生活。因此,必须寻找有效的污水净化技术以实现水资源的可持续利用。近些年,人们建立起许多成熟有效的污水处理方法,如国内大城市污水处理厂的活性污泥法、美国德国的稳定塘处理法。 2.国内污水处理现状 2.1 中国小城镇地区 据统计,我国90%以上小城镇的水体环境均受到不同的程度的污染,78%的城镇河段不宜作饮用水源,50%的城镇地下水受到污染,工业较发达的城镇附近的水域污染则更加突出。部分小城镇已经建成处理厂,大部分还没有系统的规划。已建成的小城镇污水处理厂95%以上仍由政府包办,半数以上污水处理厂未按规定安装在线监测装置,最终处理结果达不到规范要求。因此,要加强开发和研究小城镇污水处理技术问题,实现小城镇水资源的可持续利用。考虑到小城镇种种因素的制约,对各可行性污水处理工艺进行比对,见表1. 由表可见,在污水处理方面,应该依据不同情况选择相应的处理工艺。如若要求除磷脱氮则可以选择AO法、A2O法或具有除磷脱氮效果的氧化沟法、CASS

活性污泥法课程设计(DOC)知识分享

活性污泥法课程设计 (D O C)

学号:2010122140 课程设计 题目城镇污水处理厂工艺设计 (活性污泥法) 学院环境与生物工程学院 专业环境工程 班级环境工程一班 学生姓名张琼 指导教师谭雪梅 2012 年12 月7 日

目录 目录 0 第一章设计任务 (3) 1.1 设计任务及要求 (3) 1.1.1 设计任务 (3) 1.1.2 设计要求 (3) 第二章总体设计 (4) 2.1 处理构筑物选择 (4) 2.2 污水处理厂选址 (4) 2.3 核心工艺比较 (5) 2.3.1 氧化沟工艺 (5) 2.3.2 A/O法 (5) 2.3.3 SBR法 (6) 2.3.4 曝气生物滤池(BAF) (6) 2.3.5 MBR工艺 (6) 2.4 设计流量 (8) 2.5 污水、污泥处理工艺流程图 (8) 第三章格栅 (9) 3.1 设计草图 (9) 3.2 设计参数 (9) 3.3 设计计算 (9) 3.3.1 中格栅的设计计算 (9) 3.3.2 细格栅的设计计算 (11) 第四章沉砂池 (14) 4.1 设计草图 (14) 4.2 设计参数 (14) 4.3 设计计算 (15) 第五章初级沉淀池 (16) 5.1 设计草图 (17) 5.2 设计计算 (17)

第六章曝气池 (19) 6.1 污水处理程度的计算及曝气池的运行方式 (20) 6.1.1 污水处理程度的计算 (20) 6.1.2 曝气池的运行方式 (20) 6.2 曝气池的计算与各部位尺寸的确定 (20) 6.3 曝气系统的计算与设计 (23) 6.4 供气量计算 (24) 6.5 空气管系统计算 (27) 6.6 空压机的选定 (27) 第七章二次沉淀池 (28) 7.1 设计草图 (28) 7.2 设计参数 (29) 7.3 设计计算 (29) 第八章其他构筑物 (32) 8.1 集水井 (32) 8.2 污水提升泵房 (32) 8.3 接触池 (33) 8.4 液氯投配系统 (34) 8.5 计量堰 (34) 8.6 污泥回流泵房 (35) 8.7 污泥浓缩池 (36) 8.8 污泥脱水间 (36) 第九章构筑物高程布置计算及水力损失 (36) 9.1平面布置 (36) 9.2构筑物水头损失计算 (37) 9.2.1 污泥管道水头损失 (38) 9.2.2 污水管渠水力计算 (38) 9.3 污泥高程计算 (39) 第十章污水厂运行成本及其构成 (40) 10.1 污水处理厂的处理成本构成 (40) 10.2 运行成本分析 (41)

污水厂国内外研究现状

国内外研究现状 国外研究现状 城市污水处理厂向大型化发展,是国外当前的趋向。据统计资料表明规模为4米3/秒和 0.4米3/ 秒的两座二级污水处理厂,其单位水量的基建投资比例为1:2.63,运行费用之比为1:5.4,而且处理厂规模越大水量调节水质均化和稀释等作用也越大, 耐冲击能力也越高。因此近年许多国家都建有百万吨/日以上的大型污水处理厂,如美国芝加哥西一西南区污水处理厂,规模达500万吨/日,底特律氧气爆气污水处理厂,服务人口达300万人。 污水三级处理逐步受到重视是国家污水处理发展的另一个特点,其主要目的是使水体水质达到更高的环境标准,防止湖泊、海湾的富背养化,即除磷、除氮,进一步回用处理后的污水,以解决水源不足。 美国于1958年开始研究三级处理,己拥有10万吨/日以上处理能力的三级处理厂数座,其中最大的是克利夫兰的西区污水处理厂(由生物处理改建),处理能力为38万吨/日。 日本应用活性炭处理城市污水的试验工作于1971年分别在川崎市入江崎处理厂,名古屋市千年处理厂,东京都三河岛处理厂,北九州市皇后崎处理厂等进行了系统试验,目前东京都已具有处理能力为,52.500米3/日的活性炭处理厂二级处理,处理水质可达5ppm以下,浊度与色度均可达到零。 为了解决污水的除磷问题,化学混凝沉淀处理法又受到人们的重视。瑞典1966年建成一第一座化学处理厂,到73年已增加到369座。 棍凝沉淀法的最大缺点是产泥量多。美国几年前研究成功的碳酸镁法。川焙烧炉焙烧污泥,回收石灰,解决了这一难题,并在南太和湖污水处理采用了此法。 从提高处理性能,简化工艺,节省墓建投资和运行费用的角度,国外非常重视开发和应用污水处理新工艺、诸如深井曝气法、氧气曝气法、投料活性污泥法以及生物转盘法等。 深井曝气是一项有发展前途的污水处理技术,据报导1976年西德己建成人口当量为4万人的深井曝气污水处理厂,包括二沉池在内,占地仅144米2,每度电可充氧气6公斤。 氧气曝气污水处理厂口前世界上己有百余座,其特点是停留时间短,处理效率高,剩余污泥量少能较好地适应水质、水量的变化。据美、日的经验,氧气法与空气法相比,基建费相差不多,但能耗省,尤其是大型的城市污水处理厂,比空气法可节省能耗百分之三十到百分之四十。 投加混凝剂的活性污泥法,瑞典已较普遍应用。投加炭粉的活性污泥法,以关国杜邦公司发明的“活性炭粉处理法”为代表亦逐渐得到了推广,该法一般可提高去除率,并能改善污泥沉降性能,降低出水含固气量,在负荷变化较大时,出水水质也保持稳定。 生物转盘法在欧洲及美国已迅速地普及起来。目前不仅数最逐渐增多,而且处理厂的规模也在不断扩大。例如西德1971年投产的处理厂Donaueschingen 服务人口是12万人,美国1977年投产的处理厂Alexandoria服务人口是22万人。 日本近年对生物转盘法也很感兴趣,生物转盘及接触氧化被件为污水处理

活性污泥法污泥产量计算

活性污泥工艺的设计计算方法探讨 摘要对活性污泥工艺的三种设计计算方法:污泥负荷法、泥龄法、数学模型法的优缺点进行了评述,建议现阶段推广采用泥龄法进行设计计算,并对泥龄法基本参数的选用提出了意见。 关键词活性污泥工艺泥龄法污泥负荷法数学模型法设计计算 活性污泥工艺是城市污水处理的主要工艺,它的设计计算有三种方法:污泥负荷法、泥龄法和数学模型法。三种方法在操作上难易程度不同,计算结果的精确度不同,直接关系到设计水平、基建投资和处理可靠性。正因为如此,国内外专家都在进行大量细致的研究,力求找出一种精确度更高而又便于操作的计算方法。 1污泥负荷法 这是目前国内外最流行的设计方法,几十年来,运用该法设计了成千上万座污水处理厂,充分说明它的正确性和适用性。但另一方面,这种方法也存在一些问题,甚至是比较严重的缺陷,影响了设计的精确性和可操作性。 污泥负荷法的计算式为[1] V=24LjQ/1000FwNw=24LjQ/1000Fr(1) 污泥负荷法是一种经验计算法,它的最基本参数Fw(曝气池污泥负荷)和Fr(曝气池容积负荷)是根据曝气的类别按照以往的经验设定,由于水质千差万别和处理要求不同,这两个基本参数的设定只能给出一个较大的范围,例如我国的规范对普通曝气推荐的数值为Fw=0.2~0.4 kgBOD/(kgMLSS·d) Fr=0.4~0.9 kgBOD/(m3池容·d)

可以看出,最大值比最小值大一倍以上,幅度很宽,如果其他条件不变,选用最小值算出的曝气池容积比选用最大值时的容积大一倍或一倍以上,基建投资也就相差很多,在这个范围内取值完全凭经验,对于经验较少的设计人来说很难操作,这是污泥负荷法的一个主要缺陷。 污泥负荷法的另一个问题是单位容易混淆,譬如我国设计规范中Fw的单位是kgBOD/ (kgMLSS·d),但设计手册中则是kgBOD/(kgMLVSS·d),这两种单位相差很大。MLSS是包括无机悬浮物在内的污泥浓度,MLVSS则只是有机悬浮固体的浓度,对于生活污水,一般MLVSS=0.7MLSS,如果单位用错,算出的曝气池容积将差30%。这种混淆并非不可能,例如我国设计手册中推荐的普通曝气的Fw为0.2~0.4kgBOD/(kgMLVSS·d)[2],其数值和设计规范完全一样,但单位却不同了。设计中经常遇到不知究竟用哪个单位好的问题,特别是设计经验不足时更是无所适从,加上近年来污水脱氮提上了日程,当污水要求硝化、反硝化时,Fw、Fr取多少合适呢? 污泥负荷法最根本的问题是没有考虑到污水水质的差异。对于生活污水来说,SS和B OD浓度大致有数,MLSS与MLVSS的比值也大致差不多,但结合各地的实际情况来看,城市污水一般包含50%甚至更多的工业废水,因而污水水质差别很大,有的SS、BOD值高达300~400 mg/L,有的则低到不足100 mg/L,有的污水SS/BOD值高达2以上,有的SS值比BOD值还低。污泥负荷是以MLSS为基础的,其中有多大比例的有机物反映不出来,对于相同规模、相同工艺、相同进水BOD浓度的两个厂,按污泥负荷法计算曝气池容积是相同的,但当SS/BOD值差异很大时,MLVSS也相差很大,实际的生物环境就大不相同,处理效果也就明显不同了。 综上所述,污泥负荷法有待改进。因此,国际水质污染与控制协会(IAWQ)组织各国专家,于1986年首次推出活性污泥一号模型(简称ASM1)[3],1995年又推出了活性污泥二号模型(简称ASM2)[4、5]。 2数学模型法

相关主题
文本预览
相关文档 最新文档