当前位置:文档之家› 影响机组供电煤耗及厂用电率原因分析

影响机组供电煤耗及厂用电率原因分析

影响机组供电煤耗及厂用电率原因分析
影响机组供电煤耗及厂用电率原因分析

重庆九龙电力股份有限公司

影响机组供电煤耗及厂用电率原因分析

一、九龙发电厂:

(一)影响供电煤耗原因

1、设备问题

2、运行问题

1)我厂200MW负荷下供电煤耗设计值为360g/kW.h,而我厂年发电平均负荷远远低于200MW,且调峰任务频繁,发电平均负荷偏低致使发电厂用电率高于8.7%,而我厂发电厂用电率每增加1%,供电煤耗将增加约4 g/kW.h。

2)我厂200MW负荷下供电煤耗设计值为360g/kW.h,150MW负荷下发电煤耗设计值为343g/kW.h,根据我厂现年平均负荷水平,能达到供电煤耗设计值。

3、燃料方面

(二)影响厂用电率原因

1、设备问题

2、运行方面

1)我厂200MW负荷下发电厂用电率设计值为8.7%,而我厂年发电平均负荷远远低于200MW,且调峰频繁。

2)若我厂年发电平均负荷达到200MW,年发电厂用电率也可达到设计值。

3、管理方面

二、重庆渝永电力股份有限公司:

(一)影响供电煤耗原因

1、设备问题

96年1月#3机组曾受到水冲击,汽机通流部分有较大损伤,造成汽机效率下降,供电煤耗升高。

2、运行问题

3、燃料方面

由于我厂燃料为煤矸石,发热量在6270kJ/kg--12122kJkg(1500大卡/千克-2900大卡/千克)之间,且供煤矿达20-30家左右,造成煤质不稳定,使机组煤耗偏高。

(二)影响厂用电率原因

重庆九龙电力股份有限公司安全监督与生产部

2003年12月25日

各指标对煤耗影响

600MW机组各项指标对煤耗影响 1.负荷降低1%,机组的热耗将会增加0.089%~0.1%,煤耗 大约增加0.3%,1.1 g/kWh 2.主汽压降低1MPa,煤耗增加1.53g/kWh; 3.主汽温提高1℃,煤耗降低0.059 g/kWh; 4.再热汽温提高1℃,煤耗降低0.032 g/kWh; 5.再热器喷水减少1t/h,煤耗降低0.103 g/kWh; 6.凝汽器端差下降1℃,煤耗0.68 g/kWh; 7.真空上升1kPa,煤耗下降1.2 g/kWh; 8.给水温度提高1℃,煤耗下降0.05%,0.16 g/kWh; 9.排烟温度下降10℃,煤耗下降1.88 g/kWh; 10.锅炉效率提高1%,煤耗下降4 g/kWh; 11.氧量比标准上升1%,煤耗增加1.57 g/kWh; 12.空冷机组影响煤耗10 g/kWh;国电600MW亚临界机组 对标供电煤耗332 g/kWh; 300MW机组省煤节电经验数据 1.负荷降低10%,煤耗大约增加 2.95g/kWh,降低20%增加 6.92g/kWh,降低30%增加18.90g/kWh,降低40%增加 26.23g/kWh 2.主汽压降低1MPa,煤耗增加2.1g/kWh;降低2MPa,煤耗 增加3.58g/kWh;

3.主汽温降低5℃,煤耗增加0.95 g/kWh;主汽温降低10℃, 煤耗增加1.51 g/kWh; 4.再热汽温降低5℃,煤耗增加0.79 g/kWh;再热汽温降低 10℃,煤耗增加1.68 g/kWh; 5.真空度下降1%,煤耗增加3.6 g/kWh; 6.端差上升1℃(夏/冬),煤耗增加1.93 /0.85g/kWh 7.高加解列/低加解列,煤耗增加9.55/8.02g/kWh 8.给水温度下降10℃,煤耗增加0.95g/kWh; 9.给水调门压差增加1MPa,煤耗增加0.36g/kWh; 10.排烟温度上升10℃,煤耗增加1.66g/kWh; 11.空气预热器漏风率增大1%,煤耗增加0.14g/kWh; 12.飞灰含碳量增加1%,煤耗增加1.23 g/kWh; 13.排污率增大1%,煤耗增加1.18g/kWh; 14.厂用电率上升1%,煤耗增加3.78g/kWh;

电厂经济指标计算公式

电厂经济指标计算公式 1.正平衡供电煤耗: 供电煤耗=标煤量/供电量 =标煤量/(发电量-厂用电量) 标煤量=原煤量×(入炉低位热值/标煤热值) 反平衡供电煤耗 供电煤耗=热耗率/(×锅炉效率×管道效率)/(1-厂用电率) 2、生产厂用电率 生产厂用电率是指发电厂为发电所耗用的厂用电量与发电量的比率。 3、综合厂用电率 综合厂用电量与发电量的比率: 4.锅炉效率 % 锅炉总有效利用热量占单位时间内所消耗燃料的输入热量的百分比。分正反平衡两种计算方法,一般火电厂采用反平衡计算法,我厂#9、10机组设计锅炉效率%,实际运行在91%左右,锅炉效率1个百分点影响机组煤耗约3.5 g/ 5.排烟温度℃ 一般情况下排烟温度升高约5℃影响煤耗1g/ 6.空气预热器漏风率 % α分别为空气预热器出口、进口处烟气过量空气系数 过量空气系数计算方法:21/(21-该处的氧量) 空预器漏风对锅炉效率影响较小,它主要影响吸、送风机电耗 7.飞灰可燃物 % 飞灰1个百分点影响煤耗1.3 g/

8.制粉单耗(kWh/吨原煤) 指制粉系统(磨煤机、排粉机、一次风机、给煤机、给粉机等)每磨制1吨原煤所 消耗的电量。 制粉单耗=制粉系统耗电量/入炉原煤量 9.制粉耗电率 % 指统计期内制粉系统消耗的电量占机组发电量的百分比 10、送、引风机单耗(kWh/吨汽) 指锅炉产生每吨蒸汽送、引风机消耗的电量。 送、引风机单耗=送、引风机耗电量/∑锅炉增发量 送、引风机耗电率=送、引风机耗电量/∑发电量×100 11、一次风机单耗(kWh/吨煤) 一次风机单耗=一次风机耗电量/∑入炉煤量 12、汽轮发电机组热耗率 kj/kWh 是指汽轮发电机组每发一千瓦时电量耗用的热量。它反映汽轮发电机组热力循环的完善程度,是考核其性能的重要指标。一次中间再热汽轮机的热耗率计算公式: 13、真空度 % 真空度降低1个百分点大约影响热耗率的1%,约3 g/ 14、凝汽器端差℃ 端差增大1℃约影响真空,煤耗1 g/。 15.凝结水过冷度℃ 凝结水过冷使循环水带走过多的热量,反而使机组的经济性降低。正常运行时过冷度 一般为-1 ℃ 过冷度=排汽温度-凝结水温 16、循环水温升℃

30万机组供电煤耗率影响因素分析及控制的论述

关于330MW机组供电煤耗率影响因素分析及 控制的论述 王华王振华 关键词:燃煤机组、供电煤耗、节能、降耗 摘要:山东魏桥铝电有限公司热电厂,结合当前国家节能减排要求,通过对机组选型、系统优化、运行精调细控等各方面努力,使机组供电煤耗率降至较低水平,在积极响应国家节能降耗的同时,为企业创造了丰硕的经济效益。 为实现燃煤热电机组节能降耗的目标,我厂在电厂设计建设初期就综合考虑选用先进设备及系统、技术,并且在实际生产运行中,对系统运方严调细控,由细节入手,充分考虑现场实际并积极吸取兄弟单位先进经验,在降低机组供电煤耗率,提高企业经济效益方面取得了良好的效果,具体论述如下。 1.影响机组供电煤耗率原因分析 山东魏桥铝电有限公司热电厂装机容量为4×330MW燃煤机组,采用固态排渣,一次再热,平衡通风,全钢结构,半露天岛式布置,亚临界自然循环汽包炉。针对燃煤锅炉,影响其供电标煤耗的因素很多,主要因素有两方面,具体分析如下: 1.1.系统工艺及环境因素 影响机组供电煤耗率高低因素中系统工艺因素主要包括给水泵选型、制粉系统选型、脱硫脱硝系统工艺、锅炉类型、机组类型、机组冷却方式等。环境因素主要是指机组所处区域环境温度、气压等因素。 机组选用汽动给水泵与配备电动给水泵相比,国产300MW机组,一般供电煤耗率能降低1g/KWh;制粉系统采用中速磨与普通钢球磨相比,因钢球磨电耗的增加,导致其供电煤耗率比中速磨高出1.7g/KWh左右;脱硝系统采用选择性催化还原SCR装置BMCR工况时,比采用选择性非催化还原SNCR装置的供电煤耗率要低0.02%;机组选用供热机组比纯凝机组,从2011年全国机组数据分析来看,300MW机组供电煤耗率大约低11.89g/KWh。我们单位在机组设计选型时,即充分考虑以上各因素,给水泵选用汽动为主,电泵配合的方式。脱硝工艺选用选择性催化还原SCR装置。主机选用供热机组,从硬件方面为降低供电煤耗率打下良好的基础。 1.2.运行控制因素 在机组选型建设一定的情况下,运行控制与调整因素对供电煤耗率的高低影响极大,主要包括机组负荷率高低、每年机组启停的次数多少、运行蒸汽参数高低、系统管道效率、锅炉热效率、汽机热耗率、厂用电率、煤质管控、机组热电比、机组一次调频动作频率等方面。 在其他条件相同的情况下,机组负荷率降低,供电煤耗率则会增加;机组启停次数增加,则也会使供电煤耗率增加;另外蒸汽参数降低、热力系统管道保温不善、系统内漏、锅炉排污增加、采暖、蒸汽吹灰以及煤质偏离设计值过大、入厂煤与入炉煤热值偏差大、热电比降

发电厂全厂失电的事故分析13

发电厂全厂失电的事故分析 摘要:本文介绍了发电厂全停的故障情况,通过故障现象分析了产生故障的原因,并对故障暴露的问题做了相应后续处理。 关键词:发电厂;全厂失电;故障分析;暴露问题 1、引言 如东热电电气主系统采用单母线分段接线方式与变电所相连,输电方式为双回路同杆塔 输电,输电线路长度7.5km,正常运行时110KV系统处于合环运行状态。厂用电源分别由1# 发变组带1#厂用分支、2#发变组带2#厂用分支、高备变接于110KVI段且高备变处于长期热 备用。发电机额定容量22.5MVA。具体接线方式见下图1。 图2:故障波形图 3、事件处理过程 事件发生后随即联系调度,拉开热宾线731、732开关,拉开主变高压侧701、702开关,拉开厂用分支611、612开关;各专业进行全面检查等待调度命令。6时40分,接调度令完 成倒送电操作,9时50分发电机组与电网并列恢复对外供电、供汽。 4、故障原因分析 4.1 如东热电厂内731、732开关未跳闸原因分析 如东热电线路成套保护装置的主要配置有:光纤差动保护,距离保护,零序方向过流保护。自动重合闸。线路保护的范围为热宾1#、2#输电线路。作用于线路731、732开关。从 故障波形分析以及对变电所的故障情况检查主要是系统侧变电所(宾洋线)负载发生了单相 接地故障,造成了110KV系统电压大幅度波动,由于故障点距如东热电较远,故障量未能达 到线路保护动作值,因此如东热电线路开关731、732未跳闸。 4.2发电机过电压保护动作分析 从励磁系统波形分析,在5:41:21出现了发电机AB相电压下降情况,励磁调节系统自动 增加励电流,发电机电压有所回升,在5:41:27变电所731、732开关跳闸到5:41:30发电机 过电压保护动作期间,励磁系统既没有从自动励磁切换手动励磁也未出现限制励磁,这说明 励磁调节系统参数响应时间较慢,未能起到电压升高而限制励磁的作用。 由于变电所内731、732开关的突然跳闸,如东热电发电机瞬时孤网运行并带两条空载长 距离输电线路,因输电线路分布电容的存在导致热电厂小系统内电压的突然升高而励磁系统 未能及时响应限制励磁从而引起发电机过电压保护动作出口。 5、暴露的问题及后续改进措施 5.1线路保护配置方面 为了提高热电厂孤网运行的可靠性,防止出现“小马拉大车”造成发电机组频率电压奔溃;针对变电所内731、732开关跳闸的同时应连锁跳开发电厂侧731、732开关。因此需要增加 配置线路保护远方联跳功能。 5.2励磁系统 通过对励磁系统设计图及现场接线核对发现励磁系统专用PT对发电机端电压检测不全面(只检测单相电压),不能全面反应三相电压变化情况;其次是励磁调节系统设备落后且为 模拟式电子调节设备,其本身响应时间较慢。 5.3后续改造 对于暴露的问题已于2015年12月进行了改进,对线路成套保护装置进行了升级并增加 了远方联跳功能,对于发电机励磁系统专用PT更改为三相PT,同时将励磁调节器由模拟电 子式MAVR更换为数字式DVR型励磁调节设备。通过模拟试验励磁调节系统均能满足系统电 压突变时的自动跟随调节能力。 6、结束语 通过对引起发电厂全厂失电的原因进行剖析,提出了外网变电所内母线保护动作时应快

热电联产供电标准煤耗限额标准及计算

供电标准煤耗限额 一、术语及定义 1、总耗热量: 统计报告期内汽轮机进口侧、向外供热的减温减压器进口侧及锅炉向外直供的总热量 2、 3、 4、供热量: 用于供热的热量 发电量: 机组总发电量 供电量: 向外提供的电量 二、计算方法 1、热电比%=(供热量GJ×1000)/(3600×供电量kW.h)×100 2、 3、供热比%=(供热量GJ/总耗热量GJ)×100 发电厂用电量kW.h=(用于发电、供热和其它生产的电能消耗量kW.h-纯供热耗用的厂用电量kW.h-纯发电用的厂用电量,如循环水泵、凝结水泵等只与发电有关的设备用电量kW.h-按规定应扣除的电量kW.h)×(1-供热比%/100)+纯发电用的厂用电量,如循环水泵、凝结水泵等只与发电有关的设备用电量kW.h

4、供热厂用电量kW.h=(用于发电、供热和其它生产的电能消耗量kW.h-纯供热耗用的厂用电量kW.h-纯发电用的厂用电量,如循环水泵、凝结水泵等只与发电有关的设备用电量kW.h-按规定应扣除的电量kW.h)×供热比%/100+纯供热耗用的厂用电量kW.h 5、 6、发电厂用电率%=发电厂用电量kW.h/机组的发电量kW.h*100供热厂用电率%=(3600×供热厂用电量kW.h)/(供热量GJ×1000)×100 7、生产用标准煤量tce(吨标准煤)=耗用燃料总量(折至标准煤)tce-应扣除的非生产用燃料量(折至标准煤)tce 8、 9、供热标准煤耗量tce=生产用标准煤量tce×供热比%/100发电标准煤耗量tce=生产用标准煤量tce-供热标准煤耗量tce 10、发电标准煤耗gce/(kw.h)(克标准煤每千瓦时)=生产用标准煤量tce×(1-供热比%/100)/机组的发电量kW.h× 100011、供电标准煤耗gce/(kw.h)=发电标准煤耗gce/(kw.h)/(1-发电厂用电率%/100) 12、供热标准煤耗gce/(kw.h)=(生产用标准煤量tce×1000/供热量GJ)×(供热比%/100) 13、总热效率%={(100×供热量GJ)+(0.36×供电量kW.h)}/ (29.3076×生产用标准煤量tce) 三、供电标准煤耗限额(机组容量100MW以下) 供电标准煤耗gce/(kw.h):2008< 466、2010< 426、2012<408

热电厂供热及供电标煤耗率计算

热电厂供热及供电标煤耗率计算 是热电企业财务统计、成本计算、审核审计工作的前提。当前各热电企业,在数据交流和上报时可能会发现一些问题,主要是计算公式不尽相同,致使同样的原始资料数据,计算结果可能不一致,或者会出现一些不应该有的错误。这种情况使我们无法正确进行财务评价,也无法对热电成本正确性进行评价。 现有关于供热、供电标煤耗率计算主要取自浙江省标准“热电厂煤耗和厂用电率计算方法”(浙江省标准计量局发布 1991年12月20日实施),在这以后,国家已发布了一系列有关文件和计算公式,例如: 国家四部委急计基础[2000]1268号文; 2001年1月11日三部委发布的“热电联产项目可行性研究技术规定”,最近发布的文件与前述“省标”对某些计算公式不完全相同。现将计算中可能遇到问题及对这些公式理解提出一些看法,供热电行业有关同仁参考与研究。 二.对供热及供电标准煤耗率计算方法理解: 1.浙江省标准局1991年发布的“热电厂煤耗和厂用电率计算方法”(以下简称“煤耗计算”与同时发布的“小型热电厂成本计算方法”(以下简称“成本计算”)是当时同时发布,又必须同时应用的2个标准,后者的“成本计算”必须应用前者的“煤耗计算”数据,因此,前者是成本计算的前提。 2.对供热标煤耗率br的理解: “煤耗计算”中公式 (9)中 br=Br/Qr×103 其中: br 供热标煤耗率kg/GJ

Br 供热耗标煤量t Qr 对外总供热量GJ 上式中Br;Qr的计算如下: Br=Bb·αr αr=Qr/Qh 其中: Qh 为锅炉总产汽热量GJ 其中一部分通过汽轮机或通过减温减压器对外供热, 另一部分通过汽轮发电机发电。 αr 为供热比,表示对外供热占总锅炉产汽热量百分比。 Bb为热电厂总耗标煤量, 以上这个公式br仅考虑了总耗煤量的一次分摊,而厂用电量,没有考虑进去。标准“成本计算”在计算供热燃料费用的成本时,又加入了供热厂用电所需燃料费,这个又称为二次分滩,所以原标准“成本计算”中是考虑了二次分摊,但供热标煤耗率br没有考虑二次分摊。2001年三部委发布的“热电联产项目可行性研究技术规定”(以下简称“技术规定”)已在这个br计算公式中考虑了二次分摊。 公式如下: brp=34.12/ηgLηgd+εrbdp (书中公式17-20) 其中: brp 全厂年平均供热标准煤耗率kg/GJ ηgL 锅炉效率% ηgd 管道效率%

影响供电煤耗的主要因素

影响供电煤耗的主要因素 为了提高全厂职工节能降耗的意识,明确节能降耗工作的方向与重点,现将我厂四台机组供电煤耗的各种影响因素提供给大家,期望大家共同努力,把我厂供电煤耗指标提高到新的水平。(以下内容仅供参考,今后我们将逐步修订完善。)1、主汽压力变化1MPa影响煤耗1.13g/KWh2、主汽温度变化10℃影响煤耗1.16g/KWh3、再热汽压力变化1%影响煤耗0.36 g/KWh4、再热汽温度变化10℃影响煤耗 0.73g/KWh5、再热汽减温水流量变化10T/h影响煤耗 1.24 g/KWh6、真空下降1Kpa(1mmHg=0.133KPa)影响煤耗 2.44 g/KWh7、循环水进水温度变化1℃影响煤耗0.5—0.8 g/KWh8、高加全停影响煤耗14—18 g/KWh9、汽水损失1%影响煤耗1.4—2 g/KWh10、厂用电率1%影响煤耗 3.5—3.6 g/KWh11、厂用汽变化1%影响煤耗2.5 g/KWh12、排烟温度降低10℃影响煤耗2.2 g/KWh13、生活区供暖系统用汽影响煤耗0.65 g/KWh14、燃油多耗1000吨影响煤耗1.1 g/KWh15、除氧器每小时多排汽1吨影响煤耗0.3 g/KWh16、锅炉飞灰可燃物增加5%影响煤耗 1.5 g/KWh17、锅炉灰渣可燃物升高5%影响煤耗0.72 g/KWh18、甲、乙大旁路、主蒸汽管道泄漏水汽1吨影响煤耗0.47 g/KWh19、发电机负荷由300MW降至250MW影响煤耗3 g/KWh左右。

很多,如下: 1、负荷率 2、机组效率 3、真空 4、厂用电率 5、给水温度 6、高加投入率 7、凝气器端差 8、排烟温度 9、凝结水过冷度 10、低加组投入率 11、主蒸汽温度 12、主蒸汽压力

影响火力发电厂供电煤耗的主要影响因素

影响火力发电厂供电煤耗的主要影响因素 摘要:本文主要针对影响火力发电厂供电煤耗的主要因素展开分析和讨论,通 过根据供电煤耗正、反平衡经验计算公式进行逐步推理,得出相关因素的影响程度,提出了相关调整和控制措施,进一步为火力发电机组经济运行提供了指导性 意见,同时为火电机组设计、建设和调试运行提供了经验借鉴。 一、概述 火力发电厂每向外提供1kWh电能平均耗用的标准煤量,它是按照电厂最终 产品供电量计算的消耗指示,是国家对火电厂的重要考核指标,根据计算方法的 不同供电煤耗分为正平衡供电煤耗、反平衡供电煤耗两种方法。近些年来,国家 鼓励相关火力电力企业继续担当我国的主体能源重任,加快清洁高效技术改进, 进一步推进“上大压小”和“能源利用节约”政策,不断淘汰高耗能、高污染机型, 保证火电机组容量等级结构持续向大容量、高参数、低耗能方向发展,促使供电 标准煤耗等主要耗能指标大幅下降,同时各大电力企业正努力向污染零排放、提 高发电设备利用率、保证发电煤耗低于310g/kW.h的目标全力进军,争取是火力 发电在国家绿色发展的整体形势中迎来新生机。 二、影响供电煤耗的主要因素 (一)发电煤耗的正平衡计算公式 bf=Bb/Wf (式一) 式中:bf—发电煤耗,g/kW.h;Bb—发电标煤耗量,t;Wf—发电量,kW.h; bg=bf/(1-η)(式二) 式中:bg—供电煤耗,g/kW.h;η—厂用电率,%; Bb=By×Qy/29307(式三) 式中:By—发电原煤耗量,t;Qy—原煤入炉煤热值,kJ/kg; 综合上述发电煤耗正平衡计算公式可知,影响发电煤耗的因素主要有负荷率,原煤的发热量、厂用电率。 1、负荷率对供电煤耗的影响 通过对比锡林发电两台机组一年生产指标来看,在燃煤煤种不变情况下,机 组平均负荷在机组容量50%以上时,供电煤耗平均在306g/kW.h;机组平均负荷 在机组容量80%以上时,供电煤耗平均在295 g/kW.h;机组满负荷运行时,供电 煤耗平均在287 g/kW.h。由此可知,负荷率越高,供电煤耗下降较多,满负荷时,要低于设计供电煤耗。 2、原煤发热量对供电煤耗的影响 原煤发热量是影响供电煤耗最主要的一个影响因素,通过对比运行数据分析 可知,原煤发热量每变化100kJ/kg时,影响供电煤耗约2.5g/kW.h,原煤耗煤量 称重值不变时,化验的原煤发热量越高,标煤耗煤量越大,供电煤耗越大。 3、厂用电率对供电煤耗的影响 根据式二可知,发电厂用电率对火力发电机组供电煤耗有着直接影响,其中 通过分析锡林发电两台机组供电煤耗变化趋势可知,生产厂用电率每升高0.1个 百分点,供电煤耗变化约3.5 g/kW.h,是影响煤耗因素中最大的一个指标。 (二)发电煤耗的反平衡计算公式 bf=qr/(29307×ηgd×ηgl)(式四) 式中:bf—发电煤耗,g/kW.h;qr—热耗,kJ/kW.h;ηgd—管道效 率,%;ηgl—锅炉效率,%。

火力发电厂如何降低供电煤耗

火力发电厂如何降低供电煤耗 一、供电煤耗率是供电标准煤耗率的简称,供电煤耗率是指火电厂向厂外每供出1kW.h电量所消耗的标准煤量[g/(kW.h)],计算公式为:供电煤耗率=发电煤耗率/(1-厂用电率)=标准煤耗量/供电量 1、下列用电量和燃料不计入发电厂用电率和供电煤耗: 1)新设备或大修后设备的烘炉、煮炉、暖机、空载运行的电力; 2)新设备在未移交生产前的带负荷试运行期间,耗用的电量; 3)计划大修以及基建、更改工程施工用的电力; 4)发电机作调相运行时耗用的电力; 5)自备机车、船舶等耗用的电力; 6)升降压变压器(不包括厂用电变压器)、变波机、调相机等消耗的电力; 7)修配车间、车库、副业、综合利用、集体企业、外供及非生产用(食堂、宿舍、幼儿园、学校、医院、服务公司和办公室等)的电力。 2、供电量是指在报告期内机组向电网和电厂非生产用电提供的电能。 供电量=发电量-发电(供热)厂用电量-电网购入电量 购入电量是指电厂为生产所需,从其他独立发电企业、其他电网经营企业、自备电厂购入的电量,一般通过厂内高压备用变压器输入。 非生产用电量是指生活用电、机组大修用电、技改工程施工用电和新建机组启动用电等。 上网电量是指电厂在报告期内输送给电网的电量,即厂、网间协议确定

的电厂并网点计量关口有功电能表计抄见电量。 上网电量=发电量-发电(供热)厂用电量-非生产用电量-主变压器和线路损失电量-电网购入电量 (4)机组负荷率修正系数按表1选取。 表1 机组负荷率修正系数 (5)机组启停调峰修正系数按表2选取。 机组启停调峰修正系数 表2 二、影响供电煤耗率的主要因素 1、蒸汽压力和温度越高,机组容量越大,发电煤耗率越小, 见表5(数据包括脱硫设施) 表5 不同参数下机组设计和运行供电煤耗率

火力发电厂生产指标介绍

三、火力发电厂生产指标介绍 一、主要指标介绍 1、供电煤耗:指火力发电机组每供出单位千瓦时电能平均耗用的标准煤量。他是综合计算了发电煤耗及厂用电率水平的消耗指标。因此,供电标煤耗综合反映火电厂生产单位产品的能源消耗水平。 供电煤耗=发电耗用标准煤量(克)/供电量(千瓦时)=发电耗用标准煤量(克)/发电量X(1-发电厂用电率)(千瓦时) 2、影响供电煤耗的主要指标 1)锅炉效率:锅炉效率是指有效利用热量与燃料带入炉热量的百分比。 2)空预器漏风率:是指漏入空气预热烟气侧的空气质量流量与进入空气预热器的烟气质量流量比。 3)主汽温度:主汽温度是汽轮机蒸汽状态参数之一,是指汽轮机进口的主蒸汽温度。 4)主汽压力:主汽压力也是汽轮机蒸汽参数状态之一,是指汽轮机进口的主蒸汽压力。 5)再热汽温:再热汽温度是汽轮机蒸汽参数状态之一,是指汽轮机进口的再热蒸汽温度。 6)排烟温度:排烟温度是指锅炉末级受热面(一般指)空气预热器后的烟气温度。对于锅炉末级受热面出口有两个或两个以上烟道,排烟温度应取各烟道烟气温度的算数平均值。 7)飞灰可燃物:是指锅炉飞灰中碳的质量百分比(%)。 8)汽轮机热耗率:是指汽轮机发电机组每发出一千瓦时电量所消耗的热量。以机组定期或修后热力试验数据为准。 9)真空度:是指汽轮机低压缸排气端真空占当地大气压的百分数。 10)凝汽器端差:是指汽轮机低压缸排汽温度与冷却水出口温度之差。 11)高加投入率:是指汽轮机高压加热器运行时间与机组运行时间的比值。 12)给水温度:是指机组高压给水加热器系统出口的温度值(℃)。

13)发电补给水率:是指统计期汽、水损失水量,锅炉排污量,空冷塔补水量,事故放水(汽)损失量,机、炉启动用水损失量,电厂自用汽(水)量等总计占锅炉实际总蒸发量的比例。 注:以上指标偏离设计值对煤耗的影响见附表 3、综合厂用电率:是指统计期综合厂用电量与发电量的比值,即: 综合厂用电率=(发电量/综合厂用电量)×100%。综合厂用电量是指统计期发电量与上网电量的差值,反应有多少电量没有供给电网。 辅机单耗:吸、送风机、制粉系统、给水泵、循环水泵、脱硫等。 4、发电燃油量:是指统计期用于发电的燃油消耗量。 5、发电综合耗水率:是指发单位发电量所耗用的新鲜水量(不含重复利用水)。在统计耗水量时应扣除非发电耗水量。 6、100MW及以上机组A、B级检修连续运行天数:是指100MW及以上机组经A、B级检修后一次启动成功且连续运行天数,期间任何原因发生停机则中断记录。 7、等效可用系数:等效可用系数是指机组可用小时与等效降出力停运小时的差值与统计期日历小时的比值。 8、机组非计划停运次数:机组非计划停运次数是指机组处于不可用状态且不是计划停运的次数。 二、保证生产指标的措施 1、深入开展能耗诊断,认真落实整改措施,不断提高能耗管理水平。 2、不断深化对标管理,通过运行优化、设备治理、科技创新、节能改造等技术手段,不断提高机组经济运行水平。 3、深化运行优化,加强耗差分析,确定最优经济运行方案,合理调整运行方式; 4、全面推行经济调度,明确各台机组调度顺序,提升机组安全、经济运行水平;

影响供电煤耗的因素大汇总.

导读:供电煤耗又称供电标准煤耗,是火力发电厂每向外提供1kWh电能平均耗用的标准煤量(单位:克/千瓦时、g/kWh)。它是按照电厂最终产品供电量计算的消耗指示,是国家对火电厂的重要考核指标之一。 以下为影响供电煤耗因素汇总,以供参考。 1、主汽压力上升1MPa影响供电煤耗下降1.65g/kW.h 控制措施:主汽压升高会使汽机热耗下降,但一般情况下,运行时不宜超过设计值,以免控制不好,引起超压。 计算公式:详细的计算方法是对整个热力系统进行计算,先得到作功的变化和吸热量的变化,再得到煤耗的变化。或者由制造厂的修正曲线先得到热耗的变化,再得到煤耗的变化。并且还要考虑其他因素同时变化时,对主汽压引起变化的影响。粗略估算可采用下式: B*[C1/(1+C1)]/ηb/(1-ηe),B——是煤耗,C1——是主汽压对热耗的修正系数,ηb——是锅炉效率,ηe——是厂用电率。 2、主汽压力下降1MPa影响供电煤耗上升1.89g/kW.h 控制措施:运行时,对80%以上工况尽量向设计值靠近,80%以下工况目标值不一定是设计值,目标值的确定需要通过专门的滑参数优化试验确定。 计算公式:估算公式与主汽压力上升相同。 3、主汽温度每下降10℃影响供电煤耗上升1.26g/kW.h 控制措施:主汽温偏低一般与过热器积灰、火焰中心偏低、给水温度偏高、燃烧过量空气系数低、饱和蒸汽带水、减温水门内漏等因素有关。运行时,应按规程要求吹灰、根据煤种变化调整风量、一、二次风配比。 计算公式:详细的计算方法是对整个热力系统进行计算,先得到作功的变化和吸热量的变化,再得到煤耗的变化。或者由制造厂的修正曲线先得到热耗的变化,再得到煤耗的变化。并且还要考虑其他因素同时变化时,对主汽温引起变化的影响。粗略估算可采用下式: B*[C2/(1+C2)]/ηb/(1-ηe),B——是煤耗,C2——是主汽温对热耗的修正系数,ηb——是锅炉效率,ηe——是厂用电率。 4、主汽温度每上升10℃影响供电煤耗下降1.14g/kW.h 控制措施:主汽温升高会使汽机热耗下降,但一般情况下,运行时不宜超过设计值,以免控制不好,引起超温。

根据经验值影响机组供电煤耗的几个系数关系简略说明

根据经验值影响机组供电煤耗的几个系数关系简略说明1、综合厂用电率与综合供电煤耗的关系: 综合供电煤耗=统计期内的供电标煤量/发电量(1—综合厂用电率),若综合厂用电率增加0.1%,则分母减小0.1%,既上网电量减少0.1%的发电量。假设有用下列公式表示上述关系:——A=B/(1-n)C 其中A—综合供电煤耗 B—统计期内的供电标煤量 C—发电量 n—综合厂用电率 若B、C不变的情况下,n增加01.%变为n’,则比较A的变化A’有 2、影响发电煤耗的主要因素有如下经验关系: 1)一般情况下,机组负荷率每变化10%,发电煤耗将变化3~6克/ 千瓦时。 2)一般来讲锅炉热效率对发电煤耗的影响约为1:1,即锅炉热效率 相对变化1%,发电煤耗相对变化1%。在其他条件不变的情况下,锅炉热效率越高,机组发电煤耗越低。 3)汽机热耗率对发电煤耗的影响也是1:1的关系,即热耗率相对变 化1%,发电煤耗同样变化1%。同样情况下机组热耗率越低、机组的发电效率越高、机组发电煤耗越低。 3、一般300MW燃煤机组负荷率每变化10%,发电厂用电率约变化0.3%左右。

4、入厂煤与入炉煤的热值差应控制在502J/g之内。 5、提高热效率的几个因素: 直接影响锅炉热效率的指标有:排烟温度、锅炉氧量(排烟氧量)、飞灰可燃物含量和炉渣可燃物含量。一般情况下300MW燃煤机组锅炉排烟温度每升高10o C,影响机组供电煤耗1.5g/(kW·h)左右;锅炉烟气含氧量每升高1%,影响机组供电煤耗升高0.9 g/(kW·h)左右;飞灰可燃物含量每升高1%,锅炉热效率降低0.3%,机组供电煤耗升高1.1 g/(kW·h),对于电站煤粉锅炉一般飞灰占总灰量的90%,炉渣占总灰量的10%。 6、锅炉主蒸汽参数对供电煤耗的影响。一般锅炉主蒸汽压力每增加1MPa,热耗将降低0.55~0.7%,机组供电煤耗降低 1.5~2.2 g/(kW·h),因此必须严格控制主蒸汽压力在一定范围内,波动范围应在±0.2MPa;一般锅炉主蒸汽温度(也叫主蒸汽温度,指锅炉末级过热器出口的过热蒸汽温度)每升高1 o C,热耗将增加0.03%,机组供电煤耗增加0.1 g/(kW·h),因此必须严格控制过热器温度在一定范围内,波动范围±5 o C。 7、锅炉再热蒸汽温度对供电煤耗的影响:指锅炉末级再热器出口的再热蒸汽温度。一般再热蒸汽温度每降低1o C,热损耗将增加0.025%,机组供电煤耗增加0.07 g/(kW·h)左右。 8、汽轮机主要参数对煤耗的影响:对200MW机组,高加停止运行,机组热效率降低3~5%,折合机组供电煤耗10 g/(kW·h)。所以,一般情况下高加投入率应≥95%。

关于厂用电率分析

电厂厂用电率分析 一、厂用电率现状 厂用电率的高低是电厂运行的重要经济指标之一,越来越受到领导们关注。通过查看电厂记录,现将电厂厂用电率以表格形式呈现如下: 二、影响厂用电率的因素 1、机组负荷率的影响 机组负荷率低是目前电厂面临的最主要的现实问题。我们的机组设计负荷30MW,而在实际的运行当中由于各种现实原因,一般负荷只能达到22MW上下,甚至只有18MW,所以负荷率只有72%左右。电厂的辅机设备是按照额定出力选型的,机组出力减小,厂用电设备耗电量也减少,但两者并不是一个成比例减少的线性关系。总的来说,负荷率越高,厂用电率越低,理论上讲当机组负荷率最大是厂用电率最低;当机组发电量减少,负荷率降低时,由于厂用电耗电量并没有按照比例相应的减少,所以造成厂用电率居高不下。 2、生物质燃料的影响 生物质燃料是影响负荷率的重要因素。我们都知道生物质又称农林废弃物,燃料的水分、热值受环境湿度的影响比较大。通过请

教锅炉人员得知目前北流电厂入炉燃料水分都在百分之五十以上,水分过高造成引风机等设备已经达到额定出力,但机组负荷无法提升到更高的水平。换句话说,机组设备的耗电已达到额定值,机组的负荷却没有达到30MW设计值,这样就造成厂用电率偏高。 3、辅机设备选型的影响 电厂主要电动设备包括引风机、电动给水泵、一次风机、二次风机、高压流化风机、循环水泵等,这些电动设备的耗电量大概占厂用电的65%,甚至更高。辅机设备根据不同的选型基准点设计容量差别很大,再加上辅机设备的驱动电机要考虑1.15倍的储备系数并根据电动机的标准容量进行选择。如果辅机设备选型不合理,累计下来的名牌功率就和实际功率差距很大,造成很大的功率损耗,这部分也是造成厂用电率偏高的原因。 4、人为因素的影响 电厂各专业人员操作用电设备不合理、不科学也会造成用电量增大,厂用电率偏高。比如锅炉专业:⑴经常堵塞给料系统⑵锅炉缺氧燃烧,造成负荷低,燃料浪费。汽机专业:⑴循环水泵运行不合理⑵凝汽器真空低。电气专业:⑴锅炉和厂区等照明设备停送电不及时⑵对电动机检查不够,造成电机散热降低,摩擦增大,耗电增加。化学专业:造水过程中对设备开度不合理,造成设备运行时间变长,损耗电量等。 三、降低厂用电率的措施 1.最大限度提高机组运行负荷率。

电厂主要指标计算公式

主要指标统计计算 1、发电量:日、月累计发电量。 2、供电煤耗: 日供电标准煤耗(克/千瓦时)= 计算期内入炉煤平均热值(兆焦/千克)= 月供电标准煤耗(克/千瓦时)= 累计供电标准煤耗(克/千瓦时)= 3、供热标准煤耗率(千克/百万千焦)= 月供热标准煤耗率(千克/百万千焦)= 累计供热标准煤耗率(千克/百万千焦)= 4、发电厂用电率(%) 日发电厂用电率(%)= 月发电厂用电率(%)= 累计发电厂用电率(%)= 5、供热厂用电率(%) 日供热厂用电率(千瓦时/百万千焦)= 月供热厂用电率(千瓦时/百万千焦)= 累计供热厂用电率(千瓦时/百万千焦)= 7、补水率 日补水率(%)= 月补水率(%)= 累计补水率(%)= 8、耗油量 按日、按月进行累计。 9、发电水耗 日发电水耗(吨/千瓦时)= 月发电水耗(吨/千瓦时)= 累计发电水耗(吨/千瓦时)= 10、入厂、入炉煤热值差 日入厂煤平均热值(兆焦/千克)= 月入厂煤平均热值(兆焦/千克)= 累计入厂煤平均热值= 日入炉煤平均热值(兆焦/千克)= 月入炉煤平均热值(兆焦/千克)= 累计入炉煤平均热值= 月入厂、入炉煤热值差=月入厂煤平均热值-月入炉煤平均热值

累计入厂、入炉煤热值差=累计入厂煤平均热值-累计入炉煤平均热值 11、主汽压力(Mpa) 日主汽压力平均值= 月主汽压力平均值= 累计主汽压力平均值= 12、主汽温度(℃) 日主汽温度平均值= 月主汽温度平均值= 累计主汽温度平均值= 13、再热汽温度(℃) 日再热蒸汽温度平均值= 月再热蒸汽温度平均值= 累计再热汽温平均值= 14、排烟温度(℃) 日排烟温度平均值= 月排烟温度平均值= 累计排烟温度平均值= 15、给水温度(℃) 日给水温度平均值= 月给水温度平均值= 累计给水温度平均值= 16、真空度(%) 日真空度平均值= 月真空度平均值= 累计真空度平均值= 17、凝汽器端差(℃) 日凝汽器端差平均值=(日24小时现场抄表所得每小时汽轮机排汽温度实际值累加起来-日24小时现场抄表所得每小时循环水出口温度实际值累加起来)÷24 月凝汽器端差平均值=

火电厂降低供电煤耗率的主要措施

1、使用新型的无油技术,如等离子点火技术、少油点火技术等)。 2、对送风机、吸风机、一次风机等动力进行变频改造。实践证明,采用性能较好的变频器不但可靠性高,而且风机节电率可达40%~60%。大型变频器基本上每千瓦费用为1000元。 3、采用先进的设计技术和加工工艺、采用先进的附属设备和部件,对汽轮机通流部分进行改造,可以提高机组容量和缸效率,从而大幅度地降低发电煤耗。对于国产机组,采用先进的高效叶型进行通流部分改造,煤耗至少可降低8g/kWh。 4、当煤质发生变化时,及时调整制粉系统运行方式,保证经济的煤粉细度,降低飞灰和炉渣可燃物,提高锅炉热效率。建议电厂按0.5Vdaf较核煤粉细度。煤粉过粗,达不到经济细度,导致炉膛着火延迟,使火焰中心升高,排烟温度升高;煤粉过细,燃烧提前,火焰中心下降,对汽温调整产生影响,同时也增加了制粉系统电耗。请参考《电站磨煤机及制粉系统选型导则》(DL/T466-2004)。该标准规定,无论无烟煤、贫煤和烟煤,其经济煤粉细度均按0.5Vdaf选取。 5、采用先进的煤粉燃烧技术。煤粉燃烧稳定技术可以使锅炉适应不同的煤种,特别是燃用劣质煤和低挥发分煤,而且能提高锅炉燃烧效率,实现低负荷稳燃,防止结渣,并节约点火用油。 6、采用高参数的大容量火电机组,不仅能减少大气污染,而且大大降低供电煤耗。 7、根据国际电工委员会(IEC)1985年和《电站汽轮机技术条件》(DL/T892-2004)规定:在任何12个月的运行期间,汽轮机任何一进口的平均温度不应超过其额定温度。机组可以在(额定温度+8)℃下长期运行,但全年平均温度不允许超过额定值;在(额定温度+8)~(额定温度+14)℃下,机组全年允许运行400h;在(额定温度+14)~(额定温度+28)℃下,机组全年允许运行80h,但每次不超过15min;超过(额定温度+28)℃,要停机。 8、负荷降低时,应及时停运1套制粉系统。实践证明,300MW锅炉,3套制粉系统运行比2套制粉系统运行,排烟温度要高出10℃左右。制粉系统停运时,应尽量停运上层的制粉系统,同时相应地降低给粉机出力,以延长停磨时间和降低火焰中心。 9、在低负荷下机组采用滑压运行方式。例如某电厂300MW机组当负荷降到240MW以下时采用1、2、4、5四只高压调门全开,3、6两只高压调门全关的滑压运行方式,供电煤耗降低4.1g/kWh。 10、每月进行一次真空严密性试验。 11、由于煤炭市场逐步放开,许多电厂的煤源、煤种不稳定,诸多煤炭指标严重偏离设计煤种,给锅炉安全经济运行带来了较大的影响,因此应通过完善燃料采购、配煤掺烧的管理,努力克服当前煤炭市场的不利因素,尽量提高入炉煤的质量,确保锅炉燃烧最大限度地接近设计煤质。凡燃烧非单一煤种的电厂,要实行配煤责任制,每天根据不同煤种和锅炉设备特性,研究确定掺烧方式和掺烧配比,并通知有关岗位执行,避免锅炉低负荷期间燃烧不稳灭

各指标对煤耗影响

各指标对煤耗影响 This manuscript was revised on November 28, 2020

600MW机组各项指标对煤耗影响 1.负荷降低1%,机组的热耗将会增加0.089%~0.1%,煤耗 大约增加0.3%,1.1 g/kWh 2.主汽压降低1MPa,煤耗增加1.53g/kWh; 3.主汽温提高1℃,煤耗降低0.059 g/kWh; 4.再热汽温提高1℃,煤耗降低0.032 g/kWh; 5.再热器喷水减少1t/h,煤耗降低0.103 g/kWh; 6.凝汽器端差下降1℃,煤耗0.68 g/kWh; 7.真空上升1kPa,煤耗下降1.2 g/kWh; 8.给水温度提高1℃,煤耗下降0.05%,0.16 g/kWh; 9.排烟温度下降10℃,煤耗下降1.88 g/kWh; 10.锅炉效率提高1%,煤耗下降4 g/kWh; 11.氧量比标准上升1%,煤耗增加1.57 g/kWh; 12.空冷机组影响煤耗10 g/kWh;国电600MW亚临界机组 对标供电煤耗332 g/kWh; 300MW机组省煤节电经验数据 1.负荷降低10%,煤耗大约增加 2.95g/kWh,降低20%增加 6.92g/kWh,降低30%增加18.90g/kWh,降低40%增加 26.23g/kWh

2.主汽压降低1MPa,煤耗增加2.1g/kWh;降低2MPa,煤 耗增加3.58g/kWh; 3.主汽温降低5℃,煤耗增加0.95 g/kWh;主汽温降低 10℃,煤耗增加1.51 g/kWh; 4.再热汽温降低5℃,煤耗增加0.79 g/kWh;再热汽温降 低10℃,煤耗增加1.68 g/kWh; 5.真空度下降1%,煤耗增加3.6 g/kWh; 6.端差上升1℃(夏/冬),煤耗增加1.93 /0.85g/kWh 7.高加解列/低加解列,煤耗增加9.55/8.02g/kWh 8.给水温度下降10℃,煤耗增加0.95g/kWh; 9.给水调门压差增加1MPa,煤耗增加0.36g/kWh; 10.排烟温度上升10℃,煤耗增加1.66g/kWh; 11.空气预热器漏风率增大1%,煤耗增加0.14g/kWh; 12.飞灰含碳量增加1%,煤耗增加1.23 g/kWh; 13.排污率增大1%,煤耗增加1.18g/kWh; 14.厂用电率上升1%,煤耗增加3.78g/kWh;

2021年发电效率PR计算公式

光伏电站发电效率的计算与监测 欧阳光明(2021.03.07) 1、影响光伏电站发电量的主要因素 光伏发电系统的总效率主要由光伏阵列的效率、逆变器的效率、交流并网效率三部分组成。 1.1光伏阵列效率: 光伏阵列的直流输出功率与标称功率之比。光伏阵列在能量转换与传输过程中影响光伏阵列效率的损失主要包括:组件匹配损失、表面尘埃遮挡损失、不可利用的太阳辐射损失、温度的影响以及直流线路损失等。 1.2逆变器的转换效率: 逆变器输出的交流电功率与直流输入功率之比。影响逆变器转换效率的损失主要包括:逆变器交直流转换造成的能量损失、最大功率点跟踪(MPPT)精度损失等。 1.3交流配电设备效率: 即从逆变器输出至高压电网的传输效率,其中影响交流配电设备效率的损失最主要是:升压变压器的损耗和交流电气连接的线路损耗。 1.4系统发电量的衰减: 晶硅光伏组件在光照及常规大气环境中使用造成的输出功率衰减。

在光伏电站各系统设备正常运行的情况下,影响光伏电站发电量的主要因素为光伏组件表面尘埃遮挡所造成太阳辐射损失。 2、光伏电站发电效率测试原理 2.1光伏电站整体发电效率测试原理 整体发电效率E PR 公式为: —PDR 为测试时间间隔(t ?)内的实际发电量; —PT 为测试时间间隔(t ?)内的理论发电量; 理论发电量PT 公式中: i o I T I =,为光伏电站测试时间间隔(t ?)内对应STC 条件下的实际有效发电时间; -P 为光伏电站STC 条件下组件容量标称值; -I 0为STC 条件下太阳辐射总量值,Io =1000w/m 2; -Ii 为测试时间内的总太阳辐射值。 2.2光伏电站整体效率测试(小时、日、月、年) 气象仪能够记录每小时的辐射总量,将数据传至监控中心。 2.2.1光伏电站小时效率测试 根据2.1公式,光伏电站1小时的发电效率PR H —PDRi ,光伏电站1小时实际发电量,关口计量表通讯至监控系统获得; —P ,光伏电站STC 条件下光伏电站总容量标称值; —Ti ,光伏电站1小时内发电有效时间; —Ii ,1小时内最佳角度总辐射总量,气象设备采集通讯至监控

电厂主要指标计算公式

1、发电量:日、月累计发电量。 2、供电煤耗: 日供电标准煤耗(克/千瓦时)= 计算期内入炉煤平均热值(兆焦/千克)= 月供电标准煤耗(克/千瓦时)= 累计供电标准煤耗(克/千瓦时)= 3、供热标准煤耗率(千克/百万千焦)= 月供热标准煤耗率(千克/百万千焦)= 累计供热标准煤耗率(千克/百万千焦)= 4、发电厂用电率(%) 日发电厂用电率(%)= 月发电厂用电率(%)= 累计发电厂用电率(%)= 5、供热厂用电率(%) 日供热厂用电率(千瓦时/百万千焦)= 月供热厂用电率(千瓦时/百万千焦)= 累计供热厂用电率(千瓦时/百万千焦)= 7、补水率

日补水率(%)= 月补水率(%)= 累计补水率(%)= 8、耗油量 按日、按月进行累计。 9、发电水耗 日发电水耗(吨/千瓦时)= 月发电水耗(吨/千瓦时)= 累计发电水耗(吨/千瓦时)= 10、入厂、入炉煤热值差 日入厂煤平均热值(兆焦/千克)= 月入厂煤平均热值(兆焦/千克)= 累计入厂煤平均热值= 日入炉煤平均热值(兆焦/千克)= 月入炉煤平均热值(兆焦/千克)= 累计入炉煤平均热值= 月入厂、入炉煤热值差=月入厂煤平均热值-月入炉煤平均热值 累计入厂、入炉煤热值差=累计入厂煤平均热值-累计入炉煤平均热值 11、主汽压力(Mpa) 日主汽压力平均值= 月主汽压力平均值=

累计主汽压力平均值=12、主汽温度(℃) 日主汽温度平均值= 月主汽温度平均值= 累计主汽温度平均值=13、再热汽温度(℃)日再热蒸汽温度平均值=月再热蒸汽温度平均值=累计再热汽温平均值=14、排烟温度(℃) 日排烟温度平均值= 月排烟温度平均值= 累计排烟温度平均值=15、给水温度(℃) 日给水温度平均值= 月给水温度平均值= 累计给水温度平均值=

相关主题
文本预览
相关文档 最新文档