当前位置:文档之家› 精益制造和飞机移动装配线

精益制造和飞机移动装配线

精益制造和飞机移动装配线
精益制造和飞机移动装配线

精益制造和飞机移动式装配线

基于精益思想的飞机移动式装配线已成为飞机生产新模式,世界各大航空制造企业竞相采用。飞机移动式装配线既是长期精益实践的成果,又对整个航空制造供应链起着积极的推动作用。适时地启动飞机移动装配技术研究,在航空制造中深入推行精益生产的理念、方法和文化是中国飞机制造向世界水平迈进的必由之路。

飞机移动生产线的需求

二战期间的1940 年,美国政府下令福特汽车公司制造1200 架B24轰炸机。福特经历了一次次挫折以后,由当初T 型车生产线的建造者出任B24 装配线的设计师。他完全照搬了汽车生产的模式,建成了1 英里长的L 型装配线,共设28 个站位,每小时出产1 架飞机。至二战结束,共装配8600 架B24,成为美国历史上产量最多的飞机。大量生产飞机之所以成功是因为当时战争消耗引发的大量需求。另外,当时的飞机相对简单,加上战争条件下,较少有客户化和构型变化要求,使B24 飞机制造具备了大批量生产的条件。

但是,现代的飞机生产环境发生了变化。因为飞机技术复杂化,总装涉及的专业多、工种多、人员多、物料多、工具工装型架多、技术文件多,总装过程组织困难。加上社会和经济形势不稳定,无论是民机还是军机,都具有需求多变、构型多、相同构型产量少的特点,加大了飞机生产装备投入的风险。因此传统上飞机总装一般采用机库式(或停车场式)装配。

机库式装配由多组工人并行作业,各架飞机的实际装配作业很难一致,难以保证质量,弊病很多。因此飞机制造业产生了强烈的改进装配方式的需求。最先出现的是由机库式向站点式过渡:设置多站位,在每个站位上装入一部分,由通用设备移动飞机到下一个站点,直至完成。飞机在站位式装配中是一站一站地移动的,工人也有了比较合理的分组和分工,但是装配工作地的混乱局面并没能有本质的改观,受供应链的影响也没有得到彻底的扭转。

移动装配线是第一次管理革命的产物,福特汽车的移动装配线成为工业化的标志之一。移动装配线的基本要素是:零组件统一标准的互换性、工人精细分工、动作标准化工作,物料的精确到位、均衡和节拍,采用专用的固定生产线设施。这种装配方式效率高,但专用设施投资大,缺少柔性受产品变化影响大,传统上只用于批量较大、产品结构简单的产品。而飞机是典型的长周期、小批量生产的产品,装配技术又复杂,实行单架次构型管理,造成了飞机移动装配线在技术上、管理上、物流配送、投资大,都有难点。怎样将大批量生产简单产品的流水线装配方式用在小批量复杂的飞机装配中?采用精益生产方式就是可行的解决方案。

现代飞机移动装配线

第一条现代的飞机移动装配线是波音717 总装线。当时认为波音717 是性能很好的支线客机,预测在20 年内有3000 架的市场预期。这使得波音717 具备采用移动式装配的需求,并于2006 年初建成投产。这条单件流、连续移动式装配线共有2 个用于机体对接的固定站位和6个总装的移动站位。移动式飞机装配的直接效益是将原来需要20 架在制飞机减少到8~10 架,并缩短装配

周期50%。在支线客机制造商庞巴迪与巴西航空的竞争下,波音717 被迫于2006 年5 月停产,717 飞机共生产了156 架。移动装配线运行了很短的时间。但是,移动装配线的成功成为波音717 的重要历史遗产。

与717 同时期建设的是武装直升机Apache 的精益脉动装配线。从1998 年到2008 年的10 年间,波音不断改进这条装配线,从直线形发展为U 型,最后是J 型;站位数从10 变为15 再回到10,终于获得了减少装配工时85% 的示范性的效果。2005 年Apache 的U 型精益脉动装配线被授

予美国精益生产的最高成就奖——新乡奖。波音在这些成就的鼓励下,将移动式装配用到了它的所有的商用飞机,波音737、波音747(部装)、波音757、波音767、波音777 上。其中,1998 年进行首次737 机身结构移动式装配的原理认证,使用完全配套、向工作点配送和看板等方法,缩

短生产周期80%。波音737 的总装移动线缩短总装配周期46%。美国精益航空创新计划(LAI)称737 移动线是“精益和高效率生产的模范”。777 的U 型移动线从2006 年开始建设,采用逐步的让每个装配阶段“具备移动能力”的方式,于2010 年1月实现全线同步移动,标志着全部建成。它被确认为世界最大的集成式移动装配线。正在试生产的787 梦幻机,也建立了移动装配线。波音的P8A 反潜电子侦察机预期总产量也就在100~200 架之间,也采用了移动总装配线生产。最引人瞩目的是2008 年8 月波音宣布,它开通了有13 个站位的卫星精益脉动装配线生产。在新的精益脉动生产线上生产的第一颗卫星是为美国空军制造的GPS 系统的IIF 卫星。波音今后所有的卫星生产都将采用新的方法(当时卫星的订货量为12 颗)。

波音冲破了传统的多品种小批量飞机生产不能采用移动式生产线的禁锢,它的成功经验带动了世界各大飞机制造商。空客、庞巴迪、巴西航空都为新机建立移动或脉动装配线。英宇航(BAE)承担着F35 生产的大约1/3 的工作量,BAE 通过价值流分析,缩短了装配过程,实行单件流布置的移动生产线。英宇航建立了按架次成对移动的空客机翼总装脉动线和支持车间,达到日产1 架的目标。更值得注意的是,就连从事发动机维修的德国汉莎航空也于2010年建成用于CFM 发动机维修的发动机分解和装配的脉动的生产线。移动装配线正在被航空航天制造业所普遍采用。

新飞机生产模式的诞生

在航空和军工的多品种小批量生产中,使用精益生产的装配方式成为一个新的趋势。移动式装配线成为飞机生产乃至军工生产的新模式。精益的移动式装配成为一种先进的制造和管理技术。甚至成为航空生产系统先进性的标志。和汽车生产的流水线方式相同,飞机移动式装配已经成为飞机生产的“标准”模式。之所以将移动式装配作为一种新的飞机生产模式,是因为该模式能产生

以下效果:

·效率高,缩短了周期和装配工时;

·缩小了飞机总装厂房所占用的面积,并且减少了飞机生产中的投资;

·改善了装配工作地的环境,使作业标准化,更易保证质量和生产安全;

·对整个企业和整个飞机生产供应链起着规范和拉动作用;

·在建立移动线中采用的新工艺方法和新装备技术,促进了飞机装配技术的发展。

移动式装配线是一个单件流过程,要求连续的物流供给。总装配的移动节拍将拉动整个企业和供应链的生产步伐。生产计划管理由装配拉动,实现整个供应链的拉式生产,并严格与总装配节拍同步。实现飞机移动装配将彻底颠覆传统的企业运行的理念、状态及文化。

精益思想是移动装配线的灵魂

波音在总结移动装配线成功的因素时,总是提到是波音十几年来致力于实行精益生产的成果。精益生产是成功建立飞机移动装配线的基础,移动装配线的运行又是对整个波音生产模式的巨大推进。波音从在建立波音717 移动线时开始,就强调了实行精益制造的3 个基本原则:客户同步节拍生产、单件流和拉式生产。

波音还认为构建移动装配线的最大挑战是从传统的推式计划管理向精益的拉式计划管理模式的转变。因此,波音特别关注几个成熟的精益生产的方法:(1)生产线的均衡性;(2)工作过程标准化;(3)现场可视化控制;(4)零件和工具派送到使用点;(5)建立供给线。

波音在所有涉及到飞机移动式装配线的成功案例时,例如介绍他们的Apache 武装直升机脉动装配线时,都将波音长期推行精益生产方式的成功和企业精益文化的积累作为首要因素。与之同步,实现移动式装配又是对精益制造的深化。波音称:通过移动装配线,波音的精益旅程从

“摘低枝果子”向纵深的整个企业同步节拍生产推进。

建立精益飞机移动装配线的规划

波音移动装配线的建造过程其实就是一个深化精益生产的实施过程,几乎包括了运用精益生产所有方法。波音737/757 移动装配线的建造过程有9 个步骤:

(1)分析价值流图Value StreamMapping(VSM)。价值流图分析是建立移动装配线的总体设计。在建立移动装配线之初,波音首先绘制飞机总装的现行价值流图,通过分析,消除浪费,并将装配过程的改进纳入,设计出新的价值流图。价值流图VSM 是国外应用最广的价值流和办公室流程分析和重建的方法,它以简单、直观、半定量化的分析和无限的扩展能力,在广大企业中实地应用,VSM 也是精益企业的基本功。

(2)平衡生产线。按站位、天和班次进行生产线的平衡。从主生产计划MPS 开始,做到多机种的均衡交付,企业内部和外部供应链的均衡生产。

(3)标准化工作。规范飞机装配每一项作业,乃至动作、时间。没有标准化工作就没有生产的节拍,没有节拍就没有建立移动式装配线的基础。

(4)工作地可视化。由于移动装配线是在车间里移动的,工作地区块线条的可视化就格外重要。车间地面的区划不仅规范了物料存放的位置,还是飞机首尾相接列队移动、供料和补给路线的“交通标志”,成为移动装配线的组成部分之一。现场的双面显示屏或安灯、灯箱,警告消息,同时面向装配线和支持车间。协同的管理信息系统也是不可或缺的,系统实时地对加工或库房的拉动需求、零组件配套需求。作业工人的个性化门户提供作业指导书的无纸化显示、装配过程数据采集、线上每架机的装配进度需求等。

(5)完全配套。完全配套是将指定飞机架次、在各个装配站位(或者装配指令、工序)所需要的物料、工具工装、辅料以及消耗材料一起按照装配顺序摆放在配送箱或配送板上,待需要时一次送上。在移动式装配线上,不允许零件、工具、辅料的分别配送。

(6)建立配送线。配送线将准备好的完全成套件,按指定的架次、在指定的时间、按照规定的路线送到指定的地点。

(7)突破原有流程,重新设计主装配过程。流程的改进和价值流图分析是反复循环进行的。在进行装配线的未来状态设计时,必须有装配过程的改进,才能到达各站位节拍一致,实现同步移动的效果。重新设计装配过程才能大幅度的减少装配周期。在波音737 建立移动装配线时所创造了“座椅提升机”等新的工装和作业方式。

(8)形成过渡的“脉动生产线”。移动装配线的有2 种移动方式:连续移动和脉动。从机械构造观点,脉动线和连续线各有繁简。从管理角度看,采用连续移动还是脉动不仅是生产效率问题,更重要的是管理水平的适应性问题。脉动和连续移动的差异之一是:脉动可以设定非增值的缓冲时间,当生产管理水平跟不上时,留有一定的间歇等待。发现问题未处理完则不移动,或者留给下一个站位去完成。随着后援的成熟,逐步将脉动节拍加快。可以将脉动式作为一种过渡形式。连续移动和脉动另一个重要差异是直觉的震撼效应不同。移动装配线上首尾相接飞机的移动,让所有在现场的人都直接感觉到移动线承载着整个生产过程的震撼感。工人能够真正的看到和感觉到生产的节拍。工厂中所有的人都随着移动线的节拍不懈怠的工作。从精益的观点,脉动线作为阶段目标,移动线是最终目标。国外主要飞机制造商对于连续移动和脉动的选择,仍旧在预期产量较大的机型上采用移动式总装配生产线。

(9)形成总装配的移动生产线。最后在全部具备了移动条件后,开动连续移动装配线的作业。在建立移动装配线时,配套和配送是移动的必要条件,起着关键作用。要求是将作业指导书、零件、工具、工作指令都用工具箱配送到装配工人近旁,消除了工人到处找工具材料文件的时间消耗。装配线近旁设置了“月光车间”(生产准备/ 紧急支援),包括快速响应的零件返修车间、紧急设备维修、临时工装制造、配套和配送基础设施等。移动装配过程消除了大量的非增值作业,产品在整个装配线的移动过程中每个时刻都是增值的,最大化地减少了装配工时和成本。

移动装配线的完整性

按照经验,一条成功的飞机移动装配线总是具备5 个部分组成:

·移动线主体:站位设施,对接定位的设备,拖动装置、可移动的装配架等;

·供给线:配套和配送的物流系统;

·现场可视化系统;

·后援的支持车间;

·与ERP 和MES 系统融合的信息系统和装配线上的固定及移动终端。

从管理的角度说,飞机上线后不中途下台,下线后不返修,是移动装配线成功的主要标志。移动线开通之初,出现中途的缺件、质量、后援问题,需要应急处理,几乎是必然的。可以延迟移动、也可以停滞一会,但所有问题必须在线上解决,这是一个强迫推进的机制。后援的支持车间(波音称为“月光车间”)用来紧急应对这些问题。因为各种原因将飞机撤下来,就说明管理达不到移动生产线的要求,并且为所有不协调和不精益开放了绿灯,失去了移动线拉动生产和供应链的作用。

装配线的专业制造厂商应运而生

世界各大飞机制造商纷纷建立移动装配线,采用装配自动化设备,催生了一批专业飞机装配工装和生

产线的制造厂商,以及移动式装配线的集成管理软件系统,为世界各大飞机制造厂服务。其中1992 年成立的AIT 迅速发展成为世界级的专业飞机装配设备的制造厂商。它为各大航空企业设计和提供自动钻铆设备、飞机对接装配设备、激光测量设备、自动导引车系统、移动式装配

线。AIT 为世界各国包括波音、洛克希德·马丁、庞巴迪、空客法国、空客西班牙、巴西等航空制造商制造各种大小和批量的飞机建造总装线,其中为庞巴迪制造的自动化总装线获得美国先进制造奖。

飞机生产装备和移动装配线的专业制造厂商的出现,标志着原来各个飞机企业一家一户的自造自用的飞机工装制造模式的改变。建立标准化、规模化、技术先进,并且具有丰富飞机装备制造经验的专业厂商是提高整个国家的飞机制造水平和加速飞机研制过程的主要举措,这也是航空生产精益供应链的组成部分之一。

结束语

世界各国飞机生产向移动式装配发展的趋势对我国的航空工业来说是一次严峻的挑战。推广移动装配线不应仅着眼于缩短制造周期和降低成本,更重要的是拉动整个航空制造行业管理的进步。适时研究国外飞机移动装配技术,在航空工业系统中更深入的推行精益生产的理念、方法和文化是中国飞机制造向生产世界水平迈进的契机。同时需要进行反思并打破传统的管理思想,研究在其他领域,包括仪表和航电系统、飞机附件、发动机装配中采用移动式装配线的可行性,通过建设移动装配线提升飞机制造技术、生产管理和供应链管理的水平和效果。

(责编良辰)

羽毛球步法移动方法

羽毛球步法移动方法(图解) 羽毛球运动中有“三分技术,七分步法”的说法。步法是羽毛球运动的“灵魂”,快速准确的步法使运动员在比赛中游刃有余。在一场实力相当的羽毛球比赛中,根据来球的方向运动员需要忽左忽右、忽前忽后地进行数千次的快速移动,跃起挥臂击球,在这块近40平方米的小小场地上,这样的运动量是相当的惊人的。 而羽毛球多变和不确定的运动特点,还要求选手具有在场上全方位出击的能力。选手必须在极短的时间里,运用交叉步、垫步、跨步、蹬跨步、蹬跳步、起跳等各种步法向来求的方向迅速移动到适当位置,并以前场,中场和后场等击球手法将球击向对方场区。 一、前场击球步法 前场击球步法视来球距离的远近,可运用并步、交叉步、蹬跨步

等移动方式,选用一步、二步或是三步移动步法击球。。通常情况下,来球距离单打中心位置最远(中圈外),可采用三步移动步法击球;来球距离中心位置次远(中圈内),可用二步移动步法击球;来球距离中心位置最近(小圈内),采用一步移动步法击球。 前场步法跨步时,利用脚后跟着地制动,为防止身体向前冲力过大,脚尖绍向外倾,左脚用大拇指根部内侧“刮”地向跨步脚靠拢,保持身体平衡,便于向中心回动。 1、前场正手击球步法 来球在身体右侧前场区域运用蹬跨步,交叉步和垫步移动步法向身体右侧前场区域移动击球。 (1)前场正手一步上网步法 来求在小圈内,启动后左前脚掌用力蹬地,右脚向来球方向跨出医大箭步击球。击球后立即往中心位置退步回位。(图2) (2)前场正手二步上网步法 来球在中圈内,启动后左脚向后身体右侧前方迈出第一小步,同事用力蹬地,右脚交叉跨出第二大部击球。击球后,右脚立即往中心撤回第一步,左脚紧跟其后退回第二步回位。(图3)

小数点位置移动规律的应用

小数点位置移动规律的应用 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 教学目标 使学生牢固掌握小数点位置移动的变化规律,并会应用规律把一个数扩大或缩小10倍、100倍、1000倍. 教学重点和难点 使学生会应用规律把一个数扩大或缩小10倍、100倍、1000倍是教学重点.向右移动时位数不够要在右边添“0”,前面最高位的零必须去掉;向左移动时,位数不够时要在数的左边用“0”补足,这是学生学习的难点. 教学过程设计 (一)复习准备 口答: 1.小数点向左移动三位,原数就( ). 2.小数点向右移动两位,原数就( ).

3.5。24要扩大10倍,小数点向( )移动( )位,得( ). 4.把42。7写成0。427,小数点向( )移动( )位. 5.说说小数点移位的变化规律. 6.如果把3扩大10倍,100倍,1000倍应怎样列式?得多少? 7.如果把5000缩小10倍,100倍,1000倍应怎样计算?各得多少? 教师小结,引入课题: 我们已经学过把一个数扩大倍数要用乘法计算,把一个数缩小倍数用除法计算,我们今天应用学过的小数点移位的变化规律,要把一个数扩大或缩小10倍,100倍,1000倍,只要移动小数点的位置就可以了.怎样移动呢?(板书课题:) (二)学习新课 1.教学例2:把0。08扩大10倍、100倍、1000倍,各是多少? 提问: (1)把一个数扩大倍数用什么方法计

算?(用乘法计算) (2)怎样列式?(把0。08分别乘以10,100,1000) 板书:0。08×10=0。8 0。08×100=8 0。08×1000=80 (3)根据学过的规律,应怎样移动小数点? 启发学生分别说出移动的位数及得数.(板书) (4)为什么0。08×1000得80? (因为要扩大1000倍,需向右移动三位,而原数只有两位小数,还差一位,所以要在右边添一个0,补足数位.) (5)0。08×100=8,为什么向右移动两位后得8,而不写成008? 引导学生明确,小数点向右移动后,不是零的最高位前面的零必须去掉,如0。08扩大1000倍得80,而不能得0080.小结式提问: 根据上面的计算,要把一个数扩大10倍、100倍、1000倍,只要怎样就可

装配流水线控制的模拟

机电综合实验中心实验报告 课程名称____ 机电综合实验 ______________ 实验名称_ 装配流水线的模拟控制__ ____ 专业年级__机械工程13-3班__ 姓名陈尧学号 03130970 姓名姜跃为学号 03130972 姓名姜振华学号 03130973 姓名金流丞学号 03130974 姓名李東洁学号 03130975 实验日期___2016/11/14_________ 实验成绩_______ ___________ 指导教师______吴宏志_ ______

目录 1 摘要 (2) 2简介 (2) PLC (2) 组态王 (3) 3实验设计 (4) 实验目的 (4) 实验装置 (5) 控制要求 (5) 系统流程图 (6) I/O接口分配表 (7) I/O接线图: (7) 4程序梯形图 (8) 程序及其注释 (8) 梯形图 (11) 5组态王监控 (13) 6调试结果 (14) 7实验小结 (24) 8参考文献 (15)

装配流水线控制的模拟 1 摘要 本次实验主要介绍了PLC模拟控制在工业生产中的运用,要求学会使用组态王软件和PLC(SIMEINS S7-200)控制系统连接,采用下位机执行,上位机监控的方法,构建完成装配流水线的模拟控制系统。通过PLC模拟控制和组态王的监控,本实验实现了装配流水线的控制和监视。 Programmable controller, is the computer technology and the combination of the relay control technology, is on the basis of the sequence controller and microcomputer controller developed a new type of controller, is a microprocessor as the core as a dedicated computer for digital control. Computer as the upper machine, using configuration software to monitor and control of PLC, can control the operation of the machine PLC and stop, and real-time monitoring of operation condition. According to write PLC program, and through computer debugging; In configuration software design and debugging, finally realizes the online monitoring.

飞机数字化装配技术发展现状

飞机数字化装配技术发展现状 摘要:通过对国内外飞机数字化装配技术发展的现状和发展的趋势进行分析与 总结,对比了国内外飞机数字化装配技术发展的差距,介绍了飞机数字化装配技 术发展的关键技术,提出了国内航空制造企业掌握和突破飞机数字化装配关键技 术的思路。 关键词:飞机;数字化;装配技术;发展与应用 一、飞机数字化装配主要应用技术 1.1多系统集成控制技术 当前在操作飞机数字化装配的过程中通过控制系统能够发挥出其最大的作用,但是在实际的操作和应用中,有很多环节和关键点并没有实现联合作用,例如在 飞机中所采用的工艺数据、计划数据和测量、地理数据等都没有综合应用,导致 相互之间的关系彼此独立,这对于全面分析和改进数字化技术不利,因此在对装 配过程进行控制和管理中,要通过有效的集成化技术和综合技术实现对各项数据 的整合和分析,保证飞机数字化装配技术能够拥有独特的特点,根据飞机各接口 标准,保证设备的误差得到进一步控制。 1.2自动化精确制孔技术 在飞机装配过程中,对机械设备要通过衔接连接应用,对其整体设备实现加 固的目标,也就是说通过制孔的方式实现机械连接。从当前我国的飞机装配过程 研究来看,大多采用手工制孔的方式,这种方式相对比较传统,很难获得更高的 精确程度,在孔位以及孔径的确定中存在一定的误差问题,这导致制造中各项工 作质量得不到提升,更是对飞机设备的准确程度形成一定影响,另外装配时间相 对比较长,造成产品稳定性降低,对飞机装配质量造成了很大影响,因此对此技 术进行精确化发展至关重要。 1.3高效长寿命连接技术 飞机结构发展和建设中通过长寿命的连接技术对飞机是否能够提升自身的抗 疲劳能力有很大关联,对于增加使用时长有非常明显的作用,飞机的耐久性和可 靠性应用也得到明显提升。高校长寿命的连接技术主要从密封连接以及对于钛合 金材料的方向上进行综合考虑,我国传统的连接方式主要是采用铆接以及液压的 方式,但这种方式容易对装配设备造成损失,因此需要从铆接联合螺接的方式来 进行,另外通过连接中采用铆钉、高锁螺栓的材料,根据飞机结构的装配特点进 行针对性的开发长寿命连接单元。 1.4大尺寸精密测量技术 在装配工作中通过精密准确的测量工作能够实现对其工作的保障作用,也是 在数字化装配过程中一项重要的工作条件和基础。飞机装配中无论是从技术的采 用还是测量工作的应用上都有非常严格的要求,而在飞机产品装配过程中,需要 采用精密测量技术实现对产品的装配,其中GPS以及激光跟踪测量方法能够实现 更加准确的测量,因此需要根据飞机产品特点进行大尺度精密测量单元的开发。 二、国内外飞机装配技术现状 2.1由于我国对飞机装配技术的研究时间不长,一些应用还不够成熟。而且 我国对飞机装配技术的资金投入也不到位,导致飞机装配技术的配套不够完善, 在某些方面缺乏技术支持。一些飞机的装配制造甚至还是手工作业,严重影响了

飞机数字化装配技术发展与应用

龙源期刊网 https://www.doczj.com/doc/cc8000364.html, 飞机数字化装配技术发展与应用 作者:赵鹏 来源:《科学与信息化》2017年第33期 摘要数字化技术的应用是飞机研制发展史上的一次重大飞跃。数字化装配技术由数字化装配工艺技术、柔性工装技术、激光检测与补偿技术、数字化钻铆技术、数字化数据管理以及集成技术等组成,是机械、电子、控制、计算机等多学科交叉融合的高新技术。本文就飞机数字化装配技术发展与应用进行了讨论。 关键词飞机;数字化装配技术;发展;应用 1 数字化装配 数字化装配是现代航空制造企业装配技术的发展方向。从20世纪90年代开始,国外的波音、空客等先进航空制造企业陆续开发和应用了三维虚拟制造软件,多以飞机装配典型结构为应用对象,建立飞机装配的数字化设计制造模式和数字化协调技术体系,利用网络技术及数字化技术,建立工艺设计流程,实现3D装配工艺设计及验证、仿真,实现车间、工厂布局数字化及仿真,实现现场工人操作的可视化等[1]。 2 飞机数字化装配技术国内发展现状 国内的飞机装配,虽然在局部上也采用了较为先进的技术,如采用catia技术进行了包括建立型架标准件库和优化型架及参数设计,对工装、工具和产品的装配过程进行了三维仿真等,开始采用激光测量+数控驱动的定位方式,部分机型还采用了自动钻铆技术等,但总体上与发达国家相比还存在较大差距,具体表现在:①飞机设计制造仍主要采用串行模式,工装、工艺设计与产品设计脱节,制造模式未真正实现到并行模式的转换,导致飞机装配协调困难、返工率高;②尚未实现人机交互的装配仿真以及装配路径的优化;③仍然采用以专用工装为主的刚性定位装配方式,导致飞机制造成本居高不下;④数字化装配应用规模有限,尚未实现一个完整型号真正意义上的全面数字化[2]。 3 飞机数字化装配技术应用 3.1 数字化定位技术 以数字化为基础的定位技术包括数字测量定位技术、特征定位技术、柔性定位技术等。数字测量定位技术是指针对飞机产品的结构特点、定位要求,借助数字化测量设备或系统进行飞机零部件的定位;特征定位技术利用数字化定义、数控加工的具有配合关系的配合面、装配孔或工艺凸台、工艺孔等设计或工艺特征,实现零件之间的相互定位,保证装配的一致性和高装配质量;柔性定位技术是指通过采用柔性工装满足不同产品的定位需要。随着飞机装配质量越来越高的要求,数字化定位技术已经成为飞机零部件高效、高精度定位的重要保障。

太阳直射点的移动规律

“太阳直射点的移动规律”教具使用说明 邻水县九龙中学沈俊 有关太阳直射点的移动规律(回归运动)问题是理解地球公转运动及其地理意义的关键所在,文字表达往往不能形象直观地说明问题,如果说能够巧妙地利用图示的方法进行教学,则可以起到事半功倍的效果。本人仅以利用太阳直射点回归运动的图示,进行分段分析的教学进行阐述,供参考。 下图为太阳直射点回归运动的示意图:(图中日期代表北半球二分二至日) 图1 一、直射点与昼夜长短 引导学生从图1中获取直射点与昼夜长短相关的基本知识,如:3月21日,太阳直射赤道(0°),全球昼夜平分;6月22日,太阳直射北回归线(23°26`N),北半球昼最长,夜最短,北极圈及其以北地区为极昼,南半球夜最长,昼最短,南极圈及其以南地区为极夜;9月23日,太阳直射赤道(0°),全球昼夜平分;12月22日,太阳直射南回归线(23°26`S),南半球昼最长,夜最短,南极圈以南为极昼;北半球夜最长,昼最短,北极圈以北为极夜。 二、图示分段 引导学生从图1中获取直射点的移动方向与相应的时间段,如:3月21日~6月22日,太阳直射点位于北半球且向北移动,如图1的分段①段;6月22日~9月23日,太阳直射点位于北半球且向南移动,如图1的分段②段;9月23日~12月22日,太阳直射点位于南半球且向南移动,如图1的分段③段;12月22

日~次年3月21日,太阳直射点位于南半球且向北移动,如图1的分段④段。 三、分段分析 在上面分析的基础上,引导学生从“昼夜长短的变化”和“正午太阳高度角的变化”进行归纳总结。 1、昼夜长短的变化(图2以北半球为例) 图2 (1)纬度变化规律 ①段和②段:全球大体上由南向北昼越来越长,夜越来越短。 ③段和④段:全球大体上由南向北昼越来越短,夜越来越长。 (2)周年变化规律 ①段:北半球昼长夜短,并且昼渐长,夜渐短;南半球反之。 ②段:北半球昼长夜短,并且昼渐短,夜渐长;南半球反之。 ③段:北半球昼短夜长,并且昼渐短,夜渐长;南半球反之。 ④段:北半球昼短夜长,并且昼渐长,夜渐短;南半球反之。 2、正午太阳高度角的变化 (1)北回归线及其以北地区(图3以北半球为例)

点阵移动方法集锦

我的空间有程序,你去看看,有十几种移动方法 屏幕点阵数的话也可以随时改动的 /*************呈现各种显示效果的函数集****************/ void flash_bai(uchar *flash_word,uchar flash_heard,uchar number,uchar sdu,uchar state) {register uchar i,j,l; for(i=0;i>( 7-j)); dispram[l*4+2]=dispram[l*4+2]&0xff>>j|(flash_word[(flash_heard+i)*32+l*4+3] <<(7-j)&0x10); } else { dispram[l*4] =dispram[l*4]&0xff<<(j-7)|flash_word[(flash_heard+i)*32+l*4]>>(15-j); dispram[l*4+1]=flash_word[(flash_heard+i)*32+l*4]<<(j-7)|(flash_word[(flash_h eard+i)*32+l*4+1]>>(15-j)); dispram[l*4+2]=flash_word[(flash_heard+i)*32+l*4+2]<<(15-j)|(flash_word[(flas h_heard+i)*32+l*4+3]>>(j-7)); dispram[l*4+3]=(dispram[l*4+3]&0xff>>(j-7))|flash_word[(flash_heard+i)*32+l* 4+3]<<(15-j); } } delay(sdu*SPEED); } delay(state*SPEED); } } /*******************霓虹灯效果************************/

精益制造和飞机移动装配线

精益制造和飞机移动装配线

精益制造和飞机移动式装配线 基于精益思想的飞机移动式装配线已成为飞机生产新模式,世界各大航空制造企业竞相采用。飞机移动式装配线既是长期精益实践的成果,又对整个航空制造供应链起着积极的推动作用。适时地启动飞机移动装配技术研究,在航空制造中深入推行精益生产的理念、方法和文化是中国飞机制造向世界水平迈进的必由之路。 飞机移动生产线的需求 二战期间的1940 年,美国政府下令福特汽车公司制造1200 架B24轰炸机。福特经历了一次次挫折以后,由当初T 型车生产线的建造者出任B24 装配线的设计师。他完全照搬了汽车生产的模式,建成了1 英里长的L 型装配线,共设28 个站位,每小时出产1 架飞机。至二战结束,共装配8600 架B24,成为美国历史上产量最多的飞机。大量生产飞机之所以成功是因为当时战争消耗引发的大量需求。另外,当时的飞机相对简单,加上战争条件下,较少有客户化和构型变化要求,使B24 飞机制造具备了大批量生产的条件。 但是,现代的飞机生产环境发生了变化。因为飞机技术复杂化,总装涉及的专业多、工种多、人员多、物料多、工具工装型架多、技术文件多,总装过程组织困

难。加上社会和经济形势不稳定,无论是民机还是军机,都具有需求多变、构型多、相同构型产量少的特点,加大了飞机生产装备投入的风险。因此传统上飞机总装一般采用机库式(或停车场式)装配。 机库式装配由多组工人并行作业,各架飞机的实际装配作业很难一致,难以保证质量,弊病很多。因此飞机制造业产生了强烈的改进装配方式的需求。最先出现的是由机库式向站点式过渡:设置多站位,在每个站位上装入一部分,由通用设备移动飞机到下一个站点,直至完成。飞机在站位式装配中是一站一站地移动的,工人也有了比较合理的分组和分工,但是装配工作地的混乱局面并没能有本质的改观,受供应链的影响也没有得到彻底的扭转。 移动装配线是第一次管理革命的产物,福特汽车的移动装配线成为工业化的标志之一。移动装配线的基本要素是:零组件统一标准的互换性、工人精细分工、动作标准化工作,物料的精确到位、均衡和节拍,采用专用的固定生产线设施。这种装配方式效率高,但专用设施投资大,缺少柔性受产品变化影响大,传统上只用于批量较大、产品结构简单的产品。而飞机是典型的长周期、小批量生产的产品,装配技术又复杂,实行单架次构型管理,造成了飞机移动装配线在技术上、管理上、物流配送、投资大,都有难点。怎样将大批量生产简单

数字化技术在飞机装配中的应用

数字化技术在飞机装配中的应用研究 飞机装配数字化技术的应用 , 使我国航空产品的开发发生观念性的改变 , 促进企业管理体制、型号研制过程的一系列变革 , 并向着开放式的、具有快速应变能力物创新能力的现代型企业方向发展 . 国外飞机装配技术现状 1.1 国现状 我国的飞机装配技术和组织管理方式,虽然在局部上采用了较先进的技术,如利用激光跟踪仪或计算机辅助经纬仪( Computer Aided Theodolite , CAT )技术安装型架,少数采用了自动钻铆技术,简化了装配型架结构。但与发达国家相比还存在较大差距,主要表现在: ( 1 )上述技术尚不配套,应用上不成熟,加上我国多年来对飞机装配技术缺乏研究,资金投入不足,仅满足于能把飞机制造出来,目前飞机装配还是沿袭着过去几十年来批生产的手工作业模式; ( 2 )飞机的设计制造仍主要采用串行模式,制造模式未实现根本转变; ( 3 )数字化技术的应用规模较小,还未实现一个完整型号的全面数字化; ( 4 )各环节虽然已实现数字量传递,但仍存在信息孤岛现象,未打通飞机数字化设计制造生产线,模拟量传递依然大量存在; ( 5 )工装、工艺设计与产品设计脱节,未能充分实现并行工程,造成飞机装配协调困难,返工率高; ( 6 )在装配技术方面,虽然局部采用了数字化技术,如在协调方式上局部采用了数字量传递方法,但模拟量传递仍然是当前众多企业飞机制造的主要协调方法; ( 7 )采用专用工装装配,光学仪器测量安装仍是目前飞机装配的主要手段,未能在数字化装配技术方面实现新的突破,导致飞机制造成本居高不下; ( 8 )装配工人在现场工作需要仔细翻阅大量的图纸、工艺文件,而且经常会出现工作上的失误,造成装配质量问题,影响装配周期。 1.2 国外现状 飞机产品数字化设计制造技术是 20 世纪 80 年代后期以来,随着 CAD/CAM 、计算机信息和网络技术的发展,以美国为首的西方发达国家开始研究并首先采用的一项新技术。这项技术以全面采用数字化产品定义、数字化预装配、产品数据管理、并行工程和虚拟制造技术为主要标志,从根本上改变了飞机传统的设计与制造方式,大幅度地提高了飞机设计制造技术水平。美国波音 777 飞机的研制,由于全面采用了该项新技术,使

小数点位置移动规律练习题知识讲解

小数点位置移动规律 练习题

小数点位置移动规律练习题(一) 班级:姓名:学号:成绩: 小数点移动会引起小数大小发生变化: (1)如果把小数点分别向右移动一位、二位、三位…,则小数的值分别扩大10倍、 100倍、 1000倍…… (2)如果把小数点分别向左移动一位、二位、三位…则小数的值分别缩小到原来的十分之一、百分之一、千分之一…例如:把7.4缩小到原来的1/10是 0.74,缩小到原来的1/100是0.074…… 练: 1.把13.8的小数点向右移动一位是(),把13.8的小数点向右移动两位是 (),把13.8的小数点向左移动一位是(),把13.8的小数点向左移动两位是(),把13.8的小数点向左移动三位是()。 2.把0.03扩大到它的()倍是30,把0.03扩大到它的()倍是300。 3.把48缩小到它的()是0.48,把48缩小到它的()倍是0.048。 4. 0.08扩大到原数的_____倍是8,42缩小到原数的是_____0.042。 5.把 6.08先缩小到它的1/1000, 再扩大100倍,相当于把原数缩小() 倍,所以结果是()。 6.把20.54先扩大1000倍,再缩小100倍,相当于把原数扩大()倍,结 果是()。 7.把20.54的小数点先向右移动两位,再向左移动三位,相当于把原数 (),结果是()。 8.54.72先缩小1000倍,再扩大100倍后是()。 9. 2.36的小数点向左移动_____位后是0.0236,是原来小数的_____;如果小 数点向右移动一位,是原来小数的_____. 10. 3个十和3个十分之一组成的数是_____.如果把这个数的小数点向左移 动一位,就是3个_____和3个_____组成的数。 11.把一个数的小数点向左移动一位,得到一个新数,新数与原数的和是原数的 ()倍。

(完整版)小数点位置移动规律练习题(可编辑修改word版)

小数点位置移动规律练习题(一) 班级:姓名:学号:成绩: 小数点移动会引起小数大小发生变化: (1)如果把小数点分别向右移动一位、二位、三位…,则小数的值分别扩大 10 倍、100 倍、1000 倍…… (2)如果把小数点分别向左移动一位、二位、三位… 则小数的值分别缩小到原来的十分之一、百分之一、千分之一…例如:把7.4 缩小到原来的1/10 是0.74,缩小到原来的1/100 是0.074…… 练: 1. 把13.8 的小数点向右移动一位是(),把13.8 的小数点向右移动两位 是(),把13.8 的小数点向左移动一位是(),把13.8 的小数点向左移动两位是(),把13.8 的小数点向左移动三位是()。 2. 把0.03 扩大到它的()倍是30,把0.03 扩大到它的()倍是300。 3. 把48 缩小到它的()是0.48,把48 缩小到它的()倍是0.048。 4.0.08 扩大到原数的倍是8,42 缩小到原数的是0.042。 5.把 6.08 先缩小到它的1/1000, 再扩大100 倍,相当于把原数缩小()倍, 所以结果是()。 6.把20.54 先扩大1000 倍,再缩小100 倍,相当于把原数扩大()倍,结 果是()。 7.把20.54 的小数点先向右移动两位,再向左移动三位,相当于把原数( ),结果是()。 8. 54.72 先缩小1000 倍,再扩大100 倍后是()。 9. 2.36 的小数点向左移动位后是0.0236,是原来小数的;如果小 数点向右移动一位,是原来小数的. 10.3 个十和3 个十分之一组成的数是.如果把这个数的小数点向左移 动一位,就是3 个和3 个组成的数。

基于飞机数字化装配技术的研究

数字工厂与应用技术论文题目:基于飞机数字化装配技术的研究 班级: 05021104 姓名:张木 学号: 2011301279

基于飞机数字化装配技术的研究 摘要:当今世界,航空工业的重要性不言而喻。其中飞机的装配过程是一项复杂的系统工程,涉及飞机设计、工艺计划、零件生产、部件装配和全机对接总装的全部过程。飞机数字化装配技术的实施可以缩短生产周期,降低生产成本,相对于传统装配方法有很大的质量提升。本文简要介绍了现今飞机数字化装备技术的内容,并对数字化装配技术的未来进行了展望。 关键词:数字化装配技术;飞机设计对装配技术的影响;型架并行设计及柔性设计;自动钻铆系统;容差分配技术;数字化仿真技术;数字化测量系统。 一、飞机数字化装配技术的发展现状 目前,我国飞机装配基本上还沿用20世纪六七十年代原苏联的传统方法,多采用基于模拟量传递方式为主的模线一样板一标准工装的(模板、样件、量规)工作方法。这种工作方法制造周期长、装配协调环节多、协调的工艺技术方法复杂,针对不同装配件采用了大量复杂的、硬性的、专用的实物标准工装和装配工装,其可变性、可重构性差,无通用性且成本高。特别地,在大部件(部段间)对接装配时,甚至还是人工的手扶肩扛操作。这种方式的缺点是:①飞机部件,特别是大型飞机大部件笨重,人工推动困难,效率低;②对接装配质量不高,手工操作时,对接面上孔销配合精度不高,常造成强行挤压装配,易产生应力,对疲劳强度影响大;③在对接装配的协调问题上还是原始的模拟量(实物)传递模式,为了保证对接装配顺利可靠,常常在对接部位设计制造相应的巨大标准工装用于协调,不仅延长了装配周期和无互换性,而且暴露了模拟量传递方式的多种缺点。 随着我国飞机重大型号工程实施,在融入国际航空产业链、数字化技术广泛深入应用等方面不断推进,我国的飞机设计与制造技术得到了飞速发展。在装配技术方面,飞机装配是将零件、组件或部件按照设计和技术要求进行组合、连接形成高一级的装配件或整机的过程。飞机装配由于产品尺寸大、形状复杂、零件以及连接件数量多,其劳动量占飞机制造总劳动量的一半左右甚至更多。

基于MBD的飞机数字化装配工艺设计及应用

基于MBD的飞机数字化装配工艺设计及应用

1、引言 当前,我国航空制造业的数字化技术发展迅速,三维数字化设计技术得到了广泛的应用。特别是基于模型的定义(Defined based model,MBD)技术的实施,使三维模型取代二维图纸成为设计制造的唯一依据。随着MBD 技术的深入应用,必然会对工艺规划设计、车间生产应用等产生重大影响,引起数字化制造技术的重大变革,真正开启三维数字化制造时代。

2、MBD技术概述 MBD技术的内含 基于模型的定义,是一个用集成的三维实体模型来完整表达产品定义信息的方法体,它详细规定了三维实体模型中产品尺寸、公差标注规则和工艺信息表达方法。

2、MBD技术概述 MBD技术的意义 在MBD的技术体系中,MBD数据集的内容包含设计、工艺、制造、检验等各部门的信息。在数据管理系统和研制管理体系的控制下,各职能人员可以在一个产品模型上协同工作,提高了设计效率。同时也提高了产品的 可制造性。

3、基于MBD的飞机数字化装配工艺设计及应用模式 采用MBD技术后,产品结构设计工作的结果是数字状态的三维数模,不再生成纸质形态的工程图纸。因此,对于工艺设计人员、生产装配现场的操作人员与技术人员,他们的工作依据与工作方式也发生了深刻变化。基于MBD的飞机数字化装配工艺设计及应用模式如下图所示:

3、基于MBD 的飞机数字化装配工艺设计及应用模式产品数模 装配单元划分 PBOM ACC 划分 POS 划分 安装定位计划交付状态主要工序协调方法工装技术条件 工艺数模详细工序流程设计装配工艺路径规划仿真装配工艺信息 工艺查询工艺浏览动画播放产品/工装模型链接 工装数模 工艺方案设计详细工艺设计MBD 体系规范MBD 工艺开发 MBD 数据应用 基于MBD 的 建模规范基于MBD 的工艺方案设计规范基于MBD 的详细工艺设计规范MBD 装配仿真规范…… 轻量化模型 轻量化 工装设计 装配现场可视化应用

飞机装配工艺

飞机装配与一般机械的转配有些不同,但飞机装配和一般机械的装配究竟有什么的不同?下面就简单的介绍一下: 1.、一般机械的装配工作占产品劳动总量的20%,而飞机装配占劳动总量的50%——60%,而且质量要求高,技术难度大 2、飞机装配使用了许多复杂的装配型架,飞机制造的准确度很大程度上取决与装配的准确度,而一般机械主要取决于零件制造的准确度。 3、飞机装配采用许多复杂的型架 4、飞机装配中零件数量,零件大,刚度小,产量比通用机械小 5、通用机械用公差配合制度来保证装配精度,飞机是以采用模线样板法。 不太适合自动化 工艺分离面:为了满足生产工艺,结构件间的分离面 设计分离面:设计的时候这个位置是可以拆装的,这些部件形成的课拆卸的分离面 第一章飞机装配过程和装配方法 飞机结构的分解: 装配过程:一般是由零件先装配成比较简单的组合件和板件,然后逐渐地装配成比较复杂的锻件和部件,最后将部件对接成整架飞机。 机翼和机身具有不同的功能,故结构不同,所以要设计成两个单独的部件,发动机装在机身内,为便于更换,维护和修理,将机身分为前机身和后机身,鸵面相对于固定翼作相对运动,故划分为单独部件,某些零件设计有可卸件,以便维护,检查及装填用 装配基准 以骨架外形为基准 大梁和翼肋的定位,铺上蒙皮,用橡皮绳或钢带紧压在骨架上,骨架蒙皮的铆接误差组成: 1、骨架零件制造的外形误差 2、骨架的装配误差 3、蒙皮的厚度误差 4、蒙皮和骨架由于贴合不紧而产生的误差 5、装配连接的变形误差 为提高外形准确度必须提高零件的制造准确度、骨架装配的准确度,装配时将蒙皮紧贴在骨架上。 以蒙皮外形为基准误差积累是有外向内 隔框按型架定位,通过撑杆将蒙皮紧贴在型架卡板上,通过补偿件将骨架与壁板连接。 误差组成: 1、装配型架卡板的外形误差 2、蒙皮和卡板外形之间由于贴合不紧而产生的误差 3、装配连接的变形误差 装配定位:要确定零件、组合件、板件、锻件之间的相对位置。 对定位的要求: 1、保证定位符合图纸和技术条件所规定的准确度要求 2、定位和固定要操作简单可靠

手工装配流水线结构与生产节拍分析.doc

手工装配流水线结构与生产节拍分析 在目前国内制造业中,手工装配流水线是最基本的生产方式,相当多的产品的装配都在手工装配流水线上进行的,进行产品的装配作业,特别在家电制造行业就是一个典型的例子.这种装配作业中在制造业中发挥重要作用,它适用于产品需求量较大;相同或相似;装配过程中可以分解为多个工序;减少人的疲劳强度,而且节约一些成本.手工装配流水线的基本特点,成本低廉;可以充分利用国内大量廉价劳动力资源,由于产品是有许多零件和部件组成的;需要许多工人完成工序.如果每一个工人长期从事某一工序或多个工序操作;可以达到一定的操作水平和技能;生产组织灵活性很好,不仅能够适应多品种中小批量生产的需要(因厂家的订单数量不多,但是品种多的话,规格需要更换)不适合于自动化生产;有利于提高产品的质量,有许多产品是要靠人工和机器完成的;能够及时发现产品质量问题;在实际情况中也反映,市场竞争相当激烈;,用户和商家对产品的质量要求更高,新产品周期更短,产品价格更低.企业的最终目标也是时间更短;质量要求更高;成本更低;降低成本是企业竞争手段之一,采用手工流水线就可以满足上述要求,同时也是实现自动化的基础;更利于自动化的快速发展.当然这种生产方式有许多不足之处.技术含量低,需要大批量人员进行生产,阻碍产品的技术提高和市场竞争力. 一.手工装配流水线的基本结构;要点;概念. 手工装配流水线就是自动化输送装置基础上由一系列工人按一次序组成的工作站系统;每个工人作为一个工作站后工位完成产品制造装配过程中的不同工序,当产品经过全部工人的装配操作后即完成全部装配操作,并最终成为产品;如果生产线只完成部分工序的装配检测为半成品.产品的输送系统有许多形式如皮带输送线;滚筒输送线;悬挂链输送线等.输送的方式可以是连续的也可以是间歇式的;工作的操作方式也多样.通常有如下几种方式: (1)直接在输送线上的产品上进行装配,产品随输送线一起运动,工人也随之运动;操作完成后再返回原位置; (2)将产品从输送线上取下,在输送线旁边的工作台上完成装配后再将产品送回输送线上; (3)工件通过工装板在输送线上输送,工装板到达装配位置后停下来重新定位装配,装配完成后将工装板及工件随输送线运动;工人的工作既可以坐着进行例如一些零件较小的装配;也可以站立进行例如在生产大型产品(如轿车.空调等)采用悬挂链输送线输送,工人可以在工位的区域内活动;边随输送线上的产品同时移动位置直到完成装配为止.根据工序所需要的时间长短有区别,每个工位的操作工序既可以是工序时间较长的的单个工序也可以是工序时间较短的多个工序;每个工位的排序可根据生产

飞机数字化装配技术

FORUM 48 航空制造技术·2008 年第14 期 20世纪80年代后期以来,随着计算机信息技术和网络技术的发展,以美国为首的西方发达国家开始研究飞机产品数字化设计制造技术。这项技术以全面采用数字化产品定义、数字化预装配、产品数据管理、并行工程和虚拟制造技术为主要标志,从根本上改变了飞机传统的设计与制造方式,大幅度地提高了飞机设计 制造技术水平。 我国的飞机数字化装配技术尚处于起步阶段,与发达国家相比还存在较大差距,主要表现在: (1)飞机的研制过程仍采用串行模式; (2)虽然部分环节已经实现数字量传递,但仍存在信息孤岛现象,尚未打通飞机数字化设计、制造生产的整个流程; (3)工艺、工装设计在时间、空间与产品设计上存在滞后,造成飞机装配协调困难; (4)装配工人在现场工作需要仔细翻阅大量的图纸、工艺文件等,会出现工作上的失误,造成装配质量问题,影响装配周期。 飞机数字化装配技术 1 数字化装配协调技术 数字化协调方法也可称数字化标准工装协调方法,是一种先进的基于数字化标准工装定义的协调互换技术,将保证生产用工艺装备之间、生产工艺装备与产品之间、产品部件与组件之间的尺寸和形状协调互换。 数字量传递协调路线如下: (1) 飞机大型结构件(与飞机外形及定位相关)如框、梁、桁、肋、接头等用NC 方式加工; (2) 在飞机坐标系下,工装设计人员以产品工程数模为原始依据,进行工装的数字化设计,并且在工装与产品定位相关的零件上用N C 方式加工出所有的定位元素; (3) 工装在装配时利用数字标工(数据)协调,采用激光自动跟踪测量系统测量,通过坐标系拟合,定位出零件的安装位置,满足安装基准的空间坐标及精度要求;(4) 飞机钣金件模具数字化设计以及用N C 方式加工,钣金零件数控加工。 2 数字化装配容差分配技术 容差数值直接影响产品的质量与成本,因而根据产品技术要求,进行零、组件的容差分析和设置,可以经济合理地决定零部件的尺寸容差,保证加工精度,提高产品质量,在满足最终设计要求的同时使产品获得最佳的技术水平和经济效益。 在产品装配前仅凭以往的经验 飞机数字化装配技术 成都飞机工业(集团)有限责任公司 许旭东 陈 嵩 毕利文 杨红宇 Digital Assembly Technology for Aircraft 飞机产品数字化设计制造技术以全面采用数字化产品 定义、数字化预装配、产品数据管理、并行工程和虚拟制造技术为主要标志,从根本上改变了飞机传统的设计与制造方式,大幅度地提高了飞机设计制造技术水平。 许旭东 1991年从南京航空学院飞行器制造工程专业毕业进入一航成飞,2005年获北京航空航天大学航空工程专业工程硕士学位。长期从事飞机制造工艺技术工作,历任工艺员、副组长、副科长、副总工艺师,总工艺师,现任首席工艺师,主要负责飞机制造数字化工作台。2001、 2004、2006年连续三届被一航成飞评为技术带头人。曾获国防科工委科技进步奖4次,中国一航科技进步奖3次。

小数点位置移动规律的应用教案

小数点位置移动规律的应用 教学目标 使学生牢固掌握小数点位置移动的变化规律,并会应用规律把一个数扩大或缩小10倍、100倍、1000倍. 教学重点和难点 使学生会应用规律把一个数扩大或缩小10倍、100倍、1000倍是教学重点.向右移动时位数不够要在右边添“0”,前面最高位的零必须去掉;向左移动时,位数不够时要在数的左边用“0”补足,这是学生学习的难点.教学过程设计 (一)复习准备 口答: 1.小数点向左移动三位,原数就( ). 2.小数点向右移动两位,原数就( ). 3.5.24要扩大10倍,小数点向( )移动( )位,得( ).

4.把42.7写成0.427,小数点向( )移动( )位. 5.说说小数点移位的变化规律. 6.如果把3扩大10倍,100倍,1000倍应怎样列式?得多少? 7.如果把5000缩小10倍,100倍,1000倍应怎样计算?各得多少? 教师小结,引入课题: 我们已经学过把一个数扩大倍数要用乘法计算,把一个 数缩小倍数用除法计算,我们今天应用学过的小数点移 位的变化规律,要把一个数扩大或缩小10倍,100倍,1000倍,只要移动小数点的位置就可以了.怎样移动呢?(板书课题:小数点位置移动规律的应用) (二)学习新课 1.教学例2:把0.08扩大10倍、100倍、1000倍,各 是多少? 提问: (1)把一个数扩大倍数用什么方法计算?(用乘法计算) (2)怎样列式?(把0.08分别乘以10,100,1000) 板书:0.08×10=0.8 0.08×100=8

0.08×1000=80 (3)根据学过的规律,应怎样移动小数点? 启发学生分别说出移动的位数及得数.(板书) (4)为什么0.08×1000得80? (因为要扩大1000倍,需向右移动三位,而原数只有两位小数,还差一位,所以要在右边添一个0,补足数位.) (5)0.08×100=8,为什么向右移动两位后得8,而不写成008? 引导学生明确,小数点向右移动后,不是零的最高位前面的零必须去掉,如0.08扩大1000倍得80,而不能得0080. 小结式提问: 根据上面的计算,要把一个数扩大10倍、100倍、1000倍,只要怎样就可以了? 从而明确:……只要把小数点向右移动就可以了. 反馈:(投影)直接说出各题得数. 3.18×10 0.45×1000 1.2×1000 100×0.06 10×94.5 1000×0.34 订正时要说出道理. 2.教学例3:把43.7缩小10倍,100倍,1000倍各是多少?

数字化装配

研究生专业课程考试答题册 学号2015200760 姓名郝天峰 考试课程飞机数字化装配 任课老师耿俊浩 考试日期2016年1月21日 西北工业大学研究生院

研究题目:飞机数字化装配工艺优化 1.研究背景及意义 飞机装配是飞机制造或维修过程的末端环节,目标是将零件按一定的约束关系联接成完整的产品,装配技术的好坏直接关系到飞机最终的性能。然而飞机产品的零部件数量多,部件尺寸大,精度要求高,协调过程复杂,装配周期长,装配工作量占整机制造劳动量的40%~50%,所以在飞机整个制造过程中装配技术是一项技术难度大、涉及学科领域多的综合性集成技术,它在很大程度上决定了飞机的最终质量、生产成本和研制生产周期[1]。 虽然国内外目前的CAD/CAM软件发展己经口益成熟,然而其飞机装配工艺设计分析能力尚不足以应付快速发展的生产实际需要。传统的装配分析需要耗费大量的物力、人力和时间来生产物理样机进行实验,而这不仅导致装配工艺设计严重滞后于飞机设计工作,相较于并行设计,耗费过多时间,而且无法及时发现并弥补飞机装配设计中的缺陷,更无法保证工人的安全舒适性,这种传统的装配分析方法受物理样机限制存在诸多弊端,因此需要采用新的技术方法来满足产品并行设计的要求,使设计人员在产品设计阶段就能进行装配设计与验证工作。在这样的背景环境下数字化装配技术应运而生,为飞机设计和装配性能评价提供了一个新途径[2]。 数字化装配的定义为:利用数字化现实技术、计算机图形学、人工智能技术和仿真技术等构造数字化现实环境和产品数字模型,从而在产品装配过程中通过交互分析,仿真装配过程和装配结果。数字化装配的主要研究内容包括:数字化环境下零件、产品建模及装配过程建模,装配序列和装配路径规划,装配中物理特性的分析研究,装配过程的人机工程学分析,装配系统与其它相关系统(如设计系统)的集成。与传统CAD装配相比,数字化装配的重点在于直观的人机交互,通过直接操作和自然命令完成装配操作。它不仅能检验、评价以及预测产品的可装配性,并且能够面向装配过程提供直观经济的规划方法[3]。 随着数字样机、虚拟现实等技术的发展以及各种算法的成熟研究,在数字化环境下模拟装配工作,进而结合各种算法对装配问题进行优化已成为一种重要设计和分析手段。在构建的数字化仿真环境中,导入产品数字样机和人体模型,并根据产品特征制定装配工艺,完全可以实现“虚拟人装配虚拟产品”的数字化装配仿真,而且可以在装配仿真基础上进行装配工艺分析和人机工效分析等,从而及时发现和修改产品装配中存在的问题,从而实现产品的并行设计,辅助现实产品装配过程[4];进而针对具体的装配问题结合已知算法进行优化,从而提高飞机的装配性,缩短飞机装配周期,节约飞机装配成本,提高飞机装配精度,具有广阔的应用前景。

生产加工三种移动方式

一、顺序移动法 所谓顺序移动法即顺序移动方式,是指每批制品在上一道工序加工完毕后,整批地移送到下一道工序进行加工的移动方式。 顺序移动法的周期计算 顺序移动方式下的加工周期计算: T:一批零件顺序移动的加工周期; n:零件批量; m:零件加工工序数目; t i :第i道工序的加工时间。 例:一批制品,批量为4件,须经四道工序加工,各工序时间分别为:t1 = 10,t2 = 5,t3 = 15,t4 = 10。采用顺序移动方式计算 顺序移动的加工周期: 顺序移动法的优缺点 采用顺序移动方式的优点是: 1、组织与计划工作简单; 2、零件集中加工,集中运输,减少了设备调整时间和运输工作量; 3、设备连续加工不停顿,提高了工效。 顺序移动法的缺点是: 1、大多数产品有等待加工和等待运输的现象,生产周期长; 2、资金周转慢,经济效益较差。 顺序移动法的适用条件 在运用顺序移动法时应该满足的条件是:

批量不大,单件加工时间较短、生产单位按工艺专业化组成,距离较远的情况下。 二、平行移动法 所谓平行移动法是指一批零件中的每个零件在前一道工序完工后,立即传送到下一道工序继续加工的移动方式。 平行移动法的周期计算 这种移动方式的加工周期的计算公式如下: 式中:T:一批零件平行移动的加工周期; t max:各道工序中最长工序的单件时间。 例:一批制品,批量为4件,须经四道工序加工,各工序时间分别为:t1 = 10,t2 = 5,t3 = 15,t4 = 10。 采用平行移动方式计算,其加工周期: 平行移动方式的优缺点 优点:加工周期短,在制品占用量少; 缺点:运输次数多,当前后工序时间不相等时,存在设备中断和制品等待的情况。 三、平行顺序移动法 所谓平行顺序移动法,是顺序移动方式和平行移动方式两种方式的结合使用。是指一批零件在一道工序上尚未全部加工完毕,就将已加工好的一部分零件转入下道工序加工,以恰好能使下道工序连续地全部加工完该批零件为条件的移动方式。 平行顺序移动法的周期计算

相关主题
文本预览
相关文档 最新文档