当前位置:文档之家› 微分方程的积分因子求解法

微分方程的积分因子求解法

微分方程的积分因子求解法
微分方程的积分因子求解法

常微分方程得积分因子求解法

内容摘要:本文给出了几类特殊形式得积分因子得求解方法,并推广到较一般得形式。

关键词:全微分方程,积分因子。

一、基本知识

定义1.1 对于形如

(1。1) 得微分方程,如果方程得左端恰就是,得一个可微函数得全微分,即= ,则称(1、1)为全微分方程、

易知,上述全微分方程得通解为=, (为任意常数)。

定理1。1 (全微分方程得判别法)设,在,平面上得单连通区域内具有连续得一阶偏导数,则(1.1)就是全微分方程得充要条件为

(1、2) 证明见参考文献[1].

定义1。2 对于微分方程(1.1),如果存在可微函数,使得方程

(1。3) 就是全微分方程,则称为微分方程(1。1)得积分因子、

定理1。2可微函数为微分方程(1、1)得积分因子得充要条件为

-= (1、4) 证明:由定理1、1得,为微分方程(1。1)得积分因子得充要条件为

, 展开即得:

—=、

上式整理即得(1。4). 证毕

注1、1若,则(1、3)与(1.1)同解。所以,欲求(1。1)得通解,只须求出(1。3)得通解即可,而(1。3)就是全微分方程,故关键在于求积分因子。

为了求解积分因子,必须求解方程(1。4)。一般来说,偏微分方程(1。4)就是不易求解得;但就是,当具有某种特殊形式时还就是较易求解得。

二、特殊形式得积分因子得求法

情况1 当具有形式时,方程(1。4)化为

=,

即=

于就是得到:

定理2、1 微分方程(1.1)具有形如得积分因子得充要条件为

只就是得连续函数, 不含、此时易得, 。

类似地

定理2、2 微分方程(1。1)具有形如得积分因子得充要条件为

只就是得连续函数, 不含。并且, 、

例2。1 求得通解。

解: 因=, 故 .

方程两边同乘以得,

即, 故通解为=,

即,(为任意常数)。

情况2如果(1、1)具有形如得积分因子, 令, 则=。由(1、4)得

=,

于就是得到:

定理2。3 微分方程(1。1)具有形如得积分因子得充要条件为只就是得连续函数, 此时积分因子为

, (为任意非零常数)、

例2。2 求得积分因子。

解: 因=

故方程具有形如得积分因子, 取得, =。

情况3 如果(1。1)具有形如得积分因子, 令, 则=、由(1、4)得

=,

于就是得到:

定理2、4 微分方程(1、1)具有形如得积分因子得充要条件为只就是得连续函数, 此时积分因子为

, (为任意非零常数)。

例2、3 求得积分因子。

解: 因=,

故方程具有形如得积分因子, 取得=。

情况4一般地, 如果方程(1、1)具有形如得积分因子, 令, 则、由(1、4)得

=,

于就是得到

定理2、5 微分方程(1、1)具有形如得积分因子得充要条件为只就是得连续函数, 此时积分因子为, (为任意非零常数)。

类似地, 我们有

定理2。6 微分方程(1.1)具有形如得积分因子得充要条件为只就是得连续函数, 此时积分因子为, (为任意非零常数).

例2、4 求得积分因子。

解: 由,

=,

易知, 欲使上式仅就是得函数, 只须等于常数即可。为此, 令, , 得, . 此时=-1。取得。

三、一般理论

定理3、1 如果就是微分方程(1。1)得积分因子, (1。1)乘以后得到(1。

3). 设(1.3)得左端为, 则仍就是(1、1)得积分因子、其中, 就是任何可微函数。

定理3.2 在(1、1)中, 若与在长方形区域上连续,且在上处处不为零。对于(1、1)得任何两个在上处处连续且恒不为零得积分因子, (从而, 在上不变号), 设

.

则在内任一点, 可定出一邻域, 在此邻域内, 只就是得函数、

上述两定理得证明可参见参考文献[3].

注3、1 由定理3、1与定理3。2即知, 设就是(1。1)得积分因子, (1。

3)得左端为, 则(1。1)得积分因子通式为. 其中, 就是任何可微函数。

例3、1 求得积分因子及通解.

解:重新组合: ,

对于前一个括号内可求得一个积分因子, 乘之得. 故前一个括号内可取积分因子通式为.

同样可得后一个括号内得积分因子通式为、

下面求出, , 使得=、设, , 即有=, 于就是得, 解得, 、从而即得原微分方程得一个积分因子为, 用乘以方程得两边可求得通积分为, (为任意常数)。

微分方程数值解法

《微分方程数值解法》 【摘要】自然界与工程技术中的很多现象,可以归结为微分方程定解问题。其中,常微分方程求解是微分方程的重要基础内容。但是,对于许多的微分方程,往往很难得到甚至不存在精确的解析表达式,这时候,数值解提供了一个很好的解决思路。,针对于此,本文对常微分方程数值解法进行了简单研究,主要讨论了一些常用的数值解法,如欧拉法、改进的欧拉法、Runge —Kutta 方法、Adams 预估校正法以及勒让德谱方法等,通过具体的算例,结合MA TLAB 求解画图,初步给出了一般常微分方程数值解法的求解过程。同时,通过对各种方法的误差分析,让大家对各种方法的特点和适用范围有一个直观的感受。 【关键词】 常微分方程 数值解法 MA TLAB 误差分析 引言 在我国高校,《微分方程数值解法》作为对数学基础知识要求较高且应用非常广泛的一门课程,不仅 在数学专业,其他的理工科专业的本科及研究生教育中开设这门课程.近四十年来,《微分方程数值解法》不论在理论上还是在方法上都获得了很大的发展.同时,由于微分方程是描述物理、化学和生物现象的数学模型基础,且它的一些最新应用已经扩展到经济、金融预测、图像处理及其他领域 在实际应用中,通过相应的微分方程模型解决具体问题,采用数值方法求得方程的近似解,使具体问题迎刃而解。 2 欧拉法和改进的欧拉法 2.1 欧拉法 2.1.1 欧拉法介绍 首先,我们考虑如下的一阶常微分方程初值问题 ???==0 0)() ,('y x y y x f y (2--1) 事实上,对于更复杂的常微分方程组或者高阶常微分方程,只需要将x 看做向量,(2--1)就成了一个一阶常微分方程组,而高阶常微分方程也可以通过降阶化成一个一阶常微分方程组。 欧拉方法是解常微分方程初值问题最简单最古老的一种数值方法,其基本思路就是把(2--1)中的导数项'y 用差商逼近,从而将一个微分方程转化为一个代数方程,以便求解。 设在[]b a ,中取等距节点h ,因为在节点n x 点上,由(2--1)可得:

数值积分与微分方程

2.3 数值积分 2.3.1 一元函数的数值积分 函数1 quad 、quadl 、quad8 功能 数值定积分,自适应Simpleson 积分法。 格式 q = quad(fun,a,b) %近似地从a 到b 计算函数fun 的数值积分,误差为10-6。 若给fun 输入向量x ,应返回向量y ,即fun 是一单值函数。 q = quad(fun,a,b,tol) %用指定的绝对误差tol 代替缺省误差。tol 越大,函数计 算的次数越少,速度越快,但结果精度变小。 q = quad(fun,a,b,tol,trace,p1,p2,…) %将可选参数p1,p2,…等传递给函数 fun(x,p1,p2,…),再作数值积分。若tol=[]或trace=[],则用缺省值进行计算。 [q,n] = quad(fun,a,b,…) %同时返回函数计算的次数n … = quadl(fun,a,b,…) %用高精度进行计算,效率可能比quad 更好。 … = quad8(fun,a,b,…) %该命令是将废弃的命令,用quadl 代替。 例2-40 >>fun = inline(‘3*x.^2./(x.^3-2*x.^2+3)’); equivalent to: function y=funn(x) y=3*x.^2./(x.^3-2*x.^2+3); >>Q1 = quad(fun,0,2) >>Q2 = quadl(fun,0,2) 计算结果为: Q1 = 3.7224 Q2 = 3.7224 补充:复化simpson 积分法程序 程序名称 Simpson.m 调用格式 I=Simpson('f_name',a,b,n) 程序功能 用复化Simpson 公式求定积分值 输入变量 f_name 为用户自己编写给定函数()y f x 的M 函数而命名的程序文件名 a 为积分下限 b 为积分上限 n 为积分区间[,]a b 划分成小区间的等份数 输出变量 I 为定积分值 程序 function I=simpson(f_name,a,b,n) h=(b-a)/n; x=a+(0:n)*h; f=feval(f_name,x); N=length(f)-1;

微分方程的积分因子求解法

常微分方程的积分因子求解法 内容摘要:本文给出了几类特殊形式的积分因子的求解方法,并推广到较一般的形式。 关键词: 全微分方程,积分因子。 一、 基本知识 定义1.1 对于形如 0),(),(=+dy y x N dx y x M (1.1) 的微分方程,如果方程的左端恰是x ,y 的一个可微函数),(y x U 的全微分,即d ),(y x U = dy y x N dx y x M ),(),(+,则称(1.1)为全微分方程. 易知,上述全微分方程的通解为 ),(y x U =C , (C 为任意常数). 定理1.1 (全微分方程的判别法)设),(y x M ,),(y x N 在x ,y 平面上的单连通区域G 内具有连续的一阶偏导数,则(1.1)是全微分方程的充要条件为 x y x N y y x M ??=??),(),( (1.2) 证明见参考文献[1]. 定义1.2 对于微分方程(1.1),如果存在可微函数),(y x μ,使得方程 ),(y x μ0),(),(),(=+dy y x N y x dx y x M μ (1.3) 是全微分方程,则称),(y x μ为微分方程(1.1)的积分因子. 定理1.2 可微函数),(y x μ为微分方程(1.1)的积分因子的充要条件为 x y x y x N ??),(ln ),(μ-y y x y x M ??),(ln ),(μ=x y x N y y x M ??-??),(),( (1.4) 证明:由定理1.1得,),(y x μ为微分方程(1.1)的积分因子的充要条件为 x y x N y x y y x M y x ??=??)),(),(()),(),((μμ, 展开即得:

微分方程常用的两种数值解法:欧拉方法与龙格—库塔法

四川师范大学本科毕业论文 微分方程常用的两种数值解法:欧拉方法与龙 格—库塔法 学生姓名XXX 院系名称数学与软件科学学院 专业名称信息与计算科学 班级2006级 4 班 学号20060640XX 指导教师Xxx 四川师范大学教务处 二○一○年五月

微分方程常用的两种数值解法:欧拉方法与龙格—库塔法 学生姓名:xxx 指导教师:xx 【内容摘要】微分方程是最有生命力的数学分支,在自然科学的许多领域中,都 会遇到常微分方程的求解问题。当前计算机的发展为常微分方程的应用及理论研究提供了非常有力的工具,利用计算机解微分方程主要使用数值方法,欧拉方法和龙格——库塔方法是求解微分方程最典型常用的数值方法。本文详细研究了这两类数值计算方法的构造过程,分析了它们的优缺点,以及它们的收敛性,相容性,及稳定性。讨论了步长的变化对数值方法的影响和系数不同的同阶龙格—库塔方法的差别。通过编制C程序在计算机上实现这两类方法及对一些典型算例的结果分析比较,能更深切体会它们的功能,优缺点及适用场合,从而在实际应用中能对不同类型和不同要求的常微分方程会选取适当的求解方法。 关键词:显式单步法欧拉(Euler)方法龙格—库塔(Runge—Kutta)方法截断误差收敛性 Two commonly used numerical solution of differential equations:Euler method and Runge - Kutta method Student Name: Xiong Shiying Tutor:Zhang Li 【Abstract】The differential equation is the most vitality branch in mathematics. In many domains of natural science, we can meet the ordinary differential equation solution question. Currently, the development of computer has provided the extremely powerful tool for the ordinary differential equation application and the fundamental research, the computer solving differential equation mainly uses value method. The Euler method and the Runge—Kutta method are the most typical commonly value method to solve the differential equation. This article dissects the structure process of these two kinds of values commonly value method to solve the analyses their good and bad points, to their astringency, the compatibility, and the stability has made the proof. At the same time, the article discuss the length of stride to the numerical method changing influence and the difference of the coefficient different same step Runge—kutta method. Through establishing C program on the computer can realize these two kind of methods, Anglicizing some models of calculate example result can sincerely realize their function, the advantage and disadvantage points and the suitable situation, thus the suitable solution method can be selected to solve the different type and the

全微分方程及积分因子

全微分方程及积分因子

全微分方程及积分因子 内容:凑微分法,全微分方程的判别式,全微分方程的公式解,积分因子的微分方程,只含一个变量的积分因子和其他特殊形式的积分因子。由于有数学分析多元微积分的基础,本节的定理1可以简化处理。对课本中第三块知识即全微分方程的物理背景可以留到后面处理,对第四块知识增解和失解的情况要分散在本章各小节,每次都要重视这个问题。关于初等积分法的局限性可归到学习近似解法时一起讲解。 重点:全微分方程的公式解和积分因子的计算,难点为凑微分法和积分因子的计算。 习题1(1,3,5),2,3 思考题:讨论其他特殊形式的积分因子。 方程:0),(),(=+dy y x N dx y x M 判定:全微分?x N y M ??≡?? 解法:C dy y x N dx y x M y y x x =+??00),(),(0 初值问题0=C 积分因子:x N y M y M x N ??-??=? ???????-??μμμ1

)(x μ: N x N y M dx d ?? -??=μμ1 )(y μ: M x N y M dy d ??- ??-=μμ1 1.解下列方程: 1)0)(222=-+dy y x xydx 解:x N y M ?? ≡??=x 2 ??=-+x y C dy y xydx 002 )0(2既 C y y x =-3/32 2)0)2(=+---dy xe y dx e y y 解:x N y M ??≡??=y e -- ??=-+-y x y C dy y dx e 00)2(既C y xe y =--2 3)0)1(222=---+dy y x dx y x x 解:x N y M ??≡??=y x --221 ??=---+x y C dy y dx y x x 002)1(2 C y y y x x =-+---+23 232322)(32 )(32 )(32 既C y x x =-+23 2 2)(32 4)0)ln (3 =++dy x y dx x y

一阶微分方程积分因子探讨

一阶微分方程积分因子的求法探讨 数学与信息科学学院 数学与应用数学专业 指导教师:郑丽丽 职称:教授 摘 要:针对满足某些条件的微分方程,本文将给出几种直接、有效地求积分因子的方法. 关键词:一阶微分方程;积分因子 The Solution of Integral Factor for the First Order Ordinary Differential Equation Abstract :This paper has made a special effort to study how to quadrate integral factors directly and efficiently .When the differential equations meet some conditions , therefore , the common method we can get from it . Key Words :the first order ordinary differential equation ;integral factor 0前 言 一阶微分方程的求解是整个微分方程求解的基础,一般的有两种处理方式:一是 以变量可分离的方程为基础,通过适当的变量代换把一阶微分方程化为可积型方程;另外就是以全微分方程为基础,采取积分因子法把一个一阶微分方程化为全微分方程求.这里我们讨论了积分因子存在的充要条件,给出了确定若干特殊类型的积分因子的求法. 1 积分因子的定义 若对于一阶微分方程 ()(),,0M x y dx N x y dy += (1) 其中(),M x y ,(),N x y 在矩形域内是,x y 的连续函数,且有连续的一阶偏导数.若存在连续可微的函数(),0x y μ≠,使得 ()()()(),,,,0x y M x y dx x y N x y dy μμ+≡, 为一恰当方程,即存在函数V ,使

偏微分方程数值解法答案

1. 课本2p 有证明 2. 课本812,p p 有说明 3. 课本1520,p p 有说明 4. Rit2法,设n u 是u 的n 维子空间,12,...n ???是n u 的一组基底,n u 中的任一元素n u 可 表为1n n i i i u c ?==∑ ,则,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???=== -=-∑∑是12,...n c c c 的二次函数,(,)(,)i j j i a a ????=,令 () 0n j J u c ?=?,从而得到12,...n c c c 满足1 (,)(,),1,2...n i j i j i a c f j n ???===∑,通过解线性方程组,求的i c ,代入1 n n i i i u c ?==∑, 从而得到近似解n u 的过程称为Rit2法 简而言之,Rit2法:为得到偏微分方程的有穷维解,构造了一个近似解,1 n n i i i u c ?== ∑, 利用,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???===-=-∑∑确定i c ,求得近似解n u 的过程 Galerkin 法:为求得1 n n i i i u c ? == ∑形式的近似解,在系数i c 使n u 关于n V u ∈,满足(,)(,) n a u V f V =,对任 意 n V u ∈或(取 ,1j V j n ?=≤≤) 1 (,)(,),1,2...n i j i j i a c f j n ???===∑的情况下确定i c ,从而得到近似解1 n n i i i u c ?==∑的过程称 Galerkin 法为 Rit2-Galerkin 法方程: 1 (,)(,)n i j i j i a c f ???==∑ 5. 有限元法:将偏微分方程转化为变分形式,选定单元的形状,对求解域作剖分,进而构 造基函数或单元形状函数,形成有限元空间,将偏微分方程转化成了有限元方程,利用 有效的有限元方程的解法,给出偏微分方程近似解的过程称为有限元法。 6. 解:对求解区间进行网格剖分,节点01......i n a x x x x b =<<<<=得到相邻节点1,i i x x -

微分方程积分因子的求法

微分方程积分因子的求法 何佳 【摘要】 利用积分因子,可以对一个一阶微分方程的求解进行统一处理。因此,如何求解积分因子就成为解一阶微分方程的一个重点了。但对于一个具体的方程,如何求出它的积分因子呢,一般的方法是解一个一阶偏微分方程,不过那是比较不容易的。但是,对于某些特殊的情况,却可以简单地得出积分因子。通过查找我们发现,在大多数《常微分方程》的教材中都只给出了只与x 或y 有关的积分因子的求法,但这是不够的。所以我们在这里来讨论一下关于求解()x y αβμ和 ()m n ax by μ+这两类积分因子的充要条件及部分例题,由此我们就可以得到形式 相近的积分因子。如:通过x y μ=+,可以得到x y μ=-的积分因子。如此举一反三,力求使得求积分因子的问题变的简便易行。同时,还对积分因子的求法进行了推广,总结出几类方程积分因子的求法。 【关键字】 微分方程 , 积分因子 , 求解方法

【目录】 引言 (1) 目录 (2) 一、()x y αβμ和()m n ax by μ+两类积分因子 § 1、 与()x y αβμ有关的积分因子 …………………………………………… 3 § 2、 与()m n ax by μ+有关的积分因子 …………………………………………… 4 二、微分方程积分因子求法的推广 § 1、 满足条件 ()P Q P Qf x y x y ??-=-??的积分因子求法 (7) § 2、 方程1123422(3)36330m m m m x mx y xy dx y x y x y dy +-????++++++=????积 分因子 (10) § 3、 方程13()30m m m x m x y x dx x dy -??+++=?? 积分因子 (12) § 4、 方程1(4)4450m m m m x mx y y dx x x y dy -????++++++=????积分因子 …………………………………………… 13 参考文献 (15)

第8章 常微分方程数值解法 本章主要内容: 1.欧拉法

第8章 常微分方程数值解法 本章主要内容: 1.欧拉法、改进欧拉法. 2.龙格-库塔法。 3.单步法的收敛性与稳定性。 重点、难点 一、微分方程的数值解法 在工程技术或自然科学中,我们会遇到的许多微分方程的问题,而我们只能对其中具有较简单形式的微分方程才能够求出它们的精确解。对于大量的微分方程问题我们需要考虑求它们的满足一定精度要求的近似解的方法,称为微分方程的数值解法。本章我们主要 讨论常微分方程初值问题?????==00 )() ,(y x y y x f dx dy 的数值解法。 数值解法的基本思想是:在常微分方程初值问题解的存在区间[a,b]内,取n+1个节点a=x 0<x 1<…<x N =b (其中差h n = x n –x n-1称为步长,一般取h 为常数,即等步长),在这些节点上把常微分方程的初值问题离散化为差分方程的相应问题,再求出这些点的上的差分方程值作为相应的微分方程的近似值(满足精度要求)。 二、欧拉法与改进欧拉法 欧拉法与改进欧拉法是用数值积分方法对微分方程进行离散化的一种方法。 将常微分方程),(y x f y ='变为() *+=?++1 1))(,()()(n x n x n n dt t y t f x y x y 1.欧拉法(欧拉折线法) 欧拉法是求解常微分方程初值问题的一种最简单的数值解法。 欧拉法的基本思想:用左矩阵公式计算(*)式右端积分,则得欧拉法的计算公式为:N a b h N n y x hf y y n n n n -= -=+=+)1,...,1,0(),(1 欧拉法局部截断误差 11121 )(2 ++++≤≤''=n n n n n x x y h R ξξ或简记为O (h 2)。

第十章-偏微分方程数值解法

第十章 偏微分方程数值解法 偏微分方程问题,其求解十分困难。除少数特殊情况外,绝 大多数情况均难以求出精确解。因此,近似解法就显得更为重要。本章仅介绍求解各类典型偏微分方程定解问题的差分方法。 §1 差分方法的基本概念 1.1 几类偏微分方程的定解问题 椭圆型方程:其最典型、最简单的形式是泊松(Poisson )方程 ),(22 2 2y x f y u x u u =??+??=? 特别地,当0),(≡y x f 时,即为拉普拉斯(Laplace )方程,又 称 为调和方程 22 22=??+??=?y u x u u Poisson 方程的第一边值问题为 ?? ???Ω ?=Γ=Ω∈=??+??Γ∈),(),(),() ,(),(22 22y x y x u y x y x f y u x u y x ?

其中 Ω为以Γ为边界的有界区域,Γ为分段光滑曲线,ΓΩY 称为定解区域,),(y x f ,),(y x ?分别为Ω,Γ上的已知连 续函数。 第二类和第三类边界条件可统一表示为 ),(),(y x u u y x ?α=??? ? ??+??Γ∈n 其中n 为边界Γ的外法线方向。当0=α时为第二类边界条件, 0≠α时为第三类边界条件。 抛物型方程:其最简单的形式为一维热传导方程 2 20(0)u u a a t x ??-=>?? 方程可以有两种不同类型的定解问题: 初值问题 ?? ???+∞ <<∞-=+∞<<-∞>=??-??x x x u x t x u a t u )()0,(,00 22? 初边值问题

2 212 00,0(,0)()0(0,)(),(,)()0u u a t T x l t x u x x x l u t g t u l t g t t T ????-=<<<

微分方程数值解

微 分方程数值解及其应用 绪论 自然界中的许多事物的运动和变化规律都可以用微分方程来描述,因此对工程和科学技术中的实际问题的研究中, 常常需要求解微分方程.但往往只有少数较简单和典型的微分方程可求出其解析解,在大多数情况下,只能用近似法求解,数值解法是一类重要的近似方法.本文主要讨论一阶常微分方程的初值问题的数值解法,探讨这些算法在处理来自生活实际问题中的应用,并结合MATLAB 软件,动手编程予以解决. 1 微分方程的初值问题[1] 1.1 预备知识 在对生活实际问题的研究中,通常需要考虑一阶微分方程的初值问题 00(,)()dy f x y dx y x y ?=???=? (1) 这里(),f x y 是矩形区域R :00,x x a y y b -≤-≤上的连续函数. 对初值问题(1)需要考虑以下问题:方程是否一定有解呢?若有解,有多少个解呢?下面给出相关的概念与定理. 定义1 Lipschitz 条件[1][2]:矩形区域R :00,x x a y y b -≤-≤上的连续函数(),f x y 若满足:存在常数0L >,使得不等式()()1212,,f x y f x y L y y -≤-对所有()()12,,,x y x y R ∈都成立,则称(),f x y 在R 上关于y 满足Lipschitz 条件. 定理 1 解的存在唯一性定理[1][3]:设f 在区域()}{,,D x y a x b y R =≤≤∈上连续,关于y 满足Lipschitz 条件,则对任意的[]00,,∈∈x a b y R ,常微分方程初值问题(1)当[],x a b ∈时存在唯一的连续解()y x . 该定理保证若一个函数(),f x y 关于y 满足Lipschitz 条件,它所对应的微分方程的初值问题就有唯一解.在解的存在唯一性得到保证的前提下,自然要考虑方程的求

微分方程的分类及其数值解法

微分方程的分类及其数值解法 微分方程的分类: 含有未知函数的导数,如dy/dx=2x 、ds/dt=0.4都是微分方程。 一般的凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。未知函数是一元函数的,叫常微分方程;未知函数是多元函数的叫做偏微分方程。微分方程有时也简称方程。 一、常微分方程的数值解法: 1、Euler 法: 00d (,), (1.1)d (), (1.2) y f x y x y x y ?=???=? 001 (),(,),0,1,,1n n n n y y x y y hf x y n N +=??=+=-? (1.4) 其中0,n b a x x nh h N -=+=. 用(1.4)求解(1.1)的方法称为Euler 方法。 后退Euler 公式???+==+++),,(),(111 00n n n n y x hf y y x y y 梯形方法公式 )].,(),([2 111+++++=n n n n n n y x f y x f h y y 改进的Euler 方法11(,),(,),1().2p n n n c n n p n p c y y hf x y y y hf x y y y y ++?=+??=+???=+??? 2、Runge-Kutta 方法: p 阶方法 : 1()O h -=?总体截断误差局部截断误差 二阶Runge-Kutta 方法 ??? ????++==++=+),,(),,(,2212 1211hk y h x f k y x f k k h k h y y n n n n n n

微分方程数值解欧拉法

1.1、求解初值问题()?????=-=-1 0y y xe dx dy x ,已知精确解为 ()()x x x x y -+=22 12 当h=0.1时,解为: n x n y ()n x y ()n n y x y - 0 1 1 0 0.1 0.900000 0.909362 9.3616E-03 0.2 0.819048 0.835105 1.6057E-02 0.3 0.753518 0.774155 2.0637E-02 0.4 0.700391 0.723946 2.3555E-02 0.5 0.657165 0.682347 2.5182E-02 0.6 0.621775 0.647598 2.5823E-02 0.7 0.592526 0.618249 2.5723E-02 0.8 0.568034 0.593114 2.5080E-02 0.9 0.547177 0.571230 2.4053E-02 1.0 0.529051 0.551819 2.2768E-02 0.1 0.2 0.30.40.50.60.70.80.91 当h=0.05时,解为:

n x n y ()n x y ()n n y x y - 0 1 1 0 0.05 0.950000 0.952418 2.4185E-03 0.10 0.904878 0.909362 4.4835E-03 0.15 0.864158 0.870391 6.2326E-03 0.20 0.827406 0.835105 7.6996E-03 0.25 0.794223 0.803138 8.9155E-03 0.30 0.764247 0.774155 9.9084E-03 0.35 0.737147 0.747850 1.0704E-02 0.40 0.712621 0.723946 1.1324E-02 0.45 0.690397 0.702188 1.1791E-02 0.50 0.670223 0.682347 1.2124E-02 0.55 0.651876 0.664213 1.2338E-02 0.60 0.635148 0.647598 1.2450E-02 0.65 0.619855 0.632328 1.2473E-02 0.70 0.605829 0.618249 1.2420E-02 0.75 0.592918 0.605220 1.2302E-02 0.80 0.580985 0.593114 1.2129E-02 0.85 0.569909 0.581819 1.1909E-02 0.90 0.559579 0.571230 1.1651E-02 0.95 0.549896 0.561258 1.1362E-02 1.00 0.540771 0.551819 1.1048E-02 0.1 0.2 0.30.40.50.60.70.80.91

微分方程数值方法习题二

并与真解u(x) 2e x x 1相比较. 微分方程数值方法 常微分方程初值问题习题一 u' ax b, u(0) 0, 分别写出Euler 法和改进的Euler 法的近似解 府 的表达式,并求 它们与真解u(x) -ax 2 bx 的差u(X m ) U m . 2. 取步长h 0.1,分别用Euler 法和改进的Euler 法求下列初值问 题的解,并与真解相比较. 真解 u(x) .1 2x ; 2 ,u x . c (2) u 2 ,1 x 2, x u u(1) 2, 1 真解 u(x) x(8 31 n x)3 ; u x u '広乔 u(1) 1, 3 1 真解 u(x) (4x 2 3x 2)3. X 2 3. 用Euler 法计算0£dt 在x 0.1,0.2的近似值. 4. 取步长h 0.2,用四阶Runge-Kutta 法解 u' u x, 0 x 1, u(0) 1, 1.对初值问题 (1) u' u 2x 0x1, u(0) u 1 , (3) 1 x 1.5,

5. 设 f(x,u)关于 u 满足 Lipschitz 条件,证明 N 级 Runge-Kutta 法中的增量函数 (x,u,h)关于u 也满足 Lipschitz 条件. 6. 对初值问题 u' u x 1, u(0) 1, 写出四阶Taylor 级数法和四阶 Runge-Kutta 法的计算公式,它们 是否相同. 7. 证明改进的Euler 法的绝对稳定区间是(-2,0). 8.证明:当h( h)满足 3 4 h h 24 时,四阶 Runge-Kutta 法绝对稳定. 9. 用Tayor 展开确定下面多步法中的系数,使其阶尽可能高,并求 局部截断误差的主项. 10. 对初值问题 u'' f(x,u), u(X °) u °,u'(x 0) u 10, 确定求解公式 (3) u m1 a 2u m 1 h( m 1 2 ). (1) u m 1 a 1u m a 2u m 1 h 0 f m 1 ;

常微分方程数值解法

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<< <<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1, ,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

常微分方程数值方法

常微分方程数值方法 1、欧拉方法:1,,1,0),,(1-=+=+n k y t hf y y k k k k . function E=euler(f,a,b,ya,n) % Input - f is the function entered as a string 'f' % - a and b are the left and right end points % - ya is the initial condition y(a) % - n is the number of steps % Output - E=[T' Y'] where T is the vector of abscissas and % Y is the vector of ordinates h=(b-a)/n; T=zeros(1,n+1); Y=zeros(1,n+1); T=a:h:b; Y(1)=ya; for j=1:n Y(j+1)=Y(j)+h*feval(f,T(j),Y(j)); end E=[T' Y']; 【例】 用欧拉方法求解区间]3,0[内的初值问题:1)0(,2'=-=y y t y 。 f=inline('(t-y)/2','t','y');a=0;b=3;ya=1;n=12; %n=3,6,12,24,48,96... E=euler(f,a,b,ya,n),plot(E(:,1),E(:,2),'r*'),hold on 符号解:y=dsolve('Dy=(t-y)/2','y(0)=1') h=(3-0)/12;t=0:h:3;y=eval(y);[t' y'] 用图比较数值解:(f 为ode 函数文件) ode45('f',[0,3],1) 2、休恩(Huen)方法(即改进Euler 方法): 1 ,,1,0)],,(,(),([211-=+++=++n k y t hf y t f y t f h y y k k k k k k k k function H=heun(f,a,b,ya,n) % Input - f is the function entered as a string 'f' % - a and b are the left and right end points % - ya is the initial condition y(a) % - n is the number of steps % Output - H=[T' Y'] where T is the vector of abscissas and % Y is the vector of ordinates h=(b-a)/n; T=zeros(1,n+1); Y=zeros(1,n+1); T=a:h:b; Y(1)=ya; for j=1:n k1=feval(f,T(j),Y(j)); k2=feval(f,T(j+1),Y(j)+h*k1); Y(j+1)=Y(j)+(h/2)*(k1+k2); end H=[T' Y'];

全微分方程及积分因子

1.5 全微分方程及积分因子

一、全微分方程的定义及条件 则它的全微分为 是一个连续可微的函数设,),(y x U U =dy y U dx x U dU ??+??=如果我们恰好碰见了方程 0),(),(=??+??dy y y x U dx x y x U 就可以马上写出它的通积分 . ),(c y x U =

定义1使得 若有函数),,(y x U dy y x N dx y x M y x dU ),(),(),(+=则称微分方程) 1(,0),(),(=+dy y x N dx y x M 是全微分方程..),()1(c y x U =的通积分为此时如0 =+ydx xdy 0 )2()3(322=+++dy xy x dx y y x 0 )()(=+dy y g dx x f 是全微分方程.=)(xy d =+)(23xy y x d =+òò))()((y d y g x d x f d 1.全微分方程的定义

需考虑的问题(1) 方程(1)是否为全微分方程? (2) 若(1)是全微分方程,怎样求解? (3) 若(1)不是全微分方程,有无可能转化为全微分方程求解?2 方程为全微分方程的充要条件 定理1则方程 偏导数中连续且有连续的一阶域在一个矩形区和设函数,),(),(R y x N y x M ) 1(,0),(),(=+dy y x N dx y x M 为全微分方程的充要条件是 ). 2(,),(),(x y x N y y x M ??=??)1(, 0),(),(=+dy y x N dx y x M

证明“必要性”设(1)是全微分方程,使得 则有函数),,(y x U dy y U dx x U y x dU ??+??=),(dy y x N dx y x M ),(),(+=故有),,(y x M x U =??),(y x N y U =??从而从而有都是连续的和由于,22y x U x y U ??????,22y x U x y U ???=???故.),(),(x y x N y y x M ??=??y x U y N x y U y M ???=?????=??22 ,

积分因子与全微分方程

积分因子与全微分方程 1 微分方程的用途 镭是一种放射性物质,它的原子不停地向外放射出氦原子和其它的射线.从而自身的原子量减少,这样就变成了其它的物质(如常见的铅).一定质量的镭随着时间的变化,它的质量就会减少.现在已经发现镭的裂变速度(即单位时间裂变的质量)与它的剩余量成正比,设一块镭在时刻0t t =时,其质量0R R =,请确定这块镭在时刻t 的质量R . 分析:时刻t 时镭的剩余量R 是t 的函数,由于R 将随时间t 的流逝而减少.故镭的裂变速度dR dt 应该是负值,于是按照镭的裂变规律可列出方程 dR kR dt =-,其中k 为一正的比例常数. 1.1 微分方程 定义1 []() 1P 1 联系着自变量、未知函数以及它的导数的方程叫做微分方程. 上式是一个关于未知函数R 的微分方程,上述的问题就是要从这个式子中求出未知函数 ()R R t =来. 不仅镭的质量满足这样的规律,其它的放射性物质也都满足这一规律,不同的只是各种放射性物质具有各自不同的系数k .从这个关系式出发,可以利用放射性物资来测定某种物体的绝对年龄,实际上,火箭的升空,弹道的计算,自动控制,化学反应过程中稳定性的研究等都要用到微分方程. 微分方程其实就是联系着自变量,未知函数以及它的导数的关系式,它的本质也是一个方程.像上面这些例子都可以建立成微分方程的的模型. 我们了解了什么是微分方程,和微分方程在现实中的应用.那么解这样的方程就是理所应当该首先考虑的问题了. 2 全微分方程的定义 我们可以将一阶方程 (),dy f x y dx =写成微分的形式(),0f x y dx dy -=, 写成具有对称形式的一阶微分方程 ()(),,0M x y dx N x y dy +=. 其中(),M x y ,(),N x y 在某矩形域内是x , y 的连续且具有连续的一阶偏导数. 2.1 全微分方程 定义2 []() 139P 如果微分方程()(),,0M x y dx N x y dy +=的左边恰好是某个二元函数

微分方程数值解欧拉法

dy??x??xey?1.1、求解初值问题,已知精确解为 ????x?2xx?y?2x2当h=0.1时,解为:?dx????01y?1 ????yxy?xyyx nnnnn 1 0 1 9.3616E-03 0.1 0.900000 0.909362 1.6057E-02 0.819048 0.2 0.835105 2.0637E-02 0.774155 0.753518 0.3 2.3555E-02 0.723946 0.4 0.700391 2.5182E-02 0.5 0.682347 0.657165 2.5823E-02 0.621775 0.6 0.647598 2.5723E-02 0.592526 0.618249 0.7 2.5080E-02 0.568034 0.8 0.593114 2.4053E-02 0.547177 0.9 0.571230 2.2768E-02 1.0 0.551819 0.529051

1 0.950.90.850.80.750.70.650.60.550.510.100.20.80.70.90.60.40.30.5时,解为:h=0.05 当. ????x xyy y?yx nnn nn 1 1 0 2.4185E-03 0.952418 0.05 0.950000 4.4835E-03 0.10 0.909362 0.904878 6.2326E-03 0.15 0.864158 0.870391 7.6996E-03 0.827406 0.20 0.835105 8.9155E-03 0.794223 0.25 0.803138 9.9084E-03 0.774155 0.764247 0.30 1.0704E-02 0.737147 0.747850 0.35 1.1324E-02 0.723946 0.40 0.712621 1.1791E-02 0.702188 0.45 0.690397 1.2124E-02 0.50 0.670223 0.682347

相关主题
文本预览
相关文档 最新文档