当前位置:文档之家› 微分方程的积分因子求解法

微分方程的积分因子求解法

微分方程的积分因子求解法
微分方程的积分因子求解法

常微分方程的积分因子求解法

内容摘要:本文给出了几类特殊形式的积分因子的求解方法,并推广到较一般的形式。

关键词: 全微分方程,积分因子。

一、 基本知识

定义1、1 对于形如

0),(),(=+dy y x N dx y x M (1、1) 的微分方程,如果方程的左端恰就是x ,y 的一个可微函数),(y x U 的全微分,即d ),(y x U = dy y x N dx y x M ),(),(+,则称(1、1)为全微分方程、

易知,上述全微分方程的通解为 ),(y x U =C , (C 为任意常数)、

定理1、1 (全微分方程的判别法)设),(y x M ,),(y x N 在x ,y 平面上的单连通区域G 内具有连续的一阶偏导数,则(1、1)就是全微分方程的充要条件为

x

y x N y y x M ??=??),(),( (1、2) 证明见参考文献[1]、

定义1、2 对于微分方程(1、1),如果存在可微函数),(y x μ,使得方程

),(y x μ0),(),(),(=+dy y x N y x dx y x M μ (1、3)

就是全微分方程,则称),(y x μ为微分方程(1、1)的积分因子、

定理1、2 可微函数),(y x μ为微分方程(1、1)的积分因子的充要条件为

x

y x y x N ??),(ln ),(μ-y y x y x M ??),(ln ),(μ=x y x N y y x M ??-??),(),( (1、4) 证明:由定理1、1得,),(y x μ为微分方程(1、1)的积分因子的充要条件为 x

y x N y x y y x M y x ??=??)),(),(()),(),((μμ, 展开即得:

x y x y x N ??),(),(μ-y y x y x M ??),(),(μ=),(),(),(y x x y x N y

y x M μ???? ????-??、 上式整理即得(1、4)、 证毕 注1、1 若),(y x μ0≠,则(1、3)与(1、1)同解。所以,欲求(1、1)的通解,只须求出(1、3)的通解即可,而(1、3)就是全微分方程,故关键在于求积分因子),(y x μ。

为了求解积分因子),(y x μ,必须求解方程(1、4)。一般来说,偏微分方程(1、

4)就是不易求解的;但就是,当),(y x μ具有某种特殊形式时还就是较易求解的。

二、特殊形式的积分因子的求法

情况1 当),(y x μ具有形式)(x μ时,方程(1、4)化为

dx

x d y x N )(ln ),(μ=x y x N y y x M ??-??),(),(, 即

dx x d )(ln μ=???

? ????-??x y x N y y x M y x N ),(),(),(1 于就是得到: 定理2、1 微分方程(1、1)具有形如)(x μ的积分因子的充要条件为

???

? ????-??x y x N y y x M y x N ),(),(),(1 只就是x 的连续函数, 不含y 、 此时易得, dx x y x N y y x M y x N e

x ?=???? ????-??),(),(),(1)(μ、

类似地

定理2、2 微分方程(1、1)具有形如)(y μ的积分因子的充要条件为 ???

? ????-??x y x N y y x M y x M ),(),(),(1 只就是y 的连续函数, 不含x 、 并且, dy x y x N y y x M y x M e y ?=???? ????-??-),(),(),(1)(μ、

例2、1 求0)]()([=+-dy dx x q y x p 的通解、

解: 因 ???

? ????-??x y x N y y x M y x N ),(),(),(1=)(x p , 故 ?=dx x p e x )()(μ、 方程两边同乘以?

=dx x p e x )()(μ得 ?dx x p e )(0)]()([)(=?+-dy e dx x q y x p dx x p , 即??

?????-??dx e x q ye d ds s p dx x p )()()(0=, 故通解为??-?dx e x q ye ds s p dx x p )()()(=C , 即??

?????+?=?-dx e x q C e y ds s p dx x p )()()(,(C 为任意常数)、 情况2 如果(1、1)具有形如)(y x ±μ的积分因子, 令y x z ±=, 则)(y x ±μ =)(z μ、 由(1、4)得

dz z d )(ln μ=???

? ????-??x y x N y y x M y x M y x N ),(),(),(),(1μ, 于就是得到:

定理2、3 微分方程(1、1)具有形如)(y x ±μ的积分因子的充要条件为

???

? ????-??x y x N y y x M y x M y x N ),(),(),(),(1μ 只就是y x z ±=的连续函数, 此时积分因子为

dz x y x N y y x M y x M y x N Ce y x z ?=±=???? ????-??),(),(),(),(1)()(μμμ, (C 为任意非零常数)、 例2、2 求 0)32()32(32233223=-+++-++dy x x xy y dx y y y x x 的积分因子、

解: 因 ???

? ????-??x y x N y y x M y x M y x N ),(),(),(),(1μ=y x +-2 故方程具有形如)(y x +μ的积分因子, 取1=C 得,)(y x +μ?=++-)(2y x d y x e

=2)(1y x +、 情况3 如果(1、1)具有形如)(xy μ的积分因子, 令xy z =, 则)(xy μ=)(z μ、 由(1、4)得

dz z d )(ln μ=???

? ????-??-x y x N y y x M y x xM y x yN ),(),(),(),(1, 于就是得到:

定理2、4 微分方程(1、1)具有形如)(xy μ的积分因子的充要条件为

???

? ????-??-x y x N y y x M y x xM y x yN ),(),(),(),(1只就是xy z = 的连续函数, 此时积分因子为

dz x y x N y y x M y x xM y x yN Ce xy z ?==???? ????-??-),(),(),(),(1)()(μμ, (C 为任意非零常数)、 例2、3 求0)3(23=-+dy y x x ydx 的积分因子、 解: 因 ???

? ????-??-x y x N y y x M y x xM y x yN ),(),(),(),(1=xy 3-, 故方程具有形如)(xy μ的积分因子, 取1=C 得 )(xy μ?=-)(3

xy d xy e =3

)(1xy -、 情况 4 一般地, 如果方程(1、1)具有形如)(n m y x ±μ的积分因子, 令n m y x z ±=, 则)(n m y x ±μ)(z μ=、 由(1、4)得

dz z d )(ln μ=???

? ????-??--x y x N y y x M y x M ny y x N mx n m ),(),(),(),(111μ, 于就是得到

定理2、5 微分方程(1、1)具有形如)(n m y x ±μ的积分因子的充要条件为

???? ????-??--x y x N y

y x M y x M ny y x N mx n m ),(),(),(),(111μ只就是n m y x z ±=的连续函数, 此时积分因子为 dz x y x N y y x M y x M ny y x N mx n m n m Ce

y x z ?=±=???? ????-??--),(),(),(),(111)()(μμμ, (C 为

任意非零常数)、

类似地, 我们有

定理2、6 微分方程(1、1)具有形如)(l k y x μ的积分因子的充要条件为

???? ????-??---x y x N y

y x M y x M y lx y x N y kx l k l k ),(),(),(),(111只就是l k y x z =的连续函数, 此时积分因子为 dz x y x N y y x M y x M y lx y x N y kx l k l k l k Ce

y x z ?==???? ????-??---),(),(),(),(111)()(μμ, (C 为任意非零常数)、

例2、4 求 0)(2223=-+dy xy x dx y 的积分因子、 解: 由 ???? ????-??---x y x N y

y x M y x M y lx y x N y kx l k l k ),(),(),(),(111, =]

)2(2[4522y l k kx y x x y l k +--, 易知, 欲使上式仅就是l

k y x z =的函数, 只须22)2(245y l k kx x y +--等于常数即可、 为此, 令 42=k , 52=+l k , 得 2=k , 1=l 、 此时 2

2)2(245y l k kx x y +--=-1、 取1=C 得y x e y x y x d y x 2)(1121

)(22=?=-μ、

三、一般理论

定理 3、1 如果),(y x μ就是微分方程(1、1)的积分因子, (1、1)乘以),(y x μ后得到(1、3)、 设(1、3)的左端为),(y x dU , 则)),((),(y x U y x Φμ仍就是(1、1)的积分因子、 其中, )(?Φ就是任何可微函数、

定理 3、2 在(1、1)中, 若),(y x M 与),(y x N 在长方形区域Q 上连续,且),(y x N 在Q 上处处不为零、 对于(1、1)的任何两个在Q 上处处连续且恒不为零的积分因子),(1y x μ, ),(2y x μ(从而),(1y x μ, ),(2y x μ在Q 上不变号), 设

]),(),()[,(),(11dy y x N dx y x M y x y x dU +=μ

]),(),()[,(),(22dy y x N dx y x M y x y x dU +=μ、

则在Q 内任一点),(y x , 可定出一邻域, 在此邻域内, )

,(),(12y x y x μμ只就是

),(1y x U 的函数、

上述两定理的证明可参见参考文献[3]、

注 3、1 由定理3、1与定理3、2 即知, 设),(y x μ就是(1、1)的积分因子, (1、3)的左端为),(y x dU , 则(1、1)的积分因子通式为)),((),(y x U y x Φμ、 其中, )(?Φ就是任何可微函数、

例3、1 求 0)73()35(223=-+-dy xy x dx y xy 的积分因子及通解、 解: 重新组合: )35(2dy x xydx +0)73(23=+-dy xy dx y , 对于前一个括号内可求得一个积分因子y

x 211

=μ, 乘之得dy y dx x 35+ ][ln 35y x d =、 故前一个括号内可取积分因子通式为y x 21

)(351y x Φ、 同样可得后一个括号内的积分因子通式为

31xy )(732y x Φ、 下面求出1Φ, 2Φ, 使得

y x 21

)(351y x Φ=31xy )(732y x Φ、 设 αs s =Φ)(1, βs s =Φ)(2, 即有 y x 21

α)(35y x =31xy β)(73y x , 于就是得 ?

??-=--=-37131325βαβα, 解得21=α, 2

1=β、 从而即得原微分方程的一个积分因子为2121y x , 用2121y x 乘以方程的两边可求得通积分为 C y x y x =-27232325

, (C 为任意常数)、

微分方程的积分因子求解法

常微分方程的积分因子求解法 内容摘要:本文给出了几类特殊形式的积分因子的求解方法,并推广到较一般的形式。 关键词: 全微分方程,积分因子。 一、 基本知识 定义1.1 对于形如 0),(),(=+dy y x N dx y x M (1.1) 的微分方程,如果方程的左端恰是x ,y 的一个可微函数),(y x U 的全微分,即d ),(y x U = dy y x N dx y x M ),(),(+,则称(1.1)为全微分方程. 易知,上述全微分方程的通解为 ),(y x U =C , (C 为任意常数). 定理1.1 (全微分方程的判别法)设),(y x M ,),(y x N 在x ,y 平面上的单连通区域G 内具有连续的一阶偏导数,则(1.1)是全微分方程的充要条件为 x y x N y y x M ??=??),(),( (1.2) 证明见参考文献[1]. 定义1.2 对于微分方程(1.1),如果存在可微函数),(y x μ,使得方程 ),(y x μ0),(),(),(=+dy y x N y x dx y x M μ (1.3) 是全微分方程,则称),(y x μ为微分方程(1.1)的积分因子. 定理1.2 可微函数),(y x μ为微分方程(1.1)的积分因子的充要条件为 x y x y x N ??),(ln ),(μ-y y x y x M ??),(ln ),(μ=x y x N y y x M ??-??),(),( (1.4) 证明:由定理1.1得,),(y x μ为微分方程(1.1)的积分因子的充要条件为 x y x N y x y y x M y x ??=??)),(),(()),(),((μμ, 展开即得:

方程求积分因子的一个定理及其应用

玉溪师范学院学报第20卷2004年第12期 JournalofYuxiTeachersCollegeV01.20No.12Dec.2004 常微分方程求积分因子的一个定理及其应用 赵凯宏李晓飞米 (玉溪师范学院数学系,云南玉溪653100) [关键词]全微分方程;积分因子;首次积分 [摘要]将积分因子满足的偏微分方程改写成其特征方程,从而与常微分方程组的首次积分相联系.利用“可积组合法”来求积分因子,从而使所求常微分方程化成全微分方程.[中图分类号]0175[文献标识码]A[文章编号]1009—9506(2004)12—0031—04TheTheoremandItsApplicationforSolving IntegratingFactorsofOrdinaryDifferentialEquitions ZHAOKai—hongLIXiao—fei (DepartmentofMathematics,YuxiTeachers’College,Yuxi,Yunnan653100)KeyWords:completedifferentialequations;integratingfactors;Firstintegral Abstract:Thepartialdifferentialequitionssatisfiedwithintegralfactorsrewritetoitscharacteristicequitions.Hence,Itisrelatedtothefirstintegralofthesystemofordinarydifferentialequations.The integratingfactors are eaculatedbytheintegralcombinatorialmethod.Therefore,theordinarydifferential equitions becomethecompletedifferentialequations.1定理推导 满足设常微分方程 M(石,),)dx+N(x,),)咖=0 OM,ON 百≠面 (1) (2) 若存在函数肛(戈,Y)使得 It(x,Y)M(石,Y)dx+肛(戈,Y)N(戈,Y)dy=0(3) 成立 虫盟:业盟 (4) dydx 此时,方程(3)就变成了一个全微分方程,其通解为 I肛(戈,Y)M(戈,Y)dx+I肛(xo,Y)N(‰,Y)dy=c(5) 这里(z。,Yo)是肛(戈,Y)M(戈,Y),肛(戈,Y)N(戈,Y)公共定义域内的任意一固定点.C为积分常数.由于方程(3)与方程(1)是同解方程,所以(5)也是方程(1)的通解. 可见,要求解方程(1)关键是求积分因子肛(戈,Y),而要求p(z,Y)关键是解偏微分方程(4).方程(4)可化成如下的等价形式 N01_.业一M挚:巡一型(6) dxdVdyOx 若记 瓤收稿日期]2004一08—06 [作者简介]赵凯宏(1974一),男,甘肃泾川人,硕士,讲师,主要从事微分方程方面的研究  万方数据

微分方程数值解法

《微分方程数值解法》 【摘要】自然界与工程技术中的很多现象,可以归结为微分方程定解问题。其中,常微分方程求解是微分方程的重要基础内容。但是,对于许多的微分方程,往往很难得到甚至不存在精确的解析表达式,这时候,数值解提供了一个很好的解决思路。,针对于此,本文对常微分方程数值解法进行了简单研究,主要讨论了一些常用的数值解法,如欧拉法、改进的欧拉法、Runge —Kutta 方法、Adams 预估校正法以及勒让德谱方法等,通过具体的算例,结合MA TLAB 求解画图,初步给出了一般常微分方程数值解法的求解过程。同时,通过对各种方法的误差分析,让大家对各种方法的特点和适用范围有一个直观的感受。 【关键词】 常微分方程 数值解法 MA TLAB 误差分析 引言 在我国高校,《微分方程数值解法》作为对数学基础知识要求较高且应用非常广泛的一门课程,不仅 在数学专业,其他的理工科专业的本科及研究生教育中开设这门课程.近四十年来,《微分方程数值解法》不论在理论上还是在方法上都获得了很大的发展.同时,由于微分方程是描述物理、化学和生物现象的数学模型基础,且它的一些最新应用已经扩展到经济、金融预测、图像处理及其他领域 在实际应用中,通过相应的微分方程模型解决具体问题,采用数值方法求得方程的近似解,使具体问题迎刃而解。 2 欧拉法和改进的欧拉法 2.1 欧拉法 2.1.1 欧拉法介绍 首先,我们考虑如下的一阶常微分方程初值问题 ???==0 0)() ,('y x y y x f y (2--1) 事实上,对于更复杂的常微分方程组或者高阶常微分方程,只需要将x 看做向量,(2--1)就成了一个一阶常微分方程组,而高阶常微分方程也可以通过降阶化成一个一阶常微分方程组。 欧拉方法是解常微分方程初值问题最简单最古老的一种数值方法,其基本思路就是把(2--1)中的导数项'y 用差商逼近,从而将一个微分方程转化为一个代数方程,以便求解。 设在[]b a ,中取等距节点h ,因为在节点n x 点上,由(2--1)可得:

全微分方程及积分因子

全微分方程及积分因子

全微分方程及积分因子 内容:凑微分法,全微分方程的判别式,全微分方程的公式解,积分因子的微分方程,只含一个变量的积分因子和其他特殊形式的积分因子。由于有数学分析多元微积分的基础,本节的定理1可以简化处理。对课本中第三块知识即全微分方程的物理背景可以留到后面处理,对第四块知识增解和失解的情况要分散在本章各小节,每次都要重视这个问题。关于初等积分法的局限性可归到学习近似解法时一起讲解。 重点:全微分方程的公式解和积分因子的计算,难点为凑微分法和积分因子的计算。 习题1(1,3,5),2,3 思考题:讨论其他特殊形式的积分因子。 方程:0),(),(=+dy y x N dx y x M 判定:全微分?x N y M ??≡?? 解法:C dy y x N dx y x M y y x x =+??00),(),(0 初值问题0=C 积分因子:x N y M y M x N ??-??=? ???????-??μμμ1

)(x μ: N x N y M dx d ?? -??=μμ1 )(y μ: M x N y M dy d ??- ??-=μμ1 1.解下列方程: 1)0)(222=-+dy y x xydx 解:x N y M ?? ≡??=x 2 ??=-+x y C dy y xydx 002 )0(2既 C y y x =-3/32 2)0)2(=+---dy xe y dx e y y 解:x N y M ??≡??=y e -- ??=-+-y x y C dy y dx e 00)2(既C y xe y =--2 3)0)1(222=---+dy y x dx y x x 解:x N y M ??≡??=y x --221 ??=---+x y C dy y dx y x x 002)1(2 C y y y x x =-+---+23 232322)(32 )(32 )(32 既C y x x =-+23 2 2)(32 4)0)ln (3 =++dy x y dx x y

浅谈积分因子及首次积分

浅谈积分因子与首次积分 摘要:本文先给出了微分方程中的积分因子、首次积分以及特征方程的相关定义并加深理解,后引出全微分方程积分因子存在的充要条件以及与之相关的两类重要命题,灵活的将用积分因子解微分方程的方法与偏微分方程首次积分联系起来,为求特殊积分因子提供了方便,最后应用性的求出了常见的几类微分方程的积分因子. 关键词:微分方程;积分因子;首次积分;特征方程;偏微分:合分比 Introduction to integral factor and the points for the first time Chen Xueyun (School of Mathematics and Statistics,Tianshui Normal University 741000) Abstract This paper firstly presents the definition of the integral factors ,first integral in differential equation and the characteristic equation and leads to the necessary and sufficient condition for the existence of all the integrating factor of differential equation as well as in connection with the two important types of proposition, Then it provides conveniences for special integral factor by combining the method of integral factor to solve differential equations with partial differential equation flexibly,Finally it finds out the integral factor of some types of differential equations via application. Keywords Differential equations,Integrating factor,For the first time points,Characteristic equation, Partial differential,points than

一阶微分方程积分因子探讨

一阶微分方程积分因子的求法探讨 数学与信息科学学院 数学与应用数学专业 指导教师:郑丽丽 职称:教授 摘 要:针对满足某些条件的微分方程,本文将给出几种直接、有效地求积分因子的方法. 关键词:一阶微分方程;积分因子 The Solution of Integral Factor for the First Order Ordinary Differential Equation Abstract :This paper has made a special effort to study how to quadrate integral factors directly and efficiently .When the differential equations meet some conditions , therefore , the common method we can get from it . Key Words :the first order ordinary differential equation ;integral factor 0前 言 一阶微分方程的求解是整个微分方程求解的基础,一般的有两种处理方式:一是 以变量可分离的方程为基础,通过适当的变量代换把一阶微分方程化为可积型方程;另外就是以全微分方程为基础,采取积分因子法把一个一阶微分方程化为全微分方程求.这里我们讨论了积分因子存在的充要条件,给出了确定若干特殊类型的积分因子的求法. 1 积分因子的定义 若对于一阶微分方程 ()(),,0M x y dx N x y dy += (1) 其中(),M x y ,(),N x y 在矩形域内是,x y 的连续函数,且有连续的一阶偏导数.若存在连续可微的函数(),0x y μ≠,使得 ()()()(),,,,0x y M x y dx x y N x y dy μμ+≡, 为一恰当方程,即存在函数V ,使

微分方程积分因子的求法

微分方程积分因子的求法 何佳 【摘要】 利用积分因子,可以对一个一阶微分方程的求解进行统一处理。因此,如何求解积分因子就成为解一阶微分方程的一个重点了。但对于一个具体的方程,如何求出它的积分因子呢,一般的方法是解一个一阶偏微分方程,不过那是比较不容易的。但是,对于某些特殊的情况,却可以简单地得出积分因子。通过查找我们发现,在大多数《常微分方程》的教材中都只给出了只与x 或y 有关的积分因子的求法,但这是不够的。所以我们在这里来讨论一下关于求解()x y αβμ和 ()m n ax by μ+这两类积分因子的充要条件及部分例题,由此我们就可以得到形式 相近的积分因子。如:通过x y μ=+,可以得到x y μ=-的积分因子。如此举一反三,力求使得求积分因子的问题变的简便易行。同时,还对积分因子的求法进行了推广,总结出几类方程积分因子的求法。 【关键字】 微分方程 , 积分因子 , 求解方法

【目录】 引言 (1) 目录 (2) 一、()x y αβμ和()m n ax by μ+两类积分因子 § 1、 与()x y αβμ有关的积分因子 …………………………………………… 3 § 2、 与()m n ax by μ+有关的积分因子 …………………………………………… 4 二、微分方程积分因子求法的推广 § 1、 满足条件 ()P Q P Qf x y x y ??-=-??的积分因子求法 (7) § 2、 方程1123422(3)36330m m m m x mx y xy dx y x y x y dy +-????++++++=????积 分因子 (10) § 3、 方程13()30m m m x m x y x dx x dy -??+++=?? 积分因子 (12) § 4、 方程1(4)4450m m m m x mx y y dx x x y dy -????++++++=????积分因子 …………………………………………… 13 参考文献 (15)

偏微分方程数值解法答案

1. 课本2p 有证明 2. 课本812,p p 有说明 3. 课本1520,p p 有说明 4. Rit2法,设n u 是u 的n 维子空间,12,...n ???是n u 的一组基底,n u 中的任一元素n u 可 表为1n n i i i u c ?==∑ ,则,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???=== -=-∑∑是12,...n c c c 的二次函数,(,)(,)i j j i a a ????=,令 () 0n j J u c ?=?,从而得到12,...n c c c 满足1 (,)(,),1,2...n i j i j i a c f j n ???===∑,通过解线性方程组,求的i c ,代入1 n n i i i u c ?==∑, 从而得到近似解n u 的过程称为Rit2法 简而言之,Rit2法:为得到偏微分方程的有穷维解,构造了一个近似解,1 n n i i i u c ?== ∑, 利用,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???===-=-∑∑确定i c ,求得近似解n u 的过程 Galerkin 法:为求得1 n n i i i u c ? == ∑形式的近似解,在系数i c 使n u 关于n V u ∈,满足(,)(,) n a u V f V =,对任 意 n V u ∈或(取 ,1j V j n ?=≤≤) 1 (,)(,),1,2...n i j i j i a c f j n ???===∑的情况下确定i c ,从而得到近似解1 n n i i i u c ?==∑的过程称 Galerkin 法为 Rit2-Galerkin 法方程: 1 (,)(,)n i j i j i a c f ???==∑ 5. 有限元法:将偏微分方程转化为变分形式,选定单元的形状,对求解域作剖分,进而构 造基函数或单元形状函数,形成有限元空间,将偏微分方程转化成了有限元方程,利用 有效的有限元方程的解法,给出偏微分方程近似解的过程称为有限元法。 6. 解:对求解区间进行网格剖分,节点01......i n a x x x x b =<<<<=得到相邻节点1,i i x x -

微分方程的积分因子求解法

创作编号:BG7531400019813488897SX 创作者:别如克* 常微分方程的积分因子求解法 内容摘要:本文给出了几类特殊形式的积分因子的求解方法,并推广到较一般的形式。 关键词:全微分方程,积分因子。 一、基本知识 定义1.1 对于形如 dx y N M(1.1) x ),( ),(= +dy x y 的微分方程,如果方程的左端恰是x,y的一个可微函数),(y x U的全微分,即d),(y y x M),( dx ),(+,则称(1.1)为全微分方程. x U= dy y N x 易知,上述全微分方程的通解为),(y U=C, (C为任意常数). x 定理1.1 (全微分方程的判别法)设),(y x N在x,y平面上 M,),(y x 的单连通区域G内具有连续的一阶偏导数,则(1.1)是全微分方程的充要条件为

x y x N y y x M ??=??) ,(),( (1.2) 证明见参考文献[1]. 定义1.2 对于微分方程(1.1),如果存在可微函数),(y x μ,使得方程 ),(y x μ0),(),(),(=+dy y x N y x dx y x M μ (1.3) 是全微分方程,则称),(y x μ为微分方程(1.1)的积分因子. 定理1.2 可微函数),(y x μ为微分方程(1.1)的积分因子的充要条件为 x y x y x N ??) ,(ln ) ,(μ-y y x y x M ??),(ln ),(μ=x y x N y y x M ??-??),(),( (1.4) 证明:由定理1.1得,),(y x μ为微分方程(1.1)的积分因子的充要条件为 x y x N y x y y x M y x ??=??)),(),(()),(),((μμ, 展开即得: x y x y x N ??) ,() ,(μ-y y x y x M ??),(),(μ=),(),(),(y x x y x N y y x M μ??? ? ????-??. 上式整理即得(1.4). 证毕 注1.1 若),(y x μ0≠,则(1.3)和(1.1)同解。所以,欲求(1.1)的通解,只须求出(1.3)的通解即可,而(1.3)是全微分方程,故关键在于求积分因子),(y x μ。 为了求解积分因子),(y x μ,必须求解方程(1.4)。一般来说,偏微分方程(1.4)是不易求解的;但是,当),(y x μ具有某种特殊形式时还是较易求解的。

积分因子法习题

习题2—5 1. 求解下列微分方程: (1)0)()23(2232=++++dy y x dx y xy y x ; 解 这里x x Q y x x y P 2,32322=??++=??,因此原方程不是恰当方程,由于 3)(1=??-??x Q y P Q , 于是原方程有积分因子 x dx e e x 33)(=?=μ. 将它乘原方程两边,得到一个恰当方程 0)()23(223323=++++dy y x e dx y xy y x e x x , 改写为 0)(])23([2333223=++++dy y dx y e dy e x ydx x x e x x x , 即 0)3 1()(3332=+y e d y e x d x x . 由此可求得通积分 C y e y e x x x =+33323 1. (2)0)(22=++-dy x y x ydx ; 解 把方程改写为 0)()(22=+--dy y x xdy ydx . 容易观察出一个积分因子为2 21y x +=μ,将它乘原方程两边,得 022=-+-dy y x xdy ydx . 即 0)(arctan =--dy x y d . 从而原方程的通积分为 C y x y =+arctan . (3)0)1(2223=-+dy y x dx xy ; 解 这里222,6xy x Q xy y P =??=??,因此原方程不是恰当方程,由于

y y P x Q P 2)(1-=??-??, 于是原方程有积分因子 2)2(1)(y e x dx y =?=-μ. 将它乘原方程两边,得 01)2(22=- +dy y dy x xydx , 从而原方程的通积分为 C y y x =+12. (4)0)(2223=-+dy xy x dx y ; 解 把方程改写为 02)2(223=+-dy x dy xy dx y . 不难看出,前一组有积分因子y x 21和通积分C x y =2,因而它有更一般的积分因子)(12 12x y g y x ,前一组有积分因子21x 和通积分C y =,故它有更一般的积分因子)(122y g x .为使关系式 )(1)(122212y g x x y g y x = 成立,可取 1)(21=x y g ,y y g 1)(2=. 从而得到原方程的积分因子y x 21 =μ,以它乘方程的两端,得到 0222 2=+-dy y x xydy dx y . 从而原方程的通积分为 C x y y =-2 2 ln . 此外,原方程还有解0,0==y x . 2. 证明方程 0),(),(=+dy y x Q dx y x P ①

第十章-偏微分方程数值解法

第十章 偏微分方程数值解法 偏微分方程问题,其求解十分困难。除少数特殊情况外,绝 大多数情况均难以求出精确解。因此,近似解法就显得更为重要。本章仅介绍求解各类典型偏微分方程定解问题的差分方法。 §1 差分方法的基本概念 1.1 几类偏微分方程的定解问题 椭圆型方程:其最典型、最简单的形式是泊松(Poisson )方程 ),(22 2 2y x f y u x u u =??+??=? 特别地,当0),(≡y x f 时,即为拉普拉斯(Laplace )方程,又 称 为调和方程 22 22=??+??=?y u x u u Poisson 方程的第一边值问题为 ?? ???Ω ?=Γ=Ω∈=??+??Γ∈),(),(),() ,(),(22 22y x y x u y x y x f y u x u y x ?

其中 Ω为以Γ为边界的有界区域,Γ为分段光滑曲线,ΓΩY 称为定解区域,),(y x f ,),(y x ?分别为Ω,Γ上的已知连 续函数。 第二类和第三类边界条件可统一表示为 ),(),(y x u u y x ?α=??? ? ??+??Γ∈n 其中n 为边界Γ的外法线方向。当0=α时为第二类边界条件, 0≠α时为第三类边界条件。 抛物型方程:其最简单的形式为一维热传导方程 2 20(0)u u a a t x ??-=>?? 方程可以有两种不同类型的定解问题: 初值问题 ?? ???+∞ <<∞-=+∞<<-∞>=??-??x x x u x t x u a t u )()0,(,00 22? 初边值问题

2 212 00,0(,0)()0(0,)(),(,)()0u u a t T x l t x u x x x l u t g t u l t g t t T ????-=<<<

微分方程的分类及其数值解法

微分方程的分类及其数值解法 微分方程的分类: 含有未知函数的导数,如dy/dx=2x 、ds/dt=0.4都是微分方程。 一般的凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。未知函数是一元函数的,叫常微分方程;未知函数是多元函数的叫做偏微分方程。微分方程有时也简称方程。 一、常微分方程的数值解法: 1、Euler 法: 00d (,), (1.1)d (), (1.2) y f x y x y x y ?=???=? 001 (),(,),0,1,,1n n n n y y x y y hf x y n N +=??=+=-? (1.4) 其中0,n b a x x nh h N -=+=. 用(1.4)求解(1.1)的方法称为Euler 方法。 后退Euler 公式???+==+++),,(),(111 00n n n n y x hf y y x y y 梯形方法公式 )].,(),([2 111+++++=n n n n n n y x f y x f h y y 改进的Euler 方法11(,),(,),1().2p n n n c n n p n p c y y hf x y y y hf x y y y y ++?=+??=+???=+??? 2、Runge-Kutta 方法: p 阶方法 : 1()O h -=?总体截断误差局部截断误差 二阶Runge-Kutta 方法 ??? ????++==++=+),,(),,(,2212 1211hk y h x f k y x f k k h k h y y n n n n n n

常微分方程积分因子法的求解

用积分因子法解常微分方程 摘要:每一个微分方程通过转化为恰当方程之后,可以运用恰当方程的公式进行求解,因此非恰当微分方程转化成恰当方程是求解微分方程的重要步骤,转化成恰当方程需要求解出积分因子,因此积分因子的求解变得非常重要.此论文主要研究几类微分方程积分因子,从而使微分方程的求解变得较简便. 关键词:微分方程恰当微分方程积分因子通解 Abstract:After each differential equation through into the appropriate equation, can use the appropriate equations for solving non appropriate formula, the differential equation is transformed into an appropriate equation is an important step in solving differential equations, into the appropriate equation requires the solution of the integral factor, thus solving the integral factor becomes very important. This paper mainly research for several kinds of differential equation of integral factor, to make it easy for solving differential equations. Key Words:Differential equation Exact differential equation Integrating factor General solution 自变量只有一个的微分方程称为常微分方程.常微分方程是数学分析或基础数学的一个组成部分,在整个数学大厦中占据着重要位置.本文通过运用求微分方程的积分因子来将微分方程转化为恰当微分方程求解.常微分方程是解决实际问题的重要工具[1]. 1 恰当微分方程 1.1 常微分方程 联系自变量、未知函数以及未知函数的某些导数(或微分)之间的关系式称为微分方程. 未知函数是一元函数的微分方程称为常微分方程,未知函数是多元函数的微分方程称为偏微分方程.

微分方程数值方法习题二

并与真解u(x) 2e x x 1相比较. 微分方程数值方法 常微分方程初值问题习题一 u' ax b, u(0) 0, 分别写出Euler 法和改进的Euler 法的近似解 府 的表达式,并求 它们与真解u(x) -ax 2 bx 的差u(X m ) U m . 2. 取步长h 0.1,分别用Euler 法和改进的Euler 法求下列初值问 题的解,并与真解相比较. 真解 u(x) .1 2x ; 2 ,u x . c (2) u 2 ,1 x 2, x u u(1) 2, 1 真解 u(x) x(8 31 n x)3 ; u x u '広乔 u(1) 1, 3 1 真解 u(x) (4x 2 3x 2)3. X 2 3. 用Euler 法计算0£dt 在x 0.1,0.2的近似值. 4. 取步长h 0.2,用四阶Runge-Kutta 法解 u' u x, 0 x 1, u(0) 1, 1.对初值问题 (1) u' u 2x 0x1, u(0) u 1 , (3) 1 x 1.5,

5. 设 f(x,u)关于 u 满足 Lipschitz 条件,证明 N 级 Runge-Kutta 法中的增量函数 (x,u,h)关于u 也满足 Lipschitz 条件. 6. 对初值问题 u' u x 1, u(0) 1, 写出四阶Taylor 级数法和四阶 Runge-Kutta 法的计算公式,它们 是否相同. 7. 证明改进的Euler 法的绝对稳定区间是(-2,0). 8.证明:当h( h)满足 3 4 h h 24 时,四阶 Runge-Kutta 法绝对稳定. 9. 用Tayor 展开确定下面多步法中的系数,使其阶尽可能高,并求 局部截断误差的主项. 10. 对初值问题 u'' f(x,u), u(X °) u °,u'(x 0) u 10, 确定求解公式 (3) u m1 a 2u m 1 h( m 1 2 ). (1) u m 1 a 1u m a 2u m 1 h 0 f m 1 ;

常微分方程数值解法

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<< <<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1, ,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

微分方程的积分因子求解法

常微分方程的积分因子求解法 内容摘要:本文给出了几类特殊形式的积分因子的求解方法,并推广到较一般的形式。 关键词: 全微分方程,积分因子。 一、 基本知识 定义1、1 对于形如 0),(),(=+dy y x N dx y x M (1、1) 的微分方程,如果方程的左端恰就是x ,y 的一个可微函数),(y x U 的全微分,即d ),(y x U = dy y x N dx y x M ),(),(+,则称(1、1)为全微分方程、 易知,上述全微分方程的通解为 ),(y x U =C , (C 为任意常数)、 定理1、1 (全微分方程的判别法)设),(y x M ,),(y x N 在x ,y 平面上的单连通区域G 内具有连续的一阶偏导数,则(1、1)就是全微分方程的充要条件为 x y x N y y x M ??=??),(),( (1、2) 证明见参考文献[1]、 定义1、2 对于微分方程(1、1),如果存在可微函数),(y x μ,使得方程 ),(y x μ0),(),(),(=+dy y x N y x dx y x M μ (1、3) 就是全微分方程,则称),(y x μ为微分方程(1、1)的积分因子、 定理1、2 可微函数),(y x μ为微分方程(1、1)的积分因子的充要条件为 x y x y x N ??),(ln ),(μ-y y x y x M ??),(ln ),(μ=x y x N y y x M ??-??),(),( (1、4) 证明:由定理1、1得,),(y x μ为微分方程(1、1)的积分因子的充要条件为 x y x N y x y y x M y x ??=??)),(),(()),(),((μμ, 展开即得:

常微分方程数值方法

常微分方程数值方法 1、欧拉方法:1,,1,0),,(1-=+=+n k y t hf y y k k k k . function E=euler(f,a,b,ya,n) % Input - f is the function entered as a string 'f' % - a and b are the left and right end points % - ya is the initial condition y(a) % - n is the number of steps % Output - E=[T' Y'] where T is the vector of abscissas and % Y is the vector of ordinates h=(b-a)/n; T=zeros(1,n+1); Y=zeros(1,n+1); T=a:h:b; Y(1)=ya; for j=1:n Y(j+1)=Y(j)+h*feval(f,T(j),Y(j)); end E=[T' Y']; 【例】 用欧拉方法求解区间]3,0[内的初值问题:1)0(,2'=-=y y t y 。 f=inline('(t-y)/2','t','y');a=0;b=3;ya=1;n=12; %n=3,6,12,24,48,96... E=euler(f,a,b,ya,n),plot(E(:,1),E(:,2),'r*'),hold on 符号解:y=dsolve('Dy=(t-y)/2','y(0)=1') h=(3-0)/12;t=0:h:3;y=eval(y);[t' y'] 用图比较数值解:(f 为ode 函数文件) ode45('f',[0,3],1) 2、休恩(Huen)方法(即改进Euler 方法): 1 ,,1,0)],,(,(),([211-=+++=++n k y t hf y t f y t f h y y k k k k k k k k function H=heun(f,a,b,ya,n) % Input - f is the function entered as a string 'f' % - a and b are the left and right end points % - ya is the initial condition y(a) % - n is the number of steps % Output - H=[T' Y'] where T is the vector of abscissas and % Y is the vector of ordinates h=(b-a)/n; T=zeros(1,n+1); Y=zeros(1,n+1); T=a:h:b; Y(1)=ya; for j=1:n k1=feval(f,T(j),Y(j)); k2=feval(f,T(j+1),Y(j)+h*k1); Y(j+1)=Y(j)+(h/2)*(k1+k2); end H=[T' Y'];

全微分方程及积分因子

1.5 全微分方程及积分因子

一、全微分方程的定义及条件 则它的全微分为 是一个连续可微的函数设,),(y x U U =dy y U dx x U dU ??+??=如果我们恰好碰见了方程 0),(),(=??+??dy y y x U dx x y x U 就可以马上写出它的通积分 . ),(c y x U =

定义1使得 若有函数),,(y x U dy y x N dx y x M y x dU ),(),(),(+=则称微分方程) 1(,0),(),(=+dy y x N dx y x M 是全微分方程..),()1(c y x U =的通积分为此时如0 =+ydx xdy 0 )2()3(322=+++dy xy x dx y y x 0 )()(=+dy y g dx x f 是全微分方程.=)(xy d =+)(23xy y x d =+òò))()((y d y g x d x f d 1.全微分方程的定义

需考虑的问题(1) 方程(1)是否为全微分方程? (2) 若(1)是全微分方程,怎样求解? (3) 若(1)不是全微分方程,有无可能转化为全微分方程求解?2 方程为全微分方程的充要条件 定理1则方程 偏导数中连续且有连续的一阶域在一个矩形区和设函数,),(),(R y x N y x M ) 1(,0),(),(=+dy y x N dx y x M 为全微分方程的充要条件是 ). 2(,),(),(x y x N y y x M ??=??)1(, 0),(),(=+dy y x N dx y x M

证明“必要性”设(1)是全微分方程,使得 则有函数),,(y x U dy y U dx x U y x dU ??+??=),(dy y x N dx y x M ),(),(+=故有),,(y x M x U =??),(y x N y U =??从而从而有都是连续的和由于,22y x U x y U ??????,22y x U x y U ???=???故.),(),(x y x N y y x M ??=??y x U y N x y U y M ???=?????=??22 ,

求解积分因子的方法整理

求解积分因子的方法整理 一、恰当微分方程与积分因子 1、对于一阶微分方程 M(x,y)dx+N(x,y)dy=0 (1) 其左端恰好是某个二元函数u(x,y)的全微分,即 P(x,y)dx+Q(x,y)dy=du(x,y) 则称方程(1)为恰当微分方程。容易得到方程(1)的通解为u(x,y)=c (这里的c 为任意常数)。可是若(1)不是恰当微分方程,如果存在连续可微的函数 u=u(x,y) ≠0,使得 u(x,y)M(x,y)dx+u(x,y)N(x,y)dy=0为恰当微分方程,则称u(x,y)为方程(1)的积分因子。 2、恰当微分方程的判定 对于一阶微分方程 M(x,y)dx+N(x,y)dy=0 它为恰当微分方程的必要条件为: 二、几种常见的积分因子的类型及求法 1、存在只与x 有关的积分因子 (1)充要条件: ()M N y x x N ψ????-= (2)形式:u=()x dx e ψ? 2、存在只与y 有关的积分因子

(1)充要条件: ()M N y x y M ?????-=- (2)形式:()y dy e ?? 这里的 ().()x y ψ?分别是只关于x 、y 的函数。 3、方程(1)有形如u(x,y)=F(x,y)的积分因子,充要条件:

4、方程(1)有形如u[p(x)+f(x)g(y)+q(y)]的积分因子,充要条件: 它的积分因子为: 5、方程(1)有形如u[f(x)g(y)+q(y)]的积分因子,充要条件: 它的积分因子为: 6、方程(1)有形如的积分因子,充要条件:

其中 7、方程(1)有形如的积分因子,充要条件: 它的积分因子为: 8、方程有形如的积分因子,充要条件: 它的积分因子为: 其中这里的

相关主题
文本预览
相关文档 最新文档