当前位置:文档之家› 积分因子法在常微分方程中的应用-[开题报告]

积分因子法在常微分方程中的应用-[开题报告]

积分因子法在常微分方程中的应用-[开题报告]
积分因子法在常微分方程中的应用-[开题报告]

毕业论文开题报告

数学与应用数学

积分因子法在常微分方程中的应用

一、选题的背景、意义

在许多科学领域中,常常需要研究常微分方程的理论和其解是否存在.常微分方程的理论包括解的存在性和唯一性、奇解、定性理论等等.其中解的讨论也尤为重要,求解方法有很多种,例如,常数变易法、叠加法、积分因子法.求得常微分方程的解能使常微分方程在其他的科学领域有更好的应用.

常微分方程在微积分概念出现后即已出现,对常微分方程的研究可分为以下几个阶段.

发展初期是针对具体的常微分方程,希望能用初等函数或超越函数表示其解,属于“求通解”的时代.

刘维尔在1841年证明了里卡蒂方程不存在一般的初等解,同时柯西又提出了初值问题.因此,早期的常微分方程的求解热潮中断了,而常微分方程从“求通解”时代转向“求定解”时代.

19世纪末,常微分方程的研究从“求定解”时代转向“求所有解”的新时代.那是由天体力学中的太阳系稳定性问题需要研究常微分方程解的大范围性态引起的.

20世纪末六七十年代以后,常微分方程在计算机技术发展的促进下,从“求所有解”时代转入“求特殊解”时代.

求常微分方程的通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就能容易地求出问题所需要的特解;根据通解的表达式可以了解其对某些参数的依赖情况,便于参数取值,使它对应的解具有所需要的性能,也有助于解的其他研究.虽然通过求通解的方法可以求出方程的解,但是有些时候会比较复杂.因此,我们要寻找更为简便的求解方法.对常微分方程的求解.积分因子法是一种很好的求解方法,它能将复杂的计算简单化. 二、研究的基本内容与拟解决的主要问题

本课题主要对积分因子法进行归纳总结,旨在应用积分因子法来求解常微分方程.

本课题的主要目的是通过查阅各种相关文献,寻找各种相关信息,来得到并了解用积分因子法求解常微分方程的一些计算技巧,达到化难为易的目的.

先从定义出发,介绍相关的一些基本概念,如微分方程、常微分方程、全微分方程、解、积分因子等以及一些相关的定理和充要条件.

接着归纳总结积分因子法:

积分因子的求法

在求积分因子之前,要对常用的一些简单函数的全微分形式比较熟悉,这样能更快地求出积分因子.

(1)观察法求积分因子

对于一些形式比较简单的微分方程,可以直接观察出方程的积分因子.

如:方程0ydx xdy -=,根据2x ydx xdy d y y ??-= ???,可以直接观察出它的积分因子为2

1y . (2)分组凑微分法

对于一些相对复杂的微分方程,可以对其进行分组,然后根据一些简单函数的全微分形式对其进行凑微分,得到其积分因子.

(3)重新组合法

对于一些相对复杂,不易观察出其积分因子的微分方程,可以将其各项重新组合,再根据一些简单函数的全微分形式通过观察来求得其积分因子.

(4)指数待定法求积分因子

如果微分方程()(),,0P x y dx Q x y dy +=中()(),,,P x y Q x y 是,x y 的多项式,则可以找到m n

x y 形式的积分因子.

(5)公式法求积分因子

对一些非全微分方程可以用上面提到的四种方法求得它们的积分因子,但还有一些非全微分方程用上述四种方法不太容易得到它们的积分因子,这时就可以用一些公式来求解.不同的公式都有其相对应的条件需要满足.

积分因子巧解常微分方程

(1)观察法

对于简单形式的微分方程,可以根据一些简单函数的全微分形式直接观察出方程的积分因子,再将积分因子乘到原方程的两边形成全微分方程进行求解.

(2)分组凑微分法

将微分方程重新分组,化成易求得积分因子的形式,求得其积分因子,再将积分因子乘到原方程的两边形成全微分方程进行求解.

(3)重新组合法

将微分方程进行重新组合,化成易求得积分因子的形式,求得其积分因子,再将积分因子乘到原方程的两边形成全微分方程进行求解.

(4)指数待定法

对符合特定条件的微分方程,用指数待定的方法求得其积分因子,再将积分因子乘到原方程的两边形成全微分方程进行求解.

(5)公式法

针对不同的微分方程,运用相对应的公式求得其积分因子,再将积分因子乘到原方程的两边形成全微分方程进行求解.

积分因子法在一阶常微分方程中的应用

(1)在可分离变量微分方程中的应用

如果一阶微分方程可变化为

()()()()11220M x N y dx M x N y dy += 的形式,则称这个方程为可分离变量方程.

运用积分因子法求得这类方程的积分因子,将方程转化为全微分方程进行求解.

(2)在齐次微分方程中的应用

方程()(),,0M x y dx N x y dy +=是齐次方程.

运用积分因子法求得这类方程的积分因子,将方程转化为全微分方程进行求解.

(3)在一阶线性微分方程中的应用

设一阶线性微分方程为

()()dy P x y Q x dx +=

将其成对称的形式 ()()0P x t Q x dx dy -+=????

若方程()(),,0M x y dx N x y dy +=有一个仅依赖于x 的积分因子μ,则

()()f x dx x e μ?=,其中()M N y x f x N

??-??=;反之,若()f x dx e ?仅依赖于x ,则()f x dx e ?是方程()(),,0M x y dx N x y dy +=的一个积分因子.

(4)在贝努力方程中的应用

将贝努力方程

()()(),0,1n dy P x y Q x y n dx +=≠ 令1n z y -=,可以将方程化为一阶线性微分方程 ()()()()11dz n P x z n Q x dx

+-=- 然后用积分因子求解此方程.

积分因子法在二阶常微分方程中的应用

二阶线性微分方程()()()12y P x y P

x y Q x '''++=,当()0Q x =时,此方程为齐次方程;而当()0Q x ≠时,此方程为非齐次方程.

运用积分因子法对二阶线性微分方程进行求解.

积分因子法的其他应用

证明一些初等公式或一些命题.

三、研究的方法与技术路线、研究难点,预期达到的目标

本课题归纳总结的主要内容是积分因子法在常微分方程中的应用.利用积分因子法来解决常微分方程的一些复杂的计算问题,使计算过程更加简单易理解.并且积分因子是不唯一,有简单也有复杂.不管它如何,它在常微分方程的计算中都有着不简单的力量.通过参考一些文献资料,以及自己对文献资料的理解和自己掌握的知识,并经过自己的努力,在最后可以用积分因子法解决一些常微分方程的计算.

常微分方程的解本来就是一个难点,又由于对积分因子的了解不是很深,在之前学习的只是最基础的.因此,对于它的应用还是有一定的难度的.

尽管这个课题有一定的难度,但是我相信不管困难是什么,总能找出方法来解决的.应用积分因子法可以使很多常微分方程的计算得到简化,能够达到化难为易的目的.

常微分方程的研究与其他学科领域的结合,使得各种新的研究分支出现.相信常微分方程会在更多的科学领域有更好的应用,并会有更好的发展,做出更大的贡献.

四、论文详细工作进度和安排

2011-02-21至2011-03-20完成初稿;

2011-03-21至2011-04-20在导师的指导下完成第一次修改;

2011-04-21至2011-05-20在导师的指导下完成第二次修改并定稿;

2011-05-21至2011-05-23准备论文答辩.

五、主要参考文献:

[1]时宝,黄朝炎.微分方程基础及其应用[M].北京:科学出版社.2007:2-3.

[2]丁同仁,李承治.常微分方程教程[M].北京:高等教育出版社.2004,19:32-33,46-47.

[3]试析一阶微分方程的积分因子[J].许昌师专学报.1993,3(12):9,35-39.

[4]杨雨民.积分因子咋一阶线性微分方程中的应用[J]. 辽宁省交通高等专科学校学报.1997,5(1):30-33.

[5]James Stewart Calculus:Early Transcendentals(5thed) [M].北京:高等教育出版社.2004:598-601,641-643.

[6]张奕河,郭文川.关于一阶常微分方程的积分因子求解问题[J].四川理工学院学报(自然科学版).2009,22(6):11-13.

[7]Ma Yuan-jing.Runge-Kutta type iterative method for nonlinear equation s[J]JOU

JOURNAL OF NATURAL SCIENCE OF HEI LONG JIANG UNIVERSITY.2009,26(4):431-435[8]潘鹤鸣.几种特殊类型积分因子的求法及在解微分方程中的应用[J].巢湖学院学报.2003,5(3):18-22.

[9]徐安农,段复建.全微分方程与积分因子法[J].桂林电子工业学院学报.2002,22(2):10-12.

[10]温启军,张丽静.关于积分因子的讨论[J]长春大学学报.2006,16(5):17-20.

[11]龚雅玲.求解微分方程的积分因子法[J].黔南昌教育学院学报.2007,22(1):32-35.

[12]张凤然,马金江.二阶变系数线性微分方程的积分因子解法[J].2008,6(28):13-15.

微分方程的积分因子求解法

常微分方程的积分因子求解法 内容摘要:本文给出了几类特殊形式的积分因子的求解方法,并推广到较一般的形式。 关键词: 全微分方程,积分因子。 一、 基本知识 定义1.1 对于形如 0),(),(=+dy y x N dx y x M (1.1) 的微分方程,如果方程的左端恰是x ,y 的一个可微函数),(y x U 的全微分,即d ),(y x U = dy y x N dx y x M ),(),(+,则称(1.1)为全微分方程. 易知,上述全微分方程的通解为 ),(y x U =C , (C 为任意常数). 定理1.1 (全微分方程的判别法)设),(y x M ,),(y x N 在x ,y 平面上的单连通区域G 内具有连续的一阶偏导数,则(1.1)是全微分方程的充要条件为 x y x N y y x M ??=??),(),( (1.2) 证明见参考文献[1]. 定义1.2 对于微分方程(1.1),如果存在可微函数),(y x μ,使得方程 ),(y x μ0),(),(),(=+dy y x N y x dx y x M μ (1.3) 是全微分方程,则称),(y x μ为微分方程(1.1)的积分因子. 定理1.2 可微函数),(y x μ为微分方程(1.1)的积分因子的充要条件为 x y x y x N ??),(ln ),(μ-y y x y x M ??),(ln ),(μ=x y x N y y x M ??-??),(),( (1.4) 证明:由定理1.1得,),(y x μ为微分方程(1.1)的积分因子的充要条件为 x y x N y x y y x M y x ??=??)),(),(()),(),((μμ, 展开即得:

方程求积分因子的一个定理及其应用

玉溪师范学院学报第20卷2004年第12期 JournalofYuxiTeachersCollegeV01.20No.12Dec.2004 常微分方程求积分因子的一个定理及其应用 赵凯宏李晓飞米 (玉溪师范学院数学系,云南玉溪653100) [关键词]全微分方程;积分因子;首次积分 [摘要]将积分因子满足的偏微分方程改写成其特征方程,从而与常微分方程组的首次积分相联系.利用“可积组合法”来求积分因子,从而使所求常微分方程化成全微分方程.[中图分类号]0175[文献标识码]A[文章编号]1009—9506(2004)12—0031—04TheTheoremandItsApplicationforSolving IntegratingFactorsofOrdinaryDifferentialEquitions ZHAOKai—hongLIXiao—fei (DepartmentofMathematics,YuxiTeachers’College,Yuxi,Yunnan653100)KeyWords:completedifferentialequations;integratingfactors;Firstintegral Abstract:Thepartialdifferentialequitionssatisfiedwithintegralfactorsrewritetoitscharacteristicequitions.Hence,Itisrelatedtothefirstintegralofthesystemofordinarydifferentialequations.The integratingfactors are eaculatedbytheintegralcombinatorialmethod.Therefore,theordinarydifferential equitions becomethecompletedifferentialequations.1定理推导 满足设常微分方程 M(石,),)dx+N(x,),)咖=0 OM,ON 百≠面 (1) (2) 若存在函数肛(戈,Y)使得 It(x,Y)M(石,Y)dx+肛(戈,Y)N(戈,Y)dy=0(3) 成立 虫盟:业盟 (4) dydx 此时,方程(3)就变成了一个全微分方程,其通解为 I肛(戈,Y)M(戈,Y)dx+I肛(xo,Y)N(‰,Y)dy=c(5) 这里(z。,Yo)是肛(戈,Y)M(戈,Y),肛(戈,Y)N(戈,Y)公共定义域内的任意一固定点.C为积分常数.由于方程(3)与方程(1)是同解方程,所以(5)也是方程(1)的通解. 可见,要求解方程(1)关键是求积分因子肛(戈,Y),而要求p(z,Y)关键是解偏微分方程(4).方程(4)可化成如下的等价形式 N01_.业一M挚:巡一型(6) dxdVdyOx 若记 瓤收稿日期]2004一08—06 [作者简介]赵凯宏(1974一),男,甘肃泾川人,硕士,讲师,主要从事微分方程方面的研究  万方数据

初中数学十大思想方法-待定系数法

初中数学思想方法——待定系数法 在数学问题中,若得知所求结果具有某种确定的形式,则可设定一些尚待确定的系数(或参数)来表示这样的结果,这些待确定的系数(或参数),称作待定系数。然后根据已知条件,选用恰当的方法,来确定这些系数,这种解决问题的方法叫待定系数法。待定系数法是数学中的基本方法之一。它渗透于初中数学教材的各个部分,在全国各地中考中有着广泛应用。 应用待定系数法解题以多项式的恒等知识为理论基础,通常有三种方法:比较系数法;代入特殊值法;消除待定系数法。 比较系数法通过比较等式两端项的系数而得到方程(组),从而使问题获解。例如:“已知x2-3=(1-A)·x2+Bx+C,求A,B,C的值”,解答此题,并不困难,只需将右式与左式的多项式中对应项的系数加以比较后,就可得到A,B,C的值。这里的A,B,C就是有待于确定的系数。 代入特殊值法通过代入特殊值而得到方程(组),从而使问题获解。例如:“点(2,﹣3)在正比例函数图象上,求此正比例函数”,解答此题,只需设定正比例函数为y=kx,将(2,﹣3)代入即可得到k的值,从而求得正比例函数解析式。这里的k就是有待于确定的系数。 消除待定系数法通过设定待定参数,把相关变量用它表示,代入所求,从而使问题获解。 例如:“已知b2 a3 =,求 a b a b - + 的值”,解答此题,只需设定 b2 =k a3 =,则a=3k b=2k ,, 代入a b a b - + 即可求解。这里的k就是消除的待定参数。 应用待定系数法解题的一般步骤是: (1)确定所求问题的待定系数,建立条件与结果含有待定的系数的恒等式; (2)根据恒等式列出含有待定的系数的方程(组); (3)解方程(组)或消去待定系数,从而使问题得到解决。 在初中阶段和中考中应用待定系数法解题常常使用在代数式变型、分式求值、因式分解、求函数解析式、求解规律性问题、几何问题等方面。下面通过2011年和2012年全国各地中考的实例探讨其应用。 一.待定系数法在代数式变型中的应用:在应用待定系数法解有关代数式变型的问题中,根据右式与左式多项式中对应项的系数相等的原理列出方程(组),解出方程(组)即可求得答案。 典型例题: 例:(2011云南玉溪3分)若2x6x k ++是完全平方式,则k=【】

常微分方程在数学建模中的应用(免费版)

常微分方程在数学建模中的应用 这里介绍几个典型的用微分方程建立数学模型的例子. 一、人口预测模型 由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型. 例1( 马尔萨斯 (Malthus ) 模型) 英国人口统计学家马尔萨斯(1766—1834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一个常数,于1789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r ,在此假设下,推导并求解人口随时间变化的数学模型. 解 设时刻t 的人口为)(t N ,把)(t N 当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在t 到t t ?+时间段内,人口的增长量为 t t rN t N t t N ?=-?+)()()(, 并设0t t =时刻的人口为0N ,于是 ?????==. , 00)(d d N t N rN t N 这就是马尔萨斯人口模型,用分离变量法易求出其解为 )(00e )(t t r N t N -=, 此式表明人口以指数规律随时间无限增长. 模型检验:据估计1961年地球上的人口总数为9 1006.3?,而在以后7年中,人口总数以每年2%的速度增长,这样19610=t ,901006.3?=N ,02.0=r ,于是 ) 1961(02.09 e 1006.3)(-?=t t N . 这个公式非常准确地反映了在1700—1961年间世界人口总数.因为,这期间地球上的人 口大约每35年翻一番,而上式断定34.6年增加一倍(请读者证明这一点). 但是,后来人们以美国人口为例,用马尔萨斯模型计算结果与人口资料比较,却发现有很大的差异,尤其是在用此模型预测较遥远的未来地球人口总数时,发现更令人不可思议的问题,如按此模型计算,到2670年,地球上将有36 000亿人口.如果地球表面全是陆地(事实上,地球表面还有80%被水覆盖),我们也只得互相踩着肩膀站成两层了,这是非常荒谬的,因此,这一模型应该修改. 例2(逻辑Logistic 模型) 马尔萨斯模型为什么不能预测未来的人口呢?这主要是地

常微分方程的实际应用

常微分方程的实际应用 于萍 摘要:常微分方程在当代数学中是极为重要的一个分支,它的实用价值很高,应用也很广泛,本文主要介绍常微分方程在几何、机械运动、电磁振荡方面的应用,并举例说明,体会常微分方程对解决实际问题的作用,在解决实际问题过程中通常是建立起实际问题的数学模型,也就是建立反映这个实际问题的微分方程,求解这个微分方程,用所得的数学结果解释实际问题,从而预测到某些物理过程的特定性质,以便达到能动地改造世界,解决实际问题的目的。 关键字:常微分方程,几何,机械运动,电磁振荡,应用

Abstract: Nomal differential equation is an important part of math at it has a high practical value. This thesis shows the use in geometry, mechaics and electrothermal and makes some examples. Also, it summarizes the normal move of dealing with practical problems by the normal differential equation. Normal, we set up the maths matic model of the problem, solute the normal differentical equation make the use of the result to explain practical problems and make a forecast of some special character of physical process. Key: Normal differetial equation geometry mechanics electrothermal use

常微分方程初值问题数值解法.

常微分方程初值问题数值解法 朱欲辉 (浙江海洋学院数理信息学院, 浙江舟山316004) [摘要]:在常微分方程的课程中讨论的都是对一些典型方程求解析解的方法.然而在生产实 际和科学研究中所遇到的问题往往很复杂, 在很多情况下都不可能给出解的解析表达式. 本篇文章详细介绍了常微分方程初值问题的一些数值方法, 导出了若干种数值方法, 如Euler法、改进的Euler法、Runge-Kutta法以及线性多步法中的Adams显隐式公式和预测校正 公式, 并且对其稳定性及收敛性作了理论分析. 最后给出了数值例子, 分别用不同的方法计算出近似解, 从得出的结果对比各种方法的优缺点. [关键词]:常微分方程;初值问题; 数值方法; 收敛性; 稳定性; 误差估计 Numerical Method for Initial-Value Problems Zhu Yuhui (School of Mathematics, Physics, and Information Science, Zhejiang Ocean University, Zhoushan, Zhejiang 316004) [Abstract]:In the course about ordinary differential equations, the methods for analytic solutions of some typical equations are often discussed. However, in scientific research, the problems are very complex and the analytic solutions about these problems can’t be e xpressed explicitly. In this paper, some numerical methods for the initial-value problems are introduced. these methods include Euler method, improved Euler method, Runge-Kutta method and some linear multistep method (e.g. Adams formula and predicted-corrected formula). The stability and convergence about the methods are presented. Some numerical examples are give to demonstrate the effectiveness and accuracy of theoretical analysis. [Keywords]:Ordinary differential equation; Initial-value problem; Numerical method; Convergence; Stability;Error estimate

第 10 讲 待定系数法(高中版)

第 10 讲 待定系数法(高中版) (第课时) D 重点:1. ;2.;3.。 难点 :1.;2.; 3.;。 其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。 待定系数法是中学数学常用的方法,它常用在求代数式的值、因式分解、恒等变形、求函数表达式、数列求和、求复数、求曲线方程等等方面。 使用待定系数法解题的基本步骤是:第一步,针对所求问题,确定含有待定系数的解析式;第二步,列出一组含待定系数的方程;第三步,解方程组确定待定系数或者消去待定系数。确定待定系数的值常用比较系数法或特殊值法。 二次函数解析式有三种表达形式, 1.一般式:y=ax 2+bx+c ;其中 a≠0, a, b, c 为常数 2.顶点式:y=a(x-h)2+k ;其中a≠0, a, h, k 为常数,(h,k )为顶点坐标。 3.交点式:y=a(x-x 1)(x-x 2);其中a≠0, a, x 1,x 2 为常数,x 1,x 2是抛物线与横轴两交点的横坐标。 每种形式都有三个待定的系数,所以用待定系数法求二次函数解析式应注意以下几点: 根据题目给定的条件注意选择适当的表达形式,一般已知抛物线的顶点,用顶点式;已知抛物线与x 轴的两个交点(或与x 轴的一个交点及对称轴),用交点式。 解题过程中待定的系数越少,需构造的方程也越少,这样可以大大简化计算过程,故尽量由已知条件先行直接确定某些系数。 若题目给定二次函数解析式的某种形式(如y=ax 2+ bx+c=0 (a≠0)),那么最后的结果必须写成此种形式。 1.待定系数法在求数列通项中的应用 例.(高三)数列{a n }满足a 1=1,a n = 21 a 1 n +1(n ≥2),求数列{a n }的通项公式。

常微分方程初值问题的数值解法

贵州师范大学数学与计算机科学学院学生实验报告 课程名称: 数值分析 班级: 实验日期: 年 月 日 学 号: 姓名: 指导教师: 实验成绩: 一、实验名称 实验六: 常微分方程初值问题数值解法 二、实验目的及要求 1. 让学生掌握用Euler 法, Runge-Kutta 法求解常微分方程初值问题. 2. 培养Matlab 编程与上机调试能力. 三、实验环境 每人一台计算机,要求安装Windows XP 操作系统,Microsoft office2003、MATLAB6.5(或7.0). 四、实验内容 1. 取步长h=0.1,0.05,0.01, ,用Euler 法及经典4阶Runge-Kutta 法求解初值 问题 ?? ?=≤≤++-=1 )0() 10(2222'y t t t y y 要求: 1) 画出准确解(准确解22t e y t +=-)的曲线,近似解折线; 2) 把节点0.1和0.5上的精确解与近似解比较,观察误差变化情况. 2. 用 Euler 法,隐式Euler 法和经典4阶R-K 法取不同步长解初值问题 ?? ? ??= ∈-=21 )0(],1,0[,50'y x y y 并画出曲线观察稳定性. 注:题1必须写实验报告 五、算法描述及实验步骤 Euler 法: 输入 000),(,,,),,(y a x x h b a y x f = 输出 Euler 解y 步1 ),,2,1(;m n h n a x h a b m n =?+=-? 步2 对1,,2,1,0-=m n 执行),(1n n n n y x f h y y ?+?+

步3 输出T m y y y y ),,,(21 = 经典4阶R-K 法: 输入 000),(,,,),,(y a x x h b a y x f = 输出 4阶R-K 解y 步1 ),,2,1(;m n h n a x h a b m n =?+=-? 步2 对1,,2,1,0-=m n 执行),(1n n y x f K ?,)5.0,(15.02hK y x f K n n +?+, )5.0,(25.03hK y x f K n n +?+,),(314hK y x f K n n +?+ )22(6 43211K K K K h y y n n ++++?+ 步3 输出T m y y y y ),,,(21 = 六、调试过程及实验结果 >> shiyan6 Y1 = 0.8000 0.6620 0.5776 0.5401 0.5441 0.5853 0.6602 0.7662 0.9009 1.0627 Y2 = 0.8287 0.7103 0.6388 0.6093 0.6179 0.6612 0.7366 0.8419 0.9753 1.1353

积分因子的求法及简单应用

积分因子的求法及简单应用 数学科学学院 摘 要:积分因子是常微分方程中一个很基本但却又非常重要的概念,本文在介绍了恰当微分方程与积分因子的概念以及相关定理的基础上,归纳总结了求解微分方程积分因子的几种方法,并利用积分因子理论证明了初等数学体系中的对数公式与指数公式,提供了一种新的解决中学数学问题的途径,体现了积分因子的简单应用价值。 关键词:恰当微分方程;积分因子;对数公式;指数公式 1. 恰当微分方程的概念及判定 恰当微分方程的概念 我们可以将一阶方程 () ,dy f x y dx = 写成微分形式 (),0 f x y dx dy -= 或把x,y 平等看待,写成下面具有对称形式的一阶微分方程 ()(),,0 M x y dx N x y dy += ⑴ 这里假设M(x,y),N(x,y)在某矩形域内是x ,y 的连续函数,且具有连续的一阶偏导数,如果方程⑴的左端恰好是某个二元函数u(x,y)的全微分. 即 ()()(),,,u u M x y dx N x y dy du x y dx dy x y ??+== + ?? 则称方程⑴为恰当微分方程. [] 1 恰当微分方程的判定 定理1 [] 2 假设函数M(x,y)和N(x,y)在某矩形域内是x ,y 的连续函数且具

有连续的一阶偏导数,则方程⑴是恰当微分方程的充分必要条件是在此区域内恒 有M N y x ??=??. 利用定理1我们就可以判定出一个微分方程是否是恰当微分方程. 2. 积分因子 如果对于方程⑴在某矩形域内M N y x ??≠??,此时方程⑴就称为非恰当微分方 程。对于非恰当微分方程,如果存在某个连续可微的函数u(x,y)≠0,使得 ()()()(),,,,0u x y M x y d x u x y N x y d y += 为恰当微分方程,则称u(x,y)为方程⑴ 的1个积分因子. 注[] 1 可以证明,只要方程有解存在,则必有积分因子存在,并且不是唯一的. 定理2 []2 函数u(x,y)是方程⑴的积分因子的充要条件是 u u M N N M u x y y x ?? ????-=- ??????? 3. 积分因子求法举例 观察法 对于一些简单的微分方程,用观察法就可以得出积分因子 如: ⑴ 0ydx xdy +=有积分因子1 xy ⑵ ydx xdy -=有积分因子 2 1x -,2 1 y ,1 xy ,2 2 1 x y +,2 2 1 x y - 例1 找出微分方程 ()()110xy ydx xy xdy ++-=的一个积分因子.

常微分方程在高中物理中的应用

微分方程在高中物理中的应用 高中阶段,我们经常会遇到一些需要定性分析的物理问题,其实如果我们应用高等数学 的知识,可以把其中一些问题进行定量的分析。 例如,质量为m 的物体从高度H 自由下落,所受阻力f 与速度v 成正比,g 为重力加速 度这是我们平时常见的一类问题。但我们只知道速度V 最终会趋近于某一数值v0。下面我 进行一下定量分析。 根据题目所给信息,可列出动力学方程 mg-kv=ma ① a=dv/dt ② 结合①式可得mg-kv=mdv/dt 这里移项可得dt=mdv/(mg-kv)③ 两边同时积分便可的到 V=mg(ce*(-kt/m)+1)/k 又∵自由下落,可得t=0时v=.0 ∴v=mg(1-e*(-kt/m))/k ④ 由④式知,当t 趋近于正无穷时,e*(-kt/m)=0, 此时v=mg/k ⑤ 若按照正常思路,当物体受力平衡时,mg=kv,此时也能得到⑤式的结论。 而在高考中,更为常见的是在电磁场中的同类问题,我们不妨看一下下面这一道例题 (2012·山东理综)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹 角为θ,上端接有定值电阻,匀强磁场垂直于导轨平面,磁感应强度为B 。将质量为m 的导 体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的 拉力,并保持拉力的功率为P ,导体棒最终以2v 的速度匀速运动。导体棒始终与导轨垂直 且接触良好,不计导轨和导体棒的电阻,重力加速度为g ,下列选项正 确的是 A .P =2mg sin θ B .P =3mg sin θ C .当导体棒速度达到v /2时加速度为12 g sin θ D .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力 所做的功 我们根据题目也可以列出动力学方程 Mgsin θ-B*2L*2V/R=ma ① a=dv/dt ② 同样可以解得v=(mgR sin θ/B*2L*2)(1-e*(-B*2L*2t/mR))③ 从③式可以看出当t 趋近于正无穷时,v=mgR sin θ/B*2L*2即B*2L*2v/R=mg sin θ转化而来。 所以题目中所说当速度到达V 时开始匀速运动存在明显错误。应改为近似于做匀速直线运 动。

常微分方程在数学建模中的应用.

微分方程应用 1 引言 常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具. 数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题. 因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用. 2 数学模型简介 通常我们把现实问题的一个模拟称为模型.如交通图、地质图、航空模型和建筑模型等.利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型.数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型,求变化率的问题可建立导数模型,统计学中抽样调查,买彩票中奖的概率问题等等.学会建立数学模型对解决实际生活问题会有很大的帮助. 建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁.随着科学技术的进步,特别是电子计算机技术的迅速发展,数学已经渗透到从自然科学技术到工农业生产建设,从经济生活到社会生活的各个领域.一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节. 3 常微分方程模型 3.1 常微分方程的简介

微分方程积分因子的求法

微分方程积分因子的求法 何佳 【摘要】 利用积分因子,可以对一个一阶微分方程的求解进行统一处理。因此,如何求解积分因子就成为解一阶微分方程的一个重点了。但对于一个具体的方程,如何求出它的积分因子呢,一般的方法是解一个一阶偏微分方程,不过那是比较不容易的。但是,对于某些特殊的情况,却可以简单地得出积分因子。通过查找我们发现,在大多数《常微分方程》的教材中都只给出了只与x 或y 有关的积分因子的求法,但这是不够的。所以我们在这里来讨论一下关于求解()x y αβμ和 ()m n ax by μ+这两类积分因子的充要条件及部分例题,由此我们就可以得到形式 相近的积分因子。如:通过x y μ=+,可以得到x y μ=-的积分因子。如此举一反三,力求使得求积分因子的问题变的简便易行。同时,还对积分因子的求法进行了推广,总结出几类方程积分因子的求法。 【关键字】 微分方程 , 积分因子 , 求解方法

【目录】 引言 (1) 目录 (2) 一、()x y αβμ和()m n ax by μ+两类积分因子 § 1、 与()x y αβμ有关的积分因子 …………………………………………… 3 § 2、 与()m n ax by μ+有关的积分因子 …………………………………………… 4 二、微分方程积分因子求法的推广 § 1、 满足条件 ()P Q P Qf x y x y ??-=-??的积分因子求法 (7) § 2、 方程1123422(3)36330m m m m x mx y xy dx y x y x y dy +-????++++++=????积 分因子 (10) § 3、 方程13()30m m m x m x y x dx x dy -??+++=?? 积分因子 (12) § 4、 方程1(4)4450m m m m x mx y y dx x x y dy -????++++++=????积分因子 …………………………………………… 13 参考文献 (15)

常微分方程初值问题的数值解法

第七章 常微分方程初值问题的数值解法 --------学习小结 一、本章学习体会 通过本章的学习,我了解了常微分方程初值问题的计算方法,对于解决那些很难求解出解析表达式的,甚至有解析表达式但是解不出具体的值的常微分方程非常有用。在这一章里求解常微分方程的基本思想是将初值问题进行离散化,然后进行迭代求解。在这里将初值问题离散化的方法有三种,分别是差商代替导数的方法、Taylor 级数法和数值积分法。常微分方程初值问题的数值解法的分类有显示方法和隐式方法,或者可以分为单步法和多步法。在这里单步法是指计算第n+1个y 的值时,只用到前一步的值,而多步法则是指计算第n+1个y 的值时,用到了前几步的值。通过对本章的学习,已经能熟练掌握如何用Taylor 级数法去求解单步法中各方法的公式和截断误差,但是对线性多步法的求解理解不怎么透切,特别是计算过程较复杂的推理。 在本章的学习过程中还遇到不少问题,比如本章知识点多,公式多,在做题时容易混淆,其次对几种R-K 公式的理解不够透彻,处理一个实际问题时,不知道选取哪一种公式,通过课本里面几种方法的计算比较得知其误差并不一样,,这个还需要自己在往后的实际应用中多多实践留意并总结。 二、本章知识梳理 常微分方程初值问题的数值解法一般概念 步长h ,取节点0,(0,1,...,)n t t nh n M =+=,且M t T ≤,则初值问题000 '(,),()y f t y t t T y t y =≤≤?? =?的数值解法的一般形式是 1(,,,...,,)0,(0,1,...,)n n n n k F t y y y h n M k ++==-

微分方程的积分因子求解法

创作编号:BG7531400019813488897SX 创作者:别如克* 常微分方程的积分因子求解法 内容摘要:本文给出了几类特殊形式的积分因子的求解方法,并推广到较一般的形式。 关键词:全微分方程,积分因子。 一、基本知识 定义1.1 对于形如 dx y N M(1.1) x ),( ),(= +dy x y 的微分方程,如果方程的左端恰是x,y的一个可微函数),(y x U的全微分,即d),(y y x M),( dx ),(+,则称(1.1)为全微分方程. x U= dy y N x 易知,上述全微分方程的通解为),(y U=C, (C为任意常数). x 定理1.1 (全微分方程的判别法)设),(y x N在x,y平面上 M,),(y x 的单连通区域G内具有连续的一阶偏导数,则(1.1)是全微分方程的充要条件为

x y x N y y x M ??=??) ,(),( (1.2) 证明见参考文献[1]. 定义1.2 对于微分方程(1.1),如果存在可微函数),(y x μ,使得方程 ),(y x μ0),(),(),(=+dy y x N y x dx y x M μ (1.3) 是全微分方程,则称),(y x μ为微分方程(1.1)的积分因子. 定理1.2 可微函数),(y x μ为微分方程(1.1)的积分因子的充要条件为 x y x y x N ??) ,(ln ) ,(μ-y y x y x M ??),(ln ),(μ=x y x N y y x M ??-??),(),( (1.4) 证明:由定理1.1得,),(y x μ为微分方程(1.1)的积分因子的充要条件为 x y x N y x y y x M y x ??=??)),(),(()),(),((μμ, 展开即得: x y x y x N ??) ,() ,(μ-y y x y x M ??),(),(μ=),(),(),(y x x y x N y y x M μ??? ? ????-??. 上式整理即得(1.4). 证毕 注1.1 若),(y x μ0≠,则(1.3)和(1.1)同解。所以,欲求(1.1)的通解,只须求出(1.3)的通解即可,而(1.3)是全微分方程,故关键在于求积分因子),(y x μ。 为了求解积分因子),(y x μ,必须求解方程(1.4)。一般来说,偏微分方程(1.4)是不易求解的;但是,当),(y x μ具有某种特殊形式时还是较易求解的。

1功效系数法

功效系数法 功效系数是指各项评价指标的实际值与该指标允许变动范围的相对位置。功效系数法是在进行综合统计评价时,先运用功效系数对各指标进行无量纲同度量转换,然后再采用算术平均数或几何平均法,对各项功效系数求总功效系数,作为对总体的综合评价值,并进行比较判定。其评价分析的步骤是: (1)确定反映总体特征的各项评价指标:()n i x i ,,2,1 =。 (2)确定各项评价指标的允许范围,即满意值h i x 和不允许值s i x 。满意值是指 在目前条件下能够达到的最优值;不允许值是该指标不应该出现的最低值。允许变动范围的参照系就是满意值与不允许值之差。 (3)计算各项评价指标的功效系数i f 对指标进行无量纲化处理。其计算公式如下: s i h i s i i i x x x x f --= (4)由于各个地区各种元素的含量之间没有相对的权重的不同,无需计算权 重。 (5)最后计算评价总体的总功效系数F 。应用算术平均法计算。然后根据F 值的大小排列其顺序或优劣。 n f F n i i ∑== 1 运用功效系数法进行综合分析评价并排序,计算各个地区的各个元素的指标及数据见附件1,2,3 具体计算和评价过程如下: (1) 依据附件3中,背景值的平均值和范围确定各元素指标的满意值和不允 许值As (μg/g)的最优值是3.6,不允许值为1.8;Cd (ng/g )的最优值是130,不允许值为70;Cr(μg/g)的最优值是31,不允许值为9;Cu(μg/g)的最优值是13.2,不允许值是6.0;Hg (ng/g )最优值是35,不允许值为19;Ni(μg/g)最优值是12.3,不允许值为4.7;Pb(μg/g)最优值是31,不允许值是19;Zn(μg/g)最优值是69,不允许值为41。

积分因子法在常微分方程中的应用 开题报告

积分因子法在常微分方程中的应用开题报告 开题报告 积分因子法在常微分方程中的应用 一、选题的背景、意义 在许多科学领域中,常常需要研究常微分方程的理论和其解是否存在.常微分方程的理论包括解的存在性和唯一性、奇解、定性理论等等.其中解的讨论也尤为重要,求解方法有很多种,例如,常数变易法、叠加法、积分因子法.求得常微分方程的解能使常微分方程在其他的科学领域有更好的应用. 常微分方程在微积分概念出现后即已出现,对常微分方程的研究可分为以下几个阶段. 发展初期是针对具体的常微分方程,希望能用初等函数或超越函数表示其解,属于“求通解”的时代. 刘维尔在1841年证明了里卡蒂方程不存在一般的初等解,同时柯西又提出了初值问题.因此,早期的常微分方程的求解热潮中断了,而常微分方程从“求通解”时代转向“求定解”时代. 19世纪末,常微分方程的研究从“求定解”时代转向“求所有解”的新时代.那是由天体力学中的太阳系稳定性问题需要研究常微分方程解的大范围性态引起的. 20世纪末六七十年代以后,常微分方程在计算机技术发展的促进下,从“求所有解”时代转入“求特殊解”时代.

求常微分方程的通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就能容易地求出问题所需要的特解;根据通解的表达式可以了解其对某些参数的依赖情况,便于参数取值,使它对应的解具有所需要的性能,也有助于解的其他研究.虽然通过求通解的方法可以求出方程的解,但是有些时候会比较复杂.因此,我们要寻找更为简便的求解方法.对常微分方程的求解.积分因子法是一种很好的求解方法,它能将复杂的计算简单化. 二、研究的基本内容与拟解决的主要问题 本课题主要对积分因子法进行归纳总结,旨在应用积分因子法来求解常微分方程. 本课题的主要目的是通过查阅各种相关文献,寻找各种相关信息,来得到并了解用积分因子法求解常微分方程的一些计算技巧,达到化难为易的目的. 先从定义出发,介绍相关的一些基本概念,如微分方程、常微分方程、全微分方程、解、积分因子等以及一些相关的定理和充要条件. 接着归纳总结积分因子法: 积分因子的求法 在求积分因子之前,要对常用的一些简单函数的全微分形式比较熟悉,这样能更快地求出积分因子. (1)观察法求积分因子 对于一些形式比较简单的微分方程,可以直接观察出方程的积分因子. 如:方程,根据,可以直接观察出它的积分因子为. (2)分组凑微分法对于一些相对复杂的微分方程,可以对其进行分组,然后根据一些简单函数的全微分形式对其进行凑微分,得到其积分因子.

利用系数法归纳(自写)

利用系数法一直是一个难以理解的点,现归纳如下: a.此法基础思路是先算出总负荷的平均值,再考虑到设备台数和平均利用率的数值,来 修正总负荷的平均值,来得到总负荷的最大值。 b.上述所谓的负荷的平均值,指的是负荷(有功功率)在时间上的平均;考虑到配电中一 般为中小导体,且中小导体达到热稳定的时间大概为30min,因此该平均应定义为 30min;即负荷平均值指的是时间-负荷曲线中某段30min内的平均负荷。 所谓的负荷最大值,指在时间-负荷曲线中,30min内,最高的一段的平均值。导体和配电电器的选择要根据长时(即达到热稳定的时间)发热条件来选,必然需要知道某段时间内负荷的最大平均值。 c.算总负荷平均值的方法与需要系数法类似:将不同工作性质的负载分组,分别求其设 备负荷,乘以查得的利用系数Kl(可理解为利用率),再求和即得。与需要系数法不同之处在于,虽然利用系数和需要系数成正相关,但前者要小很多(原因可能是前者为较长时间内统计,不明)。注意,查得的系数都是经验或统计值,因此得到的平均负载也是统计值。 d.下面是将平均负荷修正为最大负荷(乘以一个合适的,大于1的系数): 当设备台数越少,最大负荷超过平均负荷越多,这是因为平均负荷作为一个统计值的特点;设备总体的利用系数越高,最大负荷越接近平均负荷,这是因为高利用率系统的利用系数高,即被利用几率高,而此点已在计算平均负荷时纳入考虑,不应再作过多修正。这就是最大系数Km与有效(又称换算)台数Nyx和平均利用系数Klp负相关的原因。 在需要系数法中,由于需要系数较大,求得的总负荷也较大,是只考虑了每个设备(组)运行的简单相加,因此对它的修正不是放大,反而是乘以小于1的同时系数来修正总负荷。 e.有效台数Nyx和平均利用系数Klp的计算法就不再叙述,容易理解。只是前者的意义 在于去掉那些单个负荷小而数量多的设备,否则会影响Km的估值;且常常计算较繁。 f.总的来说利用系数法就是一个基于统计的方法。它有统计学的特点,相应步骤也由此 体现。

最新常微分方程及其应用

常微分方程及其应用

第5章常微分方程及其应用 习题5.2 1.求下列各微分方程的通解: (1)?Skip Record If...?;(2)?Skip Record If...?; (3)?Skip Record If...?;(4)?Skip Record If...?; (5)?Skip Record If...?;(6)?Skip Record If...?. 2.求下列各微分方程满足所给初始条件的特解: (1)?Skip Record If...?,?Skip Record If...?;(2)?Skip Record If...?,?Skip Record If...?; (3)?Skip Record If...?,?Skip Record If...?;(4)?Skip Record If...?,?Skip Record If...?; (5)?Skip Record If...?,?Skip Record If...?;(6)?Skip Record If...?,?Skip Record If...?. 5.3 可降阶微分方程及二阶常系数线性微分方程 案例引入求微分方程?Skip Record If...?的通解. 解两边积分,得?Skip Record If...? 两边再积分,得?Skip Record If...? 所以,原方程的通解为?Skip Record If...?,其中?Skip Record If...?为任意常数. 5.3.1 可降阶微分方程 仅供学习与交流,如有侵权请联系网站删除谢谢20

1. 形如?Skip Record If...?的微分方程 特点:方程右端为已知函数?Skip Record If...?. 解法:对?Skip Record If...?连续积分?Skip Record If...?次,即可得含有 ?Skip Record If...?个任意常数的通解. 2. 形如?Skip Record If...?的微分方程 特点:方程右端不显含未知函数?Skip Record If...?. 解法:令?Skip Record If...?,则?Skip Record If...?.于是,原方程可化为?Skip Record If...?.这是关于?Skip Record If...?的一阶微分方程.设其通解为?Skip Record If...?,即?Skip Record If...?.两边积分,即可得原方程通解?Skip Record If...?,其中?Skip Record If...?为任意常数. 3. 形如?Skip Record If...?的微分方程 特点:方程右端不显含自变量?Skip Record If...?. 解法:令?Skip Record If...?,则?Skip Record If...?.于是,原方程可化为?Skip Record If...?.这是关于?Skip Record If...?的一阶微分方程.设其通解为?Skip Record If...?,即 ?Skip Record If...?.分离变量,得?Skip Record If...?.然后两边积分,即可得原方程通解 ?Skip Record If...?,其中?Skip Record If...?为任意常数.例5-7求微分方程?Skip Record If...?的通解. 解两边积分,得?Skip Record If...? 仅供学习与交流,如有侵权请联系网站删除谢谢20

常微分方程初值问题

常微分方程初值问题 12.1引言 在数学模型中经常出现的常微分方程在科学的许多分支中同样出现,例如工程和经济学。不幸的是却很少出现这些方程可得到表示在封闭的形式的解的情况,所以通常采用数值方法来寻找近似解。如今,这通常可以非常方便的达到高精度和在解析解和数值逼近之间可靠的误差界。在本节我们将关注一阶微分方程(12.1)形式关于实值函数y的实变 量x的结构和数值分析方法,其中和f是一个给定的实值函数的两个变量。为了从解曲线的无限族选择一个特定的积分构成(12.1)的通解,微分方程将与初始条件一起考虑:给定两个实数和,我们寻求一个(12.1)的解决方案,对于有 (12.2) 微分方程(12.1)与初始条件(12.2)被称为一个初值问题。如果你认为任何(12.1),(12.2)形式的初始值问题具有一个唯一解,看看以下例子。 例12.1考虑微分方程,初始条件,其中α是一个固定的实数,α∈(0,1)。 这是一个关于上述想法的简单验证,对于任何非负实数C, 是初值问题在区间[ 0,∞)上的一个解。因此解的存在性是肯定的,但解不一定唯一;事实上,初始值问题的解有一个无限族,当参数。 我们注意到,在与α∈(0,1)相反的情况下,当α≥1,初值问题,具有唯一解y(x)≡0。 例12.1表明函数f必须遵循相对于它的第二个参数的一定的增长性条件,以保证(12.1),(12.2)有唯一解。精确的保证初始值问题(12.1),(12.2)假设f解的存在惟一基于下面的定理。 定理12.1(Picard theorem)假定实值函数是连续的矩形区域D定义 ;当时;且f 满足Lipschitz条件:存在L>0则 。

相关主题
文本预览
相关文档 最新文档