当前位置:文档之家› 水处理膜分离技术

水处理膜分离技术

水处理膜分离技术
水处理膜分离技术

水处理膜分离技术膜分离系统行业应用

2008/8/29/09:19 来源:慧聪网水工业行业频道

膜分离技术简介:

膜是具有选择性分离功能的材料,利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。它与传统过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂。膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要是陶瓷膜和金属膜,其过滤精度较低,选择性较小。有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等。错流膜工艺中各种膜的分离与截留性能以膜的孔径和截留分子量来加以区别,下图简单示意了四种不同的膜分离过程:(箭头反射表示该物质无法透过膜而被截留):

微滤(MF) 又称微孔过滤,它属于精密过滤,其基本原理是筛孔分离过程。微滤膜的材质分为有机和无机两大类,有机聚合物有醋酸纤维素、聚丙稀、聚碳酸酯、聚砜、聚酰胺等。无机膜材料有陶瓷和金属等。鉴于微孔滤膜的分离特征,微孔滤膜的应用范围主要是从气相和液相中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。

对于微滤而言,膜的截留特性是以膜的孔径来表征,通常孔径范围在0.1-1微米,故微滤膜能对大直径的菌体、悬浮固体等进行分离。可作为一般料液的澄清、保安过滤、空气除菌。

超滤(UF) 是介于微滤和纳滤之间的一种膜过程,膜孔径在0.05um至1000分子量之间。超滤是一种能够将溶液进行净化、分离、浓缩的膜分离技术,超滤过程通常可以理解成与膜孔径大小相关的筛分过程。以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当水流过膜表面时,只允许水及比膜孔径小的小分子物质通过,达到溶液的净化、分离、浓缩的目的。

对于超滤而言,膜的截留特性是以对标准有机物的截留分子量来表征,通常截留分子量范围在

1000-300000,故超滤膜能对大分子有机物(如蛋白质、细菌)、胶体、悬浮固体等进行分离,广泛应用于料液的澄清、大分子有机物的分离纯化、除热源。

纳滤(NF) 是介于超滤与反渗透之间的一种膜分离技术,其截留分子量在80-1000的范围内,孔径为几纳米,因此称纳滤。基于纳滤分离技术的优越特性,其在制药、生物化工、食品工业等诸多领域显示出广阔的应用前景。

对于纳滤而言,膜的截留特性是以对标准NaCl、MgSO4、CaCl2溶液的截留率来表征,通常截留率范围在60%-90%,相应截留分子量范围在100-1000,故纳滤膜能对小分子有机物等与水、无机盐进行分离,实现脱盐与浓缩的同时进行。

反渗透(RO) 是利用反渗透膜只能透过溶剂(通常是水)而截留离子物质或小分子物质的选择透过性,以膜两侧静压为推动力,而实现的对液体混合物分离的膜过程。反渗透是膜分离技术的一个重要组成部分,因具有产水水质高、运行成本低、无污染、操作方便运行可靠等诸多优点,而成为海水和苦咸水淡化,以及纯水制备的最节能、最简便的技术.目前已广泛应用于医药、电子、化工、食品、海水淡化等诸多行业。反渗透技术已成为现代工业中首选的水处理技术。

反渗透的截留对象是所有的离子,仅让水透过膜,对NaCl的截留率在98%以上,出水为无离子水。反渗透法能够去除可溶性的金属盐、有机物、细菌、胶体粒子、发热物质,也即能截留所有的离子,在生产纯净水、软化水、无离子水、产品浓缩、废水处理方面反渗透膜已经应用广泛。

膜分离的基本工艺原理是较为简单的(参见下图)。在过滤过程中料液通过泵的加压,料液以一定流速沿着滤膜的表面流过,大于膜截留分子量的物质分子不透过膜流回料罐,小于膜截留分子量的物质或分子透过膜,形成透析液。故膜系统都有两个出口,一是回流液(浓缩液)出口,另一是透析液出口。在单位时间(Hr)单位膜面积(m2)透析液流出的量(L)称为膜通量(LMH),即过滤速度。影响膜通量的因素有:温度、压力、固含量(TDS)、离子浓度、黏度等。

膜分离操作基本工艺流程:

由于膜分离过程是一种纯物理过程,具有无相变化,节能、体积小、可拆分等特点,使膜广泛应用在发酵、制药、植物提取、化工、水处理工艺过程及环保行业中。对不同组成的有机物,根据有机物的分子量,选择不同的膜,选择合适的膜工艺,从而达到最好的膜通量和截留率,进而提高生产收率、减少投资规模和运行成本。

膜分离系统应用

1、澄清纯化技术-超/微滤膜系统

澄清纯化分离所采用的膜主要是超/微滤膜,由于其所能截留的物质直径大小分布范围广,被广泛应用于固液分离、大小分子物质的分离、脱除色素、产品提纯、油水分离等工艺过程中。

超/微滤膜分离可取代传统工艺中的自然沉降、板框过滤、真空转鼓、离心机分离、溶媒萃取、树脂提纯、活性炭脱色等工艺过程。

澄清纯化技术可采用的膜分离组件主要有:陶瓷膜、平板膜、不锈钢膜、中空纤维膜、卷式膜、管式膜。

采用膜分离澄清纯化的优点:

1)、可得到绝对的真溶液,产品稳定性好;

2)、过滤分离收率高;

3)、分离效果好,产品质量高,运行成本低;

4)、缩短生产周期,降低生产成本;

5)、过程无需添加化学药品、溶媒溶剂,不带入二次污染物质;

6)、操作简便,占地面积小,劳动力成本低;

7)、可拓展性好,容易实现工业化扩产需求;

8)、设备可自动运行,稳定性好,维护方便。

2、浓缩提纯技术――纳滤膜系统

膜分离技术在浓缩提纯工艺上主要采用截留分子量在100-1000Dal的纳滤膜。纳滤膜的主要特点是对二价离子、功能性糖类、小分子色素、多肽等物质的截留性能高于98%,而对一些单价离子、小分子酸碱、醇等有30~50%的透过性能,常被应用于溶质的分级、溶液中低分子物质的洗脱和离子组分的调整、溶液体系的浓缩等物质的分离、精制、浓缩工艺过程中。

纳滤膜分离技术常被用于取代传统工艺中的冷冻干燥、薄膜蒸发、离子交换除盐、树脂工艺浓缩、中和等工艺过程。

浓缩提纯技术可采用的膜组件主要有:卷式膜、管式膜。

采用纳滤膜分离技术浓缩提纯的优点:

(1)、能耗极低,节省浓缩过程成本;

(2)、过程无化学反应、无相变化,不带入其他杂质及造成产品的分解变性;

(3)、在常温下达到浓缩提纯目的,不造成有效成分的破坏,工艺过程收率高;

(4)、可完全脱除产品的盐分,减少产品灰分,提高产品纯度;

(5)、可回收溶液中的酸、碱、醇等物质;

(6)、设备结构简洁紧凑,占地面积小;

(7)、操作简便,可实现自动化作业,稳定性好,维护方便。

行业应用

1、制药行业

生物发酵液过滤除菌及下游分离纯化精制

树脂解析液的浓缩及解析剂回收

农药水剂、粉剂的生产应用

中药浸提液过滤除杂及浓缩

中药浸膏生产应用

合成药、原料药、中间体等的脱盐浓缩

结晶母液回收

二、食品行业

乳清废水处理

? 乳制品生产加工应用

? 果汁澄清脱色

? 食品添加剂纯化浓缩

茶饮料澄清浓缩

? 啤酒、葡萄酒、黄酒的精制加工

? 天然色素提取液的除杂及浓缩

? 氨基酸发酵液过滤澄清及精制

三、染料化工&助剂

? 水溶性染料反应液的脱盐浓缩

? 染料盐析母液废水回收

四、淀粉糖品

? 糖液分离纯化及浓缩

? 果葡糖浆色普分离纯化

? 糖醇色普分离纯化

? 单糖、低聚糖及多糖的分离纯化及浓缩

五、环保及水处理领域

? 纺织、染整、印染废水处理及回用

? 电镀工业废水零排放及资源回收

? 矿山及冶金废水处理回收

? 淀粉废水处理

? 造纸废水木质素回收及废水处理

? 电泳漆废水涂料回收

? 酸、碱废水处理回收

? 市政污水的处理及回用

? 洗车水、桑拿水、游泳池水、洗浴废水等循环处理

? 工业生产所用的各类软化水、纯水、超纯水制备

六、生物技术

? 生物蛋白、多肽、酶制剂等酵液过滤澄清及精制

膜系统图片

1、陶瓷膜系统(生物发酵液过滤除菌、中药植提浸提液过滤除杂)

2、卷式膜系统(流体的过滤除杂精制及浓缩)

3、中空膜系统(水处理行业预处理)

水处理膜分离技术

膜是具有选择性分离功能的材料,利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。它与传统过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂。膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要是陶瓷膜和金属膜,其过滤精度较低,选择性较小。有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等。错流膜工艺中各种膜的分离与截留性能以膜的孔径和截留分子量来加以区别,下图简单示意了四种不同的膜分离过程:(箭头反射表示该物质无法透过膜而被截留): 微滤又称微孔过滤,它属于精密过滤,其基本原理是筛孔分离过程。微滤膜的材质分为有机和无机两大类,有机聚合物有醋酸纤维素、聚丙稀、聚碳酸酯、聚砜、聚酰胺等。无机膜材料有陶瓷和金属等。鉴于微孔滤膜的分离特征,微孔滤膜的应用范围主要是从气相和液相中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。 对于微滤而言,膜的截留特性是以膜的孔径来表征,通常孔径范围在0.1-1微米,故微滤膜能对大直径的菌体、悬浮固体等进行分离。可作为一般料液的澄清、保安过滤、空气除菌。 超滤是介于微滤和纳滤之间的一种膜过程,膜孔径在0.05um至1000分子量之间。超滤是一种能够将溶液进行净化、分离、浓缩的膜分离技术,超滤过程通常可以理解成与膜孔径大小相关的筛分过程。以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当水流过膜表面时,只允许水及比膜孔径小的小分子物质通过,达到溶液的净化、分离、浓缩的目的。 对于超滤而言,膜的截留特性是以对标准有机物的截留分子量来表征,通常截留分子量范围在 1000-300000,故超滤膜能对大分子有机物(如蛋白质、细菌)、胶体、悬浮固体等进行分离,广泛应用于料液的澄清、大分子有机物的分离纯化、除热源。 纳滤是介于超滤与反渗透之间的一种膜分离技术,其截留分子量在80-1000的范围内,孔径为几纳米,因此称纳滤。基于纳滤分离技术的优越特性,其在制药、生物化工、食品工业等诸多领域显示出广

膜法水处理行业分析报告

目录 一、膜技术及市场分析 (2) 1.1 中国膜产业和市场 (2) 1.1.1 RO膜市场 (4) 1.1.2 UF/MF膜市场 (5) 1.1.3 MBR市场状况 (6) 1.2 中国膜产业企业情况 (7) 二、膜法水处理行业分析 (9) 2.1 水处理行业概况 (9) 2.2 膜法水处理技术概述 (15) 2.3 膜法水处理产业链 (18) 2.4 主要水务公司运营情况 (21) 三、膜法水处理主要公司 (24) 3.1 碧水源 (24) 3.2 津膜科技 (25) 3.3 万邦达 (26) 3.4 南方汇通 (26)

一、膜技术及市场分析 膜技术是膜分离技术的简称,是仿生物学膜,通过人工材料(膜材料)实现不同介质分离的技术,分离的过程多由压力、浓度差、电势差等因素驱动。按照分离精度的不同,膜又可以分为微滤(MF)膜、超滤(UF)膜、纳滤(NF)膜和反渗透(RO)膜等等。 膜技术广泛用于环境、能源、电子、医药等各个方面,近二十年来,由于膜技术可以去除常规处理工艺难以去除的水污染物,在水处理领域的应用越发受到各国重视,不同种类的膜技术分别应用于不同的细分领域,主要下游包括市政污水处理及再生、自来水处理、工业水回用、海水淡化、家用净水器等。 膜技术图谱 1.1 中国膜产业和市场 1999年,全球膜及膜组件市场销售额为44亿美元,21世纪初全球膜市场开始强劲增长,2012年全球膜制品的销售额超过120亿美元,CAGR在7-8%。 最近十几年是中国膜产业的高速增长期,我国膜产业总产值从1993年2亿元人民币上升到2012年近400亿元(膜行业总产值是指膜制品、膜组件、膜附属设备及相关工程的总值,其中膜制品与膜组件是整个行业的核心),复合增长

膜法水处理技术在农村饮用水工程中的研究与应用

膜法水处理技术在农村饮用水工程中的研究与应用

膜法水处理技术在农村饮用水工程中的研究与应用 董浩1董福平2杨新新1 (1.浙江省农田水利总站,浙江杭州310009;2.浙江省水利学会,浙江杭州310020)摘要:浙江内陆地区农村饮用水工程存在服务对象分散、源水水质差、地形复杂等特点,而东南沿海及海岛地区具有资源型缺水,但滩涂水库亚海水资源丰富的现状,与城市供水之间有着明显的差异。本文着重论述了超滤技术在农村饮用水工程中的应用研究以及利用反渗透技术进行亚海水淡化的研究成果。 关键词:膜;超滤(UF);反渗透(RO);饮用水;农村 1. 概述 浙江内陆地区农村饮用水工程存在服务对象分散、源水水质差、地形复杂等特点,而东南沿海及海岛地区具有资源型缺水,但滩涂水库亚海水资源丰富的现状,与城市供水之间有着明显的差异。为推广应用先进适用技术,多途径解决农村饮用水水源问题,我们开展了膜法水处理技术在农村饮用水工程中的研究与应用,取得了较好的效果。 目前,国内外的饮用水处理技术主要有常规处理技术、强化常规处理技术、深度处理技术、膜处理技术等。传统的饮用水处理工艺一般为:混凝—沉淀—过滤—消毒,以去除水中的悬浮物、胶体颗粒物为主,相对受污染水源中溶解性有机物的去除能力则明显不足。同时,随着对消毒副产物、微生物指标和内分泌干扰物质研究的深入,人类对水质标准不断提升,部分常规水处理技术已经无法适应需求。 膜技术是20世纪水处理领域的关键技术,常用的膜技术包括微滤(Microfiltration,MF)、超滤(Ultrafiltration,UF)、纳滤(Nanofiltration,NF)、电渗析(Electro Dialysis,ED)和反渗透(Reverse Osmosis,RO)。该技术依据原水水质,选用不同的膜来截留水中物质,所以它是一种严格的物理的和绝对的分离技术。 表1.1显示了水中各种杂质的大小和去除它们所使用的分离方法。微滤是传统过滤法的直接延伸,属于亚微米级范围,用以过滤胶体和细菌(<10-2~10-7m);超滤比微滤晋升一级,可去除病毒和大分子量有机物质(10-7~10-8m);纳滤可去除小分子量

磁分离技术在水处理中的运用

磁分离技术在水处理中的运用 【摘要】磁分离技术具有分离速度快、效率高等特点,它已经应用于食品废水处理、含油废水处理、城市污水处理、印染废水处理等工业废水的处理,随着发展进步,该技术不断拓宽应用领域,如固体废弃物矿渣、粉煤灰。 【关键词】磁分离技术;高梯度磁分离技术;水处理 Magnetic separation technology in water treatment Li Sa-li (Taiyuan University of Technology Shanxi taiyuan 030024) 【Abstract】Magnetic separation technology has higher separate speed and efficiency. It is widely used in the food waste water treatment,oily wastewater treatment,the urban sewage treatment,printing and dyeing wastewater treatment of industrial waste water treatment.Along with the development of society,this technology is widening its fields in application,such as solid waste slag and fly ash. 【Key words】Magnetic separation technology;High gradient magnetic separation technology;Water treatment 1.磁分离技术简介 磁分离技术是借助磁场力的作用,对磁性不同的物质进行分离的一种物理分离方法。 废水中的污染物种类很多,对于具有较强磁性的污染物,可直接用高梯度磁分离技术分离;对于磁性较弱的污染物可先投加磁种(如铁粉、磁铁矿、赤铁矿微粒等)和混凝剂,使磁种与污染物结合,然后用高梯度磁分离技术除去。磁分离的物理作用基本原理就是通过外加磁场产生磁力,把废水中具有磁性的悬浮颗粒吸出,使之与废水分离,达到去除或回收的目的。 2.磁分离技术的研究进展 磁分离技术用于水处理工程,它又可以称得上是一门新兴技术。从上世纪60年代开始,苏联用磁凝聚法处理钢厂除尘废水,60年代末,美国MIT教授科姆发明高梯度磁过滤器,70年代美国应用磁絮凝法和高梯度磁分离法处理钢铁、食品、化工、造纸等废水。1974年瑞典开始用磁盘法处理轧钢废水,随后的75年日本开发盘式“两秒分离机”。我国从70年代中期到80年代初,将磁聚凝法、磁盘法、高梯度磁分离法用于炼钢、轧钢废水的处理。近年来,磁分离技术在电镀废水、含酚废水、湖泊水、食品发酵废水、市政废水、钢铁废水、厨房污水、

磁分离处理法

水工程与工艺新技术期末小论文 学生姓名: _ 李静 学号: 6002208016 专业班级:给排水081班 时间: 2011-12-6

磁分离技术简析 班级:给排水081班 姓名:李静 学号:6002208016 文章摘要: 本文章主要研究了磁分离技术在水处理中的应用以及其现阶段存在的问题。除此之外,本文还对磁分离技术的基本原理、优点、分类等做了简单介绍。对于磁分离技术的应用及存在问题作了简单的分析和探讨,以及对磁分离技术的应用前景做了简单概括和总结。还对磁分离技术的优缺点做了简略剖析等。 文章关键词: 磁分离技术 水处理 分离原理 外加磁场 应用前景 正文 (一)磁分离处理法 磁分离法又称电磁吸附法,是近年来发展的一种水处理技术。利用现代磁化技术能实现磁性微粒粗粒化,弱磁性颗粒强磁化,非磁性颗粒磁性化。磁分离作为物理处理技术在水处理中获得了许多成功应用,显示出许多优点。该法不仅能直接处理水体中各种微粒的弱磁性、顺磁性物质,而且还能分离不具磁性的细菌、病毒、藻类悬浮物、有机和无机化合物、油脂类、重金属类等,应用范围非常广。如磁分离法已用于含油废水治理,包括磁性粉末法,被覆油膜磁粉法,磁流体法,油层悬浮磁粉过滤法,43O Fe 超微粒子破乳净化法等除油技术。 磁分离的基本原理就是通过外加磁场产生磁力,把废水中具有磁性的悬浮颗粒吸出,使之与废水分离,达到去除或回收的目的。对于水中非磁性或弱磁性的颗粒,利用接种技术可使他们具有磁性。目前具有代表性的磁分离设备是圆盘磁分离器和高梯度磁过滤器。 (二)磁分离技术的分类 磁分离按装置的原理可分为磁凝聚分离、高梯度磁分离和磁盘分离法,其中磁盘分离法中按使用磁铁类型的不同可分为铁氧体磁盘法和稀土磁盘法。 按磁场的产生方法可分为永磁分离和电磁分离(含超导电磁分离)。 按工作方式可分为连续式磁分离方法和间歇式磁分离法。 按颗粒的去除方式可分为磁处理技术的优点磁凝聚沉降分离和磁力吸着分离。 (三)磁分离技术的磁力分离原理 物质在外磁场的作用下会被磁化而产生附加磁场,其磁场强度'H 与磁场强度H 的向量和即为磁介质内部的磁场强度或称磁感应强度,'H 的方向与H 相

刍议环境保护中全膜法水处理工艺技术探讨

刍议环境保护中全膜法水处理工艺技术探讨 发表时间:2019-01-17T11:44:52.890Z 来源:《防护工程》2018年第30期作者:董丽娜王晓岩刘娜 [导读] 进一步提高相关工作人员对全膜法水处理工艺技术应用的认识。 陕西省环境监测中心站陕西省西安市 710054 摘要:全膜法水处理工艺技术是一种新型水环境处理保护的应用措施,它没有繁琐的操作步骤,却能保证水质的纯净和稳定,在各项工业水系统应用中都有较高的使用效率,下面本文对传统水处理工艺和全膜法水处理工艺分别进行分析,对比全膜法水处理技术的优点,同时对全膜法水处理技术在水环境处理中的应用进行探讨,进一步提高相关工作人员对全膜法水处理工艺技术应用的认识。 关键词:全膜法水处理;工艺技术;环境保护 引言 可大幅降低耗水量的有效手段有:回收利用工业污水、市政污水,废水零排放,循环水处理等方式。“全膜法”水处理工艺不仅水处理效率高,而且效果显著,同时,具有经济性的新技术,可有效地解决不断严重的脱盐工艺中酸碱的使用及排污问题。 1 分析全膜法水处理工艺技术 通过超滤或微滤预处理原水,然后进行反渗透处理,最后通过电渗析除盐(简称EDI)形成高纯水,即“全膜法”(IMS)水处理技术的流程。 1.1 膜法预处理 采取膜法预处理,可将水中的微粒、胶体、细菌及高分子有机物等有效地去除,其过滤精度一般是0.005μm—0.01μm之间,大幅提高了下游脱盐系统的进水水质。超滤过程具有较好的耐氧化性、耐温性、以及耐酸碱性,且无相转化。超滤膜的材料和工艺设计,根据不同的水质条件和分离功能,选择了相应的孔径以及截留分子量。 1.2 反渗透 反渗透又叫RO,主要由两部分组成,一是高压泵,二是反渗透膜。在高压的情况下,水中的微生物、有机物、矿物质、以及其它物质等都会被阻截在膜外,且会受到高压水流的冲击,而渗透到另一面的水则是纯净的、安全的,卫生的。利用反渗透的分离特性能够将水中的细菌、有机物、溶解盐、及胶体等杂质有效的去除,实现低能耗、零污染,从而使反渗透出水水质达到EDI设备的进水要求。 1.3 EDI技术 EDI技术是一种高新技术,它有机相结合了电渗析技术与离子交换技术,因此,又被称为“填充床电渗析”或“电混床”。它的应用不需要酸碱参与,摒弃酸碱对树脂的再生作用,而持续提取高纯水的一种先进技术。由于二级除盐加上反渗透的系统或者是混床加反渗透系统的废液排放较繁琐以及再生操作的问题,EDI成功克服了其缺点,彻底解决了其酸碱排放的问题。 EDI技术的应用机制是在模堆里添加能够改善膜发生极化的树脂,利用电极促使模堆发生电位差,借助通过离子交换膜吸附作用,吸附并去除源水中的离子。操作中,将直流电连接模堆两侧电极,通电后模堆发生电位差,促使水中的阳离子物质移向发生阴极作用的阳离子交换膜,促使水中的阴离子物质移向产生阳极作用的阴离子交换膜,不同极吸附的阴阳物质聚集,同时利用树脂防止极化作用,升高电阻率将其再次分解进行电离再生作用,形成H+与OH-,从而反复进行水质盐离子聚集和电解,最终电渗析生产高纯水。EDI技术在运行过程中,水电导率可达到0.057us/cm—0.062us/cm,这基本上相同于纯水电导率的理想探讨值0.055us/cm,另外,EDI技术不需要酸碱的使用,通过树脂电离再生,不断脱盐,进而生成高纯水,充分体现了全膜法的显著优势。 2 在环境保护中,全膜法水处理工艺技术的应用 全膜法水处理工艺已越来越多的推广施予在工业水污染处理中,现在,电子产品生产企业、半导体生产厂商等许多企业,在水处理中都已使用了全膜法技术,根据相关研究证明,在小于25℃以下的水中,电阻率都比较稳定在18MΩ以上。另外,在全膜法水处理技术的流程中,通过仔细观察超滤系统,NAHSO灭菌剂的使用,可有效杀灭细菌,避免超滤使用中发生断丝或膜被污染的现象,另外,为了提高膜的使用效率,避免膜被氧化,需加装ORP表以此优化设置。 在进行反渗透过程中,为了高效阻滞各分子杂质,需选择特殊材质的反渗透膜,其不仅要具备较高的细腻度较、较强融水性,还需有效阻截水质中杂质,以防止膜被污染,另外,还需有利于水分子的透过,并可高效处理矿物质及微生物等杂质,为避免单纯高压泵的直接冲击力,可通过高压泵变频进行加压。在全膜水处理工艺中,其最关键的一个流程即是反渗透,它对EDI膜起着有效的保护作用,所以,在该过程中,为了阻滞镁及钙等不溶于水的物质形成污垢,需添加适当的阻垢剂,以促进反渗透作用。另外,企业为了提高水质的纯度,实现环境保护,在全膜法反渗透中还利用了双极反渗透。双极反渗透使用的是抗污染性能强、脱盐效果好的低压复合膜,其利用率超过了97%,而且该膜具有较长的生命周期,一般使用寿命在五年以上。 在EDI技术的应用中,利用电极作用,结合离子交换技术,对树脂进行再生作用,反复对水质进行电解脱盐,因此,使水的纯度大幅提高,在加上抛光床技术的使用,有效的排除了水质中含有的浓度较低的离子,充分发挥了EDI技术的作用,从而大幅提高了水的质量以及纯净度,确保了水质的安全性。抛光床的使用是不可再生的,每年可定期更换一次,它的作用就是加强微粒的释放,从而弥补树脂再生达不到的要求,更进一步提纯水质。而在锅炉补给水的工艺中,传统的过滤净化是先进行混凝澄清,再通过砂滤过滤较大悬浮物,之后利用交换技术去除水中的盐,该过程不仅操作复杂,而且会产生大量的酸碱污水。 近年的化学水处理通过有效结合应用超滤技术、反渗透技术与EDI技术,能够大幅提高水处理水质。同时为了进一步提高水质处理的精度,降低水环境污染,仍需不断研究和优化全膜法水处理工艺技术,以及其操作流程,以不断提高其水处理技术水平。 3 结语 全膜法水处理工艺技术是集超滤、反渗透技术及EDI技术为一体的综合运用,该技术操作简单、方便,其通过过滤、脱盐及持续净化等过程,净化了水质,提高了水的质量、纯度、以及安全性,另外,在水处理过程中不会排出酸碱废液,可实现所有有害物质的回收利用,有效的保护了环境,因此,该技术被广泛地应用于水处理中。

磁分离净化技术在矿井污水处理中的应用研究

磁分离净化技术在矿井污水处理中的应用研究 发表时间:2020-04-09T02:56:05.983Z 来源:《防护工程》2020年1期作者:李耀耀[导读] 能否通过合理的技术应用来净化煤矿矿井水,在很大程度上决定了煤矿企业的资源利用率及其节能减排情况。 安徽途晟规划设计咨询有限公司安徽合肥 230051摘要:能否通过合理的技术应用来净化煤矿矿井水,在很大程度上决定了煤矿企业的资源利用率及其节能减排情况。很多矿井为了更加合理充分的利用资源,通过建设污水处理站的形式对矿井污水进行综合的净化处理,其中应用了磁分离水体净化技术。。大量实践结果 表明,将该技术运用在水体净化过程中,能够有效实现泥水分离,以较低的运行成本节省更多的能源,不仅实现了对矿区污染的控制,同时煤泥经处理后可流通入市,产生二次经济效益。鉴于此,本文围绕磁分离净化技术在矿井污水处理中的应用展开探究。首先简述了超磁分离净化技术工艺流程、水质及排放指标,然后介绍了在矿井污水处理中磁分离净化技术应用的主要构筑物及工艺系统,最后分析了磁分离净化技术在矿井污水处理中的应用效果。 关键词:煤矿污水;煤泥资源;磁分离;净化节能 1工艺简述 1.1工艺流程 由巷道沟渠对矿井污水进行引流和收集,最终集中于近水渠,在其中布置机械格栅来进行初次过滤,接下来引入预沉池中。过一段时间的沉积,水中比较大的颗粒会沉淀到底部形成污泥,由下方的潜水渣浆泵将其倒入泥池中,在污泥泵的带动下转送至压滤机,经过脱水后再进入下一阶段处理。超磁分离净化技术具体的工艺流程显示在图1中。 图1 超磁分离净化技术工艺流程图 超磁分离混凝系统接收来自预沉处理后的污水,该系统中含有大量的混凝剂和磁种,其中混凝剂主要是PAM和PAC,在三分钟到六分钟的时间内悬浮在水面上的物质会在磁种的吸引下团聚形成微絮团。经过此过程后水再次进入超磁分离机,在这里进行固液分离的净化过程。之后经检测达到相关标准后实现清水入仓,在排水泵的加压提升下运送至水面进行综合运用。 经过超磁分离机的分离作用后,磁分离磁鼓接收分离后的煤泥,同时开始高速分散,非磁性悬浮物和磁性悬浮物彼此分开,磁鼓将磁种吸附出来在泵的带动下再次回流至混凝投加系统。而非磁性悬浮物仅有污泥中转池和之前产生的预沉池污泥共同进入压滤机脱水阶段,完成后运送至地面。 1.2水质及排放指标 岩粉和煤粉是矿井污水中的主要杂质,除此之外还包含一定含量的可溶无机盐,相对来说有机污染物含量较小。对于净水结果,相关报告和调研的具体标准:对于进水,其PH值在6-7之间,同时SS不大于1000毫克每升;而对于出水,其水质应符合《煤炭工业污染物排放标准》 GB20426—2006,同时PH值在6-9之间,SS不大于30毫克每升。 2主要构筑物及工艺系统 2.1主要构筑物 格栅渠的主要作用在于过滤掉体积较大的机械杂质,由钢筋混凝土构成,这对于降低后续设备运行的安全隐患具有重要意义。预沉池的总容积为160立方米,同样由钢筋混凝土构成,其作用是过滤掉体积比较大的颗粒杂质,为后续处理进程减轻负荷。污泥在潜水渣浆泵的推动下流至污泥池。微磁絮凝反应发生在混凝反应池中,其中的各种物质在反应之后共同形成微絮凝体,这使得后续的吸附分离更为简便。快速混合池,一级反应池和二级反应池的有效溶剂分别是4.48立方米,18.75立方米和18.75立方米,三者均有钢筋混凝土构成。经过磁鼓的分离后,其中的污泥成分先在中转池短暂停留,再在渣浆泵的压力作用下流通到污泥池。中转池同样由钢筋混凝土构成,有效容积是10立方米。预沉池储存的污泥和分离后的污泥最终都被汇集到污泥池,该池的有效容积是37.5立方米,由钢筋混凝土构成。 2.2主要工艺系统

超磁分离技术设计要点

一,工程说明 超磁分离技术设计要点 一、超磁分离技术的特点 超磁分离水体净化技术是一项新颖的水处理技术,其成套设备与普通的沉淀和过滤相比,具有无反冲洗,分离悬浮物效率高,工艺流程短,占地少,投资省,运行费用低等特点。针对城市污水、工业废水、矿井水、油田采出水、河道水、景观水等不同种类的废水,长期的净化试验和工程实例表明该技术具有以下显著特点: 1、处理时间短、速度快、处理量大,磁盘瞬间产生大于重力640 倍的磁力,处理效率高,流程短,总的处理时间大约3 min,可多台并联运行,满足大流量处理要求; 2、占地少,出水稳定,占地面积约为传统絮凝沉淀的1 /8,混凝时间1min,絮凝时间2min,过水平均流速320m/h。(占地面积:600m3/d,2.4×4.0;3000 m3/d,9.6×6.0;10000 m3/d,磁盘机外形尺寸6.0×3.0×1.9,磁分离磁鼓外形尺寸,3.3×2.0×1.45) 3、排泥浓度高,磁盘直接强磁吸附污泥,连续打捞提升出水面,通过卸渣系统得到高浓度污泥; 4、运行费用低,采用微磁絮凝技术,投加药量少,且磁种循环利用率高,运行费用低; 5、日常维护方便,设备无需反洗,自动化程度高,运行稳定可靠。 二、超磁分离技术的原理 直接磁选技术在分离污水(如钢厂废水)中的铁磁性杂质方面效果明显,但对于造纸、化工、制药、食品、石油等工业废水,由于废水中的有毒有害

物质大多为酸碱离子、有机物、油等,主要是非磁性或弱磁性物质,因此采用直接磁分离方法很难将这些有害物质有效分离,必须通过预先加入磁种的方法,使本身无磁性的有害物质带上磁性,然后在高梯度磁场中实现磁分离。磁种—絮凝分选法主要包括磁种絮凝、磁分离和磁种回收三大主要步骤。具体方法是在一定的化学条件下,向污水中添加专用磁种和絮凝剂,或铁磁性絮凝剂(如表面处理过的三价铁盐),水中有害物质通过氢键、范德瓦尔斯力或静电力与经表面官能团修饰的磁种絮接,从而使非磁性物质具有磁性或使弱磁性物质的磁性增强,与污染物结合的磁絮凝剂可以被高梯度磁滤网或磁盘捕获,从而实现污染物的去除。磁分离设备分离出的废渣(磁种和悬浮物的混合体)经输送装臵进入高速搅拌剪切环节,实现磁种和悬浮物的分离,再经由磁鼓回收装臵,就可将其中的磁种分选出来,磁种回收率可达99.4 %以上。回收的磁种可循环利用,既节约了生产成本,又减少了环境负荷。 图:超磁分离水体净化技术工艺流程

水处理膜技术

联邦德国埃尔夫特水协会北运河污水处理厂 编者:姚刚 业主:联邦德国埃尔夫特水协会(Erft Verband) 工程设计单位:联邦德国Hydro Ingenieure设计院 工程建设单位:联邦德国HOCHTIEF公司 1埃尔夫特水协会北运河污水处理厂的建设背景 联邦德国埃尔夫特水协会负责埃尔夫特流域的污水处理。水协会有46座大小不等的污水处理厂,其中最小处理规模的污水厂只有800设计人口当量,最大的处理规模的污水厂为132000设计人口当量。北运河污水处理厂就是其中的一座。该污水处理厂位于水协会管辖区的最北面,接纳处理来自Kaarst市城市生活污水和部分来自Korschenbroich及Neuss市的城市生活污水。 处理后的污水排放到北运河。北运河在拿破仑时代开始兴建,是连接莱茵河和马斯河的一条运河。因此北运河不属于天然水体。运河自身的水流量很少,而且流速很小。水体质量相当于III级水质--“严重污染”。此外,扩建以后位于北运河下游的污水处理厂的出水要直径流经游泳水体。 北运河污水处理厂始建于1967年,于1973年扩建。目前这座污水处理厂的处理水平已经不能够满足相应的污水排放水体的标准。根据Kaarst市的土地发展规划,待扩建的污水处理厂必须放弃现有的厂址,需要另选厂址。根据德国环境影响评价法,埃尔夫特水协会在距离现厂址2.5公里北运河的上游方向选择了新厂址。 扩建工程于1998年开始设计,原采用传统活性污泥法方案。在此期间埃尔夫特水协会在Roedingen市的德国第一座活性污泥-膜分离法城市生活污水处理厂投产运行,取得了有益的经验。埃尔夫特水协会与德国北威州环境部协商,建议改变原设计方案,采用活性污泥-膜分离法。埃尔夫特水协会于2000年开始招标。经过评标谈判,确定采纳活性污泥-膜分离法方案。 2 污水设计参数 2.1设计人口当量和污水量

磁分离技术在水处理工程中的应用工艺及发展趋势[工程类精品文档]

磁分离技术在水处理工程中的应用工艺及发展趋势[工程类精品文档] 本文内容极具参考价值,如若有用,请打赏支持,谢谢! 【学员问题】磁分离技术在水处理工程中的应用工艺及发展趋势? 【解答】摘要:本文介绍了磁分离技术的主要应用工艺,综述了各种工艺在处理各种废水时的应用现状。磁分离技术具有分离效率高、分离速度快、占地面积小等优点。磁分离技术与絮凝技术、磁种洗选回收技术、生化技术的结合,是目前污水处理中磁分离技术的发展方向,它大大扩展了磁分离技术的处理对象和应用领域。 关键词:高梯度磁过滤器稀土磁盘CoMagTM工艺BioMagTM工艺MagBRTM工艺ReMagdiscTM工艺磁性生物载体 一、引言 磁分离技术是借助磁场力的作用,对磁性不同的物质进行分离的一种物理分离方法。磁分离技术可以说是一门比较古老、较成熟的技术,最早应用于选矿和瓷土工业。1845年,美国发表了工业磁选机的专利。磁分离技术作为有磁性差异的两种及多种物质的选别手段,在矿石的精选、煤的脱硫、玻璃及水泥等?;?;料的除铁、高岭土的提纯、生物工程中的细胞分离、石化行业的催化剂回收等领域得到了广泛的应用[1-6]. 磁分离技术用于水处理工程,它又可以称得上是一门新兴技术。从上世纪60年代开始,苏联用磁凝聚法处理钢厂除尘废水,60年代末,美国MIT教授科姆发明高梯度磁过滤器,70年代美国应用磁絮凝法和高梯度磁分离法处理钢铁、食品、化工、造

纸等废水。1974年瑞典开始用磁盘法处理轧钢废水,随后的75年日本开发盘式两秒分离机。我国从70年代中期到80年代初,将磁聚凝法、磁盘法、高梯度磁分离法用于炼钢、轧钢废水的处理。近年来,磁分离技术在电镀废水、含酚废水、湖泊水、食品发酵废水、市政废水、钢铁废水、厨房污水、屠宰废水、石油采出水等处理方面都取得了一定的研究成果,有的已经在实际废水处理中得到了很好的应用。本文主要介绍水处理工程中磁分离技术的应用工艺。 二、磁分离技术在水处理中的应用与研究情况 一项新技术、一种新设备的研发成功,必将带来大量的应用研究成果。同时,人们在设备的分离净化机理、如何提高设备的分离效率等方面也开展了大量的研究工作。对水处理工程而言,由于磁分离技术仅仅是一种物理性质的固液分离手段,在实际应用时,很多场合都必须辅以其他相关技术,才能发挥很好的效果。下面,根据磁分离技术的特点,按照应用工艺的划分,对磁分离技术在水处理中的应用研究情况作一介绍。 1、处理富含磁性污染物的污水 无论是开发成功的高梯度磁过滤器还是各种圆盘式磁分离器,在水处理方面,它们的首选应用领域都是钢铁废水的处理。 钢铁热轧/连铸废水、冷轧乳化液等,其污染物98%以上都是强磁性物质,另外还含有部分油类和少量非磁性物质,非常适合用磁分离的方式净化。其工艺简单,占地面积小,处理效果好。图1为一种典型含磁性污染物废水处理工艺流程。 1977年,第一台工业性高梯度磁分离器在日本千叶川崎製鉄(株)投入使用,是HGMS 在废水处理中的成功应用例子。处理对象是真空排气过程中的洗涤废水,SS的去除率达到80%,洗涤废水中的固体颗粒主要成分是氧化铁和氧化锰,粒径小于100μm,

磁分离技术与应用#(精选.)

分离工程期末论文 磁分离技术与应用Magnetic separation technology and application 学院:化学工程学院 专业班级:化学工程与工艺化工081 学生姓名:樊波学号:050811101 指导教师:戴卫东(副教授) 2011年6月

磁分离技术 1 引言 磁化技术是将物质进行磁场处理,并导致物质的宏观性质发生某些变化,从而实现某种工程或工艺目的【1】。液态物质磁场处理技术的研究工作起始于60年代,近半个世纪来获得飞速发展,给科技进步和社会经济的发展注入了新的活力。 随着强磁场、高梯度磁分离技术的问世,磁分离技术的应用已经从分离强磁性大颗粒到去除弱磁性及反磁性的细小颗粒、从最初的矿物分选、煤脱硫发展到工业水处理、从磁性与非磁性元素的分离发展到抗磁性流体均相混合物组分的分离。 2 正文 2.1 磁分离技术研究历史 采用超导磁体分离矿石、煤、高岭土等固体物质中磁性杂质在国内外已得到广泛应用,但用于废水分离净化尚少涉及。主要原因是对于废水中的有机、无机污染物,由于这些污染物本身没有磁性,靠磁场产生的磁吸引力无法分离。日本大阪大学Nshijima研究组最早开始超导磁分离污水处理研究,并建立了示范装置,用于分离造纸厂污水,分离后污水COD(化学需氧值)可由起始的110mg/L,降到25mg/L,去除率近80%。他们采用的是预先在污水中添加Fe3O4"磁种子"颗粒和聚氯化铝絮凝剂,絮凝剂将污水中有害物质和Fe3O4磁性颗粒一起絮凝,这样通过超导磁体吸引分离。尽管分离效果很好,但由于还需加入有机絮凝剂,没有完全摆脱因有机絮凝剂的加入带来的二次污染,此外超导磁体冷却采用的是液氦浸泡冷却,对于我国,氦资源贫乏,这将导致大规模应用推广的限制。 而李来凤的研究却克服了以上问题,采用等离子有机覆膜技术在Fe3O4磁性颗粒表面生长带活性基团的有机薄膜,这层纳米厚度的薄膜可以有效地捕捉污水中的有机物、无机离子,代替了有机絮凝剂的加入,而且由于有机膜与Fe3O4有很强的结合力,使得这种新型复合"磁种子"材料可以重复使用,较单纯的Fe3O4磁种子材料有明显优势【2】。因此开展新型、高效、低成本超导磁分离工业废水处理技术的研究对我国节能减排具有重要意义,是未来极具潜在应用价值的技术。 2.2 磁分离技术的现状 从1993年开始,洛阳石化总厂、洛阳石化工程公司炼制所和中南工业大学合作致力于FCC废催化剂磁分离技术的开发,到1995年底,在洛阳石化总厂建

水处理技术之7种膜技术简介

水处理技术之7种膜技术 膜分离技术被公认为是目前最有发展前途的高科技之一。膜分离技术是以选择性多孔薄膜为分离介质,使分子水平上不同粒径分子的混合物/溶液借助某种推动力(如:压力差、浓度差、电位差等)通过膜时实现选择性分离的技术,低分子溶质透过膜,大分子溶质被截留,以此来分离溶液中不同分子量的物质,从而达到分离、浓缩、纯化目的。 近些年来,扩散定理、膜的渗析现象、渗透压原理、膜电势等研究为膜技术的发展打下了坚实的理论基础,膜分离技术日趋成熟,而相关科学技术的突飞猛进也使得膜的实际应用已十分广泛从环境、化工、生物到食品各行业都采用了膜分离技术。 迄今为止,水处理的膜技术主要有以下几种: (1)反渗透(RO)膜技术。 反渗透(又称高滤)过程是渗透过程的逆过程,推动力为压力差,即通过在待分离液一侧加上比渗透压高的压力,使原液中的溶剂被压到半透膜的另一侧。反渗透技术的特点是无相变,能耗低、膜选择性高、装置结构紧凑,操作简便,易维修和不污染环境等。 (2)纳滤(NF)膜技术。 纳滤技术是超低压具有纳米级孔径的反渗透技术。纳滤膜技术对单价离子或相对分子质量低于200的有机物截留较差,而对二价或多价离子及相对分子质量介于200-1000的有机物有较高脱除率。纳滤膜具有荷电,对不同的荷电溶质有选择性截留作用,同时它又是多孔膜,在低压下透水性高。 (3)微滤(MF)膜技术。 微滤膜是以静压差为推动力,利用筛网状过滤介质膜的筛分作用进行分离。微滤膜是均匀的多孔薄膜,其技术特点是膜孔径均一、过滤精度高、滤速快、吸附量少且无介质脱落等。主要用于细菌、微粒的去除,广泛应用在食品和制药行业中饮料和制药产品的除菌和净化,半导体工业超纯水支配过程中颗粒的去除,生物技术领域发酵液中生物制品的浓缩与分离。 (4)超滤(UF)膜技术。 超滤是以压差为驱动力,利用超滤膜的高精度截留性能进行固液分离或使不同相对分子质量物质分级的膜分离技术。其技术特点是:能同时进行浓缩和分离大分子或胶体物质。与反渗透相比,其操作压力低,设备投资费用和运行费用低,无相变,能耗低且膜选择性高。在食品、医药、工业废水处理、超纯水制备及生物技术工业领域应用较广泛。 (5)电渗析(ED)膜技术。 电渗析是一个电化学分离过程,是在直流电场作用下以电位差为驱动力,通过荷电膜将溶液中带电离子与不带电组分分离的过程。该分离过程是在离子交换膜中完成的。主要应用于海水淡化,苦咸水脱盐,海水浓缩制盐,乳精、糖、酒、饮料等的脱盐净化,锅炉给水、冷却循环水软化,废水中高价值物质回收与水的回用,废酸、废碱液净化与回收等。 (6)双极膜(BPM)技术。 双极膜是由阴离子交换膜和阳离子交换膜叠压在一起形成的新型分离膜。阴阳膜的复合可以将不同电荷密度、厚度和性能的膜材料在不同的复合条件下制成不同性能和用途的双极膜。主要应用于酸碱生产、烟道气脱硫、食盐电解等。 (7)渗透蒸发(PV)膜技术。 渗透蒸发是一个压力驱动膜分离过程,它是利用液体中两种组分在膜中溶解度与扩散系数的差别,通过渗透与蒸发,达到分离目的的一个过程,其设备投资和运行费用较低。近年来,对渗透蒸发技术的研究虽然进展很快,但它单独使用的经济性并不好。 【广州奥凯环保科技水处理设备公司采编】

磁分离技术在重金属废水处理中的应用及前景

Water Pollution and Treatment 水污染及处理, 2014, 2, 40-45 Published Online October 2014 in Hans. https://www.doczj.com/doc/cc14907924.html,/journal/wpt https://www.doczj.com/doc/cc14907924.html,/10.12677/wpt.2014.24007 Application and Prospect of Magnetic Separation Technology in the Treatment of Heavy Metal Wastewater Luyuan Li1,2, Yang Chen2*, Lianqin Yin1, Liyuan Liu2, Baojun Jia2, Qinzhong Feng2, Xiaoxia Wu1,2 1North China Electric Power University, Baoding 2Institute of High Energy Physics, Chinese Academy of Science, Beijing Email: *chenyang.hky@https://www.doczj.com/doc/cc14907924.html, Received: Jul. 26th, 2014; revised: Aug. 25th, 2014; accepted: Sep. 3rd, 2014 Copyright ? 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/cc14907924.html,/licenses/by/4.0/ Abstract With the development of magnetic separation technology, the technology has extended from the traditional dressing to the field of waste gas, waste residue, waste water treatment and other en-vironmental protection. As a new water treatment technology, high gradient magnetic separation (HGMS) technology has been widely applied in the separation of magnetic material and COD5of organic pollutants in wastewater. Study of superconducting high gradient magnetic separation technology with advantages as high removal efficiency, energy saving and simple operation in the separation of small particle size and nonmagnetic contaminants such as heavy metal ions has be-come a hot research topic. This paper introduces the basic principle of this technology, the re-search results of this technique for the treatment of heavy metal wastewater at home and abroad, and has made the forecast. Keywords Magnetic Separation, Heavy Metal, Water Treatment, Superconducting 磁分离技术在重金属废水处理中的应用及前景 李路远1,2,陈扬2*,尹连庆1,刘俐媛2,贾保军2,冯钦忠2,吴晓霞1,2 *通讯作者。

电厂化学水处理中全膜分离技术分析

电厂化学水处理中全膜分离技术分析 电厂生产的电能主要来自于燃料燃烧的热能转化,这种能量的转化主要是靠水来辅助实现的。在电厂的日常运转中,水作为重要的媒介在很多生产环节中起着重要的作用。而且电厂设备的运行效率和生产设备的使用寿命与水的质量息息相关,主要是因为电厂使用的水蒸发后的水蒸气含有污染性的化学物质造成。为了防止含有腐蚀性的水渗入电厂的设备造成损害,需要科学有效的方式进行水处理。全膜分离技术是一种比传统水处理更有效的技术,它具有设备要求低、运行方便、环保、水质净化率高等特点,得到了广大企业的青睐,应用范围广泛。 标签:电厂化学;水处理;全膜分离技术 全膜分离技术是一种新型的膜分离技术,是电厂化学水处理的一种高效方法,全膜分离技术不仅提升了水体的质量,而且满足了电厂的用水需求。但是,全膜分离技术在实际的生产应用中还存在着一些问题,例如会出现膜技术虽然浓缩成本低,但不能将产品浓缩成干物质、膜技术虽然具有選择过滤性,但是同分异构体就无法实现分离的问题,因此,需要进一步优化才能高效地完成水处理的工作。当前,环境污染是一个大问题,人们对环境保护的意识越来越强烈,全膜分离技术解决了污水带给环境的污染问题,还能降低电厂的生产成本,减少水资源的浪费,为电厂赢得最大化的利益。 一、全膜分离技术的应用价值 全膜分离技术在电厂化学水处理中应用非常广泛的。随着社会的不断发展,人们对于电能的需求和可靠性要求越来越高,对电厂设备的可靠性和安全性日益重视。而水处理是热电厂生产运行过程中最重要的环节之一,水的品质直接关系到热力设备的运行水平、维护成本以及电厂的长远发展。例如在热力电厂中,如采用超超临界一次中间再热直流锅炉,由于直流炉的特殊结构(没有汽包),其对给水的纯度要求很高,锅炉补给水是发电厂热力循环系统污染物的主要来源,补给水系统运行不当或监控不好,可能把原水中的悬浮物、溶解性无机杂质、有机物和胶体硅带入发电厂循环系统,带来严重后果。因此,如果锅炉补给水采用全膜法处理工艺,其出水水质能满足大型超超临界直流炉机组的对锅炉给水的水质要求,避免对设备造成损害,提高设备的使用效率和寿命。 二、全膜分离技术在电厂化学水处理中的具体应用 (一)超过滤技术 超过滤技术是全膜分离技术在电厂化学水处理中的第一道工序。此项技术过滤膜空隙较大,一般情况下为0.05um至1um之间,能够将化学水中存在的大分子和颗粒物有效过滤分离出去。在超过滤技术的实际应用过程中,超过滤工程与滤膜孔径的尺寸有着直接关联,主要是将滤膜两侧存在的压力作为分离过程的主要驱动力,将滤膜作为过滤介质,通过滤膜两侧压力的作用,化学水就会流过滤

全膜法水处理工艺技术在环境保护中的应用 徐远

全膜法水处理工艺技术在环境保护中的应用徐远 发表时间:2020-01-13T14:38:16.537Z 来源:《基层建设》2019年第28期作者:徐远 [导读] 摘要:近年来,现代化建设的发展迅速,人们对环境保护的意识也逐渐的加强。 江苏泗阳海峡环保有限公司江苏泗阳 223700 摘要:近年来,现代化建设的发展迅速,人们对环境保护的意识也逐渐的加强。经济的发展带动着我国各项科学技术的进步,推广全膜法水处理工艺技术已成为我国目前生态环境保护工作中不可忽视的一部分。将全膜法水处理工艺技术应用在环境保护中,不仅可以提高水质的纯度,还能实现水资源的循环利用,确保水资源利用效率的提高,具有非常大的价值。随着我国社会经济的不断发展,人们愈发认识到环境保护的重要性,开始积极控制和治理环境污染。污水对环境危害较大,人们需要重点研究,提升污水处理效果,避免污水危害周围环境。全膜法水处理工艺应用较为理想,在环境保护中具有积极作用。 关键词:全膜法水处理工艺技术;环境保护;应用 引言 水污染是环境污染中最为重要的类型,其会影响到人们的生命安全,其中污染的源头来自工业废水排放、市政居民废水等多个方面。随着国家经济的不断发展,人们逐渐将目光集中到了对水污染的治理上,并且开始探寻解决水污染的技术和方案。将新近研发的科技应用于水污染的处理上,能够促进科技与环境保护的共同发展。传统的水资源处理技术的效果十分有限,使得水资源污染状况持续恶化,而全膜法技术的出现,使得这一难题得到有效解决。其不需要对污水进行酸碱脱盐处理就能使水资源得到净化,从而使得大量的水源能够得到二次利用,下面将对这一技术进行分析。 1全膜法水处理工艺概述 通常情况下全膜法工艺就是将多种膜分离技术进行统一整合,将单一过滤综合成为整套水处理流程。目前我国废水、污水种类较多,其中微生物、大分子形态并不固定,各种膜分离技术也各有缺陷,所以通过一体化过滤流程能够实现全方位的处理,保证水质纯度较高,实现资源高效回收利用。全膜法也被成为“第三代水处理工艺”,其工艺流程为预处理(超滤)——反渗透——EDI,全方位保障水质的可靠性,解决传统工艺一直以来有待解决的盐分物质分离问题,为实现环境保护起到不可忽视的作用。随着研究力度的加大,其应用范围与领域也在持续拓宽,不仅是水处理行业,科技研究也开始应用膜技术,部分企业还开始加入灭菌物质与氧化还原专职,保证效率的持续提升。全膜法水处理工艺技术属于一种新型水处理技术,主要是利用超滤、微滤、反渗透和EDI技术等,对工业废水、市政污水等水质当中的微生物、大分子、矿物质等杂质进行处理。该技术不仅可以实现杂质的高度去除,还可以进行深度脱盐处理,属于一种高强的水处理技术。该技术还可以结合电渗析与离子交换技术,实现高纯度水质的提取,保证水质的完全循环利用,提高处理和利用效率。另外,该技术还能有效降低废水对环境的污染率。全膜法水处理工艺技术,不仅是一种排污高效,脱盐深度的先进工艺技术,还可以直接应用到锅炉水补给、工业用水等领域,也能够满足电子超纯水、循环用水等的高标准和高要求。 2全膜法水处理工艺技术在环境保护中的应用与优化措施 2.1完善规章制度 在应用全膜法水处理工艺时,人们应当加强管理,构建完善的管理制度,有效保证全膜法各个子系统的应用效果。依据全膜法工艺流程,人们要明确细节,制定上岗制度,让工作人员自觉依据相关规范进行操作。同时,要建立监督制度,定期检查各个子系统运行情况,查看技术人员操作的规范性,保证污水处理系统参数处于合理范围内。要定期维护保养设备,以免出现设备损坏,影响整体污水处理效果。要填写保养日记,方便及时发现系统潜在的问题。 2.2膜法预处理 膜法预处理能够对污水的净化处理工作得到有效落实,其主要是将待处理的污水使用超滤膜对其展开过滤操作,能够将污水中含有的各种颗粒较大的杂志全部得到有效清除,从而保证对应的膜处理效果可靠有效。通过使用该种膜法预处理技术,能够将旧式的活性炭处理技术得到有效的落实,而且净化效率也非常高,不但可以显著提升污水的净化速度,而且能够使得处理得到的水资源的清洁度具有高标准的优化质量,从而为下一阶段的污水净化工序提供良好的基础。 2.3?EDI技术 EDI技术也可以称之为“电混床”“填充床电渗析”等,该技术操作原理就是将电渗析和离子交换两种技术进行高效融合,从而实现协同应用。在该工艺使用过程中并不需要酸碱的加入,避免出现酸碱对已净化水质的二次再生污染,保证全膜法提取的水资源更加纯净、安全。该技术发展时间较短,但科技含金量较高。EDI技术在全膜水处理流程中应用效果较为显著,是提纯水质的最后也是最关键的一个环节,EDI设备占地面积小、可持续生产、续航性能稳定、能够保证水质安全性,且操作起来更加简便,成本投入较少。最重要的是经过EDI提纯后的水质不会发生二次化学污染,实现了对生态环境的精准保护,也有效降低了污水再次处理的资金投入。具体操作时,技术人员需要把直流电连接模堆两侧电极,通电后模堆发生电位差,从而使废水污水中的阳离子物质在内部发生阴极作用,最终与阳离子交换膜,促使水中的阴离子物质移向产生阳极作用的阴离子交换膜,不同极吸附的阴阳物质聚集,形成氢离子与氢氧离子,从而反复进行水质盐离子聚集和电解,最终电渗析生产高纯水。EDI技术最终实际应用效果的水电导率可达到0.052~0.069us/cm,该数值与纯净水电导率基本持平。另外EDI技术还能够实现电离再生效果,可以对污水进行持续脱盐处理,进而生产出高纯度的水,在整个工艺流程中完全不需要酸碱操作,充分表现出全膜法的科学性。 2.4连续电解除盐技术 连续电解除盐技术对污染水进行处理时应该要应用专业的系统,包括EDI膜堆、交换树脂、交换膜等,其中EDI膜堆是由很多夹在两个电极间的单位所构成的,各个单位中都包括浓水室和淡水室两个部分,其中淡水室中含有阴、阳离子均匀混合的交换树脂,树脂在阴离子交换膜和阳离子交换膜之间填充。该技术的原理是:污水中的杂质离子经过树脂进入交换膜,再进入到浓水室中,但是交换膜会阻止杂质离子向对应电极上移动,并且在浓水室中富集起来,然后再统一将杂质离子排出系统之外,达到净化水资源的目的。目前连续电解除盐技术的应用也很广泛,因为该技术所需要的结构比较紧凑,占地面积较小,运行以及维护费用都比较低。 2.5强化全膜法水处理工艺在水环境保护中的作用 为了积极改善环境污染问题,必须要采取各种先进的技术对污染问题进行处理,污水处理是环境保护中的重要内容之一,必须要加强

相关主题
文本预览
相关文档 最新文档